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Abstract

We present new quantum algorithms for Boolean Matrix Multiplication in both the time com-
plexity and the query complexity settings. As far as time complexity is concerned, our results show
that the product of two n× n Boolean matrices can be computed on a quantum computer in time
Õ(n3/2 +nℓ3/4), where ℓ is the number of non-zero entries in the product, improving over the output-
sensitive quantum algorithm by Buhrman and Špalek (SODA’06) that runs in Õ(n3/2

√
ℓ) time. This

is done by constructing a quantum version of a recent classical algorithm by Lingas (ESA’09), using
quantum techniques such as quantum counting to exploit the sparsity of the output matrix. As far
as query complexity is concerned, our results improve over the quantum algorithm by Vassilevska
Williams and Williams (FOCS’10) based on a reduction to the triangle finding problem. One of
the main contributions leading to this improvement is the construction of a quantum algorithm for
triangle finding tailored especially for the tripartite graphs appearing in the reduction.

Boolean matrix multiplication, where addition is interpreted as a logical OR and multiplication as a
logical AND, is a fundamental problem in computer science. Algorithms for Boolean matrix multiplica-
tion have found applications in many areas and are, for example, used to construct efficient algorithms
for computing the transitive closure of a graph [7, 8, 15], recognizing context-free languages [16, 20],
detecting if a graph contains a triangle [11], solving all-pairs path problems [6, 9, 18, 19], or speeding
up data mining tasks [1].

The product of two Boolean n× n matrices A and B can be trivially computed in time O(n3). The
best known classical algorithm is obtained by seeing the matrices A and B as integer matrices, computing
the integer matrix product, and converting the product matrix to a Boolean matrix. Using the algorithm
by Coppersmith and Winograd [5] for integer matrix multiplication, this gives an algorithm for Boolean
matrix multiplication with time complexity O(n2.376). This approach has nevertheless several disadvan-
tages, the main one being that Coppersmith-Winograd’s algorithm can be hard to implement in practice.
Partly for this reason, much effort has focused on understanding whether Boolean matrix multiplication
can be done in o(n3) time by combinatorial algorithms, i.e., classical algorithms that do not rely on a
product of matrices over rings. A maybe more fundamental reason for investigating this question is that
a fast combinatorial algorithm for matrix multiplication over the semi-ring (OR, AND) would possibly
generalize to other semi-rings, and especially to semi-rings such as (min,+) related to a multitude of
problems over weighted graphs such as the all-pairs shortest paths problem, over which no subcubic
time multiplication algorithm is available. Unfortunately, there have been little progress on this question.
The best known combinatorial algorithm has time complexity O(n3/ log2.25(n)) and has been discovered
recently by Bansal and Williams [3], improving the “four Russians” algorithm [2] proposed decades ago.

In the quantum computation model, there exist subcubic-time algorithms for Boolean matrix mul-
tiplication that do not rely on integer matrix multiplication. Indeed, the product of two n× n Boolean
matrices A and B can be easily computed in time Õ(n2.5): for each pair of indexes i, j ∈ {1,2, . . . ,n},
check if there exists an index k ∈ {1, . . . ,n} such that A[i,k] = B[k, j] = 1 in time Õ(

√
n) using Grover’s

quantum search algorithm [10]. Buhrman and Špalek [4] observed that a similar argument can be used
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to design an efficient output-sensitive quantum algorithm for Boolean matrix multiplication. The idea is
to perform a quantum search over the couples (i, j) on top of the Grover search for k. This leads to a
quantum algorithm that computes the product AB in Õ(n3/2

√
ℓ) time, where ℓ denotes the number of non-

zero entries in AB. Recently, Vassilevska Williams and Williams [21] constructed faster output-sensitive
quantum algorithms for Boolean matrix multiplications in the query complexity setting (where the com-
plexity under consideration is the number of queries to the entries of the input matrices A and B). Using a
query-efficient triangle finding quantum algorithm by Magniez, Santha and Szegedy [14] and ideas from
Lingas [13], they obtained an algorithm with query complexity Õ(min(n1.3ℓ17/30, n2 +n13/15ℓ47/60)).

Statement of our results and comparison with previous work. In this work we present new quantum
algorithms for Boolean Matrix Multiplication in both the time complexity and the query complexity
settings. Our first result is stated in the following theorem.

Theorem 1. There exists a quantum algorithm that computes the product of two n×n Boolean matrices
with time complexity Õ(n3/2) if 1 ≤ ℓ ≤ n2/3 and Õ(nℓ3/4) if n2/3 ≤ ℓ ≤ n2, where ℓ denotes the number
of non-zero entries in the product.

This new algorithm improves the quantum algorithm by Buhrman and Špalek [4] for any value of ℓ
other than ℓ = O(poly(logn)) or ℓ = Θ(n2). For example, for ℓ = n1.2, the complexity of our algorithm
is Õ(n1.9), while the complexity of the latter algorithm is Õ(n2.1). For ℓ = O(poly(logn)) or ℓ = Θ(n2)
our upper bounds are similar to the bounds achieved by Buhrman and Špalek’s algorithm.

Our quantum algorithm is always faster than the standard classical output-sensitive combinatorial al-
gorithm for Boolean matrix multiplication, which has time complexity Õ(nℓ+n2) and uses a column-row
approach (see [17] and the discussion in [13]). The best known classical algorithms for output-sensitive
Boolean matrix multiplication are based on Coppersmith-Winograd’s algorithm: Amossen and Pagh [1]
constructed an algorithm with time complexity O(n1.72ℓ0.41 +n4/3ℓ2/3), while Lingas [13] constructed an
algorithm with time complexity Õ(n2ℓ0.188). The quantum algorithm of Theorem 1 beats both of them
for any value ℓ ≤ n1.779.

Our second result deals with the query complexity of Boolean matrix multiplication.

Theorem 2. There exists a quantum algorithm that computes the product of two n×n Boolean matrices
with query complexity

Õ(n1.3
√

ℓ) if 1 ≤ ℓ ≤ n1/5

Õ(n9/7ℓ4/7) if n1/5 ≤ ℓ ≤ n3/8

Õ
(
n3/2 +min(n13/14ℓ3/4,n3/2ℓ1/4)+n6/7ℓ11/14

)
if n3/8 ≤ ℓ ≤ n2

,

where ℓ denotes the number of non-zero entries in the product.

The bounds of Theorem 2 are illustrated in Figure 1. Our new quantum algorithm improves the quan-
tum algorithm by Vassilevska Williams and Williams [21] for any value of ℓ other than ℓ = O(poly(logn))
(if ℓ = O(poly(logn)) then our bounds are the same). For instance, in the case ℓ = n1.2, the algorithm
of Theorem 2 uses Õ(n1.8) queries, while the quantum algorithm from [21] uses Õ(n1.98) queries. Let
us mention that, if ℓ = Θ(n2), then we obtain query complexity Õ(n2+3/7), slightly improving the bound
Õ(n2+13/30) from [21]. One may argue that query complexity upper bounds such as the later two bounds
are not meaningful since 2n2 queries are enough to obtain all the entries of the two input matrices. Such a
strategy would however a priori require storing all the 2n2 entries, while ours actually uses a total amount
of Õ(n9/14) bits and qubits of memory (slightly improving the Õ(n2/3) space complexity of the algorithm
in [21]). This situation can also be put in perspective by considering the trade-off Q2S = Ω(n5) proved in
[12] between the query complexity Q and the space complexity S of any quantum algorithm computing
the Boolean matrix product of two n×n matrices.
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Figure 1: The upper bounds on the query complexity of matrix multiplication given in Theorem 2. The
horizontal axis represents the logarithm of ℓ with respect to basis n (i.e., the value logn(ℓ)). The vertical
axis represents the logarithm of the upper bounds of Theorem 2 with respect to basis n.

Overview of our techniques. As far as our query complexity results are concerned, our starting point
is the reduction by Vassilevska Williams and Williams [21]. Let us first consider the case where the
product C = AB of the two n× n Boolean matrices A and B is dense (i.e., ℓ ≈ n2). The reduction of
[21] can be informally described as reducing the computation of C to about n2 instances of the triangle
finding problem, each instance being over a graph of size n1/3 (more precisely, over a tripartite graph with
vertex sets (I′,J′,K′) such that |I′| = |J′| = |K′| = n1/3). By using the quantum algorithm by Magniez,
Santha and Szegedy [14] that finds with Õ(n1.3) queries a triangle in a graph of size n, this gives a
quantum algorithm for matrix multiplication with query complexity Õ(n2+13/30). Our first idea is that
this reduction can be improved by considering tripartite graphs over three sets of unbalanced size. In
order to take advantage of this idea, we then design a version of the triangle algorithm in [14] tailored
especially for such tripartite graphs. By optimizing the parameters, we obtain a reduction from the
computation of C to n2 instances of the triangle finding problem, each instance being over a tripartite
graph with vertex sets (I′,J′,K′) such that |I′| = |J′| = n9/28 and |K′| = n5/14, with an overall cost of
Õ(n2+3/7) queries. With some more work we derive a similar algorithm for the output-sensitive case,
with complexity Õ(n1.3

√
ℓ) if 1 ≤ ℓ ≤ n1/5, and Õ(n9/7ℓ4/7) if n1/5 ≤ ℓ ≤ n2.

In the classical setting, Lingas [13] has shown how to reduce the output-sensitive computation
of a product of two n× n matrices to the output-sensitive computation of products of smaller matri-
ces, at the price of a Õ(n2)-time additive cost representing preprocessing and postprocessing steps.
This strategy was also used in [21], with the same preprocessing/postprocessing cost, to obtain the
Õ(n2 + n13/45ℓ47/60)-query quantum algorithm mentioned above. We obtain Theorems 1 and 2 by
constructing a quantum version of Lingas’ reduction where both the preprocessing cost and the post-
processing cost are reduced. More precisely, we show that, by using quantum search and quantum
counting techniques, Õ(n3/2) time is enough in the quantum setting to perform most of the preprocess-
ing/postprocessing operations used in [13], and that the remaining operations can be treated as sub-
routines in matrix multiplication quantum algorithms without generating a significant additional cost.
Finally, the products of the resulting smaller matrices are computed using a simple time-efficient quan-
tum algorithm inspired by the work of Buhrman and Špalek [4] to obtain Theorem 1, and using the
query-efficient quantum algorithms described in the previous paragraph to obtain Theorem 2.
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