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Two of the most intriguing features of quantum physics are the uncertainty principle and the
occurrence of non-local correlations. The uncertainty principle states that there exist pairs of
non-compatible measurements on quantum systems such that their outcomes cannot be simulta-
neously predicted by any observer. Non-local correlations of measurement outcomes at different
locations cannot be explained by classical physics, but appear in quantum mechanics in the presence
of entanglement. Here, we show that these two essential properties of quantum mechanics are
quantitatively related. Namely, we provide an entropic uncertainty relation that gives a lower
bound on the uncertainty of the binary outcomes of two measurements in terms of the maximum
Clauser-Horne-Shimony-Holt value that can be achieved using the same measurements. We discuss
an application of this uncertainty relation to certify a quantum source using untrusted devices.

A technical version is available at http://arxiv.org/
abs/1108.5349 [1].

A remarkable property of quantum physics is the un-
certainty principle, as first described by Heisenberg [2]
and Robertson [3], namely the fact that there exist cer-
tain observable properties of a quantum system such that
knowledge of one necessarily implies uncertainty about the
other. Recent uncertainty relations are often formulated
in terms of entropies [4–11]. These relations give lower
bounds on the uncertainty — quantified by entropies — of
the measurement outcomes of two or more incompatible
measurements. (See [12] for a recent review.)

Entropic uncertainty relations have been extended to
include the case when observers have access to a quan-
tum system that is correlated with the state prior to
measurement [7]. There, the principle is formulated in
terms of conditional von Neumann entropies H(A|B)ρ :=
H(ρAB) − H(ρB). They consider a tripartite quantum
system shared between Alice (A), Bob (B) and Charlie
(C) that is prepared in an arbitrary joint state ρABC .
Alice then measures her system in either one of two bases,
{|x〉} or {|y〉}. This measurement results in the post-
measurement state ρXBC or ρY BC , respectively, where
X and Y are registers containing the measurement result.
The uncertainty relation of [7] reads

H(X|B) +H(Y |C) ≥ − log2 c , (1)

where c = maxx,y |〈x|y〉|2 is the maximal overlap of the
eigenvectors of the two measurements and is independent
of the state ρABC before measurement. Hence, Eq. (1)
gives a non-trivial lower bound on the uncertainty that
two observers, Bob and Charlie, have about the outcomes
of two measurements whenever these measurements have
an overlap c < 1. For example, if Bob can predict the
outcome of the X measurement with certainty (this cor-
responds to H(X|B) = 0), then Charlie necessarily has
uncertainty about the outcome of the Y measurement
(i.e., H(Y |C) > 0). The relation (1) has been further

generalized to include arbitrary positive operator-valued
measurements (POVMs) in [8] and [11].

Entropic uncertainty relations do not only describe
a fundamental property of quantum physics, they have
also found applications in the context of entanglement
witnesses [7], information locking [13] and quantum cryp-
tography [10, 14–16]. Intuitively, their usefulness can be
explained by the fact that the entropies on the l.h.s. of (1)
characterize operational quantities in information theory,
e.g. the asymptotic data compression rate with quantum
side information [17].

Many recent entropic uncertainty relations [7–9, 11]
give a bound on the uncertainty in terms of the overlap
c which is a function of the two measurements (more
precisely, their POVM elements) but not of the state of
Alice’s system prior to the measurement. This is often
desirable, since it leads to a very general uncertainty rela-
tion which holds for all possible states. However, because
of this generality, the resulting uncertainty relation can
sometimes be unnecessarily weak. We will see that in
some situations partial knowledge about the state before
measurement can be used to improve the bound on the
uncertainty.

Our first result is thus a generalized uncertainty relation
of the form (1) that introduces a trade-off between infor-
mation about the state before measurement and tightness
of the uncertainty relation. Specifically, we consider the
effective overlap of a measurement setup, denoted by c∗,
which describes the overlap of the two measurements on
Alice’s marginal state.

Result 1.

H(X|B) +H(Y |C) ≥ − log2 c
∗ . (2)

We refer to [1] for a precise definition of c∗, but, as an
example, consider the scenario where we apply one of two
projective measurements, either in the basis {|0〉 , |1〉 , |⊥〉}
or {|+〉 , |−〉 , |⊥〉} on a state ρ which has the property
that ‘⊥’ is measured with probability at most ε. Our
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intuitive understanding of this situation tells us that the
uncertainty about the measurement outcome is high as
long as ε is small. However, applying the ‘traditional’
state-independent uncertainty relation (1) to this setup
will only lead to a trivial result, since c = 1. The effective
overlap, on the other hand, satisfies c∗ ≤ (1−ε) 12+ε. (This
formula can be interpreted as follows: with probability
1−ε we are in the subspace spanned by |0〉 and |1〉, where
the overlap is 1

2 , and with probability ε we measure ⊥ and
have full overlap.) Thus, the total entropic uncertainty is
nonzero as long as ε < 1 and approaches the maximum
value of 1 when ε is close to zero.

Besides uncertainty relations, another phenomenon dis-
tinguishing quantum from classical physics is the occur-
rence of non-local correlations. It has already been ob-
served by Einstein, Podolsky and Rosen [18] that quan-
tum mechanics predicts correlations between entangled,
but spatially separated particles. Bell [19] later showed
that certain of these correlations cannot be explained
by a local hidden-variable theory, i.e., they are non-local.
Non-locality can be quantified using so-called Bell inequal-
ities [19, 20]. The best-known Bell inequality, the CHSH
inequality [20], considers the case of a bipartite system,
shared between Alice and Thomas (T ), to which each
party applies one out of two possible measurements with
binary outcomes. We denote the outcomes of Alice’s mea-
surements X and Y (as in the setup of the uncertainty
relation) and Thomas’ outcomes by R and S, depend-
ing on his choice of measurement. The CHSH inequality
states that for any such system which can be described by
a local hidden-variable theory, it holds that β ≤ 2, where

β := 2
(
Pr[X=R]+Pr[Y=R]+Pr[X=S]−Pr[Y=S]−1

)
is called the CHSH value. If β > 2, we call the correla-
tions between Alice and Thomas non-local, and quantum
mechanics allows correlations that achieve β = 2

√
2.

Our second result shows that there is a close relation
between the effective overlap of two measurements with
binary outcomes on Alice’s system and the CHSH value,
β, that can be reached between Alice and Thomas, when
the same setup is used on Alice’s system.1 (Note that
Thomas could, in particular, be part of Bob’s or Charlie’s
system.) We show that any measurement setup by Alice
which can give rise to non-local correlations (i.e., β > 2),
must have overlap c∗ < 1. Furthermore, in order to reach
a CHSH value close to the maximum quantum value
(i.e., β ≈ 2

√
2), Alice’s setup must have almost minimal

overlap c∗ ≈ 1/2.

Result 2. The CHSH value that can be reached between
Alice and Thomas when the effective overlap of Alice’s

1 Oppenheim and Wehner [21] showed that the uncertainty, via
steering, directly determines the strength of achievable non-
locality. Our result is complementary to theirs, as we show
that in order to achieve a certain non-locality, at least some
specific amount of uncertainty is necessary.

setup is c∗ is bounded by

β(c∗) ≤ 2
(√
c∗ +

√
1− c∗

)
. (3)

Conversely, given a CHSH value β between Alice and
Thomas, the effective overlap of Alice’s measurement
setup is bounded by

c∗ ≤ 1

2
+
β

8

√
8− β2 .

This relation is depicted in Figure 1. Note that for the
case when the systems A and T are restricted to qubits, a
bound on the maximal CHSH value in terms of the angle
between local qubit measurements has previously been
derived by Seevink and Uffink [22]. The relation between
uncertainty and non-locality has been conjectured in [23]
and independently derived in [24] for the case of qubit-
systems.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2  2.2  2.4  2.6  2.8  3

c
*

β

FIG. 1. The relation between overlap and CHSH value. Due
to our bound (3), combinations of β and c∗ above the curve
are impossible.

The above relation implies that the overlap of a setup
can be tested by looking at the Bell inequality violation
it reaches with a second system. Together with the first
result, it leads to an uncertainty relation with quantum
side-information in terms of the violation of a Bell in-
equality this system can reach. This device-independent
uncertainty relation is stated only in terms of quantities
which have an operational meaning.

Result 3.

H(X|B)ρ +H(Y |C)ρ ≥ 1− f(β) , (4)

where f(β) = log2

(
1 + β

4

√
8− β2

)
and β is the CHSH

value between Alice and Thomas.

Note that in order to determine the value of the overlap
c used in previous uncertainty relations, and, therefore,
a meaningful uncertainty relation of the form (1), one
usually needs to know the exact specification of the Alice’s
measurement devices. In contrast to this, our uncertainty



3

relations depends only on the Bell value and is indepen-
dent of the details of the physical model used to describe
the quantum systems and measurements. This includes,
in particular, the dimension of the Hilbert space they act
on (although we do assume that it is finite).

The uncertainty relation in terms of the violation of
a Bell inequality, Eq. (4), can be used to certify the
quality of a source of BB84-states using an untrusted
certification device. Sources of BB84-states are widely
used in quantum cryptography [25], including quantum
key distribution [26, 27], and bit commitment or oblivious
transfer secure in the bounded/noisy storage model [16,
28].

For our application, consider a (potentially imperfect)
source that creates these states in the following way. First,
it produces two entangled particles, e.g. through para-
metric down-conversion [29, 30]. Then, it sends one part
out and measures the other part, using either one of two
different measurements at random and taking note of the
measurement outcome (see Figure 2). The input of the
source thus corresponds to the choice of basis for the
BB84-states, and, together with the output, defines which
of the 4 states was actually prepared. (This technique
of remotely preparing states by means of entanglement
is often referred to as steering.) We assume that the
source prepares the same state and uses the same mea-
surements in each run — in particular, this means that
the source is memoryless. Sources of this type are the
subject of recent research, e.g. they are used as heralded
single-photon sources [31, 32] and have applications in
(device-independent) quantum cryptography [33–35].

ρATρA ρT

measurement
∈ {0, 1}

measurement
∈ {0, 1}

x, y ∈ {0, 1} r, s ∈ {0, 1}

source testing device

FIG. 2. Source testing.

Uncertainty relations of the form (1) and (2) lie at the

core of security proofs in quantum cryptography. These
include cryptography in the bounded quantum storage
model [16], oblivious transfer and bit commitment in the
noisy quantum storage model [28] and recent security
proofs for quantum key distribution [7, 11, 15]. For ex-
ample, in the case of key distribution the overlap of the
source enters as a crucial parameter determining the se-
crecy of the resulting key [11, 15]. Moreover, it sufficiently
characterizes the source for the purpose of these security
proofs as long as the source is of the type described above.
In particular, it is unnecessary to do tomography of the
states the source produces. We, therefore, propose the ef-
fective overlap c∗ as the parameter to quantify the quality
of sources of BB84-states.

Our results imply that the effective overlap can be
tested using a certification device (Thomas, in the above
discussions) which, using a random bit and the state sent
by the source as input, tries to output a bit in such a
way that the CHSH-condition (i.e., either x = r, x = s,
y = r or y 6= s ) is fulfilled (see Figure 2). Our analysis
shows that the effective overlap of the source can now
be estimated from the fraction of times, p, the CHSH-
condition is satisfied. That is, except with very small
probability, it holds that

c∗ ≈ 1

2
+ 2 (2p− 1)

√
1

2
− (2p− 1)

2
.

Since the test verifies this property of the apparatus
independently of the physical implementation of the cer-
tification device, we believe that this test could be useful
to manufacturers of quantum cryptographic devices who
would like to prove — to a skeptical audience that may
not trust the certification device — whether their devices
fulfill the desired specifications.
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