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Abstract

The first unclassified document ever written to solve the key establishment problem and propose
the notion of public key cryptography was a project proposal in a course on computer security
written by Ralph Merkle in 1974 [13]. We first introduce the model behind Merkle’s scheme.

For any positive integer N, let [N] denote the set of integers from 1 to N. We assume the
existence of a random black-box function f : [N?] — [N*], where constant k is chosen large enough
so that there is no collision in the image of f, except with negligible probability. The value of f(x)
can be obtained in unit time for any given input x, but the only way to retrieve x given f(z) is
to try preimages and compute f on them until one is found that maps to f(z). This is known as
the random oracle model. We also assume that (1) the legitimate parties communicate through an
authenticated classical channel on which eavesdropping is unrestricted and (2) a protocol is deemed
to be secure if the number of queries required of the eavesdropper to learn the secret established
by the legitimate parties grows super-linearly with the number of legitimate queries. This will be
the framework throughout this paper.

Merkle’s scheme proceeds as follows. One party called Alice chooses N distinct random values
r1,%2,...,xn in the domain of f and transmits them, encrypted by the application of f, to the
other party called Bob. Let us denote X = {z; |1<i< N} and Y = {f(x;) |1 <i< N}. Bob
finds one preimage x € X and sends back f(x) to Alice. Finally, given f(x) and having kept
{(zi, f(x;)) | 1 <1i < N}, Alice can easily find x without further querying the oracle. This x, which
is now known to both Alice and Bob, becomes their key.

We now analyse the effort required of each party. Alice makes N queries. Since there are N2
points in the domain of f and N possible preimages, it suffices for Bob to make O(NN) random
queries before the birthday paradox makes it overwhelming likely that he should chance to guess
at one v € X. However, an eavesdropper who listens to the entire conversation (Y and f(x)) has
no way to obtain this z but to invert the function on f(x) specifically, which requires a number of
queries in Q(N?). This is quadratically more queries than the legitimate parties.



It took 35 years before Boaz Barak and Mohammad Mahmoody-Ghidary proved that this
quadratic gap between the legitimate and eavesdropping efforts is best possible in a classical
world [2], improving over the work of Impagliazzo and Rudich [11].

However, the situation is different in the quantum setting. There is an obvious quantum
attack that makes this scheme completely insecure. Assume that function f can be accessed in
a quantum superposition of inputs. In this case, Grover’s algorithm [9] can be used to invert f(z)
with a number of queries in the order of the square root of the number of points in the domain
of f, which is O(\/]W ) = O(N) quantum queries. Consequently, the cryptanalytic task is as easy
(up to constant factors) as the key establishment process.

Can Merkle’s idea be made secure again in our quantum world, keeping its defining characteris-
tics? A first solution was proposed by Brassard and Salvail [8]. The idea is to allow Alice and Bob
to use quantum computers as well (in fact, only Bob will make use of this power), and increase the
domain of f from N? to N3 points. This scheme is exactly as Merkle’s except that Bob uses the
BBHT algorithm [5], which is a generalization of Grover’s algorithm [9], to find one element in X.
Out of N3 points in the domain of f, there are exactly ¢ = N solutions to the problem of finding
one preimage x € X. This problem is solved with O(y/N3/t) = O(N) queries [5]. In total, Alice
makes N classical queries and Bob makes O(N) quantum queries.

The eavesdropper, on the other hand, must again invert f on a specific point in its image.
Even with a quantum computer, the eavesdropper needs Q(v/N3) = Q(N?3/2) queries using Grover,
which is optimal [3]. This is not as good as Q(N?) queries required by a classical eavesdropper
against Merkle’s original scheme, but significantly better than O(N') queries sufficient for a quantum
eavesdropper against the same scheme. Two questions were left open in Ref. [8]:

1. Can the quadratic security of Merkle’s scheme be restored if all parties make use of quantum
powers?

2. Can every key exchange protocol in the random oracle model be broken with O(N) queries
when both legitimate parties are classical but the eavesdropper is quantum?

In this context, the main challenge is that the communication channel is classical, thus prevent-
ing the use of Quantum Key Distribution [4]. Another challenge, particularly when the legitimate
parties are classical, is that the eavesdropper is allowed to use unrestricted quantum computation.
In this paper, we give two novel provably secure protocols to address these issues. We make progress
on the first question and answer negatively the second one.

In our first protocol, Bob makes use of quantum computational powers but Alice remains purely
classical, as was the case in Ref. [8]. We assume the existence of two black-box random functions
f:[N3 — [N*] and g : [N3] — [N*] that can be accessed in quantum superposition of inputs.
Again, constant k is chosen large enough so that there is no collision in the image of f, except
with negligible probability. The condition on &’ is that we choose it large enough to ensure that
g(a) ® g(b) ® g(c) ® g(d) # 0 whenever {a,b,c,d} contains at least three distinct elements in the
domain of g, again except with negligible probability, where “@&” denotes the bitwise exclusive-or.
The legitimate parties proceed as follows.

1. Alice picks at random N distinct values {z;} ; in the domain of f and transmits their images
f(x;) to Bob. Let X and Y denote {z; |1 <i< N} and {f(z;) | 1 <i < N}, respectively.
Note that Alice knows both X and Y, whereas Bob has knowledge of Y only.



2. Bob finds two distinct preimages z and 2’ of random elements in Y. There are exactly t = N
solutions to the problem of finding one preimage in X, out of N3 points in the domain of f.
Using BBHT [5], this is accomplished with O(,/N?3/t) = O(N) queries to f.

3. Bob sends back w = g(z) @ g(z’) to Alice.

4. Alice queries the oracle g on the set X. Given w, she uses the table {(z;,g(x;)) | 1 <i < N}
to find Bob’s pair (x,2’), which becomes their common secret.

All counted, Alice makes N queries to f in step 1 and N queries to g in step 4, whereas Bob makes
O(N) queries to f in step 2 and two queries to g in step 3. Therefore, the legitimate parties make
a total of O(N) queries. If we also cared about computation time, it seems at first that Alice has
to try about N?2/2 pairs in step 4. Fortunately, this can be done in linear time.

One important difference between this protocol and the previous ones [13, 8] is that Bob finds
two preimages instead of one. Can this make the eavesdropper’s life more difficult? We devised a
quantum attack that allows him to find the secret (z,2') with O(N®/3) queries to f and g by way
of a quantum walk in a Johnson graph reminiscent of Ambainis’ quantum algorithm for the element
distinctness problem [1]. Furthermore, we proved that this attack is optimal (up to logarithmic
factors). Therefore, we don’t quite restore the quadratic security possible in a classical world, but we
make significant progress towards it. Our lower-bound proof proceeds in three steps: (1) We define
a search problem related to element distinctness; (2) We prove a lower bound on the difficulty to
solve this search problem; and (3) We reduce the search problem to the eavesdropping problem
against our protocol. The crucial observation is that the defined search problem is the composition
of a variant of element distinctness on N elements with searching each element in a set of size N?
using Grover. We would have liked to apply the composition theorem of Refs. [10, 12]. However,
it is not applicable in our case because the inner function is not Boolean and thus we had to prove
a new composition theorem to establish the lower bound of the underlying problem.

Our second protocol, which is purely classical, is almost identical to the first one except for
two differences: (1) both legitimate parties use classical computation while the adversary still uses
quantum computation; and (2) the domain of the two black-box functions is reduced from N3 to N?
to make it possible for classical Bob to find his two preimages by virtue of the birthday paradox.
Using the same quantum attack and lower bound techniques, mutatis mutandis, we prove that a
quantum eavesdropper requires ©(N7/6) queries to f and g in order to find the key.

In conclusion, we present two key establishment protocols a la Merkle over a classical channel.
The first is a quantum protocol that improves over the scheme of Brassard and Salvail [8] and the
second is a classical protocol secure against a quantum adversary. Are these two protocols optimal?
We conjecture that they are not. Indeed, we discovered a sequence of quantum protocols in which
our most efficient quantum attack tends to ©(N?) queries and a sequence of classical protocols in
which our most efficient quantum attack tends to O(N 3/ 2) queries. Our current problem is to prove
matching lower bounds. We also proved a new composition theorem for quantum query complexity.

A preliminary version of this paper appeared in the Proceedings of CRYPTO 2011 [6] and a full
version is accessible on the arXiv [7], but the two protocols we present here are slightly different.
In particular, our classical protocol improves over the one in Refs. [6, 7], against which a quantum
eavesdropper could obtain the key with merely ©(N 13/ 12) queries to the oracle. Nevertheless, that
had been the first classical scheme in the random oracle model secure against a quantum adversary.
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