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Abstract 

 
During the evolution of object-oriented systems, the 

preservation of correct design should be a permanent 
quest. However, for systems involving a large number of 
classes and subject to frequent modifications, detection 
and correction of design flaws may be a complex and 
resource-consuming task. The use of automatic detection 
and correction tools can be helpful for this task. Various 
work propose transformations that improve the quality of 
an object-oriented system while preserving its behavior. In 
this paper we propose to investigate whether some object-
oriented metrics can be used as indicators for 
automatically detecting situations where a particular 
transformation can be applied to improve the quality of a 
system. The detection process is based on analyzing the 
impact of various transformations on these object-oriented 
metrics using quality estimation models. 

 
 

1. Introduction 
 
Design flaws, introduced in early stages of the 

development or during system evolution, are a frequent 
cause of low maintainability, low reuse, high complexity 
and faulty behavior of the programs [19]. The preservation 
of correct design should be a permanent quest. However, 
for large systems subject to frequent modifications, 
detection and correction of design flaws may be a complex 
and resource consuming task Automated tools for assisting 
this process can help alleviate this task. 

Previous work on improving the quality of object 
systems includes using metrics for quality estimation and 
automated transformations to improve quality. However 
both aspects have been treated mostly independently of 
each other. A natural extension to these efforts is to 

analyze the interaction of particular transformations and 
metrics in a systematic manner in order to suggest the use 
of transformations that may be helpful in improving 
quality as estimated by metrics. 

As a first step, we analyzed formally the impact of 
several common transformations on several metrics. This 
knowledge is incorporated in our OO1 prototype corrector 
tool. The tool is used to help improving the quality of C++ 
programs. The function of the tool is analogous to a 
linguistic assistant for a text processor. The tool computes 
several quality metrics on the source code. The metrics are 
used to detect potential design flaws. Based on these 
estimations, the tool suggests particular transformations 
that can be automatically applied in order to improve the 
quality as estimated by the metrics. Evidently, this should 
be seen as a heuristic process and, as for linguistic aids, 
the process may include some form of human intervention 
and acknowledgement before applying the suggested 
transformations. Although, our initial investigation has 
addressed OO program code, the same idea could be 
applied to earlier software design artifacts or to non-OO 
software. 

The remainder of this paper is organized as follows. 
Section 2 surveys the related work in the area of software 
metrics and transformations. Section 3 gives an overview 
of the proposed technique. Section 4 describes the 
prototype tool and a case study. Section 5 presents our 
conclusion for this work. 

 
2. Related work 

 
Related work cuts across several research areas and 

particularly object-oriented software reengineering and 
OO quality estimation. For the case of OO software, Basili 
& al. show in [1] that most of the metrics proposed by 
Chidamber and Kemerer in [3] are useful to predict fault-



proneness of classes during the design phase of OO 
systems. In the same context, Li and Henry showed that 
maintenance effort could be predicted from combinations 
of metrics collected from source code of OO components 
[9]. In [4], Demeyer and Ducasse show for the particular 
domain of OO frameworks, that size and inheritance 
metrics are not reliable to detect problems, but are good 
indicators for the stability of a framework. More recently 
our team proposed a set of models for different quality 
characteristics in [8], [11], [12] and [13]. The particularity 
of our work is that we use machine-learning techniques to 
build the estimation models. These techniques generate 
interesting results even with small-size learning sets.  

Reengineering of OO software using transformations to 
improve its quality has been addressed by several 
researchers. Some techniques involving decomposition of 
class hierarchy transformations in smaller modifications 
are proposed by Casais and more recently by Opdyke. In 
[2], Casais enumerates a set of primitive update operations 
that can be used to decompose class modifications. The 
completeness and correctness issues are presented but not 
formally addressed. Similar work has been conducted by 
Opdyke (see [15] and [16]). He introduces the notion of 
behavior-preserving transformations named refactorings. 
A set of low-level refactorings is used to decompose high-
level refactorings without introducing new errors in the 
system or modifying the program behavior. Preservation 
of the program behavior for each low-level refactoring is 
guaranteed when some preconditions are verified. A tool 
called The Refactoring Browser [18] was created using 
these transformations in the Smalltalk environment. 
Recently, Tokuda and Batory show that programs can be 
automatically reengineered using design patterns [21]. In 
this work, the authors propose transformations that 
implement most of the design patterns. Most of the efforts 
in this research direction concentrate on the definition of 
transformations and their implementation. To our 
knowledge, there is no effort on the automatic detection of 
the situations where this transformations can apply.    

Several authors have addressed the particular problem 
of class hierarchy design and maintenance. In these work, 
transformations are used typically to abstract common 
behavior into new classes. Work in the context of the 
Demeter System has addressed the design of class 
hierarchies using an optimization process [10]. The 
objective function used in the optimization process is a 
global class hierarchy metric that measures the overall 
complexity of the class hierarchy. This work is therefore a 
first step in using metrics to guide the choice of useful 
transformations. Casais (1991) proposed a local 
reorganization algorithm for a class hierarchy that relies 
on the user to specify the immediate superclasses of a new 
class. Godin and Mili in [6] propose the use of concept 
(Galois) lattices and derived structures as of formal 
framework for dealing with class hierarchy design or 

reengineering that guarantees maximal factorization of 
common properties including polymorphism. The ARES 
algorithm builds the Galois subhierarchy while preserving 
initial relevant classes and also deals with the automatic 
detection of specialization relationships between 
properties [5]. The GURU tool proposed by Moore (in 
[14]) deals with refactoring of methods and the class 
hierarchy in an integrated manner. In [7], reengineered 
hierarchies are compared using global class hierarchy 
metrics. 

 
3. Diagnosis of design flaws 

 
Experienced designers/programmers have a relative 

precise idea on what should be a good 
application/program relatively to a quality perspective 
(maintainability, reliability, reusability, etc.) This 
knowledge is built from their experiences and from the 
common knowledge related to the design/programming 
paradigm. Books, like [19] for example, give a set of rules 
that help developing good and understandable programs. 
Most of the time, these rules cannot be implemented to 
detect automatically symptomatic situations in a 
design/code. The main reason is that these rules are by 
definition fuzzy. If we consider the rule that states that we 
have to avoid long methods or methods that contain a lot 
of variables, it is hard to derive a threshold for the size of 
a method or for the number of variables from which we 
consider that we have a symptomatic situation. 

To solve this problem, two directions seem promising. 
The first one is to use fuzzy logic to implement the quality 
rules/models. The second direction consists of using these 
rules as starting hypotheses and deriving precise rules by 
the way of empirical studies (i.e. building quality 
estimation models). Due to lack of space, we focus in this 
paper on the second direction. 

 
Symbol Name 
CLD Class-to-Leaf Depth 
NOC Number Of Children 
NMO Number of Methods Overridden 
NMI Number of Methods Inherited 
NMA Number of Methods Added 
SIX Specialization Index 
CBO Coupling Between Object classes 
DAC' Data Abstraction Coupling 
IH-ICP Information-flow-based inheritance coupling 
OCAIC Others Class-Attribute Import Coupling 
DMMEC Descendants Method-Method Export Coupling 
OMMEC Others Method-Method Export Coupling 

Table 1. Inheritance and coupling metrics 
 
Roughly speaking, building a quality estimation model 

consists of establishing a relation of cause and effect 
between two types of software characteristics: 1) internal 



attributes which are directly measurable such as size, 
inheritance and coupling, and 2) quality characteristics 
which are measurable after a certain time of use such as 
maintainability, reliability and reusability. The process we 
follow to build such models is based on classical machine 
learning algorithms, particularly C4.5 [17]. More details 
on the different steps can be found in [13].  

• Our goal is to help the programmer/maintainer to 
concentrate on certain parts of the system which 
are possibly problematic and not to decide which 
transformations must be applied. 

• The estimation models use metrics that measure 
user meaningful artifacts rather that derived 
metrics. This helps the programmer/maintainer to 
decide which prescription makes sense. Before giving an example on the obtained rules, we 

present in , the sets of metrics which will be used 
in this paper. Readers who are interested in the formal 
definitions of these metrics can find more details in [8].  

Table 1 Up to now, we showed that by changing the values of 
certain metrics, we presume that we can improve the 
quality of an application/program. The problem to solve 
now is then, how to change the value of a metric? An 
intuitive solution is to find out which transformation (or 
set of transformations) allows changing the value of a 
particular metric (or set of metrics). For example, if the 
rule INH7 applies to a class d (NMI(d) = 24), which 
transformations allow decreasing the number of inherited 
methods while preserving the behavior of d? 

The two following rules are examples quality 
estimation rules:  

 
Rule INH7: NMI(c) > 22 ⇒ class(c) = 1 [75.8%] 
Rule CPL1: CBO(c) > 14 ⇒ class(c) = 1 [88.2%] 

 
Rule INH7 (for inheritance rule number 7), for 

example, states that a class c, which inherits more than 22 
methods, is hard to maintain (level 1 of maintainability). 
This rule is valid for 75.8% of the learning examples 
(classes). Rule CPL1 (for coupling rule number 1) states 
that classes that uses or is used by more than 14 classes is 
hard to maintain. This rule is valid for 88.2% of the 
learning examples. 

To respond to such kind of question, we need to study 
the impact of a predefined set of transformations on a 
predefined set of metrics. The example of  shows 
how we study the impact of the creation of an abstract 
class Cb to factorize a set of classes C1, C2, …, Cn on the 
inheritance metrics (see section 5.1 for the details). The 
creation process is composed of three steps (1) creating an 
empty class Cb in the same level as the classes C1, C2, …, 
Cn, (2) changing the superclass of these latest classes to 
Cb, and (3) abstracting the common methods and moving 
common code segments to Cb. We can notice that these 
three elementary transformations do not change the 
behavior of the involved classes. 

Figure 1

Figure 1. The three steps for the creation of an 
abstract class 

Beyond the fact that the magic numbers 22 and 14 
depend on the sample used in the learning process, these 
rules show big values for CBO (Coupling Between 
Objects) and NMI (Number of Methods Inherited) are bad 
for design. They have also the merit to propose thresholds 
values that enable detecting design flaws. 

  
4. Prescription  Ca

C1 C2 Cn

...

Ca

Cb

C1 C2 Cn

...

Common methods and code

1

32

Ca

C1 C2 Cn

...
Cb

1

 

 
Once a symptomatic situation is detected using a 

quality model, the next step is to propose possible 
transformations that improve the quality of a program 
while preserving its behavior. Using the quality models, 
we can establish a cause-to-effect relationship between 
some combinations of metric values and a poor design 
quality. The principle of prescription is to define another 
relationship between transformations and the improvement 
of the quality. To derive such a relationship, we us the 
intuitive hypothesis which states that if a good design 
corresponds to a good combination of metric values, then 
there are strong chances that a good combination of metric 
values corresponds to a good design. For example, if NMI 
of a class c is less than 22 we can presume that c is not 
hard to maintain, with the hypothesis that no other 
negative rule applies. 

This type of reasoning is close to what some 
researchers call the abductive inference. Usually, this type 
of reasoning is not highly reliable. However, in our case, it 
can give good results for the two following reasons: 



 
To study the impact of the global transformations on 

the metrics, we first study the impact of each elementary 
transformation and then derive the global impact. Table 2 
shows the impact of the elementary and global 
transformations on the inheritance metrics (defined in 
Table 1) of the different classes involved in the 
transformation process. This impact is given in the form of 
positive or negative change in the value of a metric. N is 
the number of factorized classes, MA the number of 
abstracted methods, and MC the number of methods 
created from the common code abstracting the common 
methods and moving common code segments. 

 
 Ca Anc. of Ca Ci 

(1) Creating Cb NOC +1   
(2) Changing 
super-class of 
Cis 

NOC -N 
CLD +{0, 1} 

CLD +{0, 1}  

(3) Moving 
common 
methods and 
code from Cis 
to Cb 

  NMA - [0, 
|MA|] 
NMO +[0, 
|MA|] 
NMI +|MC| 

 
Global 
variations  

NOC +1-N 
CLD +{0, 1} 

CLD +{0, 1} NMA - [0, 
|MA|] 
NMO +[0, 
|MA|] 
NMI +|MC| 

Table 2. Impact of the transformation of Figure 1 on 
the inheritance metrics 

 
If we go back to the example of the class d, we can say 

that at least the transformation of  cannot decrease 
the value of NMI and therefore it is not useful for this 
case. 

Figure 1

 
5. A case study (Coupling/inheritance vs. 
maintainability) 

 
In this section, we study the particular case of the 

diagnosis of bad maintainability by using the values of 
metrics for coupling and inheritance as symptoms. We 
particularly focus on the quality models used (and their 
corresponding metrics), on how to build a diagnosis and 
prescription tool, and on how to use this tool. We end this 
section by presenting and discussing some examples. 

 
5.1 Quality models and derived metrics 

 
The two models used in our study allow detecting the 

fault-prone classes (an important factor for the 
maintainability) using the values of respectively 
inheritance and coupling metrics. These models are trees 
in the beginning which are then transformed into rule sets 

using tree pruning. They were obtained by application of 
C4.5, a machine learning algorithm on a set of 
approximately 100 classes for which the number of faults 
is known. A classification 1 means that the class generated 
at least one fault. For a simplification purpose, we present 
here only the negative rules of each model (i.e. rules that 
give classification 1): 

 
• Predicting the fault-proneness using inheritance 

metrics 
 
o Rule INH5:  
CLD(c) = 0 ∧ NMA(c) > 7 ∧ SIX(c) > 0.222222  
⇒ class(c) = 1 [91.2%] 

 
o Rule INH6:  
NOC(c) ≤ 1 ∧ NMO(c) = 0 ∧ NMI(c) ≤ 6  
⇒ class(c) = 1 [79.9%] 

 
o Rule INH7:  
NMI(c) > 22  
⇒ class(c) = 1 [75.8%] 

 
• Predicting the fault-proneness using coupling metrics 
 
o Rule CPL1:  
CBO(c) > 14  
⇒ class(c) = 1 [88.2%] 

 
o Rule CPL2:  
IH-ICP(c) > 16  
⇒ class(c) = 1 [87.1%] 

 
o Rule CPL3:  
DAC'(c) ≤ 2 ∧ OCAIC(c) > 0 ∧ OMMEC(c) > 9  
⇒ class(c) = 1 [83.3%] 

 
o Rule CPL4:  
OCAIC(c) = 0 ∧ DMMEC(c) = 0  
⇒ class(c) = 1 [81.9%] 

 
The metrics used in these models are given in Table 1 

(only those that appear in the negative rules).  
 

5.2 Building a diagnosis and prescription tool 
 
The diagnosis part of the tool consists of an engine that 

applies the rules of the quality estimation models to the 
classes of a given system. We suppose that the values of 
the metrics were extracted beforehand. In our case, we use 
a separate tool for the extraction. We developed a generic 
tool called OO1 that can be extended automatically to 
support any quality model expressed in term of 
classification rules. 

The prescription part of the tool is based on the analysis 
of the impact of the transformations on the metrics as 
presented in section 4. In this study we used three different 
transformations: (1) creating an abstract class (c.f. section 



4), (2) creating specialized subclasses, and (3) creating an 
aggregated class. 

 
Creating an abstract class. This transformation is 
presented in section 4. To be complete, we show, in Ta

, its impact on the coupling metrics. Note that N.D. 
means that there is an impact but we cannot determine 
whether it is positive or negative. PA is the number of 
parameters added when creating the new methods from 
the common code. 

ble 
3

Table 3. Impact of the transformation of Figure 1 on 
the coupling metrics. 

Table 3

Table 4. Impact of creating specialized subclasses 
on the inheritance and coupling metrics 

Table 4

 
Using the same impact analysis technique as for the 

first transformation, the global metric variations for the 
classes impacted by this high-level transformation are 
summarized in . ExpCond is the set of conditional 
expressions, and N the number of created subclasses. 

 
Creating an aggregated class. This transformation  
consists of grouping a subset of a class Ca members into a 
new class Cb. An instance of Cb will be part of an instance 
of Ca. We assume that other classes do not inherit the 
grouped members. The elementary transformations 
involved are: 

 
 Classes Global variations 
Classes that reference the 
abstracted methods 

IH-ICP +i  (I >= 0) 

Classes referenced in the 
common code 

CBO [ ]1,0 −− N  
DMMEC -i  (i >= 0) 
OMMEC -i  (i >= 0) 

Ci 
CBO N.D. 
IH-ICP N.D 

 
• Step1: Create Cb and move the considered members.  
• Step2: Insert a new attribute in Ca that will contain the 

instance of Cb.  
• Step3: Modify the references to the transferred 

methods  
• Step4: Delete the transferred members from Ca. 
  

Table 5

Table 5. Impact of creating an aggregated class on 
the inheritance and coupling metrics 

e 5

 summarizes the changes in the values of 
coupling and inheritance metrics. ATR is the set of 
transferred attributes. Note that no inheritance metric is 
affected by the transformation. 

Creating specialized subclasses. The aim of this 
transformation is to create new subclasses for a class that 
is initially a leaf of the inheritance tree. The candidate 
subclasses are determined from the detection of conditions 
that suggest new specialized abstractions. The class Ca is 
the initial class, the C1, C2,…, CN classes are the created 
subclasses. Ca is assumed to initially have no descendant. 
The low-level transformations (steps) involved are: 

 
 Classes Global variations 

Ca 

CBO +1-i  (i >= 0) 
DAC' [ ]TR,01 A−+  

OCAIC [ ]TR,01 A−+  
IH-ICP  -i  (i >= 0) 

Classes referenced by the 
transferred methods 

CBO +{0,1} 

 
• Step 1: Find conditional expressions for which 

conditions suggest subclasses. 
• Step 2: For each condition create a subclass. 
• Step 3: For each condition expression, create a 

method in each subclass. Simplify and specialize the 
method's body for each subclass according to the 
conditions represented by the subclass.  

• Step 4: Specialize some or all of the expressions that 
create instances of the initial class. 

5.3 Applying the corrector 
 

 As presented in the section above, the three 
transformations can vary the ranges of values for the 
metrics of the involved classes. This is what we precisely 
need to improve the quality of an application (see section 
4). From the corresponding tables (  to Tabl ), we 
can detect what are the transformations that can make the 
metrics values of a class fit into the desired range (good 
combination of metric values). Each column of a table is 
dedicated to one class or one category of classes involved 
in a transformation, thus choosing a particular column of a 
particular table determines both the transformation to 
apply and the role played by the class within the 
transformation context. 

 Classes Global variations 

Ca 
NOC  +N 
CLD  +1 
NMA ExpCond+

Classes referenced in the code of 
conditional expressions 

CBO [ ]N,0+  
DMMEC +i  (i >= 0) 
OMMEC +i  (i >= 0) 

Ancestors of Ca 
NOD +N 
CLD  +{0,1} 



Once the transformation and the role of the class are 
determined, it is necessary to verify that the 
transformation makes sense in the particular context of the 
application. OO1 proposes all the possible transformations 
that can be applied when it detects a symptomatic 
situation. The user can then select the appropriate 
transformation. 

The following algorithm gives a summary of the 
diagnosis and prescription as implemented by OO1 

 
AC is the set of the classes of the 

application 

For each class c of AC do 
 - Calculate the metric values 

cs and the desired 
ch

  - Select transformations that allow 
these 

Propose the transformations that correspond to the 
ext of c 

EndIf 

5.4

amples of the application of 
OO1. These examples are classes of a multiagent system 

B, OrdRulesKB and MsgRulesKB. The 
alues for the inheritance and coupling metrics are given 

.

s ExecR sKB  Ms

 - Apply quality rules 
 If a negative rule applies then 
  - Choose the metri
anges to their values 

changes 

- 
cont

 
EndFor  
 
 Examples and discussion 
 
To illustrate the approach proposed in this paper, we 

present in this section two ex

coded in C++ called LALO. 
 

Example 1: The case of XrulesKB classes. Three classes 
were detected by OO1 as a bad design from the 
maintainability point of view according to rules INH6 and 
CPL4. These three classes are called respectively 
ExecRulesK
v
in Table 6  
 
Metric ule
CLD 0 0 0 
NOC 0 0 0 
NMO 0 0 0 
NMI 0 0 0 
NMA 9 9 9 
SIX 0 0 0 
CBO 3 3 3 
IH-ICP 0 0 0 
DAC’ 0 0 0 
ACAIC 0 0 0 

gRulesKB OrdRulesKB 

DMMEC 0 0 0 
OMMEC 2 2 2 

Ta

remove, export_engine_data, 
reg

tion. We were not surprised to find 
in the same system, three other classes named respectively 
ExecRule, OrdRule and MsgRule with an abstract class 
Rule (see Figure 2).  

 

ble 6. Inheritance and coupling metrics for the 
XRulesKB classes 

 
void that rule INH6 applies for each of the three 

classes, we have to increase the value of NOC or increase 
the value of NMO or increase the value of NMI. From 
Table 2, column Ci, we can suggest to create an abstract 
class for the three classes. As the three classes have 5 
common methods (add, 

To a

istration and the = operator), the NMO values for the 
three classes increase to 5, which is sufficient to avoid the 
application of rule INH6. 

This prescription is appropriate according to the 
context of lica the app

ExecRule MsgRule

Rule

OrdRule

ExecRulesKB MsgRulesKB OrdRulesKB

RulesKB

 
Fig

e classes are small and are already 
pre

e coupling point of view, if we want to avoid 
the

PL4 in section 5.1 and 

I
the fo ns are true: 

a

ure 2. A partial view of the sys LO and the 
prescription of OO1 (dotted lines) 

 
Another prescription is given by Table 4, column Ca. 

OO1 propos te for each class a set of specialized 
subclasses. The thre

tem LA

es to crea

tty much specialized. A user can then reject this 
suggestion. Figure 3 shows the suggestions of OO1 for 
this particular case. 

 thFrom
 application of rule CPL4, we have to increase OCAIC 

or DMMEC at least by 1 (see rule C
Table 1).  

ncreasing the value of  by 1 can be possible if 
itiollowing cond

 OCAIC

1. We can create an aggregated class from an XrulesKB 
class as stated by Table 5, column C  (OCAIC 

[ ]TR,01 A−+ ). 



2. No attribute is transferred to the created class 
attributes (|ATR|=0).  

After examining the content of the three classes, such a 
tra

Anot
subclasses to i

nsformation is not concretely feasible. Therefore, a user 
can reject this prescription. 

column “Classes referenced in the code of conditional 
expressions”). Even if this transformation is theoretically 
possible, the particular context of the application does not 
allow it. 

her possible prescription is to create specialized 
ncrease the value of DMMEC (see Table 4, 

 

 
for the

O1 as having bad 
aintainability according to rules INH5, CPL3 and CPL4 

(see Table a
 

Metrics KQML ct 

Figure 3. Some prescription alternatives given by OO1 
 

Example 2: The case of KQMLObject class. A class 
name LObject was detected by O

 case of XRulesKB classes 

Table 7. Inheritance and coupling metrics for 
Md KQM

OMMEC 76 

KQ LObject class 
o prevent the a ion of rule INH5, we have to m T

the 

a

a
3. 

 the possible values of 

simplify the code of KQMLObject. 

pplicat

ease CLD

attribute

7 for the v lues of metrics). 

Obje
CLD 0 
NOC 0 
NMO 10 
NMI 0 
NMA 14 
SIX 0.41 
CBO 3 
IH-ICP 0 
DAC’ 0 
ACAIC 0 
DMMEC 0 

increase the value of CLD or decrease the value of NMA. 
Four possible transformations to incr  appear in 

impact tables: 
1. Create an abstract class as a direct subcla

QMLObject (Table 2, column C ).  
ss of 

K

MLObje
 

2. Create an abstract class as descendent but non-direct 
subclass of KQ ct (Table 2, column 
“Ancestors of C ”). 
Create specialized subclasses of  KQMLObject (Table 
4, column Ca) 

4. Create specialized subclasses of one of the subclasses 
of KQMLObject (Table 4, column “Ancestors of 
Ca”). 

As KQMLObject is a leaf class, only transformation 3 
is proposed. All the others suppose that KQMLObject has 
subclasses. When we examined the code to verify if 
transformation 3 is concretely possible, we found that 
some condition expressions concern
a particular attribute (performative_number). This is an 
indicator of a bad design. Creating subclasses that 
corresponds to the different values of this  will 



Another possible suggestion was to propose to 
factorize KQMLObject with other possi esble class  to 
decrease the value of NMA according to Table 2 and 
column Ci. However, KQMLObject is already 
factored with the only sister it has (see Figure 4). 

 
Message

HttpObject KqmlObject
 

Figure 4. Hierarchy of KQMLObject 
 
From the coupling f view, the only interesting 

prescription is to create an aggregated class. This avoids 
the application of rules CPL3 and CPL4 by varying the 
value of OCAIC (Table 5, column Ca). The class 
KQMLOb e and tject is too larg

ation possible. T

 point o

oo complex to make such a 
transform he only condition is to find a 

to transfer without transferring any subset of methods 
attribute ( [ ,01 A−+ ]TR  > 0). 

ndeed, our approach can help a 
de

n cannot be executed 
wi

ible to automate the implementation of 
a sign pattern into an existing code. However, this 

tomate why and where implementing 
the
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