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It was recently realized that quenched disorder may enhance the reliability of topological qubits
by reducing the mobility of anyons at zero temperature. Here we compute storage times with and
without disorder for quantum chains with unpaired Majorana fermions - the simplest toy model
of a quantum memory. Disorder takes the form of a random site-dependent chemical potential.
The corresponding one-particle problem is a one-dimensional Anderson model with disorder in
the hopping amplitudes. We focus on the zero-temperature storage of a qubit encoded in the
ground state of the Majorana chain. Storage and retrieval are modeled by a unitary evolution
under the memory Hamiltonian with an unknown weak perturbation followed by an error-correction
step. Assuming dynamical localization of the one-particle problem, we show that the storage time
grows exponentially with the system size. We give supporting evidence for the required localization
property by estimating Lyapunov exponents of the one-particle eigenfunctions. We also simulate
the storage process for chains with a few hundred sites. Our numerical results indicate that in the
absence of disorder, the storage time grows only as a logarithm of the system size. We provide
numerical evidence for the beneficial effect of disorder on storage times and show that suitably
chosen pseudorandom potentials can outperform random ones.

Introduction

Topologically ordered quantum systems hold great
promise for the robust storage and manipulation of quan-
tum information. Prime examples are Kitaev’s toric
code [17] and his quantum wire with unpaired Majo-
rana modes [18]. The latter describes a wide range of
experimentally accessible systems [3, 13, 15, 19, 21].
The ground state of these models is an error-correcting
code with macroscopic distance (if superselection rules
are taken into account) and the Hamiltonian is a sum of
commuting stabilizers. In particular, logical errors oc-
cur only if an error-chain affects a macroscopic number
of sites – or – in the language of localized excitations
or anyons, if an anyon propagates along a topologically
non-trivial trajectory. Näıvely, this suggests that the ro-
bustness of the memory as measured in terms of e.g., the
storage time, scales extensively with the system size N
(i.e., the number of qubits or the number of fermions).

Unfortunately, this is not the case because anyons,
once created, can propagate freely without any energy
cost. As a result, such topological memories are not ro-
bust if left to evolve on their own, a fact recognized early
on [11]. This no-go statement has since been elaborated
in various ways, ranging from system-size independent
bounds on relaxation times [4, 9], investigations of non-
zero temperature topological entanglement entropy [8],
to constant upper bounds on the energy barrier needed
to cause a logical error for arbitrary 2D stabilizer and
subsystem codes [7]. Even at zero temperature, constant-
strength local perturbations V can effectively cause a log-
ical error in a time scaling as O(log N) [20]. This scaling,
albeit extensive, is far from what can be considered a ro-
bust memory.

In pioneering work, Wootton and Pachos [24], and, in-
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dependently, Stark et al. [22], recently proposed using
quenched disorder as a means for reducing the propaga-
tion of anyons. Since disorder may be naturally present
in a physical implementation, or may be artificially en-
gineered by tuning interactions, this appears to be a re-
alistic and potentially experimentally feasible way of im-
proving the reliability of a topological quantum memory.
The intuition underlying this proposal is analogous to
the reasoning used to explain the suppression of zero-
temperature electron conductivity in wires: the anyons,
like electrons, get trapped in the many local minima
present in a random potential. A mathematical expres-
sion of this phenomenon, commonly referred to as An-
derson localization, is the fact that the eigenfunctions of
the (random) Hamiltonian are exponentially localized (in
some appropriate sense) on average over disorder realiza-
tions.

To study the effect of disorder on storage in the toric
code, the authors of [22, 24] restrict their analysis to
the dynamics of subspaces with a fixed particle num-
ber, neglecting processes creating and destroying anyons.
Within this approximation, localization properties of the
corresponding multi-particle states have been established
both numerically [24] and analytically [2, 10, 22]. Using
these results, some estimates on the failure probability
starting from a two-particle configuration as well as cer-
tain geometrically arranged multi-particle initial config-
urations were obtained in [22, 24]. However, these esti-
mates neglect the full many-particle dynamics, and hence
only provide a somewhat qualitative picture of the effect
of localization.

Storage fidelity and disorder for Majorana chains

Here we study the robustness of a qubit encoded in
the unpaired edge modes of a Majorana chain at zero
temperature. We consider the process of encoding into
the ground space of the unperturbed Majorana chain



2

Hamiltonian H0 (i.e., preparing a ground state |g〉), time-
evolving for some time t under H0 + V , where V is an
unknown perturbation, followed by readout, that is, error
correction. The latter step, described by a CPTPM Φec,
consists of a syndrome measurement followed by an error
correction operation. This is analogous to the minimal
matching algorithm used to restore ground states of the
toric code [11]. We measure the robustness of the mem-
ory in terms of its storage fidelity, the overlap between the
initial encoded state and the final error-corrected state:

F|g〉(t) = 〈g|Φec(e
i(H0+V )t|g〉〈g|e−i(H0+V )t)|g〉 .

Error correction is necessary here to give a fair assess-
ment of the information recoverable from the memory.
It is important to stress, however, that it plays no direct
role in preserving coherence in the interval [0, t]. This is
in contrast to e.g., [11], where it is shown that continuous
error-correction in short time intervals allows to preserve
quantum information indefinitely in the toric code.

We also consider the worst-case fidelity F (t) =
min|g〉 F|g〉(t) minimized over all encoded states, and the
storage time Tstorage = Tstorage(F0), the minimal time it
takes for the storage fidelity F (t) to drop below a given
threshold F0, e.g., F0 = 0.99. Clearly, these quantities
directly characterize the performance of the system as a
quantum memory.

For concreteness, we focus on perturbations corre-
sponding to a non-zero chemical potential. The ‘clean’
case is modeled by a uniform chemical potential µ, while
the disordered case will be modeled by a site-dependent
chemical potential

µj ≡ µ + ηxj

where xj are identically and uniformly distributed ran-
dom variables on [−1, 1] and η controls the strength of
the disorder. This choice of perturbation and disorder
is physically motivated, but our results apply to more
general (quadratic) perturbations.

Main results

We identify a dynamical localization condition for the
corresponding one-particle problem, which, when satis-
fied, implies that the storage time scales as

E [Tstorage] ∼ eΩ(N) (1)

on average over disorder realizations, in the limit of large
system size N . The localization condition concerns mo-
ments of the orthogonal matrix R describing time evo-
lution of the Majorana operators in the Heisenberg pic-
ture. In particular, it is satisfied if the entries of R decay
exponentially away from the main diagonal. We conjec-
ture that it holds in the limit of weak perturbations and
strong disorder, µ ≪ η ≪ 1. By computing Lyapunov
exponents, we also give supporting evidence that it is sat-
isfied in the limit of weak perturbations, µ → 0, when the

ratio η/µ is kept constant. This computation is based on
a method developed by Eggarter et al [12] for analyzing
tight-binding chains with off-diagonal disorder.

We also compute the storage time numerically using an
adaptation of the Monte Carlo technique for simulating
dynamics and measurements for non-interacting fermions
developed by Terhal and DiVincenzo [23]. The running
time of this algorithm scales as N3/δ2, where δ is the
precision up to which the storage fidelity is estimated.
It allows us to compute the storage time for chains with
a few hundred sites (up to N = 256) in the regime of
strong perturbations1, that is, µ ∼ 1 and η = 0 (clean
case), and η ∼ µ ∼ 1 (disordered case). The simulation
shows that in the absence of disorder the storage time
grows as a logarithm of the system size:

Tstorage ∼ O(log N). (2)

This scaling recently has been predicted by Kay [16]
based on mean-field arguments. In the presence
of disorder we observe an approximately linear scal-
ing E [Tstorage] ∼ N , see Fig. 1. This confirms the ex-
pected enhancement of the storage time, although the
enhancement is much weaker than our theory predicts,
see Eq. (1). This discrepancy could be accounted for by
the fact that the system size N is comparable with the lo-
calization length ξ of single-particle wavefunctions in the
simulated regime, whereas Eq. (1) is expected to hold
only when N ≫ ξ. It could also point to an interesting
possibility that a crossover from a polynomial to an expo-
nential scaling of the storage time occurs as one interpo-
lates between strong (µ ∼ η ∼ 1) and weak (µ ≪ η ≪ 1)
perturbations. Finally, we give examples where an arti-
ficially engineered deterministic disorder potential leads
to improved storage times compared to random disorder.

Techniques

The exact solvability of the Majorana chain model
means that the full many-body dynamics can be related
to a single-particle problem. This gives rise to powerful
tools which may be of independent interest. For exam-
ple, we derive a strengthened form of the quasi-adiabatic
continuation technique [14] for free fermion Hamiltoni-
ans: it shows that ground states of the perturbed and
unperturbed Hamiltonian can be connected by constant-
time evolution under a time-dependent Hamiltonian with
exponentially decaying interactions. In contrast, apply-
ing the standard quasi-adiabatic continuation technique
based on suitable filter functions only gives a stretched-
exponential decay. This is insufficient for our purposes.

1 We show that the storage fidelity is close to 1 whenever ǫ <
1/

√
N simply because the perturbed ground state has a large

overlap with the unperturbed one. To explore the asymptotic
scaling of the storage time for weak perturbations, say, ǫ ∼ 10−2,
one would need to simulate chains with at least N ∼ 104 sites.
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FIG. 1: Plot of log2 Tstorage(F0) versus log2 N for the fidelity
threshold F0 = 0.96 (for the clean case with µ = 0.5 and with
disorder of strength η = 0.25, see [1] for details). For each sys-
tem size, 10 different disorder realizations are considered. A
straight line is fitted to the average over disorder realizations,
showing a linear relationship between E [Tstorage(F0)] and N .
In contrast, Tstorage ∼ log N when no disorder is present.

One application of this quasi-adiabatic continuation
technique is a strengthening of the gap stability result
of [5, 6] in our setting: we can show that the energy
splitting of the ground states is exponentially small in N
and derive tight bounds on the gap stability radius.

Conclusions

In summary, our results establish a direct connection
between Anderson localization and operational quantities
characterizing the quality of a quantum memory. Our an-
alytical and numerical results strongly support the idea
that disorder can significantly enhance topological quan-
tum memories. Future work may try to further quantify
this relationship for other models, and – some day, try to
observe this effect in the laboratory.
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