Vision par ordinateur: Calibration de Caméra et géométrie épipolaire

Sébastien Roy Jean-Philippe Tardif

Département d'Informatique et de recherche opérationnelle Université de Montréal

Hiver 2007

Au programme

- Introduction
- 2 Calibration avec objet 3D
- Calibration planaire
 - Formulation linéaire
 - Optimisation non-linéaire
- 4 Calibration par Rotation pure
- Geométrie épipolaire
 - Matrice fondamentale
 - Matrice Essentielle
 - Retrouver les caméras

Sommaire

- Introduction
- 2 Calibration avec objet 3D
- Calibration planaire
 - Formulation linéaire
 - Optimisation non-linéaire
- Calibration par Rotation pure
- Geométrie épipolaire
 - Matrice fondamentale
 - Matrice Essentielle
 - Retrouver les caméras

Définition

Calibration

Retrouver les paramètres internes de la caméra. Parfois, ce terme inclus aussi les paramètres externes.

Calcul de pose

Calculer les paramètres externes. On suppose souvent que les paramètres internes sont connus.

Plus généralement

On cherche à associer à chaque pixel un rayon d'échantillonage de l'espace

- point de départ
- direction

Ceci nous est donnée par les paramètres complets de la caméra

Calibration

Type de calibration :

- Avec un objet 3D connu
- Avec d'images de plans connus (points, lignes, angle entre les lignes)
- À partir de mouvements de la caméra connus

Grandes étapes

- Identifier la projection des éléments (points, lignes, etc) dans les images
- Minimiser une fonction des paramètres et des entités

Sommaire

- Introduction
- Calibration avec objet 3D
- Calibration planaire
 - Formulation linéaire
 - Optimisation non-linéaire
- 4 Calibration par Rotation pure
- Geométrie épipolaire
 - Matrice fondamentale
 - Matrice Essentielle
 - Retrouver les caméras

Idée

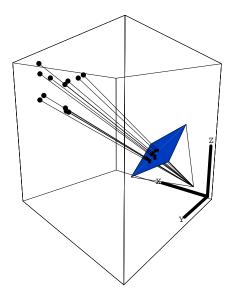
Objet connu

- Correspondances : points/lignes 3D ↔ leur image 2D
- Points 3D doivent être en position générale (non-planaire)

Exemple:

- Deux plans avec des damiers
- Dodécaèdre (nous en avons un au laboratoire)

ldée

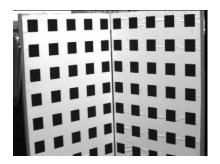


- Points 3D connus
- Points images connus
- On cherche chaque rayon
- donc les paramètres de la caméra

Première étape

Avec une grille de calibration :

- Trouver des points saillants
- Trouver les bordures des carrés et trouver les lignes
- Intersection de ces lignes pour avoir des coordonnés sous-pixels
- Retrouver automatiquement la configuration des points (i.e. leur coordonnée)



Modèle perspective : Formulation linéaire

Resectioning Deux relations utiles :

• Pour un point 3D :

$$\begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} \times \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{pmatrix} P_1 \\ P_2 \\ P_3 \\ P_4 \end{pmatrix} = \mathbf{0}$$

avec une eq. redondante

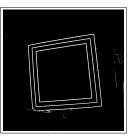
ullet Pour une ligne 3D formée de deux points ${f Q}_i,\ l,$ sa projection dans l'image

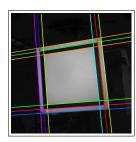
$$\begin{pmatrix} l_1 & l_2 & l_3 \end{pmatrix} \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{pmatrix} Q_{i1} \\ Q_{i2} \\ Q_{i3} \\ Q_{i4} \end{pmatrix} = 0$$

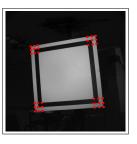
- Système d'équations en m, le vecteur des m_{ij}
- Résolution avec la SVD, donc la contrainte $\|\mathbf{m}\| = 1$
- Minimisation de l'erreur algébrique

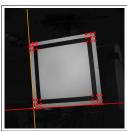
Première étape : un exemple

- Processus idéalement automatique
- Très souvent semi-automatique (comme OpenCV)









Décomposition de ${\mathcal M}$

Méthode indirecte :

$$\mathcal{M} = \begin{bmatrix} \mathcal{H} & \mathbf{m}_4 \end{bmatrix}$$
$$= \mathcal{H} \begin{bmatrix} I & \mathcal{H}^{-1} \mathbf{m}_4 \end{bmatrix}$$
$$= \mathcal{H} \begin{bmatrix} I & -\hat{\mathbf{C}} \end{bmatrix}$$

- donc $\mathcal{H} = \mathcal{K}\mathcal{R}$
- ullet Décomposition RQ de ${\mathcal H}$

Décomposition de ${\mathcal M}$

Méthode directe :

$$\rho \mathcal{H} = \rho \begin{bmatrix} \mathbf{h_1}^\mathsf{T} \\ \mathbf{h_2}^\mathsf{T} \\ \mathbf{h_3}^\mathsf{T} \end{bmatrix} = \begin{bmatrix} \alpha \mathbf{r_1}^\mathsf{T} + s \mathbf{r_2}^\mathsf{T} + \mathbf{r_3}^\mathsf{T} u_0 \\ \beta \mathbf{r_2}^\mathsf{T} + \mathbf{r_3}^\mathsf{T} v_0 \\ \mathbf{r_3}^\mathsf{T} \end{bmatrix} = \mathcal{K} \begin{bmatrix} \mathbf{r_1}^\mathsf{T} \\ \mathbf{r_2}^\mathsf{T} \\ \mathbf{r_3}^\mathsf{T} \end{bmatrix}$$

donc:

- $\rho = \pm 1/\|\mathbf{h}_3\|$
- $\mathbf{r}_3 = \rho \mathbf{h}_3$
- $\bullet \ \rho \mathbf{h}_2^{\mathsf{T}} \rho \mathbf{h}_3 = v_0$
- ..

Voir Forsyth-Ponce pour le reste

Caméra affine

$$\begin{pmatrix} p_1 \\ p_2 \end{pmatrix} - \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \end{bmatrix} \begin{pmatrix} P_1 \\ P_2 \\ P_3 \\ 1 \end{pmatrix} = \mathbf{p} - \begin{bmatrix} \mathbf{m}_1^\mathsf{T} \\ \mathbf{m}_2^\mathsf{T} \end{bmatrix} \mathbf{P} = \mathbf{0}$$

et le système est donc

$$\begin{bmatrix} \mathbf{P}^\mathsf{T} & \mathbf{0}^\mathsf{T} \\ \mathbf{0}^\mathsf{T} & \mathbf{P}^\mathsf{T} \end{bmatrix} \begin{pmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \end{pmatrix} = \mathbf{p}$$

- On résout avec la pseudo-inverse
- ullet $\mathcal M$ n'est pas définie à un facteur d'échelle
- Ceci minimise l'erreur de reprojection

Solution optimale

Minimisation de l'erreur de reprojection

$$\sum_{i} \operatorname{dist}^{2}(\mathbf{p}_{i}, \mathcal{M}\mathbf{P}_{i})$$

Si on a des contrainte sur ${\mathcal K}$:

$$\sum_{i} \operatorname{dist}^{2}(\mathbf{p}_{i}, \mathcal{KR} \begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix} \mathbf{P}_{i})$$

• Paramétrisation de K et R (Plus loin dans ce cours)

Avantages/Inconvénients

- Simplicité
- Une seule vue, combiner plusieurs vues pour les paramètres internes ?
- Difficile d'avoir beaucoup de points
- Identifier les points automatiquement

À réfléchir/essayer

- Forcer certaines contraintes
 - Point principal connu
 - Focal identique en X et Y (ratio d'image de 1)
 - Aucun skew
- Solution : formuler des système d'équations spécifiques, si possible

ex:

- Méthode Trucco & Verri, point principal connu
- Calibrage planaire
- Forcer les contraintes par après

Idée

- Image d'un plan
- Géométrie euclidienne connue
- Paramètres internes calculés à partir de plusieurs vues
- Pose par rapport au plan pour chaque vue

Plan euclidien

On connaît un système d'axe euclidien dans ce plan. On connaît par exemple :

- l'angle entre les lignes
- la distance entre les points
- le fait que l'échiquier est constitué de "carrés"

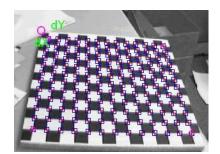
Sommaire

- Introduction
- 2 Calibration avec objet 3D
- Calibration planaire
 - Formulation linéaire
 - Optimisation non-linéaire
- 4 Calibration par Rotation pure
- 6 Geométrie épipolaire
 - Matrice fondamentale
 - Matrice Essentielle
 - Retrouver les caméras

Première étape

Avec une grille de calibration :

- Trouver des points saillants
- Retrouver automatiquement la configuration des points (i.e. leur coordonnée)
 - Pas si difficile



Sommaire

- Introduction
- Calibration avec objet 3D
- Calibration planaire
 - Formulation linéaire
 - Optimisation non-linéaire
- 4 Calibration par Rotation pure
- Geométrie épipolaire
 - Matrice fondamentale
 - Matrice Essentielle
 - Retrouver les caméras

Conique absolue Ω_{∞}

Définition

Conique de points complexes dans la plan infini $\pi_{\infty} = (0,0,0,1)^{\top}$ **Seulement** pour les points de la forme $(x,y,z,0)^{\top}$ et

$$(x, y, z) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0, \quad h = 0$$

(en euclidien)

Modèle de projection → transformation

Rappel:

• Projection 3×4

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \mathcal{M}\mathbf{P} = \mathcal{K}\mathcal{R}_{3\times3}[\mathbf{I}_{3\times3}|\mathbf{t}] \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

ullet Projection d'un plan en Z=0

$$\mathcal{KR}[\mathbf{I}_{3\times 3}|\mathbf{t}] \begin{pmatrix} X \\ Y \\ 0 \\ 1 \end{pmatrix} = \mathcal{KR} \begin{bmatrix} 1 & 0 & \\ 0 & 1 & \mathbf{t} \\ 0 & 0 & \end{bmatrix} \begin{pmatrix} X \\ Y \\ 1 \end{pmatrix} = \mathcal{H} \begin{pmatrix} X \\ Y \\ 1 \end{pmatrix}$$

Projection de Ω_{∞}

• Projection des points sur π_{∞}

$$\mathbf{p} = \mathcal{KR}[\mathbf{I}|\mathbf{t}] \begin{pmatrix} x \\ y \\ z \\ 0 \end{pmatrix} = \mathcal{KR} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

 seuls l'orientation de la caméra et ses paramètres internes influencent la projection de ces points

Analogie : La position du soleil ou des étoiles ne changent pas si on translate, seulement si on change de d'orientation.

Projection de Ω_{∞}

Comme Ω_{∞} est dans π_{∞} on peut travailler avec les plans projectifs

- \bullet π_{∞}
- notre image de caméra

Rappel: transformation d'une conique:

$$\mathcal{C}' \propto \mathcal{H}^{-\top} \mathcal{C} \mathcal{H}^{-1}$$

- Posons $\mathcal{H} = \mathcal{K}\mathcal{R}$
- Appliquons à $\Omega_{\infty} = I$

$$(\mathcal{K}\mathcal{R})^{-\top}\mathbf{I}(\mathcal{K}\mathcal{R})^{-1} = \mathcal{K}^{-\top}\mathcal{R}\mathbf{I}\mathcal{R}^{-1}\mathcal{K}^{-1} = \mathcal{K}^{-\top}\mathcal{K}^{-1}$$

Image de la Conique Absolue (Image of the Absolute Conic (IAC))

$$\omega = \mathcal{K}^{-\top} \mathcal{K}^{-1}$$

Revenons à notre transformation \mathcal{H}

- ullet On cherche $ilde{\omega}$
- À partir d'une homographie \mathcal{H} entre le plan de calibration et l'image (on ne parle pas de π_{∞})

On vérifie que pour $\mathcal{H} \propto \mathcal{K} \mathcal{R} \begin{bmatrix} 1 & 0 \\ 0 & 1 & \mathbf{t} \\ 0 & 0 \end{bmatrix}$

$$\mathbf{h}_1^{\top} \omega \mathbf{h}_2 = 0$$
, et $\mathbf{h}_1^{\top} \omega \mathbf{h}_1 - \mathbf{h}_2^{\top} \omega \mathbf{h}_2 = 0$

où \mathbf{h}_i est la $i^{\mathrm{\`e}me}$ colonne de $\mathcal{H}.$ Nous avons donc des contraintes linéaires :

$$\begin{bmatrix} h_1h_2 & h_4h_5 & h_7h_8 & h_2h_7 + h_1h_8 & h_5h_7 + h_4h_8 \\ h_1^2 - h_2^2 & h_4^2 - h_5^2 & h_7^2 - h_8^2 & 2h_1h_7 - 2h_2h_8 & 2h_4h_7 - 2h_5h_8 \end{bmatrix} \begin{pmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \\ w_5 \end{pmatrix} = \mathbf{0}$$

Nous pouvons alors retrouver l'IAC et ensuite calculer les paramètres internes.

Détails sur ω

Pour
$$\mathcal{K} = \begin{bmatrix} f & 0 & u \\ 0 & f\alpha & v \\ 0 & 0 & 1 \end{bmatrix}$$

Au long

$$\omega \propto \begin{bmatrix} \alpha^2 & 0 & -\alpha^2 u_0 \\ 0 & 1 & -v_0 \\ -\alpha^2 u_0 & -v_0 & f^2 \alpha^2 + u_0^2 \alpha^2 + v_0^2 \end{bmatrix}$$

Pour le moment, l'IAC est inconnue, nous allons l'estimer

$$\tilde{\omega} = \begin{bmatrix} w_1 & 0 & w_4 \\ 0 & w_2 & w_5 \\ w_4 & w_5 & w_3 \end{bmatrix}$$

On peut ajouter des contraints ici. $\tilde{\omega}$ aura possiblement moins de variables. Par ex. $\alpha=1.$

Décomposition de Ω

On peut maintenant retrouver les paramètres.

- Calcul direct
- Décomposition de Cholesky.

Exercice

- Combien faut-il d'homographie(s) pour calibrer complètement la caméra ?
- Si le ratio d'image est 1 et qu'on connaît le point principal, combien en faut-il?

Calcul de pose

- ullet ${\cal K}$ connue
- $\bullet \ \, \mathsf{D\'ecomposer} \,\, \mathcal{N} \propto \mathcal{K}^{-1}\mathcal{H} = \mathcal{R} \, \begin{bmatrix} 1 & 0 \\ 0 & 1 & \mathbf{t} \\ 0 & 0 & \end{bmatrix}$

Deux façons :

Retrouver la translation avec

$$\mathcal{H}^ op \omega \mathcal{H} \propto egin{bmatrix} 1 & 0 & t_x \ 0 & 1 & t_y \ t_x & t_y & t_x^2 + t_y^2 + t_z^2 \end{bmatrix}$$

- $\mathcal{K}, \mathbf{t}, \mathcal{H}$ maintenant connus.
- ullet Retrouver ${\cal R}$
- ullet Retrouver ${\mathcal R}$ avec

$$\begin{bmatrix} \mathcal{N}^1 & \mathcal{N}^2 & \mathcal{N}^1 \times \mathcal{N}^2 \end{bmatrix}$$

- forcer $|\mathcal{R}| = 1$,
- retrouver la translation

200

Sommaire

- Introduction
- 2 Calibration avec objet 3D
- Calibration planaire
 - Formulation linéaire
 - Optimisation non-linéaire
- 4 Calibration par Rotation pure
- Geométrie épipolaire
 - Matrice fondamentale
 - Matrice Essentielle
 - Retrouver les caméras

Calcul de pose

Exercice :Notez l'ambiguïté sur le signe t_z

- À quoi correspond chaque signe?
- Si vous retrouvez deux positions de caméras? Peut-on avoir deux signes différents?
 - Si oui, pourquoi?
 - Si non, comment corriger ça?

Optimisation non-linéaire

- Solution linéaire non optimale
- erreur algébrique vs erreurs de reprojection
- Minimiser l'erreur de reprojection
- ATTENTION, ce n'est PAS de l'ajustement de faisceau (plus tard dans la cours)

Optimisation de l'erreur de reprojection

Pour toutes les vues i

$$\arg\min_{\mathcal{R}_i, \mathbf{t}_i, \mathcal{K}} \sum_{i,n} \operatorname{dist}(\mathbf{p}_{in}, \mathcal{K}\mathcal{R}_i \begin{bmatrix} 1 & 0 \\ 0 & 1 & \mathbf{t}_i \\ 0 & 0 \end{bmatrix} \mathbf{P}_n)^2$$

- ullet \mathbf{P}_n : les points dans le plan de calibration
- Plus difficile que pour les homographies
 - ullet Contraintes sur ${\cal R}$

Problème de la rotation

Deuxième solution : Optimisation itérative (recommendée)

- À chaque étape de l'algorithme d'opimisation (e.g. Levenberg-Marquardt)
- Rotation par rapport à l'étape précédente est semblable
- Simplification de la fonction à chaque itération.
- Nous avons :

$$\mathcal{R}^{n+1} = \mathcal{R}'\mathcal{R}^n$$
, ou $\mathcal{R}' = \mathcal{R}_x(\theta)\mathcal{R}_y(\phi)\mathcal{R}_z(\rho)$

- θ, ϕ, ρ sont **petits**
- ullet Approximation de \mathcal{R}' :

$$\cos x = 1
\sin x = x$$

$$\mathcal{R}' \approx \begin{bmatrix} 1 & \rho & -\phi \\ \theta \phi - \rho & \theta \rho \phi + 1 & \theta \\ \theta \rho + \phi & \rho \phi - \theta & 1 \end{bmatrix}$$

Problème de la rotation

Première solution : Paramétrisation

- Euler
- Rodrigues
- Fonctions compliquées
- Relativement difficile à optimiser
- lent

Mais ça fonctionne

Problème de la rotation

Approximer encore plus :

$$\theta \phi \approx 0$$

$$\theta \rho \approx 0$$

$$\phi \rho \approx 0$$

$$\mathcal{R}' \approx \begin{bmatrix} 1 & \rho & -\phi \\ -\rho & 1 & \theta \\ \phi & -\theta & 1 \end{bmatrix}$$

- matrice \mathcal{R}^n est fixe,
- à la fin de l'itération on met à jour :

 $\mathcal{R}^{n+1} = \mathcal{R}'\mathcal{R}^n$ avec la formule de rotation originale (avec les \cos et \sin).

Problème de la rotation

Exercice (plutôt technique)

Chercher un façon d'implémenter cela en Mathematica
 Faire une version itérative de FindMinimum

En faisant des appels a FindMinimum

Comprendre pourquoi, dans Mathematica, cela n'est pas très efficace

Ceci est assez difficile si vous debutez avec Mathematica

Sommaire

- Introduction
- 2 Calibration avec objet 3D
- Calibration planaire
 - Formulation linéaire
 - Optimisation non-linéaire
- 4 Calibration par Rotation pure
- Geométrie épipolaire
 - Matrice fondamentale
 - Matrice Essentielle
 - Retrouver les caméras

Méthode par rotation pure

Définition

Caméra qui tourne parfaitement autour de son centre optique $(\mathbf{t}=\mathbf{0})$

- Aucun effet de profondeur
- Images de caméra reliée par des homographies

Deux caméras avec

- $\mathcal{H}_1 = \mathcal{K}$ (sans rotation, ni translation)
- $\mathcal{H}_2 = \mathcal{K}\mathcal{R}$

Relier ensemble en faisant avec $Image_1 \rightarrow Monde \rightarrow Image_2$:

$$\mathcal{H}_{12} = \mathcal{K}\mathcal{R}\mathcal{K}^{-1}$$

Retrouver la rotation

Rotation conjuguée

Une matrice $\mathcal{H}=\mathcal{U}\mathcal{R}\mathcal{U}^{-1}$, où \mathcal{R} est une matrice orthogonale et \mathcal{U} est une transformation projective.

Pour une matrice de rotation \mathcal{R} , nous avons

- ullet valeurs propres de la forme $\lambda(1,e^{i heta},e^{-i heta)}$, (une réelle et deux complexes conjuguées)
- \bullet vecteurs propre correspondants $(\mathbf{a},\mathbf{I},\mathbf{J})$
 - a axe de rotation de la matrice
 - θ l'angle

Pour une rotation conjuguée, ces propriétés sont préservées.

TP2

Un cas simple :

ratio d'image à 1, point principal connu et mis à l'origine

Supposons
$$\mathcal{K} = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
. Dans ce cas $\mathcal{H} = \begin{bmatrix} r_1 & r_2 & fr_3 \\ r_4 & r_5 & fr_6 \\ \frac{r_7}{f} & \frac{r_8}{f} & r_9 \end{bmatrix}$

- ullet : presqu'une matrice de rotation
- ullet solutions analytiques pour f

$$h_1^2 + h_2^2 + h_3^2/f^2 = h_4^2 + h_5^2 + h_6^2/f^2$$

ou bien

$$h_1h_4 + h_2h_5 + \frac{h_3h_6}{f^2} = 0$$

Vous avez tout ce qu'il faut pour faire le TP2!

Sommaire

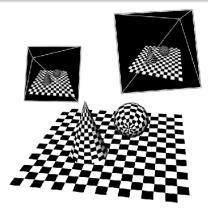
- Introduction
- 2 Calibration avec objet 3D
- Calibration planaire
 - Formulation linéaire
 - Optimisation non-linéaire
- Calibration par Rotation pure
- Geométrie épipolaire
 - Matrice fondamentale
 - Matrice Essentielle
 - Retrouver les caméras

ldée

Géométrie épipolaire

Relation des correspondances images de points 3D entre deux vues.

• points 3D inconnus



Première étape

Problème

Calculer les paramètres d'une caméra en utilisant uniquement des points mis en correspondance entre deux images d'une même scène, prises sous des points de vue différents.

 \rightarrow Exprime la relation entre les paramètre externes des deux caméras, pas entre les caméras et la scène.

2 cas : Paramètres internes

- inconnus (\rightarrow matrice **Fondamentale** \mathcal{F})
- ullet connus (o matrice **Essentielle** \mathcal{E})

Entre deux vues :

- Établir des correspondances entre les images
- Deux solutions :
 - "Tracking" de points saillants au long d'une séquence
 - Mise en correspondances automatique des points descripteurs SIFT ou autre voir aussi

http://www.robots.ox.ac.uk/~vgg/research/affine/index.ht

Aperçu

Matrice fondamentale

$$\mathbf{p'}^\mathsf{T} \mathcal{F}_{3 \times 3} \mathbf{p} = 0$$

 \mathbf{p}' et \mathbf{p} sont des points images

Matrice essentielle

$$\hat{\mathbf{p}}'^{\top} \mathcal{E}_{3 \times 3} \hat{\mathbf{p}} = 0$$

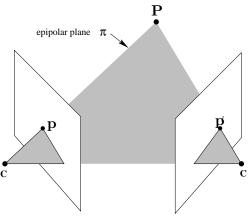
 $\hat{\mathbf{p}}'$ et $\hat{\mathbf{p}}$ sont des points caméras :

$$\mathbf{p}=\mathcal{K}\hat{\mathbf{p}}$$

Sommaire

- Introduction
- 2 Calibration avec objet 3D
- Calibration planaire
 - Formulation linéaire
 - Optimisation non-linéaire
- 4 Calibration par Rotation pure
- Geométrie épipolaire
 - Matrice fondamentale
 - Matrice Essentielle
 - Retrouver les caméras

Dérivation



- Deux caméras : \mathcal{M} (centre en \mathbf{C}) et \mathcal{M}' , (centre en \mathbf{C}')
- Un point 3D : P inconnu
- points image :
 - $\mathbf{p} \propto \mathcal{M}\mathbf{P}$
 - $\mathbf{p}' \propto \mathcal{M}' \mathbf{P}$

Dérivation

Pour la première caméra, déprojection de p

$$\mathbf{P}(\lambda) = \mathcal{M}^{\dagger} \mathbf{p} + \lambda \mathbf{C}$$

Deux points sur cette ligne

- $\bullet \mathcal{M}^{\dagger}\mathbf{p}$
- C $(\lambda = \infty)$

On projette dans l'image 2 et on joint les points

$$\mathbf{l}' = (\mathcal{M}'\mathbf{C}) \times (\mathcal{M}'\mathcal{M}^{\dagger}\mathbf{p})$$

Dérivation

Épipole

Projection du centre de la caméra dans la deuxième

$$\mathbf{e}' \propto \mathcal{M}' \mathbf{C}$$

$$\mathbf{l'} = \mathbf{e'} \times (\mathcal{M'M}^\dagger \mathbf{p}) = [\mathbf{e'}]_{\times} \mathcal{M'M}^\dagger \mathbf{p}$$

Comme p' est quelque part sur l'

$$\mathbf{p'}^{\mathsf{T}}\mathbf{l'} = \mathbf{p'}^{\mathsf{T}}\underbrace{[\mathbf{e'}]_{\times}\mathcal{M'}\mathcal{M}^{\dagger}}_{\mathcal{T}}\mathbf{p} = 0$$

Matrice Fondamentale

$$\mathcal{F} = [\mathbf{e}']_\times \mathcal{M}' \mathcal{M}^\dagger$$

Propriétés

- 3 × 3
- Rang 2, car $[e']_{\times}$ est rang 2
- 7 degrés de libertés (à un facteur d'échelle + rang 2)
- donc $det(\mathcal{F}) = 0$

Points:

- ullet vues $1 \leftrightarrow 2$ ${\mathbf{p'}}^{\mathsf{T}} \mathcal{F} \mathbf{p} = 0$
- vues $2 \leftrightarrow 1$ $\mathbf{p}^\mathsf{T} \mathcal{F}^\mathsf{T} \mathbf{p}' = 0$

Lignes épipolaires

- vues $1 \rightarrow 2$ $\mathbf{l'} = \mathcal{F}\mathbf{p}$
- vues $2 \to 1$ $\mathbf{l} = \mathcal{F}^\mathsf{T} \mathbf{p}'$

Exemple

Deux caméras

- $\mathcal{M} = \mathcal{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix}$
- ullet $\mathcal{M} = \mathcal{K}' \begin{bmatrix} \mathcal{R} & \mathbf{t} \end{bmatrix}$

d'où

- ullet $\mathcal{M}^{\dagger} = egin{bmatrix} \mathcal{K}^{-1} \\ \mathbf{0}^{\mathsf{T}} \end{bmatrix}$
- $\bullet \ \mathbf{C} = \begin{pmatrix} \mathbf{0}^\mathsf{T} & 1 \end{pmatrix}^\mathsf{T}$

$$\begin{split} \mathcal{F} &= & [\mathcal{M}'\mathbf{C}]_{\times}\mathcal{M}'\mathcal{M}^{\dagger} \\ &= & [\mathbf{t}]_{\times}\mathcal{K}'\mathcal{R}\mathcal{K}^{-1} \\ &= & {\mathcal{K}'}^{-\top}[\mathbf{t}]_{\times}\mathcal{R}\mathcal{K}^{-1} \end{split}$$

Estimation

Algorithme des 8 points

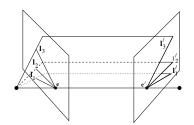
- Algorithme simple et populaire.
- Formulation linéaire
- Contrainte de rang forcée indirectement

Soit N points (avec $N\geq 8)$ mis en correspondance On a l'équation

$$\mathbf{p}^{\mathsf{T}} \begin{bmatrix} f_1 & f_2 & f_3 \\ f_4 & f_5 & f_6 \\ f_7 & f_8 & f_9 \end{bmatrix} \mathbf{q} = 0$$

ullet Une correspondance o une contrainte

Épipoles



Épipole

Intersection de toutes les lignes épipolaires

$$\mathbf{l}_1' = \mathcal{F}\mathbf{p}_1 \qquad \mathbf{l}_2' = \mathcal{F}\mathbf{p}_2$$

et

$$\mathbf{e'}^\mathsf{T} \mathbf{l}'_1 = \mathbf{e'}^\mathsf{T} \mathbf{l}'_2 = 0 \Rightarrow \mathbf{e'}^\mathsf{T} \mathcal{F} = 0$$

- ullet e' est le noyau **gauche** de ${\mathcal F}$
- ullet e est le noyau **droit** de ${\mathcal F}$

Estimation

$$\mathbf{A} \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_9 \end{pmatrix} = 0$$

avec

$$\mathbf{A} = \begin{bmatrix} p_1q_1 & p_1q_2 & p_1q_3 & p_2q_1 & p_2q_2 & p_2q_3 & p_3q_1 & p_3q_2 & p_3q_3 \\ \vdots & \vdots \end{bmatrix}$$

Système linéaire homogène... \rightarrow SVD.

Il faut absolument NORMALISER les points

Estimation

Forcer la contrainte de rang 2 :

Nous avons \mathcal{F} :

- trouvée avec l'algorithme des 8 points
- Rang 3

On cherche \mathcal{F}' :

- Rang 2
- \bullet minimise $\|\mathcal{F} \mathcal{F}'\|$

$$\mathcal{F} = \mathcal{U} \operatorname{diag}(\sigma_1, \sigma_2, \sigma_3) \mathcal{V}^\mathsf{T}$$

$$\mathcal{F}' = \mathcal{U} \operatorname{diag}(\sigma_1, \sigma_2, 0) \mathcal{V}^\mathsf{T}$$

Effectuer cela avant la dénormalisation de \mathcal{F}'

Estimation

$$\sum_{i} \operatorname{dist}^{2}(\mathbf{p}_{i}, \mathcal{F}\mathbf{p}_{i}') + \operatorname{dist}^{2}(\mathbf{p}_{i}', \mathcal{F}^{\mathsf{T}}\mathbf{p}_{i})$$

Minimiser la distance des points à la ligne épipolaire

- ullet paramétrisation pour ${\mathcal F}$,
- pour forcer les contraintes

ex:

• sur-paramétrisation :

$$\mathcal{F} = [\mathbf{t}]_{\times} \mathcal{M}$$

 dernière colone comme combinaison linéaire des deux premières :

$$\mathcal{F} = \begin{bmatrix} a & b & \alpha a + \beta b \\ c & d & \alpha c + \beta d \\ e & f & \alpha e + \beta f \end{bmatrix}$$

• Singularité si F_1 et F_2 sont linéairement dépendante

Estimation

Formulation linéaire algébrique :

$$\sum_i (\mathbf{p}_i^{\mathsf{T}} \mathcal{F} \mathbf{p}_i')^2$$

Error géométrique optimale :

$$\sum_{i} \operatorname{dist}^{2}(\mathbf{p}_{i}, \mathcal{F}\mathbf{p}_{i}') + \operatorname{dist}^{2}(\mathbf{p}_{i}', \mathcal{F}^{\mathsf{T}}\mathbf{p}_{i})$$

Minimiser la distance des points à la ligne épipolaire

Sommaire

- Introduction
- 2 Calibration avec objet 3D
- Calibration planaire
 - Formulation linéaire
 - Optimisation non-linéaire
- 4 Calibration par Rotation pure
- **6** Geométrie épipolaire
 - Matrice fondamentale
 - Matrice Essentielle
 - Retrouver les caméras

Dérivation

$$\hat{\mathbf{p}}'\mathcal{E}_{3\times 3}\hat{\mathbf{p}} = 0$$

 $\hat{\mathbf{p}}'$ et $\hat{\mathbf{p}}$ sont des points caméras :

$$\mathbf{p} = \mathcal{K}\hat{\mathbf{p}}$$

$$\mathcal{F} = \mathcal{K'}^{-\top} \underbrace{[\mathbf{t}]_{\times} \mathcal{R}}_{\mathcal{E}} \mathcal{K}^{-1}$$

On enlève les matrices de paramètres internes

$$\mathcal{E} = \mathcal{K'}^\mathsf{T} \mathcal{F} \mathcal{K} = [\mathbf{t}]_\times \mathcal{R} = \mathcal{R} [\mathcal{R}^\mathsf{T} \mathbf{t}]_\times$$

Sommaire

- Introduction
- 2 Calibration avec objet 3D
- Calibration planaire
 - Formulation linéaire
 - Optimisation non-linéaire
- 4 Calibration par Rotation pure
- **6** Geométrie épipolaire
 - Matrice fondamentale
 - Matrice Essentielle
 - Retrouver les caméras

Propriétés

- 5 degrés de libertés
 - + 3 pour \mathcal{R}
 - + 3 pour \mathbf{t}
 - 1 pour facteur d'échelle
- 2 valeur singulières égales Famille de décomposition

Paramétrisation SVD de \mathcal{E} :

$$\mathcal{E} = \mathcal{U} \operatorname{diag}(1, 1, 0) \mathcal{V}^{\mathsf{T}}$$

n'est pas unique

$$\mathcal{E} = (\mathcal{U} \operatorname{diag}(\mathcal{R}_{2\times 2}, 1)) \operatorname{diag}(1, 1, 0) \operatorname{diag}(\mathcal{R}_{2\times 2}^{\mathsf{T}}, 1)) \mathcal{V}^{\mathsf{T}} \quad \forall \ \mathcal{R}$$

donc

- +3 pour \mathcal{U}
- ullet +3 pour ${\cal V}$
- ullet -1 pour ${\cal R}$

$\grave{\mathsf{A}}$ partir \mathcal{F}

On ne peut retrouver que des caméras perspective (non-euclidienne)

On peut choisir

$$\begin{array}{rcl} \mathcal{M} & = & \begin{bmatrix} I & \mathbf{0} \end{bmatrix} \\ \mathcal{M}' & = & \begin{bmatrix} [\mathbf{e}']_{\times} \mathcal{F} & \mathbf{e}' \end{bmatrix} \end{array}$$

 $(\mathcal{M}' \text{ est rang 2, qu'est-ce que ça implique?})$ Mais de façon générale :

$$\mathcal{M} = \begin{bmatrix} I & \mathbf{0} \end{bmatrix}$$

$$\mathcal{M}' = \begin{bmatrix} [\mathbf{e}']_{\times} \mathcal{F} + \mathbf{e}' \mathbf{v}^{\mathsf{T}} & \lambda \mathbf{e}' \end{bmatrix}$$

pour tout ${\bf v}$ et pour λ non-nul

Ambiguité de ${\mathcal F}$

Plus tard dans le cours

 ${\mathcal M}$ et ${\mathcal M}'$ sont connus à une transformation projective ${\mathcal H}_{4\times 4}$

- Passage de projectif à euclidien
- Auto-calibrage

Pose à partir de ${\cal E}$

$$\mathcal{E} = \mathcal{U} \operatorname{diag}(1, 1, 0) \mathcal{V}^\mathsf{T}$$

Première caméra : $\mathcal{M} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix}$

Deuxième caméra :

$$\mathcal{M}' \ = \ \left[\mathcal{U}\mathcal{W}\mathcal{V}^\top| + \mathbf{u}_3\right]$$

$$\mathcal{M}' = \begin{bmatrix} \mathcal{U} \mathcal{W} \mathcal{V}^{\top} | - \mathbf{u}_3 \end{bmatrix}$$

$$\mathcal{M}' = \left[\mathcal{U}\mathcal{W}^{\top}\mathcal{V}^{\top}| + \mathbf{u}_3\right]$$

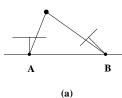
$$\mathcal{M}' = \begin{bmatrix} \mathcal{U} \mathcal{W}^{\top} \mathcal{V}^{\top} | - \mathbf{u}_3 \end{bmatrix}$$

avec
$$\mathcal{W}=egin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 , \mathbf{u}_3 la dernière colonne de \mathcal{U}

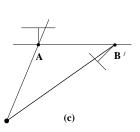
Pose à partir de ${\cal E}$

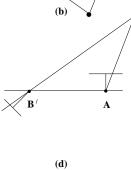
Rappel : \mathcal{K} et \mathcal{K}' sont connus

• 4 solutions possibles :









• 1 seule valide

Pose à partir de ${\mathcal E}$

Il faut choisir \mathcal{M}' :

- points devant les deux caméras
- formule de la profondeur des points doit être positive

FIN

Certaines figures sont la courtoisie de R. Hartley et A. Zisserman Multiple View Geometry in Computer Vision, 1ère Édition,2002

<ロ> <西> <西> < 重> < 重> < 重> < 重 > のQ ()