
Formal Verification of Web Applications
Modeled by Communicating Automata

May Haydar 1,2, Alexandre Petrenko 1, and Houari Sahraoui 2

1 CRIM, Centre de recherche informatique de Montréal
550 Sherbrooke West, Suite 100, Montreal, Quebec, H3A 1B9, Canada

{mhaydar,petrenko}@crim.ca
2 Département d'informatique et de recherche opérationnelle, Université de Montréal

CP 6128 succ. Centre-Ville, Montreal, Quebec, H3C 3J7, Canada
sahraouh@iro.umontreal.ca

Abstract. In this paper, we present an approach for modeling an existing web
application using communicating finite automata model based on the user-
defined properties to be validated. We elaborate a method for automatic
generation of such a model from a recorded browsing session. The obtained
model could then be used to verify properties with a model checker, as well as
for regression testing and documentation. Unlike previous attempts, our
approach is oriented towards complex multi-window/frame applications. We
present an implementation of the approach that uses the model checker Spin
and provide an example.

1 Introduction

The Internet has reshaped the way people deal with information. In particular, web
applications have affected the daily life in many ways, where they are used in
information management/gathering, e-commerce, software development, learning,
education, entertainment, etc. With such pervasive and radical growth of web
applications, correctness is a primary concern, especially that Web Applications (WA)
interact with many components such as scripts (CGI, ASP, JSP, PHP, etc.), browsers,
proxy servers, backend databases, etc. Unlike traditional software, WA have an
extremely short development and evolution life cycle and often have a large number
of untrained users that could experiment with the WA unpredictably. Therefore,
thorough analysis and verification of WA is indispensable to assure the release of high
quality applications. In recent years, software community started to acquire formal
methods as a practical and reliable solution to analyze various applications. In this
paper, we present a formal approach for modeling web applications using a
communicating automata model. We observe the external behavior of an explored part
of a web application using a monitoring tool. The observed behavior is then converted
into communicating automata representing all windows, frames, and framesets of the
application under test. The obtained model could then be used to verify user-defined
properties of the application with a model checker. Our implementation of the

approach uses the model checker Spin. In Section 2, we present an overview of the
main notions of the web. In Section 3, we discuss the related work on formal modeling
and analysis of web applications. Section 4 introduces our approach. In Section 5, we
suggest a method to model a browsing session of a single window application by a
single automaton. Section 6 describes a method to partition a single browsing session
into local sessions and to convert the local sessions into communicating automata. In
Section 7, we present the implementation of the approach using Spin and provide a
case study in Section 8. We conclude in Section 9.

2 Preliminaries

We present the main terminology encountered in studying web applications. Further
information can be found in [1,2,3]. A web application is defined in [3] as “a software
application that is accessible using a web browser or HTTP user agent. It typically
consists of a thin-client tier (the web browser), a presentation tier (web servers), an
application tier (application servers) and a database tier”. We see a web application as
an application providing interactive services by rendering web resources in the form
of web pages (containing text and images, forms and etc.). A page can be static,
residing on the server, or dynamic, resulting from the execution of a script at the
server or the client side. A page is rendered by a browser to the user in windows. A
form is a section of a web page that includes textual content, controls (buttons,
checkboxes, etc.), optional labels, an action and a method. A frame element is an
HTML tag that defines a frame. It includes a source src attribute specifying the URI of
the source (initial) page loaded in the frame and an optional name attribute that
assigns a name to the frame. A frameset element is an HTML tag that groups frame
elements and possibly other frameset elements. The HTML document that describes
the layout of frames is called the Frameset document having a frameset element that
can be nested at any level. A Frameset document can be viewed as a frame tree whose
leaves are frame elements and internal nodes are frameset elements. Detailed
information on forms, frames, and HTTP protocol can be found in [1,3,20,21]. Note
that we distinguish between two classes of WA: applications whose behavior is
independent of its history and does not rely on the client's or the server's state. The
second class represents WA whose behavior is determined by its history and thus
affected by previous information kept at the client/server side (such as cookies). In
this work, we consider the first class of WA where the same HTTP request always has
the same response independently of past information in previous request/response
pairs.

3 Related Work

Formal modeling of web applications is a relatively new research direction. Previous
work on the topic includes modeling approaches that target the verification of such
applications [25,26,27,28], testing [29,30,32,32], design and implementation

[10,11,12,13,14]. In [25,26] an approach is presented where a web site is modeled as
a directed graph. A node in the graph represents a web page and the edges represent
links clicked. If the page contains frames the graph node is then a tree whose tree
nodes are pages loaded in frames and tree edges are labeled by frame names. This
model is used to verify properties of web sites with frames. However, only static pages
are considered in this work, concurrent behavior of multiple windows is not modeled,
and all the links whose targets could create new independent windows are treated as
broken links. Besides, any frameset that could be present in the application is
completely ignored. Also, in the model, a page loaded in an unnamed window (as a
result of the predefined target "_blank" associated with a link) is represented as a
graph node that replaces the existing node as if the page is loaded on top of page
where the link was clicked; this incorrectness is due to the inadequacy of the proposed
model to represent concurrent behavior of multiple windows. In [27,28] the authors
present a model based on Petri nets to model check static hyperdocuments [27] and
framed pages [28]. While Petri nets can express parallel and concurrent behavior, the
authors build the overall state space as input of the model checker, which is a tedious
and erroneous approach especially with large applications with several frames and
windows. [25,26,27,28] do not tackle the modeling and verification of form-based
pages that are dynamically generated by a server program, neither concurrent behavior
of applications with multiple windows. The work in [29,30] focuses on inferring a
UML model of web applications. This model, merely a class diagram, is mainly used
for the static analysis of web applications: HTML code inspection and scanning, data
flow analysis, and semi automatic test case generation. In [31], the above mentioned
modeling technique is extended such that a web application is executed to extract
models for dynamic web pages using server's access logs. These logs present limited
information on the requests since only the request headers are logged. In case dynamic
pages are generated based on POST method requests, the form data submitted is
usually stored in the message body of the request; thus, making those pages requests
undistinguishable and introduce unnecessary non-determinism into the resulting
model. Besides, the approach is inadequate for modeling concurrent behavior of
frames and multiple windows. In [32], a modeling technique for web applications is
presented based on regular expressions. The focus is on modeling the behavior of web
applications, consisting of merely dynamically generated pages, for the purpose of
functional testing. Other approaches for modeling web applications are oriented
towards the design rather than analysis of WA. These include object oriented based
models [10] and statechart based models [11,12,13,14], that are tailored to forward
engineering, logical and hierarchical representation of web applications. Such models
are not available for analyzing existing WA developed without formal models. Each
of the existing related work concentrates on some aspects of web applications leaving
out other aspects that remain untouched, or unfeasible to model using the
corresponding proposed approach. These attempts indicate that formal modeling of
WA is still an open complex problem especially when it comes down to modeling
multiple frames and windows, and properties which have to reflect various concerns
of different stakeholders of WA.
In this paper, we attempt to develop a modeling approach that could produce a finite
automaton model tuned to features of WA that have to be validated, while delegating

the task of property verification to an existing model checker. We elaborate a black-
box (dynamic) approach by executing the web application under test (WAUT) and
analyzing only its external behavior without any access to server programs or
databases. The observations are provided by a monitoring tool, a proxy server [5] or
an off-the-shelf network monitoring tool [18], where HTTP requests and responses are
logged. Our model is a system of communicating automata representing all windows,
frames, and framesets of the application under test. The existence of frames,
framesets, and windows reflects concurrent behavior of the WAUT, where these
objects affect each other behaviors via links and forms with specified targets.
Therefore, a suitable and natural modeling technique is communicating automata,
where the burden of building a global state graph of the model is left to a model
checker. As opposed to the existing approaches, we model not only static pages, but
also dynamic pages with form filling (with GET and POST methods), frames and
frameset behavior, multiple windows, and their concurrent behavior. Generally
speaking, one could build a special web-oriented model checker, as in [26], to verify
specific properties. This task requires the building of all the necessary algorithms from
scratch. We opt to the use of an existing model checker, Spin, used in several
industrial applications [22], such that we only have to describe our model in the model
checker's input language.

4 Observing Web Application

To define a formal model of a web application in case when the code of the
application is available, one may apply abstraction techniques developed in software
reverse engineering following a static (white-box based) approach [7,8,9]. To build a
formal model according to a dynamic (black-box based) approach, one executes a
given application and uses only the observations of an external behavior of the
application [15,16,17,31]. In case of web applications that rely on the HTTP protocol
considered in this work, an “external” behavior consists of requests and responses. In
our framework, we follow the dynamic approach and assume that the request/response
traffic between a client side and a server in the WA under test is observable. One
possible way of achieving this is to use a proxy server [5]. A proxy server monitors
the traffic between the client and the server and records it in proxy logs. The proxy
logs contain the requests for the pages and the responses to these requests.
With this approach, a behavior of a WAUT, we call it a browsing session, is
interpreted as a possible sequence of web pages that have the same domain name
intermittent with the corresponding requests. Note that a behavior of a WA is
independent of the navigation aids provided by the browser (back button, forward
button, etc.). In other words, we build a model that is independent of a browser. We
assume that a next request is not submitted before the browser delivers a response to a
previous request. If the user clicks a link, and that leads to a page with k frames then
k+1 request/response pairs are observed. The first request/response pair corresponds
to the link clicked and thus to the frameset document; and k requests, initiated by the
browser, along with their responses, correspond to the URIs defined in the frameset

document. Exhaustive exploration could hardly be achieved for non-trivial web
applications with a database tier. This is why we have to build a model just for a part
of the WAUT, which is explored in a browsing session. To generate sequences of
requests, instead of the user, one may consider a crawler that automatically explores
links in the WAUT [6], though in case of pages with forms to fill, the user actions
would still be required. In the next section, we explain our approach for building a
finite automaton that models a browsing session.

5 Modeling Single Window Web Applications

We first present our modeling approach for web applications whose web pages do not
have frames and assume that the WAUT is browsed in a single browser window, in
other words, that all the links have undefined target attributes. Later we provide
extensions to more complex applications.
The purpose of building a formal model for a WAUT is to validate whether the
application exhibits certain predefined properties. We assume that the properties to be
specified in a temporal logic of a chosen model checker are composed of atomic
propositions, and for each visited page the value of each proposition is uniquely
determined by the content of the page, be it dynamic or static. These propositions
refer to the page attributes that have to be checked (and reflected in a model). These
attributes can be of various types, for instance: a numerical type to count the
occurrence of a certain entity, a string type to denote the domain name of a page, or
features of a page link, such as a hypertext associated with the link. However, there
are cases when an attribute representing a certain feature of the visited page cannot be
defined for another page. For instance, a Boolean attribute that indicates whether the
menu is framed in a page that does not contain menus, or an attribute representing the
percentage of the number of occurrences of a certain string with respect to the number
of all the strings in a page that contains no text. In such cases, we assign to these
attributes the value “not available”. The atomic propositions that refer to such
attributes are then false in the corresponding pages. In the following, we describe how
to determine automata that model an observed behavior of a WAUT based on the
information available in the corresponding browsing session. The session includes
requests initiated by the user, namely links clicked and filled form submissions, as
well as requests initiated by the browser, namely requests for URIs present in an
HTTP-EQUIV tag [3,4]; for simplicity, we call those URIs implicit links.

5.1 Definitions

Each request is represented by a string l. In case the request method is Get or Head, l
is the URI sent in the request. If the request is for a filled form then we represent it in
the form a?d, where a is the form action and d is the form data set that corresponds to
the data fields filled in the form; in case of the Get method, data set is a part of the
URI sent in the request, while in case of Post method, data set is included in the
message body as a data stream.

Each response corresponding to a visited page is abstracted by a tuple <u, c, I, L, V>,
where u denotes the request l identifying the page; c ∈ C represents the status code of
the page, C is the set of valid status codes defined as integers ranging between 100
and 599 [20]; I is the set of URIs specified by the action attribute of each form in the
page; L is the set of URIs associated with links, including the implicit links if any, in
the page (L does not include links that cause the scrolling to sections in the same
page); and V is a vector <v1, …, vk>, where vi is the valuation of the page attribute i
and k is the number of all the page attributes over which the atomic propositions are
defined. Pages with status code 3xx have their URL u different from the request l that
triggered the response due to a redirection to another location of the pages. Pages with
status code 4xx or 5xx may or may not have links leading back to the application.
A browsing session is a Request/Response Sequence RRS = <u0, c0, I0, L0, V0> l1 <u1,
c1, I1, L1, V1> … ln <un, cn, In, Ln, Vn>, where <u0, c0, I0, L0, V0> is the default page
displayed in the browser window from which the first request was triggered; this page
is not observed in the browsing session, therefore, u0 and c0 are null, and I0, L0, and V0

are empty sets; li is a request that is followed by the response page <ui, ci, Ii, Li, Vi>;
for all i > 1, li ∈ Li-1 if li is a request corresponding to a clicked or implicit link, or if li

is of the form ai?di, then ai ∈ Ii-1; and for all i > 0 li = ui if ci ≠ 3xx; (otherwise, li ≠ ui);
and n is the total number of requests in the browsing session, starting from the first
request l1 for the initial (home) page of the application. Page attributes or atomic
propositions, along with u and c, are considered as state attributes and used for model
checking in a way similar to Kripke structure [19].
We say that a link of the application under test is explored in a browsing session if it's
URI is one of the requests in the browsing session; otherwise, we say that the link is
unexplored. Similarly, we say that a form is explored if its action a appears in one of
the requests a?d in the browsing session; otherwise we say the form is unexplored.
Two pages <ui, ci, Ii, Li, Vi> and <uj, cj, Ij, Lj, Vj> have a repeated (common) link if Li

∩ Lj ≠ ∅; similarly, a repeated form exists if Ii ∩ Ij ≠ ∅.

5.2 Converting a Browsing Session into an Automaton

In this section, we provide a high-level description of our algorithm to convert RRS
into an automaton, called a session automaton.
Algorithm 1. Given a browsing session RRS = <u0, c0, I0, L0, V0> l1 <u1, c1, I1, L1, V1>
… ln <un, cn, In, Ln, Vn>, where n is the total number of observed responses:
1. The tuple <u0, c0, I0, L0, V0> is mapped into a designated state called inactive,

denoted s0, where u0 and c0 are null, and I0, L0, and V0 are empty sets.
2. For all i > 0, a tuple <ui, ci, Ii, Li, Vi> corresponds to a state of the session

automaton. Tuples <ui, ci, Ii, Li, Vi> and <uj, cj, Ij, Lj, Vj>, where j > i, are mapped
into the same state if ci = cj, Ii = Ij, Li = Lj, and Vi = Vj. Let S denote the set of thus
defined states.

3. The set of events of the automaton is defined by the union of the sets Γ , ∆, Req.
Γ = {l | l ∈ Li, 1 ≤ i ≤ n} is the set of all the URIs associated with links in the
observed responses, ∆ ⊆ {a | a ∈ Ii, 1 ≤ i ≤ n} is the set of all form actions that
correspond to the unexplored forms in the observed responses, Req is the set of

all the observed requests. Thus, Γ ∪ ∆ ∪ Req is the alphabet of the automaton,
denoted Σ.

4. Each triple (<ui, ci, Ii, Li, Vi>, li+1, <ui+1, ci+1, Ii+1, Li+1, Vi+1>) defines a transition
(si, li, si+1), where si, si+1 correspond to the pages <ui, ci, Ii, Li, Vi>, <ui+1, ci+1, Ii+1,
Li+1, Vi+1> respectively, and li+1 ∈ Li if li+1 is a request corresponding to a clicked
or implicit link, or if li+1 is of the form ai+1?di+1, then ai+1 ∈ Ii; and li+1 = ui+1 if ci+1

≠ 3xx; (otherwise, li+1 ≠ ui+1);
5. Each request corresponding to an explored repeated form or link defines a

transition from the state where it occurs to the state that corresponds to the
response of the submitted filled form or clicked link.

6. Each request corresponding to an unexplored link l ∈ Li or unexplored form a ∈
Ii defines a transition from the state representing the page <ui, ci, Ii, Li, Vi> to a
designated state, called a trap state that represents the unexplored part of the
WAUT and whose attributes are undefined. Let T denote the set of thus defined
transitions.

7. The session automaton is ARRS = < S ∪ {trap}, s0, Σ, T>.
The automaton that models the whole WAUT could be built from an exhaustive
browsing session obtained by exploring each link, and filling in every possible way
and submitting each form, on every page of the application (which is usually
unfeasible).

Fig.1. Example of a Session Automaton

The following is a fragment of a browsing session representing five web pages, and
Figure 1 shows the automaton that represents the browsing session, where state s5 is a
deadlock state representing an error page whose status code is 404. URL1, URL2, and
URL3 (named as such for simplicity) represent few unexplored links that label
transitions to the trap state.

 GET http://www.crim.ca HTTP/1.0
Host: www.crim.ca
Accept: application/vnd.ms-excel, application/msword, application/vnd.ms-powerpoint, image/gif,
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 4.0)
Accept-Language: en-us
------------------------END OF HTTP REQUEST---------------------------------
HTTP/1.1 200 OK
Content-Type: text/html

s0
s1

www.crim.ca

s2

www.crim.ca/rd/

s3

www.crim.ca/
rd/analyse/

w
w

w
.c

ri
m

.c
a

www.crim.ca

www.crim.ca

s4

www.crim.ca/
members/

traps5

w
w

w
. c rim

. ca/r d/

www.crim.ca/
members/asp/

URL1 URL2 URL3

Content-Length: 18316
Server: Apache/1.3.9 (Unix) mod_perl/1.21 mod_ssl/2.4.9 OpenSSL/0.9.4
Date: Wed, 10 Apr 2003 19:40:02 GMT
<HTML>
<HEAD> <LINK rel="stylesheet" href="/styles.css">
<TITLE> CRIM</TITLE></HEAD> …
… recherche-développement …
</HTML>
------------------------END OF HTTP RESPONSE----------------------------------

6 Web Applications with Frames and Multiple Windows

In the previous section, we presented an automata model for single window web
applications. However, web applications often use frames and multiple windows.
These options allow rendering several pages at the same time, thus introducing
concurrency in the behaviors of such web applications. Therefore, using a single
automaton is insufficient to adequately model a concurrent behavior of web
applications with several frames/windows. In this section, we extend our approach,
using communicating finite automata, to model such web applications, which we call
multi-display WA for simplicity. Before we introduce our extended approach, we
define the elements of a browsing session of a multi-display WA.

6.1 Definitions

A response in a multi-display WA is defined as a tuple <u, c, I, F, L, V>, where u, c,
and V are the same as in Section 5. I and L are extended to include for each action and
link the corresponding target. Therefore, an element of L is a tuple <l, t>, where l is a
URI associated with a link and t is the corresponding target or the empty string ε when
no target is defined. Similarly, an element of I becomes a tuple <a, t>, where a
denotes a form action and t its corresponding target. F is a frame tree defined in the
page and whose leaves are frames and internal nodes are framesets. A frame is a tuple
of the form <f, b> where f is the URI defined by the value of the src attribute of the
HTML frame element and b is the frame name. We denote by leaves(F) a function
that returns the set of leaf nodes (frames) of the tree F.
We define a browsing session of a multi-display WA as a sequence of requests (along
with their corresponding targets) and responses. For simplicity, we keep using the
term Request/Response Sequence (RRS) to represent a browsing session.
A RRS = <u0, c0, I0, F0, L0, V0> <r1, l1, t1> <u1, c1, I1, F1, L1, V1> … <rn, ln, tn> <un, cn,
In, Fn, Ln, Vn>, where n is the total number of requests in the browsing session starting
from <r1, l1, t1>. <ri, li, ti> represents a request such that ri is a string denoting the
request header field, “referer”, which is the URI of the page where the request was
triggered; and <li, ti> is such that
• if the request is for a filled form then li is of the form ai?di, where ai forms with

the target ti a tuple <ai, ti> ∈ Ij of the page <uj, cj, Ij, Fj, Lj, Vj>, where uj = ri,

• if the request is for a frame source page then <li, ti> ∈ leaves(Fj) of the page <uj,
cj, Ij, Fj, Lj, Vj>, where uj = ri, or

• otherwise (if the request is for a link, clicked or implicit), then <li, ti> ∈ Lj of the
page <uj, cj, Ij, Fj, Lj, Vj>, where uj = ri,

Notice that, similar to the case of a single window WA, <u0, c0, I0, F0, L0, V0>
corresponds to the initial default page displayed in the browser window such that u0,
c0 are null, and I0, F0, L0, V0 are empty sets; <r1, l1, t1> includes the URI l1 of the
starting page, and r1 and t1 are the empty string ε. In addition, li = ui if ci ≠ 3xx;
otherwise, li ≠ ui and <ui, ci, Ii, Fi, Li, Vi> immediately follows ri in the RRS.

6.2 Basic Assumptions

Before we elaborate the model of a multi-display WA, we state basic assumptions
about the observed browsing session of the application under test. As in Section 4, we
assume that a request is not submitted before the browser delivers the responses to the
requests for all frames source pages or for pages displayed in different windows. Also,
the following assumptions are essential due to a limitation to directly determine from a
request the window/frame from which it was triggered. An observed request/response
pair does not include the name of the window/frame targeted by the corresponding
URI. To determine the window/frame, we track the “referer” header field in the
request which is the URI of the page, where the request is triggered. Thus the
following assumptions must hold in the observed browsing session:
1. At each moment, different pages are displayed in frames/windows. If two pages

have links to the same page, then only one request corresponding to one of the
links is present in the session.

2. If a link is repeated in the same page with different targets and a request for that
link is in the session, then this request corresponds to the first instance of that link
appearing on the page.

These assumptions are not difficult to satisfy when the browsing session is created by
the tester.

6.3 Communicating Finite Automata Model of Multi-Display Web Applications

Here we describe how an observed browsing session can be modeled by a system of
communicating automata. Given the browsing session, we first determine local
browsing sessions that correspond to the behaviors of the entities in the browsed part
of the WAUT, such as windows, frames, and framesets, each of which is modeled by
an automaton. Then we explain how to convert the local browsing sessions into
communicating automata and present the corresponding algorithm which is an
extension of Algorithm 1 presented in Section 5.2.
Finite state automata communicate synchronously by rendezvous, executing common
actions. Such communication is formalized by the parallel composition operator on
automata. Formally, two communicating automata A1 = < S1, s01, Σ1, T1 > and A2 = <
S2, s02, Σ2, T2 > are composed using the || operator. The resulting automaton, denoted

A1 || A2, is a tuple < S, s0, Σ, T >, where s0 = (s01, s02) and s0 ∈ S; Σ = Σ1 ∪ Σ2; and S ⊆
S1 × S2 and T are the smallest sets obtained by applying the following rules:
• If (s1, e, s'1) ∈ T1, e ∉ Σ2, and (s1, s2) ∈ S, then (s'1, s2) ∈ S, and ((s1, s2), e, (s'1,

s2)) ∈ T.
• If (s2, e, s'2) ∈ T2, e ∉ Σ1, and (s1, s2) ∈ S, then (s1, s'2) ∈ S, and ((s1, s2), e, (s1,

s'2)) ∈ T.
• If (s1, e, s'1) ∈ T1, (s2, e, s'2) ∈ T2, and (s1, s2) ∈ S, then (s'1, s'2) ∈ S, and ((s1, s2),

e, (s'1, s'2)) ∈ T.
The composition is associative and can be applied to finitely many automata.

6.3.1 Local Browsing Sessions
A browsing session represents the behavior of k communicating entities, namely,
browser’s main and independent windows, frames and framesets, denoted o1, o2, …,
ok, where o1 corresponds to the browser’s main window. The entities corresponding to
independent windows are determined by analyzing the targets present in the requests;
if the target in a request is not an existing frame name, it corresponds to an
independent window; for each request whose target is “_blank”, a new entity is
defined corresponding to a new unnamed independent window. The entities that
correspond to frames are determined by the frame names indicated in the frame trees
of the response pages; where each frame entity is uniquely identified by <f, b> and the
URI u of the frameset document where the corresponding frame tree is defined. The
entities corresponding to framesets are identified by analyzing the internal nodes of
the frame trees. The number of communicating entities k is then defined as follows.
Given a browsing session, <u0, c0, I0, F0, L0, V0> <r1, l1, t1> <u1, c1, I1, F1, L1, V1> …
<rn, ln, tn> <un, cn, In, Fn, Ln, Vn>, let {t1, …, tq}, such that q ≤ n, be the set of all the
distinct targets observed in the requests including window names, frame names, and
predefined targets ("_parent", "_top", "_self", "_blank"). Let {b1, …, bp} be the set of
all the frame names defined in all the responses, and m the number of all the framesets
defined as well in all the responses. Then, k = 1 + |{t1, …, tq} ∪ {b1, …, bp} – {ti | ti

= "_top" or ti = "_parent" or ti = "_self" or ti = "_blank" or ti = ε}| + |{<rj, lj, tj> | ti =
"_blank"}| + m. We further analyze the hierarchical relationship among the different
entities of the application. We consider each window entity as a window tree whose
root node represents the window itself. The first frame tree occurring in (frameset
document loaded into) the window is appended to the root of the window tree. If a
request's target is a frame name, such that the response is another frameset document
(having a frame tree), in the window tree, the response's frame tree is appended to the
node of the targeted frame. Similarly, if the target is a frame name, frameset, or the
window itself, any subsequent children are removed from the node of the targeted
entity and replaced by the response's frame tree if any.
The local browsing sessions (RRS1, …, RRSk) corresponding to the observed behavior
of k entities of the application are determined as follows. A request/response pair <rj,
lj, tj> <uj, cj, Ij, Fj, Lj, Vj> belongs to a RRSi if the target tj refers to the entity oi. Also,
the RRS of each frame/frameset that could be a child of oi contains the same request
<rj, lj, tj> whose response is the inactive page. At the same time, the RRS of the
(targeting) entity from which <rj, lj, tj> is triggered must contain <rj, lj, tj> itself with

its response being the page where the request is initiated. This is explained by the fact
that the targeting entity does not change its displayed page. However, if the target tj is
"_parent", "_top", or a parent entity name, then the response in the RRS of the
targeting entity is the inactive page. Similarly, the RRS of each frame/frameset that is a
child of the targeted entity contains the same request <rj, lj, tj> whose response is the
inactive page. This means that those frames and framesets are deactivated and erased
from the window. If the target attribute is absent or "_self" then <rj, lj, tj> <uj, cj, Ij, Fj,
Lj, Vj> belongs to a RRSi provided that the request is triggered from the last page
displayed in the corresponding entity oi. Following is a high-level description of the
algorithm that determines the local sessions.
Algorithm 2. Sessions RRSi, i = 1, …, k, are formed using the following algorithm:
1. RRS1 := <u0, c0, I0, F0, L0, V0> corresponds to the inactive page of the RRS of the

main window similar to the inactive page defined in Section 4. For i > 1, RRSi :=
<uΘ, cΘ, IΘ, FΘ, LΘ, VΘ> , is defined similarly to <u0, c0, I0, F0, L0, V0> which
corresponds to the inactive page from which the local session starts.

2. The first request response pair <r1, l1, t1> <u1, c1, I1, F1, L1, V1> is appended to
the session of the browser’s main window, i.e., RRS1 := RRS1 <r1, l1, t1> <u1, c1,
I1, F1, L1, V1>.

3. For each request/response pair <rj, lj, tj> <uj, cj, Ij, Fj, Lj, Vj>, j > 1,
a. if the target tj refers to entity oi, <rj, lj, tj> <uj, cj, Ij, Fj, Lj, Vj> is

appended to RRSi i.e., RRSi := RRSi <rj, lj, tj> <uj, cj, Ij, Fj, Lj, Vj>. At the
same time, <rj, lj, tj> <uΘ, cΘ, IΘ, FΘ, LΘ, VΘ> is appended to the sessions
of all the frames and framesets (if any) that are children of oi.

b. If the “referer” rj is equal to the URI of the last response in RRSi then,
 i. If the target tj corresponds to a parent entity, the response

corresponding to <rj, lj, tj> in RRSi is the inactive page <uΘ, cΘ,
IΘ, FΘ, LΘ, VΘ>. Thus, RRSi := RRSi <rj, lj, tj> <uΘ, cΘ, IΘ, FΘ,
LΘ, VΘ>. At the same time, <rj, lj, tj> <uΘ, cΘ, IΘ, FΘ, LΘ, VΘ> is
also appended to the sessions of all the frames and framesets
that are children of the targeted parent; otherwise,

 ii. the response to <rj, lj, tj> is a tuple <u, c, I, F, L, V> such that rj

= u. Thus, RRSi := RRSi <rj, lj, tj> <u, c, I, F, L, V>.
c. If the target tj = "_self" or tj = ε and rj is the URI of the last page

displayed in RRSi, then RRSi := RRSi <rj, lj, tj> <uj, cj, Ij, Fj, Lj, Vj>.

6.3.2 Communicating Finite Automata Model
To build an automata model of a browsing session of a multi-display WA, we convert
each local browsing session RRSi = <uiΘ, ciΘ, IiΘ, FiΘ, LiΘ, ViΘ> <ri1, li1, ti1> <ui1, ci1,
Ii1, Fi1, Li1, Vi1> … <rim, lim, tim> <uim, cim, Iim, Fim, Lim, Vim> into an automaton Ai,
called the local session automaton, by extending Algorithm 1 of Section 5.2.
The set of events Σi of the automaton Ai is defined by the union of the following four
sets Γi , ∆i, Reqi, and Φi. Similar to what is previously defined, Γi ={<li, ti> | <li, ti> ∈
Liw, 1 ≤ w ≤ m} is the set of all the URIs associated with links in the observed
responses, ∆i ⊆ {<ai, ti> | <ai, ti> ∈ Iiw, 1 ≤ w ≤ m} is the set of all form actions that
correspond to the unexplored forms in the observed responses, and Reqi is the set of

all the observed requests. Φi ={<fi, bi> | <fi, bi> ∈ leaves(Fiw), 1 ≤ w ≤ m} is the set of
URIs corresponding to the source pages loaded in the frames.
Algorithm 3. Given an entity oi and its local browsing session RRSi, we extend
Algorithm 1 to convert RRSi into a local session automaton Ai as follows.
1. Algorithm 1 is used to convert RRSi into Ai.
2. The set of events Σi is extended to include the set Φi of URIs corresponding to the

source pages loaded in the frames; thus, Σi := Σi ∪ Φi.
3. Each triple (<uij, cij, Iij, Fij, Lij, Vij> <rij, lij, tij> <uiΘ, ciΘ, IiΘ, FiΘ, LiΘ, ViΘ>) defines

a transition (sij, <rij, lij, tij>, si0), where sij, si0 correspond to the pages <uij, cij, Iij,
Fij, Lij, Vij>, <uiΘ, ciΘ, IiΘ, FiΘ, LiΘ, ViΘ>, respectively;

4. Each triple (<uij, cij, Iij, Fij, Lij, Vij> <rij, lij, tij> <uij+1, cij+1, Iij+1, Fij+1, Lij+1, Vij+1>)
such that <uij, cij, Iij, Fij, Lij, Vij> = <uij+1, cij+1, Iij+1, Fij+1, Lij+1, Vij+1>, defines a
transition (sij, <rij, lij, tij>, sij), where sij correspond to <uij, cij, Iij, Fij, Lij, Vij>;

5. Every event corresponding to a request targeting oi itself labels a transition from
every state of the automaton to the state of the corresponding response page.

The last three steps of the algorithm define the transitions labeled by the events shared
by different automata. Step 3 of the algorithm defines transitions labeled by a request
initiated by oi or one of its siblings/children, and whose target is a parent entity. Then,
oi is deactivated and Ai is in the inactive state si0. Step 4 defines transitions labeled by
a request initiated by oi targeting another entity which is not a parent of oi. In this case,
oi does not change its displayed page and Ai remains in the current state. The last step
of the algorithm states that a shared event targeting oi is not under the control of Ai and
thus should label transitions from every state of Ai to the corresponding state. Thus, in
case of an ill-designed application or unreasonable user behavior, where multiple
instances of a same window created using the predefined target “_blank”, are all
treated as a single entity, avoiding state explosion.
Note that there are cases where a frameset in a web application is merely used to
group nested frames/framesets within a certain layout without having any behavior
itself (it is not the target of any of its children’s links). As a result, the corresponding
automaton has a single state s0 (inactive). Therefore, to simplify the model, we discard
every automaton that models a frameset entity without any behavior. An automaton for
a frameset has more than one state in the case when a request, initiated from a child
frame of the frameset and whose target is "_parent", exists in the observed browsing
session. As described in Section 6.3.1, in the frameset automaton (initially in state s0),
a transition labeled by the event that corresponds to the request exists from s0 to the
state corresponding to the page displayed in the frameset. At the same time, this event
labels transitions in the automaton of each child entity of the frameset from every state
to its inactive state. This behavior of framesets in a WA is not modeled in any
previous work that we know about.
Let A1, …, Az (k-m ≤ z ≤ k, m is the total number of framesets, k is the total number of
existing entities in the application) be the automata that model z windows, frames, and
possibly framesets. The composition automata A is A1 || … || Az, such that A = <S ∪
{trap}, s0, Σ, T>. The initial state of A is s0 = (s01, …, s0z); the set of events Σ of A is
the union of all Σi; the set of states S and the transition relation T of A are defined
according to the semantics of the composition operator ||. The trap state of A is trap =
(trap1, …, trapz).

7 Implementing the Approach

In this section we describe the framework and the tool that implement our approach
for modeling a browsing session recorded when a WAUT is navigated.

Fig.2. Framework

7.1 Framework

 Our approach is implemented following the framework illustrated in Figure 2:
• The user/tester starts by selecting the web application to test and defining some

desired attributes. These attributes, which are defined prior to the analysis
process, are used in formulating the properties to verify on the application.

• A monitoring tool intercepts HTTP requests and responses during the navigation
of the WAUT performed by the user.

• The intercepted data is fed to an analysis tool that continuously analyzes the data
in real time (online mode), incrementally builds an internal data structure of the
automata model of the browsing session, and translates it into XML-Promela. The
XML-Promela file is then imported to Promela using a functionality of aSpin
[23], an extension of Spin model checker [22] that includes the feature of
importing a XML-Promela file to Promela language and exporting a Promela file
to XML-Promela. The specification of XML-Promela syntax is defined in the
Document Type Definition (DTD) file provided with aSpin.

• aSpin verifies the properties against the model and generates a counter example if
a property is not satisfied.

7.2 Online Model Extractor

The Online Model Extractor is implemented in Java as an experimental multithreaded
tool that has the following components:

Server

request

response

Formal Properties Model in XML-PROMELA

aSPIN Model Checker Model Checking
Results

Online Model Extractor

Request/Response

Client

Properties
to Check

Request/Response

Monitor/
Interceptor

User

1. A graphical user interface where a range of web related attributes that
characterize web applications is provided, and a window showing the progress of
the analysis performed during the browsing session.

2. An HTTP Reader that continuously reads intercepted data in an online mode by a
monitoring tool, HTTP proxy [5] in our case.

3. A Web Modeler that parses and analyzes the request/response pairs. This module
incrementally builds an internal data structure representing the automata model of
the WAUT.

4. An XML-Creator that reads the internal data structure and translates it into an
XML-Promela based tree which is continuously updated.

8 Case Study

In this section, we illustrate the applicability of our approach using a browsing session
of the web application of the Eclipse Consortium, www.eclipse.org. The
corresponding web site uses framed pages and multiple windows. The first step in
modeling the WAUT is to specify the desired attributes. This is done using the
interface of the Model Extractor.

Fig.3. Attribute input window

Figure 3 shows the attribute input window in the tool. Next, we navigate the
application while the request/response pairs are intercepted by the proxy server. The
intercepted pairs are fed into the Model Extractor/Manipulator, which produces the
model of the application in XML Promela. The resulting XML file is imported into
aSpin. The extracted model consists of ten processes reflecting the fact that the

application includes seven frames and two windows in which 26 distinct web pages
were visited. The frames are within the main browser’s window and the second
independent window has no frames within it. The global state graph corresponding to
our model consists of 847 states and 9652 transitions (stored + matched). In order to
prove the validity of our modeling approach, we verified various properties on the
model of the application. These properties include reachability properties, and the
checking for frame errors such as depth of frames does not exceed a user defined
threshold, frames having same name are not active simultaneously, and pages
displayed in frames are within the domain name of the application. As an example, we
explain the verification of three properties. The first property requires that in the
window mainW, and thus the frames within it, and the window blank0, the number of
links in the displayed pages should be balanced, i.e., the difference between the
number of links in the displayed pages in the two windows should not exceed a certain
number which we fix to 15. This global property requires the exploration of all
possible executions of the transitions of the automata of the main window mainW, the
frames displayed with it, and the independent window blank0. The second property
requires the absence of a frames error where frames having same names are not active
simultaneously. The third property is a reachability property that requires that given
three web pages, program, conference, and home_main, there exists at least a path
where page program is reachable from page home_main without going through page
conference. Note that pages program and conference are loaded in the independent
window blank0 and page home_main is loaded in the frame main_0. The first
property is formulated in LTL as follows: [] (p || q), where p and q are predicates such
that p = nLinks2 - (nLinks1 + nLinks_banner0 + nLinks_nav0 + nLinks_main0) <= 15,
and q = nLinks2 - (nLinks1 + nLinks_banner5 + nLinks_home_nav5 + nLinks_nav5 +
nLinks_main5) <= 15. Each variable in these predicates is associated to a process and
represents a page attribute that counts the number of links in the page. nLinks2 is
associated to the process of blank0, nLinks1 to the process of mainW, and the rest of
the variables are associated to the processes of the frames. This property is not
satisfied in the model and the verification result produces a counter example
simulating a trace that violates the property. The second property is formulated in LTL
as follows: [] p, where p = duplicateFrames_mainW = = 0 such that
duplicateFrames_mainW is a Boolean variable that is set to True if two frames having
same name are active simultaneously. This property holds in our model. To verify the
third property, we negate it and check if it holds in the model. The negation of the
property becomes: on all paths from page home_main to page program, page
conference is present. We use the LTL property pattern, Exist Between, from the
repository in [24] to formulate this property as follows: [] (home_main && ! program
→ ((! program) U ((conference && ! program) || [] (! program)))). This property
holds in the model, thus there is no path from page home_main to page program
where page conference is absent. Thus, the original property does not hold in model.

9 Conclusion

In this paper, we presented an approach to formally model web applications for the
purpose of verification and validation using model checking. We used the dynamic
(black-box based) approach by executing the application under test (navigation and
form filling), and observing the external behavior of the application by intercepting
HTTP requests and responses using a proxy server. We devised algorithms to convert
the observed behavior, which we call a browsing session, into an automata based
model. In case of applications with frames and multiple windows that exhibit
concurrent behavior, the browsing session is partitioned into local browsing sessions,
each corresponding to the frame/window/frameset entities in the application under
test. These local sessions are then converted into communicating automata. We also
presented the framework and tools that implemented the proposed approach, and
demonstrated the approach by applying it to a real web application. The constructed
models can also be used for other purposes such as documenting, testing, and
maintenance of web applications. Currently, we are experimenting with the tool using
several types of web applications that reflect both good and bad practices in the
development of WA. Our approach is based on the assumption that we observe
behavior of WA which is independent of its history. As a future extension, we intend
to treat WA behavior that is based on the observation of cookies in requests and
responses.

Acknowledgments. We would like to thank Serge Boroday and Andreas Ulrich
for the fruitful discussions and their feedback and insights on this work. We also
acknowledge students support in the implementation process.

References

1. "Online Dictionary and Search Engine for Computer and Internet Technology",
http://www.pcwebopedia.com/.

2. "A glossary of World Wide Web Terminology", http://www-
personal.umich.edu/~zoe/Glossary.html.

3. "W3C World Wide Web Consortium", http://www.w3.org.
4. S. Graham, "HTML Sourcebook, A Complete Guide to HTML 3.0", John Wiley & Sons,

Inc., 1996.
5. "HTTP Proxy Server 1.0", http://www.reitshamer.com/source/httpproxy.html.
6. "HTTrack Website Copier", http://www.httrack.com/index.php.
7. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, H. Zheng,

"Bandera: Extracting Finite-state Models from Java Source Code", In Proc. International
Conference on Software Engineering, 2000.

8. J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby, "A, Language Framework For
Expressing Checkable Properties of Dynamic Software", In Proc. of the SPIN Software
Model Checking Workshop, LNCS, Springer-Verlag, Aug, 2000.

9. S. A. Becker, A. R. Hevner, "A White Box Analysis of Concurrent System Designs", In
Proc. of the 10th Annual International Phoenix Conference on Computers and
Communications, 1991, Scottsdale, AZ, USA, p. 332-338.

10. J. Conallen, "Modeling Web Application Architectures, with UML", In Proc. of
Communications of the ACM, October 1999, vol. 2, No. 10.

11. M.C.F. de Oliveira, P.C. Masiero, "A Statechart-Based Model for Hypermedia
Applications", ACM Transactions on Information Systems, Vol. 19, No. 1, 28-52, January
2001.

12. F.B. Paulo, P.C. Masiero, M.C.F. de Olivieira, "Hypercharts: Extended Statecharts to
Support Hypermedia Specification", IEEE Transactions on Software Engineering, Vol.
25, No. 1, Jan. 1999.

13. F.B. Paulo, M.A.S. Turine, M.C.F. de Olivieira, "XHMBS: a Formal Model to Support
Hypermedia Specification", In Proc. of the 9th ACM Conference on Hypertext, United
Kingdom, June 1998.

14. K.R.P.H. Leung, L.C.K. Hui, S.M. Yui, R.W.M. Tang, "Modeling Web Navigation by
Statechart", In Proc. of the 24th IEEE Annual International Computer Software and
Applications Conference, Taipei, Taiwan, October 2000.

15. IEEE Computer Society, "Software Reengineering Bibliography",
http://www.informatik.uni-stuttgart.de/ifi/ps/reengineering, October 28, 2002.

16. T. Systä, "Static and Dynamic Reverse Engineering Techniques for Java Software
Systems", Ph.D. dissertation, Dept. of Computer and Information Sciences, University of
Tampere, 2000.

17. Mansurov N., Probert R., "Dynamic Scenario-Based Approach to Re-Engineering of
Legacy Telecommunication Systems", In Proc. of the 9th SDL Forum (SDL1999), pp.
325–341, Montreal, 21–25 June 1999.

18. "Ethereal, Network Protocol Analyzer", http://www.ethereal.com/.
19. E. M. Clarke, O. Grumberg, D. A. Peled, "Model Checking", MIT Press, 2000.
20. A. Luotonen, "Web Proxy Servers", Prentice Hall PTR, 1998.
21. Krishnamurthy, J. Rexford, "Web Protocols and Practice: HTTP/1.1, Networking

Protocols, Caching, and Traffic Measurement", Addison-Wesley, 2001.
22. G.J. Holzmann, "The Spin Model Checker, Primer and Reference Manual", Addison-

Wesley, 2003.
23. "aSpin Model Checker", http://polaris.lcc.uma.es/~gisum/fmse/tools/mainframe.html.
24. "Repository of Property Specification Patterns",http://patterns.projects.cis.ksu.edu/.
25. L. de Alfaro, "Model Checking the World Wide Web", In Proc. of the 13th International

Conference on Computer Aided Verification, Paris, France, July 2001.
26. L. de Alfaro, T.A. Henziger, F.Y.C. Mang, "MCWEB: A Model-Checking Tool for Web

Site Debugging", Poster, 10th WWW Conference, Hong Kong, 2001.
27. P.D. Stotts, C.R. Cabarrus, "Hyperdocuments as Automata: Verification of Trace-Based

Browsing Properties by Model Checking", ACM Transactions on Information Systems,
Vol.16, No. 1, January 1998, 1-30.

28. P.D. Stotts, J. Navon, "Model Checking CobWeb Protocols for Verification of HTML
Frames Behavior", In Proc. of the 11th WWW Conference, Hawai, U.S.A., May 2002.

29. F. Ricca, P. Tonella, "Web Site Analysis: Structure and Evolution", In Proc. of
International Conference on Software Maintenance (ICSM'2000), pp. 76-86, San Jose,
California, USA, October 11-14, 2000.

30. F. Ricca and P. Tonella, "Analysis and Testing of Web Applications", In Proc. of the
International Conference on Software Engineering (ICSE'2001), pp. 25-34, Toronto,
Ontario, Canada, May 12-19, 2001.

31. P. Tonella and F. Ricca, "Dynamic Model Extraction and Statistical Analysis of Web
Applications", In Proc. of International Workshop on Web Site Evolution (WSE 2002), pp.
43-52, Montreal, Canada, October 2, 2002.

32. Y. Wu, J. Offutt, "Modeling and Testing Web-based Applications", GMU ISE Technical
ISE-TR-02-08, November 2002.

