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Abstract

Polar coding, introduced 2008 by Arıkan, is the first efficiently encodable and decodable coding
scheme that provably achieves the Shannon bound for the rate of information transmission over
classical discrete memoryless channels (in the asymptotic limit of large block sizes). Here we study
the use of polar codes for the efficient coding and decoding of quantum information. Focusing on
the case of qubit channels we construct a coding scheme which, using some pre-shared entangle-
ment, asymptotically achieves a net transmission rate equal to the coherent information. Further-
more, for channels with sufficiently low noise level, no pre-shared entanglement is required.

Polar Codes in Classical Information Theory

Polar codes are a family of error-correcting codes recently introduced by Arıkan [Arı09] in the con-
text of classical information theory. The main feature of polar codes is that, in the limit of large
block sizes, they provably achieve the symmetric capacity of classical discrete memoryless channels
(DMCs) [ŞTA09], while allowing for efficient encoding and decoding (in Opn logpnqq steps where n
is the block length). Since their invention, polar codes have attracted considerable interest in the
classical information theory community and various improvements and generalizations have been
suggested (see, for instance, [MT09] for efficient constructions of polar codes, [KŞU10] for bounds on
their error probabilities, and [HUK09, Kor09] for their use for source coding).

The main idea underlying the construction of polar codes is channel polarization: out of n identi-
cal DMCs one creates a new set of n logical channels by prepending an encoder, and these logical
channels have the property that they are either “good” (nearly noiseless) or “bad” (have nearly zero
capacity). Furthermore, for large n, the fraction of good channels is very close to the symmetric capac-
ity 1 of the original DMC. To encode information, the encoder simply fixes or “freezes” the input to the
bad channels (to a value known to the decoder) and directs the information to be transmitted to the
good channels. The communication rate achieved by the scheme therefore corresponds to the fraction
of good channels and hence, in the limit of large n, approaches the symmetric capacity of the original
DMC. For a detailed description of polar coding for classical channels, we refer to Appendix A.

Main Results

We introduce a quantum version of polar codes and show that these have the following properties
when applied to Pauli channels N :

1The symmetric capacity is the mutual information of the output of a channel given a uniform input.
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• Both the encoding and decoding operations are efficient. More precisely, they have complexity
Opn logpnqq, where n is the block length.

• In the limit of large block lengths, the net rate of quantum information transmission approaches
the coherent information of the channel. To formulate this more precisely, we consider the task
of distributing entanglement. Assume that sender and receiver can invoke a channel N n times
and, in addition, have access to a reservoir of shared entanglement. Then polar coding with
block length n can be used to generate a net amount of entanglement �`pnq (i.e., �`pnq is the
total number of freshly generated ebits minus the number of consumed ebits) such that

lim

nÑ8
�`pnq

n
“ ´HpA|Bq .

Here ´HpA|Bq denotes the coherent information, defined by ´HpA|Bq :“ Hp Bq ´ Hp ABq,
where Hp¨q is the von Neumann entropy. It is evaluated for the state AB “ pI ✏N qp|�y x�|ABq
obtained by sending the B-part of a maximally entangled qubit |�yAB through the channel N .

• If the noise level of the channel is below a certain threshold (see Figure 3) then no pre-shared
entanglement is required to achieve the coherent information of the channel using polar codes.

• In addition, we provide numerical evidence for the conjecture that, even for large noise levels
of the channel, no initial entanglement is required.

• Our construction yields CSS codes.

Proof idea

The proof of the above statements is divided into several steps. Each of these is explained in detail in
a separate section of the appendix.

• In Appendix B, we show that polar coding has the following important property. If the classical
coding operation is applied coherently to n qubits in a fixed basis (referred to as the amplitude ba-
sis) then this is equivalent to applying the coding operation to (appropriately reordered) qubits
in a conjugate basis (the phase basis). In other words, the encoder simultaneously encodes in the
amplitude and in the phase basis.

• In Appendix C, we use the polarizing property of classical polar codes to infer that polarization
occurs simultaneously in the amplitude and in the phase basis. As in the classical case, a cod-
ing scheme is then constructed by “freezing” the inputs to the “bad” channels while using the
“good” ones for the actual information transmission. The complication arising in the quantum
case is that each of the individual channels may be “good” for both the amplitude and phase
bases, “bad” for both of them, or “good” for one basis and “bad” for the other. Only the “dou-
bly good” channels are used to transmit quantum information. Since the amplitude and phase
bases are conjugate to each other, the inputs to the “doubly bad” channels cannot be fixed to a
classical value. Instead, we use one half of the preshared entanglement to “freeze” the inputs to
these channels.

• In Appendix D, we describe the construction of the decoder. The construction is based on co-
herently combining the classical decoders applied to the amplitude and the phase basis. The
full protocol for channel transmission is then described in Appendix E.

• In Appendix F, we analyze our quantum generalization of polar coding and show that its net
rate approaches the coherent information of the channel. Finally, in Appendix G, we analyze
the need for initial entanglement.
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Outlook

We have adapted the results for classical polar codes to show that there likewise exist efficiently
encodable and decodable qubit codes, which when entanglement-assisted, achieve a communication
rate equal to the coherent information for Pauli channels. An immediate practical application of such
codes is to quantum key distribution. Due to the CSS nature of the codes, using the well-known
relationship between CSS coding and secret key generation [SP00], our protocol can be converted
into a means for efficient, high-rate secret key generation, possibly assisted by preshared key.

Our results merely initiate the study of quantum polar codes, as many unanswered questions
remain. Most immediately is the issue of entanglement assistance. We have been able to rigorously
show that it is not always necessary, but one would like to know that it is never necessary, a conjecture
supported by numerical evidence. Beyond this, one would also like to extend the results to non-Pauli
qubit channels as well as to more general qudit channels.
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