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Abstract

XOR games are the simplest model in which the nonlocal properties of entanglement manifest
themselves. When there are two players, it is well known that the bias — the maximum advantage
over random play — of entangled players is at most a constant times greater than that of classical
players. Using tools from operator space theory, Pérez-Garcı́a et al. [Comm. Math. Phys. 279 (2),
2008] showed that no such bound holds when there are three or more players: in that case the ratio
of the entangled and classical biases can become unbounded and scale with the size of the game.

We give a new, simple and explicit (though still probabilistic) construction of a family of three-
player XOR games for which entangled players have a large advantage over classical players. Our
game has N2 questions per player and entangled players have a factor Ω̃(

√
N) advantage over

classical players. Moreover, the entangled players only need to share a state of local dimension N
and measure observables defined by tensor products of the Pauli matrices.

Additionally, we give the first upper bounds on the maximal violation in terms of the number
of questions per player, showing that our construction is only quadratically off in that respect. Our
results rely on probabilistic estimates on the norm of random matrices and higher-order tensors.

Multiplayer games, already a very successful abstraction in theoretical computer science, were
first proposed as a framework in which to study the nonlocal properties of entanglement by Cleve
et al. [CHTW04]. Known as nonlocal, or entangled, games, they can be thought of as an interactive
re-phrasing of the familiar setting of Bell inequalities: a referee (the experimentalist) interacts with a
number of players (the devices). The referee first sends a classical question (a setting) to each player.
The players are all-powerful (there is no restriction on either the shared state or the measurements
applied) but are not allowed to communicate: each of them must make a local measurement on his part
of a shared entangled state and provide a classical answer (the outcome) to the referee’s question. The
referee then decides whether to accept or reject the player’s answers (he evaluates the Bell functional).

In their paper, Cleve et al. gave an in-depth study of the simplest games, two-player XOR games.1

Given an XOR game G, it will be convenient to measure the success of entangled (resp. classical)
players through their maximum achievable bias β∗(G) (resp. β(G)), defined as the maximum winning
probability of entangled (resp. classical) players, minus the success probability for random play (each
player answers a random bit, independent from his question).2 While the CHSH example demon-
strates the existence of a game for which β∗(G) ≥

√
2β(G), Tsirelson [Tsi87] proved that this was

close to best possible. By making a connection to the celebrated Grothendieck inequality he showed that
for any two-player XOR game G, we have β∗(G)/β(G) ≤ KG . 1.78, where KG is the Grothendieck
constant.3 We will refer to the ratio β∗(G)/β(G) as the QC gap.

∗CWI and University of Amsterdam. Email: j.briet@cwi.nl.
†Computer Science Division, University of California, Berkeley. Email: vidick@cs.berkeley.edu.
1The XOR property refers to the fact that in such games each player answers with a single bit, and the referee’s acceptance

criterion only depends on the XOR of the bits he receives as answers. One of the most fundamental Bell inequalities, the
CHSH inequality [CHSH69], fits in that framework.

2The motivation for subtracting the success probability of a random strategy is to provide a proper normalization for the
ratios β∗(G)/β(G) that will be studied below. In XOR games, random play always gives winning probability 1/2.

3See [BMMN11] for a recently improved upper bound on KG.
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Small QC gaps are difficult to observe in physical experiments. Since two-player XOR games can-
not exhibit large QC gaps, they do not provide a reliable way to demonstrate the existence of entangle-
ment. To achieve this, more general classes of games need to be considered, hence the natural question:
For a given gap value, what is the simplest example of a game which exhibits it (if one at all exists) and
what are the possible parameters (number of players, questions and answers) of such a game?

There are two directions in which one can look for generalizations. The first is to increase the
number of possible answers per player. This option has so far received the most attention and has
been relatively well explored [CHTW04, KRT10, JPPG+10, JP11, Reg11, BRSdW11]; there are recent
explicit constructions of games which come close to achieving optimal QC gaps [BRSdW11].

The second possible avenue for generalization consists in increasing the number of players, while
staying in the simple setting of binary answers and an XOR-based acceptance criterion. Our limited
understanding of multipartite entanglement makes this setting more challenging, and for a long time
little more than small, finite examples were known [Mer90, Zuk93]. Recently however Pérez-Garcı́a
et al. [PGWP+08] strikingly demonstrated that three-player XOR already allow for arbitrary large QC
gaps, exhibiting an infinite family of such games (GN)N∈N for which β∗(GN)/β(GN) = Ω̃(

√
N).

Unfortunately, the games GN from [PGWP+08] are very large and highly non-explicit; their con-
struction relying heavily on deep results from operator space theory it is all but impossible to even
state what GN is. Moreover, GN has order 2N2

questions per player, and while for one of the players
the local dimension of the entangled state achieving the QC gap is only N, it is unbounded for the
other two.

Our results

In this paper we give a new construction of a family of three-player XOR games for which the QC
gap is unbounded. Our construction, albeit still probabilistic, is explicit and can be described in simple
terms — we give it below. For a desired ratio r, our game has about r4 questions per player, which
gives an exponential improvement over the construction in [PGWP+08]4 and, as we show, is within a
factor O(r2) of the smallest number possible. Moreover, to achieve such a gap entangled players only
need to use Pauli observables and an entangled state of local dimension r2 per player.

Theorem 1. For any integer n and N = 2n there exists a three-player XOR game GN , with N2 questions per
player, such that β∗(GN) ≥ Ω(

√
N log−4 N) β(GN). Moreover, there is an entangled strategy which achieves

a bias of Ω(
√

N log−4 N) β(GN), uses an entangled state of local dimension N per player, and in which the
players’ observables are tensor products of n Pauli matrices.

A result from [PGWP+08] shows that the dependence of the gap on the local dimension that we
obtain is optimal.5 Additionally, we prove that the dependence of the QC gap on the number of
questions obtained in Theorem 1 is close to optimal.6

Theorem 2. For any three-player XOR game G in which there are at most Q possible questions to the third
player, we have

β∗(G) ≤ O
(√

Q
)

β(G).

We believe that the strength of our result rests in its accessibility and the explicitness of its parame-
ters. The entangled strategies required in our game have a simple description and only rely on tensor
products of Pauli observables, making them potentially well-suited to experiments. Moreover, our
construction rests on a new connection between a specific family of XOR games and spectral prop-
erties of tensors of order 3.7 As such, it provides a generic way to make games with large gaps from

4Pisier [Pis11] states that the construction in [PGWP+08] can be improved to require only r8 questions to the first player,
but still an exponential number to the other two.

5We give a new, simpler proof of that result in the technical paper.
6A similar result was recently communicated to us by Carlos Palazuelos [Pal11].
7A tensor of order 3, or 3-tensor, is like a matrix, but with three indices, instead of two: one can think of it as a cube of

complex numbers representing a trilinear map from triples of vectors to the complex numbers.
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tensors having good spectral properties, and could open the way to a constructive proof of the existence
of a game with an unbounded QC-gap. We explain this connection in more detail next.

Proof overview and techniques

Lower bound. Our construction proceeds through two independent steps. In the first step we assume
given a 3-tensor T = T(i,i′),(j,j′),(k,k′) of dimension N2 × N2 × N2, where N is a power of 2. Based on
T, we define a three-player XOR game G = G(T). Questions in this game are N-dimensional Pauli
matrices P, Q, R, and the corresponding game coefficient8 is defined as

G(P, Q, R) = 〈T, P⊗Q⊗ R〉 := ∑
(i,i′),(j,j′),(k,k′)

T(i,i′),(j,j′),(k,k′) Pi,i′Qj,j′Rk,k′ .

We show that this definition results in a game whose entangled and classical biases can be directly
related to spectral properties of the tensor T. On the one hand we show that the classical bias of the game
reflects the tripartite structure of T, and is upper-bounded by the norm of T as a trilinear operator. On
the other hand we show that the entangled bias is lower-bounded by the norm of T as a matrix — a
bilinear operator on N3-dimensional vectors, obtained by pairing up the indices (i, j, k) and (i′, j′, k′).
This reduces the problem of constructing a game with large QC gap to constructing a tensor T with
appropriate spectral properties.

The second step of the proof is our main technical contribution. We give a probabilistic construction
of a 3-tensor T having large norm when seen as a bilinear operator (giving a large entangled bias), but
low norm when seen as a trilinear operator (giving a low classical bias). To this end, we simply take T
to correspond to an (almost) rank-1 matrix: letting (gijk) be a random N3-dimensional vector with
i.i.d. entries distributed as standard Gaussians, the (i, i′), (j, j′), (k, k′)-th entry of T is gijk gi′ j′k′ if i 6= i′,
j 6= j′ and k 6= k′, and 0 otherwise. The fact that T, when seen as a matrix, is close to having rank 1
makes it easy to lower bound its spectral norm and thereby lower bound the entangled bias of the
corresponding game. We are then able to upper bound the norm of T as a trilinear operator by a
standard, though delicate, ε-net argument.

Upper bound. The main ingredients for our upper bound on the QC gap in terms of the number of
questions are a simple but useful “decoupling” technique due to Paulsen [Pau92] and Grothendieck’s
inequality. Paulsen’s technique uses the simple fact that for i.i.d. symmetrically distributed Bernoulli
random variables σ1, . . . , σQ, we have E[σkσ`] = δk,`. For some matrices A1, . . . , AQ and B1, . . . , BQ, a
sum of the form ∑Q

k=1 Ak ⊗ Bk can then be written as E
[(

∑Q
k=1 σk Ak

)
⊗
(

∑Q
`=1 σ`B`

)]
, thereby decou-

pling the Bks from the Aks. In the context of three-player XOR games, the Bk should be thought of
as the third players’ observables and the Ak as a conglomerate of the game tensor and the first two
players’ observables. Using this, we can turn the third entangled player into a classical player at a cost
of a factor

√
Q in the overall bias. Being left with only two entangled players, we can finish with a

straightforward application of Grothendieck’s inequality, as was done previously by Tsirelson [Tsi87].

Generalizations. Our results all have natural extensions to an arbitrary number of players. In partic-
ular, we can show that the following holds, for any K ≥ 3:

1. For any integer N that is a power of 2, there exists a K-player XOR game G, with N2 questions per
player, such that β∗(G) ≥ Ω

(
(N log−8 N)(K−2)/2)β(G), and there is a quantum strategy achiev-

ing this gap and using only N-dimensional Pauli matrices.

2. If G is a K-player XOR game in which at least K − 2 of the players have at most Q possible
questions each, then β∗(G) ≤ O(Q(K−2)/2)β(G).

3. If G is a K-player XOR game in which the shared state of the players is restricted to have local
dimension d on at least K− 2 of the players, then β∗(G) ≤ O

(
(d log d)(K−2)/2)β(G).

8The equation below defines a complex number. Taking its real or imaginary part would result in a Bell functional, which
can in turn easily be transformed into an XOR game through a proper normalization. Details are given in the full paper.

3



References

[BMMN11] M. Braverman, K. Makarychev, Y. Makarychev, and A. Naor. The grothendieck constant
is strictly smaller than krivine’s bound. arXiv:1103.6161, to appear in Proc. FOCS 2011,
2011.

[BRSdW11] H. Buhrman, O. Regev, G. Scarpa, and R. de Wolf. Near-optimal and explicit bell inequal-
ity violations. arXiv:1012.5043, to appear in Proc. CCC 2011, 2011.

[CHSH69] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt. Proposed experiment to test local
hidden-variable theories. Phys. Rev. Lett., 23:880–884, 1969.

[CHTW04] R. Cleve, P. Høyer, B. Toner, and J. Watrous. Consequences and limits of nonlocal strate-
gies. In Proceedings of the 19th IEEE Conference on Computational Complexity (CCC 2004),
pages 236–249, 2004. quant-ph/0404076.

[JP11] M. Junge and C. Palazuelos. Large violation of bell inequalities with low entanglement.
Communications in Mathematical Physics, pages 1–52, 2011. 10.1007/s00220-011-1296-8.

[JPPG+10] M. Junge, C. Palazuelos, D. Prez-Garca, I. Villanueva, and M. Wolf. Unbounded violations
of bipartite bell inequalities via operator space theory. Communications in Mathematical
Physics, 300:715–739, 2010. 10.1007/s00220-010-1125-5.

[KRT10] J. Kempe, O. Regev, and B. Toner. Unique games with entangled provers are easy. SIAM
J. Comput., 39:3207–3229, July 2010.

[Mer90] N. D. Mermin. Extreme quantum entanglement in a superposition of macroscopically
distinct states. Phys. Rev. Lett., 65(15):1838–1840, Oct 1990.

[Pal11] C. Palazuelos. Personal communication, 2011.

[Pau92] V. I. Paulsen. Representations of function algebras, abstract operator spaces, and Banach
space geometry. Journal of Functional Analysis, 109(1):113 – 129, 1992.
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