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Abstract. We prove stability of the spectral gap for gapped, frustration-free
Hamiltonians under general, quasi-local perturbations. We present a necessary
and sufficient condition for stability, which we call Local Topological Quantum
Order. This result extends previous work by Bravyi et al. on the stability
of topological quantum order for Hamiltonians composed of commuting pro-
jections with a common zero-energy subspace. Moreover, we show that Local
Topological Quantum Order implies a bound on the entanglement entropy of
the groundstates.

Recent interest in topological quantum computation has focused the attention
of the condensed matter and mathematical physics community on Hamiltonians
whose low-energy sectors exhibit some form of topological order. In a seminal
paper by Kitaev [15], a Hamiltonian known as the toric code, was constructed out
of commuting spin-interaction terms, such that the groundstate subspace exhibits
four-fold degeneracy which may only be detected under macroscopic operations.
In other words, the different groundstates are indistinguishable on microscopic and
mesoscopic scales, which implies that local errors cannot create logical errors in any
encoding that utilizes such topologically ordered groundstates as the encoded state
of two qubits.

Nevertheless, if the groundstate subspace were to become mixed with the non-
topological higher-energy sectors, then any guarantee of protection from external
errors would no longer be valid. At this point, another type of stability against
errors is required, this time at the level of the spacing between the low-energy and
high-energy sectors. Progress in this direction was made by Klich [16] using the
method of cluster expansions, and soon after by Bravyi et al.[5, 4]. In particular,
the latter result showed that all Hamiltonians with commuting spin-interaction
terms have a spectral gap that is stable under local perturbations, as long as the
groundstates satisfy some type of local indistinguishability and frustration-freeness.

Since the toric code Hamiltonian satisfies both conditions, it follows that encod-
ings of qubits on the toric code, the groundstate subspace of the Hamiltonian, are
robust against local errors, even if the Hamiltonian interactions are not precisely
engineered. Even so, the toric code has a, seemingly, fatal flaw; at non-zero temper-
ature, local excitations, once created, can travel around the torus to create logical
errors, at no extra energy cost. Motivated by this issue, soon after the results of
Klich and Bravyi et al., a series of papers appeared that focused on the beneficial
effects of Anderson-type localization of the undesired excitations in the presence of
impurities, or external magnetic fields [14, 22, 23].

Still, until recently, no Hamiltonian model was known that combined the desir-
able properties of the toric code, with a rigorous and sufficiently large lower bound
on the energy barrier restricting the mobility of unwanted excitations at non-zero
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temperature. In fact, it was shown by Yoshida [24], that such Hamiltonians would
need to either forgo commutativity or break certain “natural” conditions, such as
translational invariance or scale invariance, in order to satisfy stability at non-zero
temperature. Indeed, the only known family of Hamiltonians with all the desired
properties, recently presented by Haah in [8], has logical operators with fractal
geometry in three dimensions and no scale invariance, thus sidestepping Yoshida’s
no-go theorem. Yet, despite the rigorous bound [3] on the energy barrier of Haah’s
Hamiltonian, there remains a question of whether the barrier is large enough to
allow for operations on the logical qubits, like read-out and error-correction, which
may require times comparable to the time it takes for logical errors to appear.
Moreover, it was recently shown by Hastings [11], that all two-dimensional Hamil-
tonians which are a sum of commuting terms, have no topological order at non-zero
temperature.

Motivated by this line of research and the larger question of the classification
of quantum phases [6, 1, 21], we present here a generalization of the result by
Bravyi et al., which removes the commutativity of the Hamiltonian terms as an
assumption for stability. Some of the new candidate Hamiltonians now include,
parent Hamiltonians of Matrix Product States (MPS) and Projected Entangled
Pair States (PEPS) [20], as well as all other frustration-free Hamiltonians - that
is, Hamiltonians whose groundstates minimize the energy of each local interaction
term. Moreover, we generalize the conditions needed for the stability of the spectral
gap, in hopes that in the future, one may be able to prove an equivalent result for
general, gapped Hamiltonians, whose groundstates satisfy some type of topological
order.

The stability of quantum phases was already studied by Borgs et al.[2] and
Datta et al.[7], were “classical” systems were shown to be robust against small
quantum perturbations up to some low-temperature, using the methods of contour
and cluster expansions. Nevertheless, here, we draw heavily from the methods
developed in [5, 4], following the more succinct format of [4], which uses Hastings’
powerful quasi-adiabatic continuation [13]. We make extensive use of Lieb-Robinson
bounds, both for the evolution of operators according to the Hamiltonians under
consideration [9, 12, 18], as well as Lieb-Robinson bounds on the quasi-adiabatic
evolution of the low-energy eigenspaces [10, 1].

We begin by defining the class of frustration-free Hamiltonians whose stability
we proceed to study. We, then, introduce the Local-TQO and Local-Gap conditions
sufficient for proving stability, clarifying with examples the extend to which the con-
ditions are also necessary. Next, we define the class of perturbations we allow and
proceed to transform the perturbed Hamiltonian, through a unitary transformation
and a global energy shift, in a form amenable to studying its low energy sectors,
using the concept of relatively bounded perturbations. We follow the bootstrapping
argument of [4] to conclude that for weak enough perturbations, the spectral gap
remains open.

To conclude, we show that topological phases corresponding to the groundstate
sector of gapped, frustration-free Hamiltonians are stable under quasi-local per-
turbations. Moreover, our result implies the stability of symmetry-protected low-
energy sectors under perturbations that obey the symmetry of that sector, as long
as these perturbations satisfy the Local-TQO condition. Finally, it can be shown
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[19] that parent Hamiltonians of Matrix Product States (MPS) satisfy the Local-
TQO condition. Combined with the result of Nachtergaele [17] on the spectral
gap of one-dimensional, frustration-free Hamiltonians, our result shows that parent
Hamiltonians of MPS have stable low-energy spectrum against arbitrary, weak, lo-
cal perturbations. We expect the same result to hold for two-dimensional, gapped
parent Hamiltonians of Projected Entangled Pair States (PEPS).
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