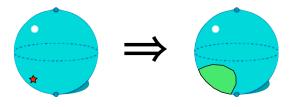
Paranoid tomography: Confidence regions for quantum hardware

Robin Blume-Kohout

Theoretical Division, Los Alamos National Laboratory*

Many "paranoid" quantum information processing protocols, such as fault tolerance and cryptography, require rigorously validated quantum hardware. Such hardware (elementary state- and gate-producing components) is calibrated using tomography, by combining many measurement results into a single estimate of the state ρ or process χ . But a *point estimate* – a single matrix ($\hat{\rho}$ or $\hat{\chi}$) that is probably close to the true state ρ or process χ – cannot provide the rigorous validation needed for paranoid protocols. *Region estimators*, on the other hand, provide just such a guarantee.



This paper presents *likelihood-ratio confidence regions*, a powerful, reliable, and convenient tool for rigorous state (and process¹) tomography.

A REGION ESTIMATOR is a map from data D to regions $\hat{\mathcal{R}}$ in state space. Its defining property is *correctness*: " $\hat{\mathcal{R}}(D)$ contains the true state/process with probability $\alpha = 1 - \epsilon$." Some popular ad hoc estimators, such as bootstrapped standard errors, generally fail to satisfy any such condition. A good region estimator should also assign the smallest achievable regions. Other ad hoc estimators, like those derived from large deviation bounds, assign much larger regions than necessary.

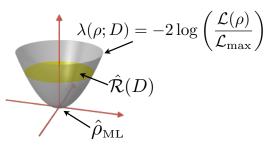
The two *good* candidates differ mainly in how they define correctness. *Credible regions* are inherently Bayesian, and define correctness as

$$Pr(\rho_{\text{true}} \in \hat{\mathcal{R}}(D)|D) \ge \alpha.$$

But this condition requires assuming a prior distribution $Pr(\rho_{\rm true})$ – and its validity depends critically on the "truth" of the prior. As a result, credible regions can be explicitly broken by adversarial choice of $\rho_{\rm true}$. This renders them unsuitable for paranoid applications. *Confidence region estimators* (CREs), define correctness as

$$Pr(\rho_{\text{true}} \in \mathcal{R}(D) | \rho_{\text{true}}) \geq \alpha \text{ for all } \rho_{\text{true}}$$
(1)
$$\Rightarrow Pr(\rho_{\text{true}} \in \mathcal{R}(D)) \geq \alpha,$$

and are guaranteed to produce a region containing ρ_{true} with probability α , even if ρ_{true} is chosen adversarially! Eq. 1) leaves us a great deal of freedom in defining a CRE that (i) assigns small, *powerful* regions, while (2) minimizing the complexity of computing $\hat{\mathcal{R}}(D)$.



Likelihood ratio (LR) confidence regions achieve correctness, near-optimal power, and simplicity all at once. LR regions are defined and computed using the likelihood function, $\mathcal{L}(rho) \equiv Pr(D|\rho)$, where D is the actual observed data. Given data D, we report the region

$$\hat{\mathcal{R}}(D) = \left\{ \text{all } \rho \text{ such that } -2\log\left(\frac{\mathcal{L}(\rho)}{\mathcal{L}_{\max}}\right) \le \lambda_c \right\}.$$
(2)

 \mathcal{L}_{max} is the maximum value of $\mathcal{L}(\rho)$. The cutoff λ_c (see "Correctness" below) is set by the system dimension d and the desired confidence α .

POWER can be quantified by volume.

$$V(\mathcal{R}) = \int_{\rho \in \mathcal{R}} \mathrm{d}\rho.$$

A powerful estimator assigns small regions. Remarkably, it does not matter what measure $d\varphi$ is chosen – the same estimator minimizes *all* notions of volume! But $V(\hat{\mathcal{R}}(D))$ cannot be simultaneously minimized for every dataset D. Nor can we simultaneously minimize *expected* volume,

$$\overline{V}(\rho) = \sum_{D} Pr(D|\rho)V(\hat{\mathcal{R}}(D)),$$

for every true state ρ . So instead of a unique "best" CRE, we find a whole class of *admissible* CREs (ones that are not strictly dominated by any other). Each admissible estimator minimizes *average* expected volume with respect to some averaging measure $Pr(\rho)d\rho$,

$$\left\langle \overline{V} \right\rangle_{Pr(\rho) \mathrm{d}\rho} = \int \overline{V}(\rho) Pr(\rho) \mathrm{d}\rho,$$

and is (see technical paper for a simple proof) a *probability-ratio estimator*:

$$\hat{\mathcal{R}}(D) = \left\{ \text{all } \rho \text{ such that } \frac{Pr(D|\rho)}{Pr(D)} \ge r_c(\rho) \right\}.$$
(3)

 $^{^1}$ The Choi-Jamiolkowski isomorphism makes process estimation formally equivalent to state estimation, on a larger system

The averaging measure determines $Pr(D) = \int Pr(D|\rho)Pr(\rho)d\rho$, while the cutoff $r_c(\rho)$ is chosen explicitly to satisfy Eq. 1.

If ρ were distributed according to a known measure, then obviously we should use the corresponding probability-ratio estimator. Lacking (in general) reliable prior knowledge of this sort, we want an estimator with good behavior for *all* states ρ . We get it (see technical paper) by choosing $Pr(\rho)d\rho$ so that

$$Pr(D) \propto \max_{\rho} Pr(D|\rho).$$

Inserting this choice into Eq. 3 – and observing that $Pr(D|\rho) = \mathcal{L}(\rho)$ – yields the LR prescription given in Eq. 2.

CORRECTNESS relies on a wise choice of the cutoff λ_c . Too low, and Eq. 1 is violated. Too high, and overly large regions are assigned. The perfect choice of λ_c varies with ρ , and barely satisfies

$$Pr\left[\lambda(D,\rho) \le \lambda_c(\rho)\right] \ge \alpha,\tag{4}$$

where $\lambda(D, \rho) = -2 \log (\mathcal{L}(\rho)/\mathcal{L}_{\max})$ is the *loglikelihood* ratio statistic. But allowing λ_c to vary with ρ yields disconnected confidence regions. So, instead, we replace $\lambda_c(\rho)$ with a constant upper bound

$$\lambda_c \gtrsim \max_{\rho} \lambda_c(\rho),$$

which (at a small cost in power) ensures connected *and* convex regions.

For any given ρ_{true} , λ is a statistic (i.e., a random variable depending on the data D). We calculate λ_c by studying the worst-case distribution of λ and then making sure that Eq. 4 is always satisfied. If the data were Gaussian (rather than multinomial), with $K = d^2 - 1$ degrees of freedom (corresponding to the $d^2 - 1$ independent parameters in ρ), then λ would be a χ_K^2 random variable with cumulative distribution

$$Pr(\lambda \le x) = \frac{\gamma\left(\frac{K}{2}\right), \frac{x}{2}}{\Gamma\left(\frac{K}{2}\right)}$$

But this Gaussian approximation is *not* a rigorous lower bound on the cumulative distribution of λ . Deriving such a bound is necessary, but tedious (see technical paper). One series of approximations yields

$$Pr(\lambda \le x) \ge \frac{\gamma\left(\frac{K}{2}\right), \frac{x}{2}}{\Gamma\left(\frac{K}{2}\right)} - e^{-x/2} \left[\left(1 + \frac{\sqrt{3ex}}{\pi}\right)^K - \frac{\sqrt{3ex}}{\pi} \right]$$
(5)

Although numerics suggest that this bound is loose by a factor of \sqrt{x} (Fig. 1), the $e^{-x/2}$ term dominates. More importantly, it *is* a strict bound. So regions based on

Eq. 5 are slightly loose, but have guaranteed coverage probability of at least α .

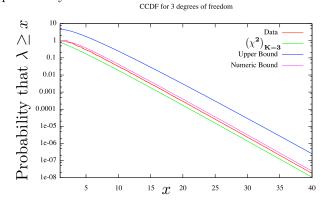


FIG. 1: The complementary cumulative distribution function of $\lambda - Pr(\lambda \ge x)$ – for $K = d^2 - 1 = 3$ degrees of freedom, corresponding to a qubit state. **Red**: the empirical worstcase distribution, computed numerically. **Green:** The χ^2 prediction, clearly a fatal underestimate. **Blue:** Eq. 5, a loose but reliable upper bound. **Purple:** a more sophisticated version of Eq. 5 requiring some number-crunching.

SIMPLICITY: The simple prescription given in Eq. 2 yields convex regions defined by level sets of an efficiently computable likelihood function. If an explicit region is needed, $\hat{\mathcal{R}}(D)$ can be efficiently described by (i) sampling from its boundary, and (ii) computing its minimum-volume bounding ellipsoid as $O(d^4)$ numbers.

Usually, however, $\hat{\mathcal{R}}(D)$ can be used implicitly via convex programming. *Example:* A convex program can find the point $\hat{\rho}$ that maximizes $\min_{\rho \in \hat{\mathcal{R}}} F(\hat{\rho}, \rho)$, which yields a guaranteed upper bound on the infidelity. But there are easier ways to validate existing protocols. Region estimates can be used to design *better* protocols, tailored to known errors and uncertainties. *Example:* each fault tolerance protocol defines a "witness" hypersurface separating "good" states from "fail" states. Under certain assumptions, a convex program can search for tailored protocols that work for every $\rho \in \hat{\mathcal{R}}$.

LR regions also provide an elegant theoretical framework for analyzing errors, in terms of the derivatives of $\mathcal{L}(\rho)$ at its maximum ($\hat{\rho}_{MLE}$). When $\hat{\rho}_{MLE}$ is full rank, and $\nabla \mathcal{L}$ vanishes, confidence regions are ellipsoidal and we recover the standard Fisher information. When $\hat{\rho}_{MLE}$ is rank-deficient, $\nabla \mathcal{L} \neq 0$ and Fisher information goes haywire. But the LR-region framework remains robust, and implies truncated-ellipsoid confidence regions described by the first and second derivatives of $\mathcal{L}(\rho)$.

^{*} Electronic address: robin@blumekohout.com