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Quantum query complexity is a black-box model of quantum computation where the resource
of interest is the number of queries made to the input. This model has proven very useful for the
study of quantum computing—key algorithms like Grover’s search and the period-finding routine of
Shor’s algorithm can be formulated in this model, while at the same time one can often show tight
lower bounds, something still far off in the circuit model.

In the typical setting, one wishes to compute a function f(x) while making as few queries to the
input x as possible. Equivalently, one wishes to convert a state |0〉 which has no information about
the input x into a state close to |f(x)〉⊗ |0〉, from which the answer f(x) can be extracted with high
probability. Viewed in this fashion, it is natural to consider a generalization to the state-generation
problem, where the goal is to convert the starting state |0〉 into some input-dependent target
state |σx〉. This problem was introduced by Shi [Shi02], and recently systematically studied by
Ambainis et al. [AMRR11]. We study here the more general state-conversion problem, where the
objective on input x is to convert a starting state |ρx〉 into a target state |σx〉, again by making
queries to x. State-conversion problems arise naturally in algorithm design, generalizing classical
subroutines (Figure 1).

We characterize the quantum query complexity of state conversion using an information-theoretic
norm that can be expressed as a relatively simple semi-definite program. We call this the filtered
factorization norm as it is a generalization of the factorization norm γ2, also known as the Schur
product operator norm. Given a set of initial states {|ρx〉}x and target states {|σx〉}x, the query
complexity of the state-conversion problem to depends only on the Gram matrices ρx,y = 〈ρx|ρy〉
and σx,y = 〈σx|σy〉. We show that the query complexity of this state-conversion problem is
characterized by the distance between ρ and σ, as measured by the filtered factorization norm.

Recently, Reichardt showed that the general adversary bound [HLŠ07] characterizes the bounded-
error quantum query complexity of any function with boolean output and binary input alpha-
bet [Rei09, Rei11]. A corollary of our result is that the general adversary bound characterizes the
bounded-error quantum query complexity of any function whatsoever:

Theorem 1. Let f : D → E, where D ⊆ Dn, and D and E are finite sets. Then the general
adversary bound Adv±(f) of f characterizes the bounded-error quantum query complexity Q(f) of f :

Q(f) = Θ
(
Adv±(f)

)
.

We now give some further consequences of our characterization for function evaluation. Note
that for a function f , the Gram matrix of the initial states is J , the all ones matrix, and the Gram
matrix of the target states |f(x)〉 ⊗ |0〉 is Fx,y = δf(x),f(y).
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Figure 1: The state-conversion problem generalizes the state-generation problem, studied by
Ambainis et al. [AMRR11], which in turn generalizes function evaluation. The quantum query
complexity of evaluating boolean functions has been characterized by [Rei11].

• Straight-line property: If one can design an optimal algorithm for going from J to 99
100J+ 1

100F ,
then one also obtains an optimal algorithm for evaluating f , that is going from J to F .
This follows as quantum query complexity is given by the filtered factorization norm of the
difference J − F .

• Relation to adversary bound: The semi-definite program giving the filtered factorization norm
of J − F is the semi-definite program for the general adversary bound of f , together with
some additional constraints. These additional constraints change the objective value by at
most a factor of two, leading to Theorem 1. This gives a new interpretation of the adversary
bound as a distance measure. Here are the definitions:

γ2 norm: γ2(A) = max
M

{
‖A ◦M‖ : ‖M‖ ≤ 1

}
filtered γ2 norm: γ2(A|Z) = max

M

{
‖A ◦M‖ : max

j
‖Zj ◦M‖ ≤ 1

}
Adv± bound: Adv±(f) = max

M

{
‖(J − F ) ◦M‖ : max

j
‖(J − F ) ◦ Zj ◦M‖ ≤ 1

}
.

In our bound, A equals J − F (or ρ− σ for the general state-conversion problem), and Zj are
the query matrices, (Zj)x,y = 1− δxj ,yj .

• Composition: We show that quantum query complexity possesses a remarkable composition
property, inherited from the filtered factorization norm. Namely, Q(f ◦ gn) = O(Q(f)Q(g))
for a composed function (f ◦ gn)(x1, . . . , xn) = f(g(x1), . . . , g(xn)). Even though this is a
result about functions, it is crucial to work with the filtered factorization norm rather than
the adversary bound as heavy use is made of the additional constraints given by the former.
When the input of f is boolean, we show a matching lower bound, extending and simplifying
the proof for wholly boolean f, g [HLŠ07].

The full version of the paper may be found on the arXiv at http://arxiv.org/abs/1011.3020.
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