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The recently proven Quantum Lovász Local Lemma generalises the well-known Lovász Local
Lemma. It states that, if a collection of subspace constraints are “weakly dependent”, there necessarily
exists a state satisfying all constraints. It implies e.g. that certain instances of the quantum k–QSAT
satisfiability problem are necessarily satisfiable, or that many-body systems with “not too many”
interactions are never frustrated. However, the QLLL only asserts existence; it says nothing about
how to find the state. Inspired by Moser’s breakthrough classical results, we present a constructive
version of the QLLL in the setting of commuting constraints, proving that a simple quantum algorithm
converges efficiently to the required state. In fact, we provide three different proofs, all of which
are independent of the original QLLL proof. So these results also provide independent, constructive
proofs of the commuting QLLL itself, but strengthen it significantly by giving an efficient algorithm
for finding the state whose existence is asserted by the QLLL.

The Lovász Local Lemma (LLL), proven by Erdös and
Lovász [1], is a well-known and widely-used result in prob-
ability theory. It states that if individual events are “not
too” dependent on each other and occur with “not too
high” a probability, then there is a positive probability
that none of them occur. (This is a non-trivial extension
of the trivial fact that, if the individual events were com-
pletely independent, and if none of them occurred with
certainty, then there would be some probability that none
of them occur.) Applications of the LLL abound. It is
frequently invoked in order to prove existence of some
mathematical object via the probabilistic method. For
example, it can be used to prove existence of solutions
to instances of boolean satisfiability problems such as
k–SAT.

Recently, Ambainis, Kempe and Sattath [2] succeeded
in generalising the LLL to the quantum setting. Viewed
from one perspective, the Quantum Lovász Local Lemma
(QLLL) has little to do with quantum physics; rather, it is
a significant mathematical generalisation of the standard
LLL to a geometrical setting. However, viewed from
another perspective, the quantum version is closely related
to current topics of physics research. For example, just as
the LLL can be applied to k–SAT problems, the QLLL
can be applied to its quantum generalisation, k–QSAT [3].
One way of expressing the k–QSAT problem is: does
the Hamiltonian H =

∑
i Πi have a zero-energy ground

state, where Πi are positive-semidefinite local interaction
terms (which can without loss of generality be taken
to be projectors). This is equivalent to asking whether
the ground state of a local Hamiltonian is frustrated, an
important topic in many-body physics. The QLLL implies
that many-body systems in which each particle interacts
with “not too many” others are never frustrated.

The LLL and its quantum counterpart assert existence,
e.g. of a satisfying assignment to a k–SAT instance. But
they give no indication as to how to find this assignment.
In a breakthrough result, Moser [4, 5] recently gave a
beautiful proof of a constructive version of the classical

LLL. This not only gives an independent proof of the LLL,
but does so by giving an efficient algorithm for finding
e.g. the satisfying assignment to the k–SAT instance.
Furthermore, the algorithm is the simplest imaginable:
in the k–SAT context, it involves repeatedly picking a
clause at random, checking if it’s satisfied by the current
assignment, and if not, resampling the variables involved
in that clause at random. Though there appears on the
face of it to be no reason why this algorithm should
terminate, let alone find the right state, Moser proved
that the expected time until this simple procedure finds
the desired state in fact scales linearly!

The conjunction of these two results, the quantum gen-
eralisation to the QLLL and Moser’s constructive classical
LLL, poses a natural question: is there a constructive
version of the quantum Lovász Local Lemma? A con-
structive version of the QLLL is particularly interesting,
as it would provide an efficient algorithm for preparing
ground states of a large class of many-body quantum
Hamiltonians on a quantum computer. Such a proce-
dure has obvious applications in quantum simulation of
condensed-matter systems on the physics side, and to
quantum satisfiability problems on the computer science
side. Moreover, just as the quantum Fourier transform
can be viewed as a subroutine for preparing interesting
entangled states, a constructive QLLL would provide an
efficient subroutine for preparing an entirely new class
of entangled states. One might optimistically hope that
a constructive QLLL could point the way towards new
quantum algorithms.

Our main result is to prove a constructive version of
the commuting quantum Lovász Local Lemma:

Theorem 1 (Constructive Commuting QLLL).
Let Π1,Π2, . . . ,Πm be commuting projectors that act on
arbitrary subsets of n qudits, let Γ(Πi) denote the set of
projectors which act on a qudit in common with Πi, and
define the relative dimension R(Πi) = rank(Πi)/dim(H)
(where H is the Hilbert space on which Πi acts). If there
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exist values 0 ≤ x1, x2, . . . , xm ≤ 1 such that

R(Πi) ≤ xi ·
∏

Πj∈Γ(Πi)

(1− xj), (1)

then there exists a joint state ρ of the qudits such that
∀i : Tr[Πiρ] = 0. Moreover, there is a quantum algorithm
that converges to a state ρ such that Tr[Πiρ] ≤ ε in time

O

(
n+

m

ε

m∑
i=1

xi
1− xi

·
∣∣Πi

∣∣), (2)

where |Πi| is the number of qudits on which Πi acts.

There are two significant challenges in generalising
Moser’s constructive LLL to the quantum setting. First,
the state we are trying to construct may be highly en-
tangled, whereas the algorithm only has access to mea-
surements of the local projectors Πi defining the problem.
Another way of expressing this in terms of the Hamil-
tonian H defining a k–QSAT instance is that, in the
classical setting, we know in advance in which basis the
overall Hamiltonian H is diagonal—the computational
basis—and the local projectors Πi are local in this same
basis. In the quantum setting, the basis which diago-
nalises the overall Hamiltonian is only defined globally
and can be highly entangled, and the projectors Πi will
not in general be local in this basis. Note that this chal-
lenge remains just as problematic even if the projectors Πi

commute. In the commuting case of the QLLL, we may
know a priori that there exists a basis which diagonalizes
all projectors simultaneously, but this basis is still only
defined globally and the ground state can still be highly
entangled. (Stabilizer states [6] give a simple example of
commuting Hamiltonians with highly entangled ground
states.) This and related questions in the commutative
setting have recently gained attention [7–9] in the context
of Hamiltonian complexity.

The second challenge comes from non-commutativity:
quantum states are disturbed by measurement. The clas-
sical algorithm is free to check which k–SAT clauses are
currently satisfied, without any impact on the current
assignment. But quantum mechanically, even if we mea-
sure a k–QSAT projector Πi to be “satisfied” (i.e. we
obtain the desired 1−Πi outcome upon performing the
{Πi,1 − Πi} measurement), the measurement can dis-
turb the state such that another Πj that was previously
satisfied no longer is.

Here, we address and give a complete solution to the
first of these two challenges: we prove a constructive
version of the commuting QLLL (i.e. the case in which
all the Πi commute). A priori, it is not at all clear that
Moser’s proof extends even to the commuting quantum
case, for the reasons discussed above: the basis that
diagonalises a set of commuting local projectors can be
highly entangled. Furthermore, the local projectors Πi

are in general no longer local in that basis. So even if we
knew the right basis, running Moser’s algorithm in the
diagonal basis would result in throwing away the entire

state and starting afresh every time we obtain the wrong
outcome for any measurement, which cannot possibly give
an efficient algorithm.

Nonetheless, by extending the proof techniques of Moser
and Tardos in a more subtle way, we are able to prove a
constructive version of the commuting QLLL. Moreover,
the quantum algorithm involved in Theorem 1 is just the
natural quantum generalization of [5], and almost the sim-
plest imaginable. It starts with a uniformly random state
(i.e. the maximally mixed state), then in each iteration it
chooses one of the projectors at random, and measures it.
If the projector is violated (i.e. outcome Πi is obtained
when {Πi,1−Πi} is measured), then the state of those
qudits on which that projector acts non-trivially is re-
placed by a fresh uniformly random state. A priori, there
appears to be no reason to expect that this apparently
näıve algorithm will find the correct state. We prove that
it in fact converges efficiently; indeed, the run-time scales
only polynomially in the problem parameters and 1/ε,
where ε is the desired precision defined in Theorem 1.

Whilst the algorithm is straightforward, its analysis is
not. We provide three different proofs of the constructive
commuting QLLL, using three very different approaches,
each of which makes significant technical contributions of
its own.

The first proof generalises the probabilistic approach
of Moser and Tardos [5], and proves a constructive ver-
sion of the most general form of the commuting QLLL, as
stated in Theorem 1. (As in the classical setting, this in-
cludes the k–QSAT, or “symmetric”, version as a special
case). A key technical contribution of this proof is the
replacement of the classical coupling argument used in
the [5] proof, by a quantum coupling argument, which uses
a coupling by entanglement. To our knowledge, this is the
first example of a quantum coupling argument, used as
a proof technique to establish convergence of a quantum
stochastic process, which may be of independent interest.
Even though the entanglement is not used directly as a
resource by the algorithm, it is the unique properties of
entanglement that allow us to prove via the quantum cou-
pling that the algorithm can find the correct global basis
even though it only has access to local measurements.

Coupling arguments have proved to be a very powerful
technique in probability theory, often providing the sim-
plest or even the only proof of many results [10]. Our quan-
tum generalisation of the coupling method is no exception,
providing an elegant and concise proof of Theorem 1. But
coupling arguments often look a little like “black magic”,
and in our case this makes it difficult to gain significant
insight or intuition into why the algorithm succeeds. In
the second proof, we replace the coupling argument with
a combinatorial proof. Whilst (as often happens) this is
significantly more involved than the coupling argument, it
is much more explicit. It demonstrates how the algorithm
can be understood as a quantum stochastic process pro-
duced by iterated measurement, and leads to new results
on such measurement processes.

Although not presented this way in the published pa-
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pers, Moser’s original constructive LLL became widely
known in an information-theoretic version implicit in [4]
(and made explicit in his STOC talk and in [11]), which
presents the proof as an elegant entropy compression argu-
ment. Moser showed that, if we keep track of the history
of the algorithm, the entropy of the information required
to store the complete history grows slower than the en-
tropy drawn from the random source, used to resample
variables. (In particular, every time the algorithm finds
a k–SAT clause to be violated, after a constant initial
overhead the new history can be stored using slightly
fewer bits than the number of new random bits used to
resample the variables in the clause. Thus every clause
violation allows the stored information to be compressed
faster than the rate at which randomness is used.) But by
Shannon’s noiseless coding theorem, we cannot compress
a uniform random source below its entropy, leading to a
contradiction unless the algorithm halts successfully with
high probability before it can effectively compress below
the entropy. Our third proof generalises this entropic
argument to the quantum setting. It proves a slightly
weaker version of the symmetric case of the commuting
QLLL, in which the conditions on the projectors Πi are
slightly strengthened. But it gives interesting information-
theoretic insight into how the algorithm works.

The Lovász Local Lemma has found a very wide range
of applications in the 35 years since it was first proven. As
it is often used to prove existance of a combinatorial ob-
ject, as part of an application of the probabilistic method,
Moser’s recent constructive LLL makes all these existence
proofs constructive, which allows these combinatorial ob-
jects to be studied directly. The newer quantum LLL has
already found applications in areas such as Hamiltonian
complexity [2]. So it is no surprise that the constructive
QLLL has applications to many-body physics, such as
providing a new quantum algorithm for cooling to the
ground states of certain many-body Hamiltonians.

Mathematically, our constructive QLLL also has fruitful
applications e.g. to the study of CP maps, providing a

completely new technique for proving convergence rates
of quantum Markov processes to their steady states. For
example, the natural dissipative state-engineering map

E(ρ) =
1

m

∑
i

(1−Πi)ρ(1−Πi) + Tr/[i][Πiρ]⊗
1[i]

dk
(3)

was introduced by Verstraete, Wolf and Cirac [12], who
showed that it eventually converges to the ground state
of the Hamiltonian H =

∑
i hi if this is frustration-free

(where hi are positive-semidefinite local interaction terms
with support Πi). We use our constructive commuting
QLLL to show that, if the local terms hi commute and
do not act on “too many” particles in common (i.e. Πi

satisfy the QLLL conditions of Theorem 1), then the
Hamiltonian is frustration-free, and moreover the map
E gives fast convergence to the ground state, in time
polynomial in the number of local terms and the desired
precision (which in this case is the energy of the resulting
state), independent of the number of particles or their
local dimension.

We have resolved one of the two challenges in gen-
eralising Moser’s results to the quantum setting, allow-
ing us to prove a constructive version of the commuting
QLLL. To prove a constructive version of the general,
non-commutative QLLL of [2] would require overcoming
the second challenge: coping with non-commutativity and
the consequences of the measurement-disturbance issue in
quantum mechanics. By providing three different proofs
of our result, which contribute three quite different sets of
new tools and techniques, we have opened up a number of
approaches to generalising our result and extending it to
a constructive version of the full, non-commutative QLLL.
(Indeed, modulo a technical conjecture that is supported
by numerical evidence, but appears difficult to prove, our
result does extend.) The non-commutative case remains
an interesting and challenging open problem.
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