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Abstract

We give algorithms for the optimization problem: maxρ 〈Q, ρ〉, where Q is a Hermitian matrix, and
the variable ρ is a bipartite separable quantum state. This problem lies at the heart of several problems
in quantum computation and information, such as the complexity of QMA(2). While the problem is NP-
hard, our algorithms are better than brute force for several instances of interest. In particular, they give
PSPACE upper bounds on promise problems admitting a QMA(2) protocol in which the verifier performs
only logarithmic number of elementary gates that act on both proofs, as well as the promise problem of
deciding if a bipartite local Hamiltonian’s ground energy is large or small. For Q ≥ 0, our algorithm
runs in time exponential in ‖Q‖F. While the existence of such an algorithm was first proved recently by
Brandão, Christandl and Yard [Proceedings of the 43rd annual ACM Symposium on Theory of Computation,
343–352, 2011], our algorithm is conceptually simpler.

Entanglement is an essential ingredient in many ingenious applications of quantum information pro-
cessing. Understanding and exploiting entanglement remains a central theme in quantum information
processing research [HHH+09]. Denote by SepD (A1 ⊗A2) the set of separable (i.e, unentangled) density
operators over the space A1 ⊗A2. A fundamental question known as the weak membership problem for sep-
arability is to decide, given the classical description of a quantum state ρ over A1 ⊗A2, whether ρ is inside
or ε far away in trace distance from SepD (A1 ⊗A2). Unfortunately, this basic problem turns out to be in-
tractable. In 2003, Gurvits [Gur03] proved the NP-hardness of the problem when ε is inverse exponential in
the dimension of A1 ⊗A2. The dependence on ε was later improved to inverse polynomial [Ioa07, Gha10].

In this paper we study a closely related problem to the weak membership problem discussed above.
More precisely, we consider the linear optimization problem over separable states.

Problem 1. Given a Hermitian matrix Q over A1 ⊗A2 (of dimension d× d), compute the optimum value,
denoted by OptSep(Q), of the optimization problem

max 〈Q, X〉 subject to X ∈ SepD (A1 ⊗A2) .

It is well-known in convex optimization [GLS93, Ioa07] that the weak membership problem and the weak
linear optimization, a special case of Problem 1, over certain convex set, such as SepD (A1 ⊗A2), are equiv-
alent up to polynomial loss in precision and polynomial-time overhead. Thus the hardness result on the
weak membership problem for separability passes directly to Problem 1.

Besides the connection with the weak membership problem for separability, Problem 1 can also be un-
derstood from many other aspects. Firstly, as the objective function is the inner-product of a Hermitian
matrix and a quantum state, which represents the average value of some physical observable, the optimal
value of Problem 1 inherently possesses certain physical meaning. Secondly, in the study of the tensor
product space [DF92], the value OptSep(Q) is precisely the injective norm of Q in L(A1)⊗ L(A2), where
L(A) denote the Banach space of operators on A with the operator norm. Finally, one may be equally mo-
tivated from the study in operations research. Problem 1 appeared in an equivalent form in [LQNY09] as
“bi-quadratic optimization over unit spheres”. Subsequent works [HLZ10, So11] demonstrated that Prob-
lem 1 is just a special case of a more general class of optimization problems called homogenous polynomial
optimization with quadratic constraints, which is currently an active research topic in operation research.

Another motivation to study Problem 1 is the recent interest on the complexity class QMA(2). The class
QMA [KSV02] is the quantum counterpart of the classical complexity class NP (or more precisely, MA).
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While the extension of NP to allow multiple provers trivially reduces to NP itself, the power of QMA(2),
the extension for QMA with multiple unentangled provers, remains far from being well understood. The
study of the multiple-prover model was initiated in [KMY01, KMY03], where QMA(k) denotes the com-
plexity class for the k-prover case. Much attention was attracted to this model because of the discovery
that NP admits logarithmic-size unentangled quantum proofs [BT09] (with weak soundness). This result
was surprising because single prover quantum logarithm-size proofs only characterize BQP [MW05]. It
seems adding one unentangled prover increases the power of the model substantially. There are sev-
eral subsequent works on refining the initial protocol either with improved completeness and soundness
bounds [Bei10, ABD+09, CF11, GNN11] or with less powerful verifiers [CD10]. Recently it was proved
that QMA(2)=QMA(poly) [HM10] by using the so-called product test protocol that determines whether a
multipartite state is a product state when two copies of it are given. There is another line of research on
the power of unentangled quantum proofs with restricted verifiers. Two complexity classes BellQMA and
LOCCQMA, referring to the restricted verifiers that perform only nonadaptive or adaptive local measure-
ments respectively, were defined in [ABD+09] and studied in [Bra08, BCY11]. It has been shown [BCY11]
that LOCCQMA(m) is equal to QMA for constant m.

Despite much effort, no nontrivial upper bound of QMA(2) is known. The best known upper bound
QMA(2)⊆NEXP follows trivially by nondeterministically guessing the two proofs. It would be surprising
if QMA(2) = NEXP. Thus it is reasonable to seek a better upper bound such as EXP or even PSPACE. It is
not hard to see that simulating QMA(2) amounts to distinguishing between two promises of OptSep(Q),
although one has the freedom to choose the appropriate Q. Problem 1 was also studied in [BCY11] for the
same purpose.

Hardness result. There are several approaches to prove the hardness of Problem 1. The first is to make
use of the NP-hardness of the weak membership problem and the folk theorem in convex optimization as
mentioned above. However, one may directly reduce the CLIQUE problem to Problem 1 [deK08, LQNY09].
There is also a stronger hardness result [HM10] on the exact running time of algorithms solving Problem 1
conditioned on the Exponential Time Hypothesis (ETH) [IP01]. The hardness results extend naturally to
the approximation version of Problem 1. It is known that OptSep(Q) remains to be NP-hard to compute
even if an inverse polynomial additive error is allowed. Nevertheless, it is wide open whether the hardness
result remains if one allows even a larger additive error.

From the perspective of operations research, the hardness of Problem 1 is a consequence of not being a
convex optimization problem. In this case although efficient methods, compared with brute-force, for find-
ing a local optimum usually exist, on the other hand finding the global one is fraught with difficulty. This
is because one needs to enumerate all possible local optima before one can determine the global optimum
in the worst case.

Our contributions. In this paper we provide efficient algorithms for Problem 1 in either time or space for
several Qs of interest. As the hardness result implies that enumeration is likely to be inevitable in the worst
case, our idea is to enumerate via epsilon-nets more "cleverly" with the help of certain structure of Q.

When the total number of points to enumerate is not large, one can represent and hence enumerate each
point in polynomial space. If the additional computation for each point can also be done in polynomial
space, one immediately gets a polynomial-space implementation for the whole algorithm by composing
those two components naturally. We make use of the relation NC(poly)=PSPACE [Bor77] to obtain space-
efficient implementation for the additional computation, which in our cases basically includes the following
two parts. The first part helps to make sure the enumeration procedure works correctly. This is because
these epsilon-nets of interest in our algorithm are not standard, additional effort is necessary to generate
them. This part turns into a simple application of the so-called multiplicative matrix weight update (MMW)
method [AHK05, WK06, Kal07] to computing a min-max form, which is known to admit efficient parallel
algorithms under certain conditions. The second part contains the real computation that in our case only
consists of fundamental matrix operations. It is well known those operations admit efficient parallel al-
gorithms [Gat93]. As a result,the additional computation can be implemented in polynomial space in our
case. We summarize below the main results obtained by applying the above ideas.
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1. The first property exploited is the so-called decomposability of Q which refers to whether Q can be decom-
posed in the form Q = ∑M

i=1 Q1
i ⊗ Q2

i with small M. Intuitively, if one substitutes this Q’s decomposition
into 〈Q, ρ1 ⊗ ρ2〉 and treat

〈
Q1

1, ρ1
〉

, · · · ,
〈

Q1
M, ρ1

〉
,
〈

Q2
1, ρ2

〉
, · · · ,

〈
Q2

M, ρ2
〉

as variables, the optimization
problem becomes quadratic and M corresponds to the number of second-order terms in the objective func-
tion. By plugging the values of

〈
Q1

1, ρ1
〉

, · · · ,
〈

Q1
M, ρ1

〉
into the objective function, the optimization prob-

lem reduces to be a semidefinite program, and thus can be efficiently solved. Since this approach naturally
extends to the k-partite case for k ≥ 2, we obtain the following general result.

Theorem 1 (Informal). Given any Hermitian Q and its decomposition, OptSep(Q) can be approximated with an
additive error δ in quasi-polynomial time1 in d and 1/δ if kM is bounded by poly-logarithms of d.

By exploiting the space-efficient algorithm design strategy above, this algorithm can also be made space-
efficient. To facilitate the later applications to complexity classes, we choose the input size to be some n
such that d = exp(poly(n)).

Corollary 1 (Informal). If kM/δ ∈ O(poly(n)), OptSep(Q) can be approximated with an additive error δ
in PSPACE.

As a direct application, we prove the following variant of QMA(2) belongs to PSPACE. Note the complexity
class QMA(2)[poly(n), O(log(n))] refers to the model where the verifier only performs O(log(n)) elemen-
tary gates that act on both proofs at the same time and a polynomial number of other elementary gates.

Corollary 2. QMA(2)[poly(n), O(log(n))] ⊆ PSPACE.

This result establishes the first PSPACE upper bound for a variant of QMA(2) where the verifier is
allowed to generate some quantum entanglement between two proofs. In contrast, previous results are all
about variants with nonadaptive or adaptive local measurements, such as BellQMA(2) [ABD+09, Bra08,
CD10] or LOCCQMA(2) [ABD+09, BCY11].

We also initiate the study of Problem 1 for a k-partite local Hamiltonian Q. Recall that a promise ver-
sion of this problem in the one party case, namely the local-Hamiltonian problem, is QMA-complete prob-
lem [KSV02]. Our definition extends the original local Hamiltonian problem to its k-partite version. How-
ever, as will be clear in the main section, the k-partite local Hamiltonian problem is no longer necessarily
QMA(k)-complete. On the other side, our enumeration algorithm based on the decomposability of Q works
extremely well in this case. As a result, we obtain the following corollary.

Corollary 3 (Informal). For a k-partite local Hamiltonian Q, OptSep(Q) can be approximated with an ad-
ditive error δ in quasi-polynomial time in d, 1/δ; the k-partite local Hamiltonian problem is in PSPACE.

2. The second structure made use of is the eigenspace of Q of large eigenvalues. As a result, we establish
an algorithm solving Problem 1 with running time exponential in ‖Q‖F.

Theorem 2 (Informal). For a positive semidefinite Q, OptSep(Q) can be approximated with an additive error δ in
time exp(O(log(d) + δ−2‖Q‖2

F ln(‖Q‖F/δ))).

A similar running time exp(O(log2(d)δ−2‖Q‖2
F)) was obtained in [BCY11] using some known results in

quantum information theory (i.e., the semidefinite programming for finding symmetric extension [DPS04]
and an improved quantum de Finetti-type bound.) In contrast, our algorithm only uses fundamental oper-
ations of matrices and epsilon-nets. To approximate with precision δ, it suffices to consider the eigenspace
of Q of eigenvalues greater than δ and a dimension bounded by ‖Q‖2

F/δ2. Nevertheless, naively enumer-
ating density operators over that subspace does not work since one cannot detect the separability of those
density operators. We circumvent this difficulty by making use of the Schmidt decomposition of bipartite
pure states. We note, however, that other results in [BCY11] do not follow from our algorithm, and our
method cannot be seen as a replacement of the kernel technique therein. Furthermore, our method does
not extend to the k-partite case, as there is no Schmidt decomposition in that case.

1Quasi-polynomial time is upper bounded by 2O((log n)c) for some fixed c, where n is the input size.
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