

Issues

Theoretical Questions

• Identify class of all photo-consistent scenes

Practical Questions

• How do we compute photo-consistent models?

Voxel Coloring Solutions

- 1. C=2 (silhouettes)
 - Volume intersection [Martin 81, Szeliski 93]
- 2. C unconstrained, viewpoint constraints
 - Voxel coloring algorithm [Seitz & Dyer 97]
- 3. General Case
 - Space carving [Kutulakos & Seitz 98]

Properties of Volume-Intersection

Pros

- Easy to implement, fast
- Accelerated via octrees [Szeliski 1993]

Cons

- No concavities
- Reconstruction is not photo-consistent
- Requires identification of silhouettes

Voxel Coloring Solutions

- 1. C=2 (silhouettes)
 - Volume intersection [Martin 81, Szeliski 93]
- 2. C unconstrained, viewpoint constraints
 - Voxel coloring algorithm [Seitz & Dyer 97]
- 3. General Case
 - Space carving [Kutulakos & Seitz 98]

Panoramic Depth Ordering • Cameras oriented in many different directions • Planar depth ordering does not apply

Voxel Coloring Solutions

- 1. C=2 (silhouettes)
 - Volume intersection [Martin 81, Szeliski 93]
- 2. C unconstrained, viewpoint constraints
 - Voxel coloring algorithm [Seitz & Dyer 97]
- 3. General Case
 - Space carving [Kutulakos & Seitz 98]

Sweep plane in each of 6 principle directions Consider cameras on only one side of plane Repeat until convergence

Sweep plane in each of 6 principle directions Consider cameras on only one side of plane Repeat until convergence

Other Approaches

Level-Set Methods [Faugeras & Keriven 1998]

Evolve implicit function by solving PDE's

Transparency and Matting [Szeliski & Golland 1998]

Compute voxels with alpha-channel

Max Flow/Min Cut [Roy & Cox 1998]

Graph theoretic formulation

Mesh-Based Stereo [Fua & Leclerc 95]

Mesh-based but similar consistency formulation

Virtualized Reality [Narayan, Rander, Kanade 1998]

Perform stereo 3 images at a time, merge results

Conclusions

Advantages of Voxels

- Non-parametric
 - > can model arbitrary geometry
 - > can model arbitrary topology
- Good reconstruction algorithms
- Good rendering algorithms (splatting, LDI)

<u>Disadvantages</u>

- Expensive to process hi-res voxel grids
- Large number of parameters
 - > Simple scenes (e.g., planes) require lots of voxels

Bibliography

Volume Intersection

- Martin & Aggarwal, "Volumetric description of objects from multiple views",
 Trans. Pattern Analysis and Machine Intelligence, 5(2), 1991, pp. 150-158.
- Szeliski, "Rapid Octree Construction from Image Sequences", Computer Vision, Graphics, and Image Processing: Image Understanding, 58(1), 1993, pp. 23-32.

Voxel Coloring and Space Carving

- Seitz & Dyer, "Photorealistic Scene Reconstruction by Voxel Coloring", Proc. Computer Vision and Pattern Recognition (CVPR), 1997, pp. 1067-1073.
- Seitz & Kutulakos, "Plenoptic Image Editing", Proc. Int. Conf. on Computer Vision (ICCV), 1998, pp. 17-24.
- Kutulakos & Seitz, "A Theory of Shape by Space Carving", Proc. ICCV, 1998, pp. 307-314.

Bibliography

Related References

- Faugeras & Keriven, "Variational principles, surface evolution, PDE's, level set—methods and the stereo problem", IEEE Trans. on Image Processing, 7(3), 1998, pp. 336-344.
- Szeliski & Golland, "Stereo Matching with Transparency and Matting", Proc. Int. Conf. on Computer Vision (ICCV), 1998, 517-524.
- Roy & Cox, "A Maximum-Flow Formulation of the N-camera Stereo Correspondence Problem", Proc. ICCV, 1998, pp. 492-499.
- Fua & Leclerc, "Object-centered surface reconstruction: Combining multi-image stereo and shading", Int. Journal of Computer Vision, 16, 1995, pp. 35-56.
- Narayanan, Rander, & Kanade, "Constructing Virtual Worlds Using Dense-Stereo", Proc. ICCV, 1998, pp. 3-10.