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The abstract is based on [5] but also includes the subsequent developments from [6].
Quantum query complexity measures the complexity of a quantum algorithm by the number

of queries to the input it uses. A number of strong lower bound methods for quantum query
complexity have been developed. One of them is the adversary bound, first time formulated by
Ambainis [1] and later generalized by Høyer et al. in [11]. The latter, (general) adversary bound
was shown to be tight by Reichardt et al. [16, 12].

The adversary bound admits a formulation as a semi-definite program (SDP), hence, any fea-
sible solution for its dual is an upper bound on quantum query complexity, and this bound is also
tight! For functions with Boolean input, the dual SDP can be represented as a span program.
In principle, this means that span programs give an optimal quantum algorithm for any Boolean
function. However, their actual applications have been mostly limited to formula evaluation [17].
We show how to use them for a wider class of functions.

Quantum algorithms for functions with bounded 1-certificate complexity form the second large
class of quantum algorithms, after the hidden subgroup problem. It includes OR function, solvable
by the Grover algorithm [10], the element distinctness, the triangle and other problems.

One can distinguish two main design paradigms for quantum algorithms for such functions.
The first one includes application of the Grover search and its close relative — quantum amplitude
amplification [8]. This paradigm resulted in the algorithm for the collision problem with complexity
O(n1/3) by Brassard et al. [7], the O(n3/4)-algorithm for the element distinctness problem by
Buhrman et al. [9], the O(n10/7)-algorithm for the triangle problem by Magniez et al. [14], and
others.

The second paradigm is based on quantum walks on the Johnson graph. It was pioneered
by Ambainis with his O(n2/3)-algorithm for the element distinctness problem, and a more gen-
eral O(nk/(k+1))-algorithm for the k-distinctness problem [2]. The triangle-finding algorithm with
complexity O(n13/10) by Magniez et al. [14] also belongs to this class.

We propose an alternative approach using a computational model of a learning graph. It is a
directed graph with vertices labeled by subsets of [n], the input indices. It has arcs connecting
vertices S and S ∪{j} only, where S ⊆ [n] and j ∈ [n] \S. Each arc e is assigned a weight function
we : [m]S → R+, where S is the origin of e, and [m] is the set of possible values of variables.

A learning graph can be thought of as modeling the development of one’s knowledge about the
input during a query algorithm. Initially, nothing is known, and this is represented by the root
labeled by ∅. When at a vertex labeled by S ⊆ [n], the values of the variables in S have been
learned. Following an arc e connecting S to S ∪ {j} can be interpreted as querying the value of
variable xj .

Using this computational model, in [5], we obtain an algorithm for the triangle problem with
complexity O(n35/27). In [6], we build an algorithm for k-distinctness with complexity o(n3/4) that
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requires prior information on how many maximal subsets of equal elements of sizes 1, 2, . . . , k − 1
are there in the input, with precision O( 4

√
n). Both these algorithms are the first improvements

for those problems in 8 years (since papers [14] and [2]).
Let us describe the definition of a learning graph in more detail, and the main ideas of the

algorithms. Let G be a learning graph. By G(x), we denote the graph with the same vertices and
arcs as G, only the weight of arc e is a real number we = we(x) that depends on the input x. We
use notation e ∈ G(x) to denote that e is an arc of G(x).

The complexity of a learning graph computing f is defined as the geometrical mean of its
positive and negative complexities. The negative complexity N (G(y)) for y ∈ f−1(0) is defined as∑

e∈G(y) we. The negative complexity of G is defined as maxy∈f−1(0)N (G(y)).

A flow pe on G(x) for x ∈ f−1(1) is a flow of value 1, with ∅ being the only source, and S being
a sink iff S contains a 1-certificate for x. The complexity of pe is defined as

∑
e∈G(x) p

2
e/we, with

convention 0/0 = 0. The positive complexity P(G(x)) is defined as the smallest complexity of a
flow on G(x). The positive complexity of the learning graph is maxx∈f−1(1) P(G(x)).

Papers [5] and [6] feature two alternative ways of reducing a learning graph to a quantum query
algorithm: using span programs, and the dual of the adversary bound, respectively. We sketch the
idea of the second reduction. Recall the dual SDP for the adversary bound [15]:

minimize
k∈N, ux,j∈Ck

max
x

∑
j∈[n]

‖ux,j‖2 subject to
∑

j: xj 6=yj

〈ux,j |uy,j〉 = 1 whenever f(x) 6= f(y).

The constraint is satisfied in the following way. Vectors ux,j are constructed so that the sum in
the constraint equals the value of the cut between the vertex sets {S | ∀i ∈ S : xi = yi} and
{S | ∃i ∈ S : xi 6= yi} for the flow on G(x). The source ∅ is in the first set and all the sinks are in
the second one. This implies the value of the cut equals the value of the flow, i.e., 1. The objective
of the SDP equals the complexity of the learning graph.

We divide the learning graph into stages. Each stage consists of parallel chains of arcs (transi-
tions), so that any path from the source to a sink uses exactly one transition of every stage. Each
stage has a task to load some specific elements. Also, we divide all transitions into equivalence
classes, according to some kind of symmetry. We call the flow symmetric if, in each class, the flow
takes only two values, one of them being 0. The flows in this abstract are going to be symmetric.

The speciality of a class is the ratio of the number of transitions in it to the number of ones
used by the flow. One can prove, that if the flow is symmetric, the complexity of the learning
graph is O

(∑
i Li

√
Ti

)
, where the sum is over stages, Li is the length of the stage (number of arcs

in a transition) and Ti is the maximal speciality.
For example, consider the element distinctness problem. Let a and b be the two equal elements

in an input. The learning graph can be as follows: on stage I load a, and on stage II load b. Since
we do not know a and b in advance, stage I has to contain all n arcs, and stage II — n(n− 1) arcs.
All arcs of one stage are in the same equivalence class. This learning graph has complexity Θ(n),
because the speciality of the second stage is Θ(n2): only one arc is used by the flow.

The speciality of stage II is a product of two factors. The first one comes in because b is loaded,
a specific element out of n possible. This factor is Θ(n). The second one comes in because the arc
originates in a vertex containing a. In the learning graph from the last paragraph, this factor is
Θ(n) as well.

It is not possible to reduce the first factor, but it is possible to reduce the second one. Assume,
we prepend the learning graph by stage 0 that loads r elements not from {a, b}. After that, it
proceeds as earlier. After a is loaded, it blends into other r elements of the vertex, and this way,
the speciality of stage II is decreased r times.

Let us do some math. The speciality of stage 0 is 1 (as it loads common-or-garden elements)
and its length is r. The lengths of stage I and II are both 1, and the specialities are O(n) and
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O(n2/r), respectively. Thus, the complexity of the learning graph is O(r+n/
√
r) that is optimized

when r = n2/3.
Consider the framework for quantum walk based on set-up, update and checking operations [13].

In this framework, the complexity estimate for the learning graph for element distinctness resembles
one for the quantum-walk-based algorithm, where r is the set-up cost, and n/

√
r is the term

featuring the update cost. Similarly, it is possible to get algorithms that involve the checking cost.
For instance, consider the triangle problem. Let a, b and c be the vertices of a triangle. The learning
graph consists of loading a full subgraph on r vertices (stage I, corresponds to the set-up cost),
adding vertices a and b to the subgraph (stage II, update cost), and a distinctness-type subroutine
for loading edges ac and bc (stage III, checking cost). Working out the lengths and specialities, we

obtain complexity O(r2 + n√
r
r + n3/2

r r2/3). It is optimized when r = n3/5, the optimal value being

O(n13/10). This is in a complete correspondence to the algorithm from [14].
Until now we have demonstrated how learning graphs mimic the quantum-walk-based algo-

rithms. Now we are about to show they can be superior. Note that only the second and the third
terms in the complexity estimate for the triangle problem have complexity O(n13/10), while the
first term is just O(n12/10). This suggests the resources of the set-up stage are not fully used. And
this is because adding vertex b to the subgraph has too high cost due to its length — r edges must
be loaded.

This concern can be fixed using the tool that is easy to apply for learning graphs and tremen-
dously difficult for quantum walk. We mean amortization when different computational threads
in a subroutine have different complexity. In text-book quantum algorithms, in order to continue
with the algorithm, one has to wait until all threads are finished, hence, the complexity of the
subroutine is maximum of all the threads. For a learning graph, we are interested in its complexity
only, that is just a number, and it is easy to show the contribution of a subroutine is the average
of all its threads. Attaining the average cost for a “variable-time” subroutine has been studied
by Ambainis for Grover search [3] and amplitude amplification [4]. The algorithms are rather
involved, and we are not aware of any solution for more complicated quantum walks.

Thus, assume stages I and II are performed as before with the exception that not a full subgraph
is loaded, but its random subgraph, where each edge is taken, independently, with probability s.
Stage III remains as it was. In this case, the average “set-up cost” is sr2, “update cost” is sn

√
r,

and “checking cost” is n3/2r−1/3s−1/2. The first two costs decreased by a factor of s, because
one has to load less edges, and the “checking cost” increased by a factor of s−1/2, because the
probability a subgraph on a superset of {a, b} contains edge ab is exactly s. One also has to
load edge ab (between stages II and III), but this has speciality O(n2) and length 1, hence, its
contribution, O(n), is negligible.

The optimal values of parameters are r = n2/3 and s = n−1/27. In this case all three “costs”
are equal to the complexity of the learning graph O(n35/27) that is better than O(n13/10).

We briefly describe the algorithm of [6]. Denote by a1, . . . , ak the k equal elements in the
input. Similarly to the element distinctness problem, ai’s is the last thing loaded in the vertex of
the learning graph. Before that, the vertex is enriched in subsets of equal elements of smaller sizes,
starting with 2, and ending with k− 1. Thus, the speciality of loading {a1, . . . , ak} is reduced. For
example, when ak is loaded, {a1, . . . , ak−1} is hidden among all (k − 1)-subsets of equal elements
in the vertex. The knowledge of the number of `-subsets of equal elements in the input, for
` = 1, . . . , k − 1, is used to assure all negative inputs have approximately the same complexity.
This type of learning graph is conceptually different from a quantum walk on the Johnson graph.

To conclude, the learning graph paradigm was proven to be superior to the existing paradigms
for function with small 1-certificates, that was demonstrated by algorithms for the triangle and
k-distinctness problems. We believe the mentioned algorithms is just a glimpse of what can be
done using the dual of the adversary bound.
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