
Can Metrics Help Bridging the Gap Between the Improvement of OO Design
Quality and Its Automation?∗

Houari A. Sahraoui

DIRO, Université de
Montréal

C.P. 6128, succ. CV,
Montreal (QC)
Canada H3C 3J7

sahraouh@iro.umontreal.ca

Robert Godin
Université du Québec à

Montréal
C.P.8888, Succ.CV,

Montreal (QC), Canada
H3C 3P8

godin.robert@uqam.ca

Thierry Miceli
Pixel Systems Inc.
4750 Henri-Julien,

Montréal (Québec) Canada
H2T 2C8

tmiceli@sympatico.ca

∗ This work was partly funded by CRIM Montreal.

Abstract

During the evolution of object-oriented systems, the

preservation of correct design should be a permanent
quest. However, for systems involving a large number of
classes and subject to frequent modifications, detection
and correction of design flaws may be a complex and
resource-consuming task. The use of automatic detection
and correction tools can be helpful for this task. Various
work propose transformations that improve the quality of
an object-oriented system while preserving its behavior. In
this paper we propose to investigate whether some object-
oriented metrics can be used as indicators for
automatically detecting situations where a particular
transformation can be applied to improve the quality of a
system. The detection process is based on analyzing the
impact of various transformations on these object-oriented
metrics using quality estimation models.

1. Introduction

Design flaws, introduced in early stages of the

development or during system evolution, are a frequent
cause of low maintainability, low reuse, high complexity
and faulty behavior of the programs [19]. The preservation
of correct design should be a permanent quest. However,
for large systems subject to frequent modifications,
detection and correction of design flaws may be a complex
and resource consuming task Automated tools for assisting
this process can help alleviate this task.

Previous work on improving the quality of object
systems includes using metrics for quality estimation and
automated transformations to improve quality. However
both aspects have been treated mostly independently of
each other. A natural extension to these efforts is to

analyze the interaction of particular transformations and
metrics in a systematic manner in order to suggest the use
of transformations that may be helpful in improving
quality as estimated by metrics.

As a first step, we analyzed formally the impact of
several common transformations on several metrics. This
knowledge is incorporated in our OO1 prototype corrector
tool. The tool is used to help improving the quality of C++
programs. The function of the tool is analogous to a
linguistic assistant for a text processor. The tool computes
several quality metrics on the source code. The metrics are
used to detect potential design flaws. Based on these
estimations, the tool suggests particular transformations
that can be automatically applied in order to improve the
quality as estimated by the metrics. Evidently, this should
be seen as a heuristic process and, as for linguistic aids,
the process may include some form of human intervention
and acknowledgement before applying the suggested
transformations. Although, our initial investigation has
addressed OO program code, the same idea could be
applied to earlier software design artifacts or to non-OO
software.

The remainder of this paper is organized as follows.
Section 2 surveys the related work in the area of software
metrics and transformations. Section 3 gives an overview
of the proposed technique. Section 4 describes the
prototype tool and a case study. Section 5 presents our
conclusion for this work.

2. Related work

Related work cuts across several research areas and

particularly object-oriented software reengineering and
OO quality estimation. For the case of OO software, Basili
& al. show in [1] that most of the metrics proposed by
Chidamber and Kemerer in [3] are useful to predict fault-

proneness of classes during the design phase of OO
systems. In the same context, Li and Henry showed that
maintenance effort could be predicted from combinations
of metrics collected from source code of OO components
[9]. In [4], Demeyer and Ducasse show for the particular
domain of OO frameworks, that size and inheritance
metrics are not reliable to detect problems, but are good
indicators for the stability of a framework. More recently
our team proposed a set of models for different quality
characteristics in [8], [11], [12] and [13]. The particularity
of our work is that we use machine-learning techniques to
build the estimation models. These techniques generate
interesting results even with small-size learning sets.

Reengineering of OO software using transformations to
improve its quality has been addressed by several
researchers. Some techniques involving decomposition of
class hierarchy transformations in smaller modifications
are proposed by Casais and more recently by Opdyke. In
[2], Casais enumerates a set of primitive update operations
that can be used to decompose class modifications. The
completeness and correctness issues are presented but not
formally addressed. Similar work has been conducted by
Opdyke (see [15] and [16]). He introduces the notion of
behavior-preserving transformations named refactorings.
A set of low-level refactorings is used to decompose high-
level refactorings without introducing new errors in the
system or modifying the program behavior. Preservation
of the program behavior for each low-level refactoring is
guaranteed when some preconditions are verified. A tool
called The Refactoring Browser [18] was created using
these transformations in the Smalltalk environment.
Recently, Tokuda and Batory show that programs can be
automatically reengineered using design patterns [21]. In
this work, the authors propose transformations that
implement most of the design patterns. Most of the efforts
in this research direction concentrate on the definition of
transformations and their implementation. To our
knowledge, there is no effort on the automatic detection of
the situations where this transformations can apply.

Several authors have addressed the particular problem
of class hierarchy design and maintenance. In these work,
transformations are used typically to abstract common
behavior into new classes. Work in the context of the
Demeter System has addressed the design of class
hierarchies using an optimization process [10]. The
objective function used in the optimization process is a
global class hierarchy metric that measures the overall
complexity of the class hierarchy. This work is therefore a
first step in using metrics to guide the choice of useful
transformations. Casais (1991) proposed a local
reorganization algorithm for a class hierarchy that relies
on the user to specify the immediate superclasses of a new
class. Godin and Mili in [6] propose the use of concept
(Galois) lattices and derived structures as of formal
framework for dealing with class hierarchy design or

reengineering that guarantees maximal factorization of
common properties including polymorphism. The ARES
algorithm builds the Galois subhierarchy while preserving
initial relevant classes and also deals with the automatic
detection of specialization relationships between
properties [5]. The GURU tool proposed by Moore (in
[14]) deals with refactoring of methods and the class
hierarchy in an integrated manner. In [7], reengineered
hierarchies are compared using global class hierarchy
metrics.

3. Diagnosis of design flaws

Experienced designers/programmers have a relative

precise idea on what should be a good
application/program relatively to a quality perspective
(maintainability, reliability, reusability, etc.) This
knowledge is built from their experiences and from the
common knowledge related to the design/programming
paradigm. Books, like [19] for example, give a set of rules
that help developing good and understandable programs.
Most of the time, these rules cannot be implemented to
detect automatically symptomatic situations in a
design/code. The main reason is that these rules are by
definition fuzzy. If we consider the rule that states that we
have to avoid long methods or methods that contain a lot
of variables, it is hard to derive a threshold for the size of
a method or for the number of variables from which we
consider that we have a symptomatic situation.

To solve this problem, two directions seem promising.
The first one is to use fuzzy logic to implement the quality
rules/models. The second direction consists of using these
rules as starting hypotheses and deriving precise rules by
the way of empirical studies (i.e. building quality
estimation models). Due to lack of space, we focus in this
paper on the second direction.

Symbol Name
CLD Class-to-Leaf Depth
NOC Number Of Children
NMO Number of Methods Overridden
NMI Number of Methods Inherited
NMA Number of Methods Added
SIX Specialization Index
CBO Coupling Between Object classes
DAC' Data Abstraction Coupling
IH-ICP Information-flow-based inheritance coupling
OCAIC Others Class-Attribute Import Coupling
DMMEC Descendants Method-Method Export Coupling
OMMEC Others Method-Method Export Coupling

Table 1. Inheritance and coupling metrics

Roughly speaking, building a quality estimation model

consists of establishing a relation of cause and effect
between two types of software characteristics: 1) internal

attributes which are directly measurable such as size,
inheritance and coupling, and 2) quality characteristics
which are measurable after a certain time of use such as
maintainability, reliability and reusability. The process we
follow to build such models is based on classical machine
learning algorithms, particularly C4.5 [17]. More details
on the different steps can be found in [13].

• Our goal is to help the programmer/maintainer to
concentrate on certain parts of the system which
are possibly problematic and not to decide which
transformations must be applied.

• The estimation models use metrics that measure
user meaningful artifacts rather that derived
metrics. This helps the programmer/maintainer to
decide which prescription makes sense. Before giving an example on the obtained rules, we

present in , the sets of metrics which will be used
in this paper. Readers who are interested in the formal
definitions of these metrics can find more details in [8].

Table 1 Up to now, we showed that by changing the values of
certain metrics, we presume that we can improve the
quality of an application/program. The problem to solve
now is then, how to change the value of a metric? An
intuitive solution is to find out which transformation (or
set of transformations) allows changing the value of a
particular metric (or set of metrics). For example, if the
rule INH7 applies to a class d (NMI(d) = 24), which
transformations allow decreasing the number of inherited
methods while preserving the behavior of d?

The two following rules are examples quality
estimation rules:

Rule INH7: NMI(c) > 22 ⇒ class(c) = 1 [75.8%]
Rule CPL1: CBO(c) > 14 ⇒ class(c) = 1 [88.2%]

Rule INH7 (for inheritance rule number 7), for

example, states that a class c, which inherits more than 22
methods, is hard to maintain (level 1 of maintainability).
This rule is valid for 75.8% of the learning examples
(classes). Rule CPL1 (for coupling rule number 1) states
that classes that uses or is used by more than 14 classes is
hard to maintain. This rule is valid for 88.2% of the
learning examples.

To respond to such kind of question, we need to study
the impact of a predefined set of transformations on a
predefined set of metrics. The example of shows
how we study the impact of the creation of an abstract
class Cb to factorize a set of classes C1, C2, …, Cn on the
inheritance metrics (see section 5.1 for the details). The
creation process is composed of three steps (1) creating an
empty class Cb in the same level as the classes C1, C2, …,
Cn, (2) changing the superclass of these latest classes to
Cb, and (3) abstracting the common methods and moving
common code segments to Cb. We can notice that these
three elementary transformations do not change the
behavior of the involved classes.

Figure 1

Figure 1. The three steps for the creation of an
abstract class

Beyond the fact that the magic numbers 22 and 14
depend on the sample used in the learning process, these
rules show big values for CBO (Coupling Between
Objects) and NMI (Number of Methods Inherited) are bad
for design. They have also the merit to propose thresholds
values that enable detecting design flaws.

4. Prescription Ca

C1 C2 Cn

...

Ca

Cb

C1 C2 Cn

...

Common methods and code

1

32

Ca

C1 C2 Cn

...
Cb

1

Once a symptomatic situation is detected using a

quality model, the next step is to propose possible
transformations that improve the quality of a program
while preserving its behavior. Using the quality models,
we can establish a cause-to-effect relationship between
some combinations of metric values and a poor design
quality. The principle of prescription is to define another
relationship between transformations and the improvement
of the quality. To derive such a relationship, we us the
intuitive hypothesis which states that if a good design
corresponds to a good combination of metric values, then
there are strong chances that a good combination of metric
values corresponds to a good design. For example, if NMI
of a class c is less than 22 we can presume that c is not
hard to maintain, with the hypothesis that no other
negative rule applies.

This type of reasoning is close to what some
researchers call the abductive inference. Usually, this type
of reasoning is not highly reliable. However, in our case, it
can give good results for the two following reasons:

To study the impact of the global transformations on

the metrics, we first study the impact of each elementary
transformation and then derive the global impact. Table 2
shows the impact of the elementary and global
transformations on the inheritance metrics (defined in
Table 1) of the different classes involved in the
transformation process. This impact is given in the form of
positive or negative change in the value of a metric. N is
the number of factorized classes, MA the number of
abstracted methods, and MC the number of methods
created from the common code abstracting the common
methods and moving common code segments.

 Ca Anc. of Ca Ci

(1) Creating Cb NOC +1
(2) Changing
super-class of
Cis

NOC -N
CLD +{0, 1}

CLD +{0, 1}

(3) Moving
common
methods and
code from Cis
to Cb

 NMA - [0,
|MA|]
NMO +[0,
|MA|]
NMI +|MC|

Global
variations

NOC +1-N
CLD +{0, 1}

CLD +{0, 1} NMA - [0,
|MA|]
NMO +[0,
|MA|]
NMI +|MC|

Table 2. Impact of the transformation of Figure 1 on
the inheritance metrics

If we go back to the example of the class d, we can say

that at least the transformation of cannot decrease
the value of NMI and therefore it is not useful for this
case.

Figure 1

5. A case study (Coupling/inheritance vs.
maintainability)

In this section, we study the particular case of the

diagnosis of bad maintainability by using the values of
metrics for coupling and inheritance as symptoms. We
particularly focus on the quality models used (and their
corresponding metrics), on how to build a diagnosis and
prescription tool, and on how to use this tool. We end this
section by presenting and discussing some examples.

5.1 Quality models and derived metrics

The two models used in our study allow detecting the

fault-prone classes (an important factor for the
maintainability) using the values of respectively
inheritance and coupling metrics. These models are trees
in the beginning which are then transformed into rule sets

using tree pruning. They were obtained by application of
C4.5, a machine learning algorithm on a set of
approximately 100 classes for which the number of faults
is known. A classification 1 means that the class generated
at least one fault. For a simplification purpose, we present
here only the negative rules of each model (i.e. rules that
give classification 1):

• Predicting the fault-proneness using inheritance

metrics

o Rule INH5:
CLD(c) = 0 ∧ NMA(c) > 7 ∧ SIX(c) > 0.222222
⇒ class(c) = 1 [91.2%]

o Rule INH6:
NOC(c) ≤ 1 ∧ NMO(c) = 0 ∧ NMI(c) ≤ 6
⇒ class(c) = 1 [79.9%]

o Rule INH7:
NMI(c) > 22
⇒ class(c) = 1 [75.8%]

• Predicting the fault-proneness using coupling metrics

o Rule CPL1:
CBO(c) > 14
⇒ class(c) = 1 [88.2%]

o Rule CPL2:
IH-ICP(c) > 16
⇒ class(c) = 1 [87.1%]

o Rule CPL3:
DAC'(c) ≤ 2 ∧ OCAIC(c) > 0 ∧ OMMEC(c) > 9
⇒ class(c) = 1 [83.3%]

o Rule CPL4:
OCAIC(c) = 0 ∧ DMMEC(c) = 0
⇒ class(c) = 1 [81.9%]

The metrics used in these models are given in Table 1

(only those that appear in the negative rules).

5.2 Building a diagnosis and prescription tool

The diagnosis part of the tool consists of an engine that

applies the rules of the quality estimation models to the
classes of a given system. We suppose that the values of
the metrics were extracted beforehand. In our case, we use
a separate tool for the extraction. We developed a generic
tool called OO1 that can be extended automatically to
support any quality model expressed in term of
classification rules.

The prescription part of the tool is based on the analysis
of the impact of the transformations on the metrics as
presented in section 4. In this study we used three different
transformations: (1) creating an abstract class (c.f. section

4), (2) creating specialized subclasses, and (3) creating an
aggregated class.

Creating an abstract class. This transformation is
presented in section 4. To be complete, we show, in Ta

, its impact on the coupling metrics. Note that N.D.
means that there is an impact but we cannot determine
whether it is positive or negative. PA is the number of
parameters added when creating the new methods from
the common code.

ble
3

Table 3. Impact of the transformation of Figure 1 on
the coupling metrics.

Table 3

Table 4. Impact of creating specialized subclasses
on the inheritance and coupling metrics

Table 4

Using the same impact analysis technique as for the

first transformation, the global metric variations for the
classes impacted by this high-level transformation are
summarized in . ExpCond is the set of conditional
expressions, and N the number of created subclasses.

Creating an aggregated class. This transformation
consists of grouping a subset of a class Ca members into a
new class Cb. An instance of Cb will be part of an instance
of Ca. We assume that other classes do not inherit the
grouped members. The elementary transformations
involved are:

 Classes Global variations
Classes that reference the
abstracted methods

IH-ICP +i (I >= 0)

Classes referenced in the
common code

CBO []1,0 −− N
DMMEC -i (i >= 0)
OMMEC -i (i >= 0)

Ci
CBO N.D.
IH-ICP N.D

• Step1: Create Cb and move the considered members.
• Step2: Insert a new attribute in Ca that will contain the

instance of Cb.
• Step3: Modify the references to the transferred

methods
• Step4: Delete the transferred members from Ca.

Table 5

Table 5. Impact of creating an aggregated class on
the inheritance and coupling metrics

e 5

 summarizes the changes in the values of
coupling and inheritance metrics. ATR is the set of
transferred attributes. Note that no inheritance metric is
affected by the transformation.

Creating specialized subclasses. The aim of this
transformation is to create new subclasses for a class that
is initially a leaf of the inheritance tree. The candidate
subclasses are determined from the detection of conditions
that suggest new specialized abstractions. The class Ca is
the initial class, the C1, C2,…, CN classes are the created
subclasses. Ca is assumed to initially have no descendant.
The low-level transformations (steps) involved are:

 Classes Global variations

Ca

CBO +1-i (i >= 0)
DAC' []TR,01 A−+

OCAIC []TR,01 A−+
IH-ICP -i (i >= 0)

Classes referenced by the
transferred methods

CBO +{0,1}

• Step 1: Find conditional expressions for which

conditions suggest subclasses.
• Step 2: For each condition create a subclass.
• Step 3: For each condition expression, create a

method in each subclass. Simplify and specialize the
method's body for each subclass according to the
conditions represented by the subclass.

• Step 4: Specialize some or all of the expressions that
create instances of the initial class.

5.3 Applying the corrector

 As presented in the section above, the three
transformations can vary the ranges of values for the
metrics of the involved classes. This is what we precisely
need to improve the quality of an application (see section
4). From the corresponding tables (to Tabl), we
can detect what are the transformations that can make the
metrics values of a class fit into the desired range (good
combination of metric values). Each column of a table is
dedicated to one class or one category of classes involved
in a transformation, thus choosing a particular column of a
particular table determines both the transformation to
apply and the role played by the class within the
transformation context.

 Classes Global variations

Ca
NOC +N
CLD +1
NMA ExpCond+

Classes referenced in the code of
conditional expressions

CBO []N,0+
DMMEC +i (i >= 0)
OMMEC +i (i >= 0)

Ancestors of Ca
NOD +N
CLD +{0,1}

Once the transformation and the role of the class are
determined, it is necessary to verify that the
transformation makes sense in the particular context of the
application. OO1 proposes all the possible transformations
that can be applied when it detects a symptomatic
situation. The user can then select the appropriate
transformation.

The following algorithm gives a summary of the
diagnosis and prescription as implemented by OO1

AC is the set of the classes of the

application

For each class c of AC do
 - Calculate the metric values

cs and the desired
ch

 - Select transformations that allow
these

Propose the transformations that correspond to the
ext of c

EndIf

5.4

amples of the application of
OO1. These examples are classes of a multiagent system

B, OrdRulesKB and MsgRulesKB. The
alues for the inheritance and coupling metrics are given

.

s ExecR sKB Ms

 - Apply quality rules
 If a negative rule applies then
 - Choose the metri
anges to their values

changes

-
cont

EndFor

 Examples and discussion

To illustrate the approach proposed in this paper, we

present in this section two ex

coded in C++ called LALO.

Example 1: The case of XrulesKB classes. Three classes
were detected by OO1 as a bad design from the
maintainability point of view according to rules INH6 and
CPL4. These three classes are called respectively
ExecRulesK
v
in Table 6

Metric ule
CLD 0 0 0
NOC 0 0 0
NMO 0 0 0
NMI 0 0 0
NMA 9 9 9
SIX 0 0 0
CBO 3 3 3
IH-ICP 0 0 0
DAC’ 0 0 0
ACAIC 0 0 0

gRulesKB OrdRulesKB

DMMEC 0 0 0
OMMEC 2 2 2

Ta

remove, export_engine_data,
reg

tion. We were not surprised to find
in the same system, three other classes named respectively
ExecRule, OrdRule and MsgRule with an abstract class
Rule (see Figure 2).

ble 6. Inheritance and coupling metrics for the
XRulesKB classes

void that rule INH6 applies for each of the three

classes, we have to increase the value of NOC or increase
the value of NMO or increase the value of NMI. From
Table 2, column Ci, we can suggest to create an abstract
class for the three classes. As the three classes have 5
common methods (add,

To a

istration and the = operator), the NMO values for the
three classes increase to 5, which is sufficient to avoid the
application of rule INH6.

This prescription is appropriate according to the
context of lica the app

ExecRule MsgRule

Rule

OrdRule

ExecRulesKB MsgRulesKB OrdRulesKB

RulesKB

Fig

e classes are small and are already
pre

e coupling point of view, if we want to avoid
the

PL4 in section 5.1 and

I
the fo ns are true:

a

ure 2. A partial view of the sys LO and the
prescription of OO1 (dotted lines)

Another prescription is given by Table 4, column Ca.

OO1 propos te for each class a set of specialized
subclasses. The thre

tem LA

es to crea

tty much specialized. A user can then reject this
suggestion. Figure 3 shows the suggestions of OO1 for
this particular case.

 thFrom
 application of rule CPL4, we have to increase OCAIC

or DMMEC at least by 1 (see rule C
Table 1).

ncreasing the value of by 1 can be possible if
itiollowing cond

 OCAIC

1. We can create an aggregated class from an XrulesKB
class as stated by Table 5, column C (OCAIC

[]TR,01 A−+).

2. No attribute is transferred to the created class
attributes (|ATR|=0).

After examining the content of the three classes, such a
tra

Anot
subclasses to i

nsformation is not concretely feasible. Therefore, a user
can reject this prescription.

column “Classes referenced in the code of conditional
expressions”). Even if this transformation is theoretically
possible, the particular context of the application does not
allow it.

her possible prescription is to create specialized
ncrease the value of DMMEC (see Table 4,

for the

O1 as having bad
aintainability according to rules INH5, CPL3 and CPL4

(see Table a

Metrics KQML ct

Figure 3. Some prescription alternatives given by OO1

Example 2: The case of KQMLObject class. A class
name LObject was detected by O

 case of XRulesKB classes

Table 7. Inheritance and coupling metrics for
Md KQM

OMMEC 76

KQ LObject class
o prevent the a ion of rule INH5, we have to m T

the

a

a
3.

 the possible values of

simplify the code of KQMLObject.

pplicat

ease CLD

attribute

7 for the v lues of metrics).

Obje
CLD 0
NOC 0
NMO 10
NMI 0
NMA 14
SIX 0.41
CBO 3
IH-ICP 0
DAC’ 0
ACAIC 0
DMMEC 0

increase the value of CLD or decrease the value of NMA.
Four possible transformations to incr appear in

impact tables:
1. Create an abstract class as a direct subcla

QMLObject (Table 2, column C).
ss of

K

MLObje

2. Create an abstract class as descendent but non-direct
subclass of KQ ct (Table 2, column
“Ancestors of C ”).
Create specialized subclasses of KQMLObject (Table
4, column Ca)

4. Create specialized subclasses of one of the subclasses
of KQMLObject (Table 4, column “Ancestors of
Ca”).

As KQMLObject is a leaf class, only transformation 3
is proposed. All the others suppose that KQMLObject has
subclasses. When we examined the code to verify if
transformation 3 is concretely possible, we found that
some condition expressions concern
a particular attribute (performative_number). This is an
indicator of a bad design. Creating subclasses that
corresponds to the different values of this will

Another possible suggestion was to propose to
factorize KQMLObject with other possi esble class to
decrease the value of NMA according to Table 2 and
column Ci. However, KQMLObject is already
factored with the only sister it has (see Figure 4).

Message

HttpObject KqmlObject

Figure 4. Hierarchy of KQMLObject

From the coupling f view, the only interesting

prescription is to create an aggregated class. This avoids
the application of rules CPL3 and CPL4 by varying the
value of OCAIC (Table 5, column Ca). The class
KQMLOb e and tject is too larg

ation possible. T

 point o

oo complex to make such a
transform he only condition is to find a

to transfer without transferring any subset of methods
attribute ([,01 A−+]TR > 0).

ndeed, our approach can help a
de

n cannot be executed
wi

ible to automate the implementation of
a sign pattern into an existing code. However, this

tomate why and where implementing
the

Acknowledgment
uld like to thank Pr. Hafedh Mili for his

comments on this work.

R

, 1996.

IEEE Transactions on Software

[4]

[5]

Proceedings of the ACM Conference on Object-Oriented

[6]
s Using Galois Lattices. In

Proceedings of the ACM Conference on Object-Oriented

[7] Missaoui, R., Arfi, A.

[8] Ikonomovski, S., Detection of Faulty Components in

ontréal, 1998.

[10] err, K. J., Bergstein, P. & Silva-Lepe, I. From

Volume 4 (4), Ed. Hermes. 1998 (in french).

approach cannot au
 design pattern.

The authors wo

eferences

[1] Basili V., Briand L. & Melo W., How Reuse Influences
Productivity in Object-Oriented Systems. Communications
of the ACM, Vol. 30, N. 10, pp104-114

[2] Casais E., Managing Evolution in Objet Oriented
Environments: An Algorithmic Approach, thèse de
Doctorat, université de Genève, 1989.

[3] Chidamber S. & Kemerer C. A Metrics Suite for Object-
Oriented Design,
Engineering, June, 1994, p. 476-492.

Demeyer S., Ducasse S., Metrics, Do they really help ?, In
Proc. of LMO, 1999.

Dicky, H., Dony, C., Huchard, M. & Libourel, T. On
Automatic Class Insertion with Overloading. In

Programming Systems, Languages, and Applications
(OOPSLA'96), CA, USA: ACM SIGPLAN Notices, pp.
251-267, 1996

Godin, R. & Mili, H. Building and Maintaining Analysis-
Level Class Hierarchie

6. Conclusion

In this work, we have investigated the use of metrics

for detecting potential design flaws and for suggesting
potentially useful transformations for correcting them.
Initial experiments with the OO1 prototype have
demonstrated the feasibility of the approach and its
usefulness. I

Programming Systems, Languages, and Applications
(OOPSLA'93), A. Paepcke (Ed.), Washington, DC: ACM
Press, pp. 394-410, 1993.

Godin, R., Mili, H., Mineau, G. W.,
& Chau, T.-T. Design of Class Hierarchies based on
Concept (Galois) Lattices. Theory and Application of
Object Systems, 4(2), 117-134, 1998

signer/programmer by suggesting transformations. It
can help her or him also focusing on a particular part of a
large system.

From the perspective of automation, the response to the
paper title question can be yes and no. Yes, using metrics
is a step towards the automation of quality improvement.
If we look to the whole process of detecting flaws and
correcting them, metrics can help automating a large part
of it. The response can be no. Indeed, the results of our
experiments show that a prescriptio

Object-Oriented Systems using Design Metrics and a
Machine Learning Algorithm, Master Thesis, Mc Gill
University, M

[9] Li W. & Henry S., Object Oriented Metrics that Predict
Maintainability. Journal of Systems and Software. Vol.23,
No.2., 1993.

 Lieberhthout a validation of a designer/programmer. Our
approach cannot capture all the context of an application
to allow such a type of automation.

A direction that we will explore in our future work is to
better capture the context of an application. This will
enable us to refine the suggestions by eliminating those
that are not relevant. Another direction is to study the
adaptation of our approach to suggest the use of design
patterns. As mentioned in section 2, Tokuda and Batory
show that it is poss

Objects to Classes: Algorithms for Optimal Object-Oriented
Design. Journal of Software Engineering, 6(4), 205-228,
1991.

[11] Lounis H., Melo W., Sahraoui H. A., Identifying and
Measuring Coupling in OO systems, technical report
CRIM-97/11-82, 1997.

[12] Lounis H., Sahraoui H. A., Melo H. A., Towards a Quality
Predictive Model for Object -Oriented Software, L'Objet,

de

[13]
chine Learning

[14]

ing Systems,

[16] t

[18] hnson E. J.: A Refactoring Tool for
Smalltalk, Theory And Practice of Object Sy

[21] Object-Oriented
Designs with Refactorings, Proc. of IEEE Automated
Software Engineering Conference, 1999.

 Mao Y., Sahraoui H. A. and Lounis H., Reusability
Hypothesis Verification Using Ma
Techniques: A Case Study, Proc. of IEEE Automated
Software Engineering Conference, 1998.

 Moore, I. Automatic Inheritance Hierarchy Restructuring
and Method Refactoring. In Proceedings of the ACM
Conference on Object-Oriented Programm
Languages, and Applications (OOPSLA'96), CA, USA:
ACM SIGPLAN Notices, pp. 235-250, 1996

[15] Opdyke F. W., Refactoring Object-Oriented Frameworks,
PhD thesis, University of Illinois, 1992.

 Opdyke F. W. & Johnson E. R., Creating Abstrac
Superclasses by Refactoring, in Proceeding of CSC'93: The
ACM 1993 Computer Science Conference, February 1993.

[17] Quinlan J. R., C4.5: Programs for Machine Learning,
Morgan Kaufmann Publishers, 1993.

 Roberts D., Brant J., Jo
stems, Volume

3 (4): 253-263, (1997).

[19] S. Skublics, E. J. Klimas, D. A. Thomas, Smalltalk with
Style, Prentice Hall, 1996.

[20] Sommerville I., Software Engineering, Addison Wesley,
fourth edition, 1992.

 L. Tokuda and D. Batory, Evolving

	Abstract
	Introduction
	Related work
	Diagnosis of design flaws
	
	
	
	
	OMMEC

	Prescription
	A case study (Coupling/inheritance vs. maintainability)
	Quality models and derived metrics
	Building a diagnosis and prescription tool
	Applying the corrector
	Examples and discussion

	Conclusion

