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Topological stabilizer codes (TSC), introduced by Ki-
taev [14], are among the most promising quantum er-
ror correcting codes that could lead to realistic quantum
computer architectures. In particular, because they have
geometrically local check operators, they are especially
well suited to architectures in which qubits are arranged
in a lattice and only local operations are available. In ad-
dition, logical operators are closely related to the topol-
ogy of the lattice, providing a macroscopic minimum dis-
tance. TSCs can be shown to operate reliably in the
presence of a considerable amount of noise, with a fault-
tolerant threshold of 0.75% [18]. They are to be con-
trasted with, e.g., concatenated codes where the number
of qubits involved in each syndrome measurement grows
linearly with the size of the code, thus increasing the com-
plexity of the error correction procedure and lowering the
threshold.

In addition, TSCs have been a very fertile playground
for condensed matter physics because they provide ex-
actly solvable models with complex phenomena such as
topological order and anyonic excitations [7, 10, 15]. The
connection is as follows. One can think of a stabilizer
error correcting code as the ground subspace of a local
Hamiltonian

H = −
∑
a

Sa, with [Sa, Sb] = 0 (1)

where the Sa are stabilizer generators defining the code
space C = {|ψ〉 : Sa|ψ〉 = |ψ〉, ∀a}. In this language,
errors will cause excitations in the system—a local en-
ergy increase above the ground energy—and the error
syndrome will correspond to an excitation configuration.

Together with Kitaev’s Toric Code (KTC), there exist
other interesting examples of topological codes in the lit-
erature. One of us introduced Topological Color Codes
(TCC)[7], similar in many respects to KTCs, but with
the advantage of allowing transversal logical Clifford op-
erations, a crucial asset for fault tolerance. From a con-
densed matter perspective, both give rise to anyonic ex-
citations, but in such a way that the topological charges
in a TCC correspond to two copies of a KTC.

The fundamental motivation of our work is to rigor-
ously classify the distinctions and equivalences between
such codes. The natural notion of equivalence here is that
coming from the condensed matter perspective, where
one can introduce a phase equivalence for topologically
ordered systems [9]. Simply put, two TSCs are equiva-
lent if there exists a finite-depth local quantum circuit

that takes one code and maps it to the other, and vice
versa. Our main result is the following [1, 4]:

Theorem 1 Every 2D TSC is locally equivalent to a fi-
nite number of copies of KTC.

To define precisely what we mean by local, consider
an operator P acting on some qubits contained within a
region of finite radius r. Then, a unitary transformation
U is a local mapping if UPU† is contained within a region
of radius less or equal to r + c, where c is a constant.

This result is important for many reasons. Firstly, in
the context of error correction, the local equivalence to
KTC enables us to directly extend a number of proper-
ties of this code to all 2D TSCs. For instance, thermal
instability [3, 17], code tradeoffs [8], logical operator ge-
ometry [13], and scale invariance [2] all become trivial
corollaries of our mapping. In addition, our mapping
provides a method to decode any 2D TSC code, while
only a handful of special cases previously had solutions
[10, 11, 19]. Secondly, the local mapping can be used
to change encoding during a quantum computation. Be-
cause the mapping is local, this change will not propa-
gate errors and is therefore fault-tolerant. This allows
to put together the features of different codes—such as
having transversal Clifford gates [7], lower weight stabi-
lizer generators [6, 10, 15], etc.—and suggests a natural
generalization of the notion of transversality for topolog-
ical codes to include all local gates. Thirdly, from the
condensed matter perspective it provides a large class of
models where the definition of topological order based on
local equivalence [9] can be directly applied in a rigorous
manner.

In 2D TSCs excitations are anyonic. They carry a
topological charge defined by a notion of local equiva-
lence. Consider a finite region of the system with a def-
inite error syndrome or excitation configuration. Two
such configurations carry the same topological charge if
it is possible to transform one into the other by a uni-
tary transformation with support only on that region.
With this definition, KTCs have four topological charges,
the vacuum corresponding to no excitations, an electric
charge corresponding to a plaquette excitation, a mag-
netic charge corresponding to a star excitation, and a
composite excitation containing both. Any excitation
configuration on a finite region can be mapped to one of
these four possibilities. Excitations with different charges
are also characterized by different braiding statistics that
describe the effect of exchanging two excitations. For
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KTC, both the electric and magnetic particles are bosons
because they have trivial self-statistics, while the com-
posite particle is a fermion because it acquires a −1 sign
upon particle exchange. In addition, mutual statistics
are semionic: exchanging two non-trivial and different
charges can be done in two topologically distinct ways
that differ by a −1 sign.

The key intuition behind our result is that systems
with equivalent anyonic excitations are equivalent. In-
deed, a local mapping cannot change the topological
charges of a system, because they are defined by a lo-
cal equivalence relation.

Let us exemplify the theorem by demonstrating a local
equivalence between various codes. More precisely, we
consider the family of TCCs [7] defined on a 4-8 regular
tiling of Fig. 1 and show that they can be locally mapped
to two of copies of KTC. In the 4-8 TCC, qubits are
located at the vertices of the 4-8 tiling, and there are two
stabilizer operators associated to every plaquette p.

Sσp =
⊗
j∈∂p

σj , with σ ∈ {σx, σz} (2)

where ∂p is the set of vertices of the plaquette p and
σx, σz are the usual Pauli matrices. The excitations in
this model can carry 16 different topological charges, 10
bosons and 6 fermions. These correspond exactly to the
charges obtained from two copies of KTC. Figure 2 shows
the mapping between this TCC and two KTCs. These
mappings were obtained by identifying hopping terms of
elementary excitations with the same topological charges
between the two codes. It can easily be verified that the
mapping preserves stabilizer operators (cf. Fig. 1).
Decoding— To be of any practical use, any error-
correcting code must have an efficient decoder—an al-
gorithm that finds the most likely recovery given the
measured error syndrome. Two of us have conceived a
decoding algorithm for Kitaev’s toric code (KTC) that
is exponentially faster than previously known decoding
algorithms (run time log ` rather than `6 where ` is the
linear size of the torus) [11]. Note that the decoding run-
time is a crucial factor for fault tolerance; proofs of the
threshold theorem usually assume instantaneous classi-
cal side-computation to assist the error-correction proce-
dure. Our algorithm is also very flexible, it enables var-
ious tradeoffs between complexity and error-correction
performances. In particular, we were able to demon-
strate that it can achieve a higher error-correction error
threshold than what was achievable by previously known
decoding algorithms [10, 12].

As a consequence of the local equivalence, we can, for
the purpose of decoding, treat a topological code as a
certain number of copies of KTC, and use any decoding
algorithm suitable for KTC to complete the decoding on
each of these copies. Crucially, the noise model induced
on KTC remains essentially local: an error model that
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Figure 1: Regular square-octagon lattice for TCC. The di-
amonds can be labeled A or B according to a chessboard
pattern. There are two stabilizers Eq. (2) associated to each
plaquette. Here is an example of the mapping from one TCC
to two copies of KTC. The black dots (stars) represent σz

(σx) operators. A Z-plaquette on a A-diamond of the TCC
gets mapped to a plaquette operator on the first KTC and to
a site operator on the second KTC. The complete mapping
for 1-qubit Pauli operators is shown in Fig.2.

is independent on each qubit will be mapped to an er-
ror model with some short-range correlations on a length
scale c, but no long-range correlation. Because the ex-
istence of an error threshold is essentially a large scale
property of a system, this decoding strategy should also
produce a finite error threshold, albeit with a different
critical error probability that depends on the value of c
and other microscopic details of the mapping. Also, re-
member that, through the mapping, the syndrome infor-
mation is readily available for decoding the KTCs after
the stabilizers of the original code have been measured.
Figure 3 shows the performances of the resulting decod-
ing algorithm on a bit-flip channel.
Subsystem TSCs— The most general method to pro-
tect quantum information is not of a subspace code, but a
subsystem code [16]. A family of Topological Subsystem
Color Codes (TSCC) [6] was recently constructed that
pushes the features of topological codes to their extreme.
Indeed, the syndrome extraction for these codes requires
only two-qubit measurements, as simple as it can possi-
bly get. Additionally, the entire Clifford group can be
performed in a topological fashion on the qubits encoded
in these codes. For these reasons, TSCC may well be
the simplest and most efficient means of achieving fault
tolerance.

To decode the TSCCs, we used a simplified version of
the technique presented above. The TSCC has 2 elemen-
tary particles and 2 logical qubits, just like the KTC. We
mapped the excitations of the TSCC to the excitations
of the KTC, loosing five qubits out of six, which cor-
responds to the number of gauge generators not in the
stabilizer group of the TSCC. The nature of the 2 defects
has changed, going from fermions to bosons. Neverthe-
less, the homology of string operators is preserved. This
map, even though not a Clifford map, enabled the de-
coding of the TSCC. We obtained a 2% threshold under
depolarizing noise (cf Fig. 3).

The importance of this decoding strategy for the TSCC
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Figure 2: Mapping between the 1-qubit Pauli operators of the
square-octagon TCC an two copies of Kitaev’s code KTC1,
KTC2. The first (last) two columns are for the A (B) sub-
lattice. Circles (stars) represent σz (σx) operators. For in-
stance, the upper left diagram indicates that a σx located at
the top of a diamond of the A sub-lattice gets mapped to a σx

on KTC1 and two σz on KTC2. All commutation relations
are preserved by this mapping, so it is unitary and obviously
local.
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Figure 3: Decoding failure probability as a function of the
error probability of each qubit for the octagon-square TCC
(left) and TSCC (right), based on the algorithm of [11]. The
different curves illustrate lattices of different linear size l: be-
low a threshold probability (dotted lines), the decoding failure
probability decreases with the lattice size, leading to a perfect
recovery in the infinite-size limit.

can be stressed by the fact that it is not limited to
this specific model but can be adapted to any topologi-
cal subsystem stabilizer codes. See [19], for an example
of decoder tailored for a specific topological subsystem
code. Another motivation comes from Bravyi’s recent
proof that geometrically local subsystem codes are much
more powerful than geometrically local subspaces codes
in that they can achieve better tradeoffs between minimal
distances and encoding rates [5].
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