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Abstract—Nowadays, many tools are available for metric 
extraction. However, extending these tools with new metrics or 
modifying the calculation of existing ones is often difficult, 
sometimes impossible. Indeed, many of them are black box 
tools. Others can be extended only by modifying third-party 
code. Moreover, metric specifications often lack precision, 
which leads to implementations that do not correspond 
necessarily to users’ expectations. In this paper, we propose a 
flexible approach for metric collection based on a metric 
description language that allows manipulating basic data 
extracted from the code. These data are mapped to a generic 
object-oriented meta-model that is language agnostic. This 
makes it easy to focus on the metric specification rather than 
language specific constructs. Metric specifications are 
interpreted automatically to extract their corresponding values 
for a target program. 

Keywords-Metric extraction; object-oriented metrics; source 
code representation; meta-model. 

I.  INTRODUCTION 
Metrics are powerful support tools in software 

development and maintenance. They are used to assess 
software quality [5], estimate complexity [10], predict 
cost/effort [11, 2], and control/improve processes. A huge 
number of metrics have been proposed [1, 2, 7, 8, 11] during 
the last two decades, and new metrics are introduced 
continuously. However, most of them are defined informally, 
using natural language. Due to this lack of formalization, 
different tools implement the same metrics differently, and 
the results may vary significantly depending on the language 
targeted by a metric extraction tool. This makes it very 
difficult to compare different analysis approaches that use 
the same metrics based on empirical results [3]. 

Most of the existing tools are black boxes. The 
specifications of the implemented metrics are embedded in 
the code and may not correspond to the users’ expectations. 
Moreover, they are significantly limited by their inability to 
be extended to support new metrics. Indeed, it is often very 
difficult to define new metrics without putting a lot of efforts 
understanding and modifying the existing code. 

In order to circumvent the limitations presented above, 
we propose an approach for metric collection that uses two 
main mechanisms. The first is a source-code representation 
mechanism which is based on a language-independent meta-

model. The elements of the meta-model allow representing 
relevant information derived from the source code. The 
second mechanism is a declarative language to describe 
metrics. It is constituted of operations and a set of primitives 
to manipulate the elements of the source-code 
representations. These two mechanisms form a generic and 
flexible framework that allows users to define new metrics 
without addressing specifically the particularities of a 
programming language. Indeed, the meta-model is designed 
in a way that allows supporting many object-oriented (OO) 
languages. The metric description language is also generic in 
the sense that new metrics can be added without modifying 
the code of the framework.  

The remainder of this paper is structured as follows. In 
the next section, we present an overview of our approach. 
Section 3 is dedicated to the description of the program 
representation meta-model. The metric description language 
is explained in Section 4. Section 5 is dedicated to case 
studies that illustrate the specification and the collection of a 
representative set of existing metrics. Related work is 
discussed in Section 6, and concluding remarks are presented 
in Section 7. 

II. OVERVIEW OF THE APPROACH 
We propose a generic framework to collect metrics for 

object-oriented applications. The architecture of our 
framework, shown in Fig. 1, contains two main components: 
(1) the source code representation sub-system that is 
responsible for parsing and mapping programs and (2) the 
metric collection sub-system that implements the mechanism 
for metric specification and extraction. 

The goal of the source code representation sub-system is 
the extraction, from the source code, of the basic elements 
that are necessary for metric computation. For each 
supported programming language, a module, named parsing 
& mapping (see Fig. 1), maps a program to a representation 
that conforms to the generic meta-model described in 
Section 3.  

The metric collection sub-system includes the metric 
description language and an evaluation module that 
interprets and executes the metrics descriptions on the 
generated representations. As metric descriptions are 
intended to be interpreted and executed automatically, 
metrics are specified in an unambiguous way. The details of 
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the metric description languages are given in Section 5. The 
module Evaluator uses a generic procedure to interpret the 
metric descriptions and to compute the values accordingly.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Architecture of the metric extraction framework  

III. OO PROGRAM REPRESENTATION 
As stated before, metrics are computed using data 

extracted from the source code. To facilitate the 
manipulation of these data, we defined a meta-model that 
includes OO programming key concepts. Indeed, this meta-
model is designed to support typed object-oriented programs 
written in different programming languages (e.g., C++, C#, 
Eiffel, and Java). 

Achieving independence from programming languages is 
far from being a trivial task. In fact, even if some concepts 
are syntactically equivalent in different languages, their 
semantics might be significantly different from one language 
to another. In [6], examples of such semantics variations are 
discussed. Although the independence is difficult to achieve, 
in our case, the problem is made easier by the fact that we 
limit ourselves uniquely to those concepts that are relevant to 
the metric computation. 

In the design of the meta-model, we consider three parts, 
each corresponding to a category of concepts:  
1. Common concepts for which the syntax and the 

semantics are similar for all supported languages. These 
are the common concepts of object-oriented languages 
such as classes, methods and attributes. In this case, the 
mapping is straightforward. Such concepts are mapped 
to the elements ClassDef, Method, and Attribute in the 
meta-model for instance (see the partial view of the 
meta-model in Fig. 2).  

 

2. Variable concepts with similar syntax but variation 
in the semantics. A well-known example of this 
category is inheritance. Indeed, different languages have 
different operational semantics of inheritance with, in 
particular, different method-lookup strategies. To 
circumvent this problem, the semantic of these concepts 
is interpreted and explicitly represented during the 
mapping of the source code. In the case of inheritance 
relationship, methods and attributes are duplicated in the 
sub-classes according to the semantic of the considered 
language. Therefore, during metric extraction, the 
description is interpreted without any adaptation to the 
source language. Other examples of concepts that fall 
into this category are polymorphism (gathering 
overloaded methods), attribute access (collecting 
attributes manipulated by a given method), method 
invocation (collecting methods called within a given 
method), etc. 

3. Specific concepts that exist only in a particular 
language. Language specific concepts are integrated in 
the meta-model explicitly. For example, Entity 
represents the notion of abstraction in the different OO 
languages (Fig. 2). It is specialized in Interface, Union, 
or Template that are present in Java or C++. In other 
words, we simply include in the meta-model the specific 
concepts of each language we consider. 

 
Considering the three categories of concepts presented 

above, we obtain a generic meta-model in which both 
syntactical constructs and semantic aspects are mapped. 
General metrics are specified using the two first categories 
concepts. The third category is sometimes used at an abstract 
level. For example, in some metrics we can count the entities 
independently from their specific nature. Language specific 
metrics are specified using the three categories. 

As it is presented in Fig. 1, the code representation 
conforming to the meta-model is generated by a module 
parsing and mapping. Thus, in order to adapt the framework 
to a particular programming language, a module should be 
implemented specifically for this language. This module is 
responsible for identifying the three categories of concepts 
and mappings them according to their nature.  

The proposed meta-model currently supports common 
OO concepts. Based on our experience with OO languages, 
we suggest that supporting new ones or considering new 
language releases will require very few changes in the meta-
model, in addition to modifying/adding mapping modules. 

IV. 4. METRIC DESCRIPTION AND EXTRACTION 

A. Description Language 
Our framework is designed for product metrics that can 

be calculated from the source code. These include design 
metrics (e.g., design coupling metrics). Extraction uses 
information derived from the generic representations. 
Therefore, to express a metric, we need mechanisms able to  
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Figure 2.  A Partial View of Source Code Meta-Model 

 
access data in the representation and perform operations 

on them. Thus, we identify the following four main 
mechanisms that can be combined: 

 
• Selection. Roughly speaking, in source code 

representations, occurrences (program elements) of a 
meta-model concept have properties and are related 
by different types of relationships. For many metrics, 
it is necessary to select the instances of a particular 
concept, e.g., all the classes of a program.  

• Filtering. Selection allows collecting all the 
instances of the same concept. In many case, not all 
the instances are of interest. We need then to choose 
a subset whose elements share one or more 
properties, e.g., only the public attributes.  

• Navigation. Selection and filtering concentrate on 
concepts and their properties. Navigation allows 
exploring the neighborhood of an element through 
its relations. As a result metrics that involve multiple 
concepts can be expressed. For example, by 
navigation, one can determine the set of attributes of 
a particular class or the parameters of a method.  

• Operations. The three previous mechanisms allow 
mainly the derivation of sets of elements. To go 
from sets to metric values, specific operations are 
needed. These can be set or arithmetic operations. 
Comparators are also necessary for expressing 
conditions for filtering and navigation. 

Starting from the four above-mentioned mechanisms, we 
designed the metric description language, named PatOIS (for 
Primitives, Operations, Iterator, and acceSsors), whose 
features are described in the remainder of this section. 

The basic features of PatOIS are Primitives. These are 
procedures that allow selecting the base sets from the code 
representation. Primitives are hard-coded and are used as 
library functions when describing metrics. Two types of 
primitives are defined. The basic ones return a set of 
instances for a given concept in the meta-model. classes(), 
interfaces(), and methods() are examples of primitives that 
select the instances of respectively concepts Class, Interface, 
and Method for a particular program. The second type of 
primitives return a set of the elements related to a specified 
element by a particular relationship. Examples of these 
primitives are methods(c), parameters(m), children(c) that 
give respectively the set of methods of a class c, the 
parameters of a method m, and the subclasses of a class c. 
The third type of primitives is the user-defined ones. They 
are implemented either for complex calculation or to reuse 
recurring descriptions. Examples of these metrics are the 
calculation of the distance between a class c and a root/leaf 
classes in the inheritance tree.  

The second important feature is Operations. Three 
categories of operations can be used: arithmetic (sum, minus, 
max, min, etc.), comparison (between numbers such as == 
and >, or between strings), and set (union, intersection, etc.) 
operations. A particular and useful operation is cardinality 
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that converts sets into numbers by giving their sizes. It can 
be applied to a basic primitive set such as |classes()| or 
relationship primitive such as |parameter(m)|. 

Property access is the third category of features. They 
allow to access element properties. For example, the 
operation c.visibility returns the visibility of the class c.  

The last feature is Iterator. It enables the manipulation 
of elements of a set. The simplified syntax of this operator is  

 
forAll (x : inputSet ; 

      condition_clause ;  
      SET AssignOperator expression) 

 
For each element x of inputSet, if the condition 

(condition_clause) is true, then the predefined variable SET 
receives the value of expression. The returned value is the set 
of element in SET at the end of the iteration. For example, 
the set of public classes can be obtained by iterating on the 
elements of the primitive classes() with the condition that the 
property visibility is equal to public. Formally:  

 
);.();:( cSETpublicvisibilitycclassescforAll =+==  

 
The language has a very few simple syntactic constructs. 

It does not require an important learning effort. Moreover, as 
it will be seen in Section 5, it can be used to implement the 
commonly-used metrics such as complexity, inheritance, 
cohesion and coupling metrics with very few primitives and 
compact descriptions.  

B.  Evaluator Module 
As we mentioned previously, metric computation is 

performed by the Evaluator module. The latter takes as input 
the metric descriptions file and evaluates it.  

A metric description file is composed of two parts. The 
first part contains the individual descriptions of a set of 
metrics. The second part contains the operational statements 
that allow specifying the output format (text, tables, or 
histograms) and the computation scope. For example, class 
metrics can be computed on all the classes of a program or 
only on a subset satisfying a condition (same for method 
metrics). 

The evaluator is a language interpreter. First, it parses the 
description file and generates a syntax graph. The parser is 
developed using Flex and Cup generators1. Then, it performs 
type checking on the graph nodes and tags them accordingly 
(primitive call, property access, etc.). Finally, it evaluates the 
nodes according to the implementation of the corresponding 
features. 

V. CASE STUDY 
To evaluate the usefulness of our framework, we first 

implement a large set of commonly used metrics at program 
level (10 metrics), class level (20 metrics) and method level 
(6 metrics). Metrics measure size/complexity, inheritance, 

                                                           

1 Flex:flex.sourceforge.net  
Cup: www2.cs.tum.edu/projects/cup/  

coupling, and cohesion attributes. Some are at the design 
level, others at the implementation level. Examples of these 
metrics are given in the first subsection. Secondly, we use 
the framework on a set of C++ and Java programs with size 
varying between 100 and 400 classes (second subsection) 

A.  Implemented Metrics 
When implementing the metrics, we identified four 

categories depending on features involved. We describe here 
these four categories. 

1) Basic Metrics: These are metrics whose 
implementation requires mainly cardinality operators on 
basic primitives. 

At the program level for example, the number of classes 
CLS is calculated as follows: 

 
():() classesCLS  

 
Similarly, the number of methods NOM in the program 

or a class c is expressed respectively as: 
 

():() methodsNOM  

)(:):( cmethodsclasscNOM  
 

Finally at the method level, the number of parameters 
PAR of a method m is simply described by: 

 

)(:):( mparametersmethodmPAR  
 

2) Complex Metrics: For some metrics, complex 
constructs are involved (mainly Iterator). Consider, for 
example, at the program level, metrics NIC, measuring the 
number of independent classes, i.e., classes with neither 
parents nor children. Its calculation necessitates to iterate 
over the classes as follows:  

;|);0)(

&&0)(;():(|:()

cSETcchildren

cparentclassescforAllNIC

=+==

==  

 
At the class level, the metric ACAIC (Ancestor Class-

Attribute Import Coupling) is also a complex metric in which 
different features are involved in its implementation. This 
metric corresponds to the number of the attributes of a class 
c, whose types are within the ancestors of c. Its 
implementation is as follows:  

 

|)
;)()(&&)(

;)(:(|:):(

aSET
cancestorsatypeofaisNew

cattributesaforAllclasscACAIC

=+
∈  

 
In the implementation of ACAIC, in which iterator 

feature is used and the primitives isNew and typeof as well, 
we iterate over the attributes of the class c. The primitive 
isNew(a) is a predicate that returns true if the attribute is 
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defined in class c. The primitive typeof (a) returns the type of 
the attribute a.  

The primitive attributes(c) (and methods(c) as well) 
returns the attributes (or methods) defined in the class c and 
those inherited from its ancestors. The predicates isNew, 
isInherited and isOverriden (only for methods) could be used 
to identify the status the attribute (or the method).  

For some metrics, it is necessary to define intermediate 
calculations that can be called from the metric description. 
For example, LCOM [8] measures the lack of cohesion 
within a class c as the number of pairs of methods defined in 
c that do not access to the same attributes. Its calculation is 
based on the sets: attributeDef(c) (attribute defined in c, i.e., 
not inherited), methodDef(c) (same as for attributes), and 
attributeUse(c, m, n) (attributes defined in c, which are 
accessed jointly by methods m and n). These three sets are 
first described as follows: 

 

)(
)()(

:):,:,:(
));(&&)(

);(:(:):(
));(

);(:(:):(

nccessattributeA
mccessattributeAcefattributeD

methodnmethodmclasscseattributeU
mSETmnisOverridemisNew

cmethodsmforAllclasscmethodDef
aSETaisNew

cattributesaforAllclasscefattributeD

∩∩

=+

=+

 

 
The metric is then described by call the above-mentioned 

sets: 

{ } 2/|),
;)(&&!

;)(:,)(:(|
:):(

nmSET
emptySetcseattributeUnm

cmethodsDefncmethodsDefmforAll
classcLCOM

=+
===

 

 
3) Metrics based on other metrics: PatOIS allows the 

use of already implemented metrics to define new ones. 
Hence, already described metrics can be used as library 
functions and called when needed. Many metrics can be 
described concisely by reusing existing ones.  

The metric AID (Average Inheritance Depth) [7] is such a 
metric which is based on other metrics. This metric is a ratio 
between the depth in inheritance tree for each class (metric 
DIT which is presented in the next sub-section) and the 
number of all classes (metric CLS presented previously).  

 

()/)))(;();:((
:()

CLScDITSETclassescforAllsum
AID

=+
 

 
The implementation of AID requires the use of the built-

in function sum.  
4) Metrics with specific primitives: In the previous 

examples, we used primitives that return a set of instances of 
a given concept in the meta-model. For some metrics more 
complex primitives are needed, for example, the metric DIT 
(Depth in Inheritance Tree) which represents the level of the 

class in its inheritance hierarchy. In the meta-model, 
inheritance is represented by a recursive link from the entity 
(e.g., class or interface) concept to itself. It corresponds to 
the inheritance relationship between an entity and its parent. 
Thus, an inheritance hierarchy is represented by a chain of 
entities. We defined a primitive, called inheritanceLevel, 
which returns the distance between two entities in the 
inheritance hierarchy. Therefore, DIT could be implemented 
by using this primitive. Its implementation is:  

 

))),(
;;)(:((max:):(

dceLevelinheritancSET
cancestorsdforAllclasscDIT

=+
 

B. Program Mapping 
In a first experiment, we considered C++ language. We 

used a parser, called Datrix, which produces an AST in text 
format. We implemented a mapping module to build the 
representation based on the meta-model. The constructs 
handled by the mapping module are classes, union, struct, 
template definitions, methods, attributes and functions. This 
module also mapped inheritance, method overriding, and 
friend relationship.  

We applied our approach on a C++ system, called 
LALO. It is a multi-agent system developed internally, 
which contains about 120 classes. We implemented a 
number of metrics related to complexity mainly such as the 
number of classes, templates and other entities, number of 
methods and attributes. We also calculated some coupling 
metrics based on the number of classes used to declare the 
attributes of a given class. For instance, ACAIC, OCAIC, and 
DCAEC.  

The parser Datrix produces an incomplete document 
(Text file of the AST) which does not contain some typing-
related data. As a result, some concepts in the meta-model 
were not mapped (e.g., methods invocation and attributes 
access). Therefore, the calculation of some metrics was not 
performed, such as LCOM, CBO and metrics based on 
method calls and attribute access.  

In the second experiment, we considered Java language, 
for which we implemented a Java parser that performs the 
mapping to all concepts of the meta-model. We used Cup2 
and JLex3  generators for the implementation of the Java 
parser. It also includes Java typing which is needed to map 
specific concepts, e.g., method calls and attribute access. 

The framework was applied on a set of small programs 
(less than 20 classes) for which it is easier to validate the 
results, on two medium size programs which contain 340 and 
380 classes, and finally on one more larger program (almost 
670 classes) to calculate over 35 metrics4.  

The results we obtained were verified manually. 
Actually, we calculated by hand all the metrics on the small 
programs and a subset of them (such as DIT, CLS, NMA and 
NMN) on the three larger programs used in the 

                                                           
2 www.cs.princeton.edu/~appel/modern/java/JLex/ 
3 www2.cs.tum.edu/projects/cup/ 
4 Tables 1,2, and 3 present a large selection of these metrics. 
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experimentation, and compared them with the values 
obtained by our framework. Some metrics, e.g., coupling 

metrics, are complex to calculated by hand on non small 
programs.  

TABLE I.  TABLE TYPE STYLES 

 

TABLE II.  TABLE TYPE STYLES 

 

TABLE III.  TABLE TYPE STYLES 

 
 

CLS: Number of classes Number of classes defined in the whole program. 

NBM: Number of module Number of all the modules of the program.  

NBF: Number of files Number of files of the program.  

NIS: Number of interface Number of all the interfaces defined in the program. 

NIC: Number of Independent classes Number of classes that do not have neither super classes nor sub-classes. 

TBI: Total base interfaces of system Number of interfaces that do not have neither super interfaces nor sub-
interfaces.  

AID: Average inheritance depth Ratio between the depth inheritance tree for each class and the total number 
of classes.  

DIT: Depth of Inheritance tree Class level in the inheritance tree.  

CLD: Class to Leaf Depth Higher distance between the class and its sub-classes. 

NOC/NOP: Number Of Children/Parents Number of direct sub/super classes.  

NOD/NOA: Number Of Descendants/Ancestors Number of all sub/super classes.  

NMO/NMI/NMN: Number of Methods Overridden/ 
Inherited/New 

Number of methods Overridden/ Inherited/New. 
 

NMA: Number Of Attributes Number of all the attributes. It includes the inherited ones. 

ACAIC: Ancestor class-attribute import coupling Number of classes, within the ancestors, used in attributes 
declaration.  

OCAIC: Others class-attribute import coupling Number of classes used in attributes declaration.  

DCAEC: Descendants class-attribute export coupling Number of classes, within the descendants, used in attributes 
declaration. 

ACMIC: Ancestors class-method import coupling Number of parameters whose type is within ancestors.  

DCMEC: Descendants class-method export coupling Number of parameters whose type is within descendants. 

CBO: Coupling between Object Number of other classes to which a class is coupled. 

LCOM: Lack of Cohesion Lack of cohesion in a class. 

PAR: Number of parameters Parameters number of a method. 

NEM: Number of external called method  Number of called method that are defined in other classes.  

NEA: Number of external used Attribute  Number of accessed attributes that are defined in other classes.  
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The results of most of the metrics are obtained in a 
reasonable time (less then one minute for the larger 
programs). However, some metrics take a longer time to be 
calculated, such as LCOM and CBO since their 
implementations are complex, and iterate over many sets 

As we mentioned previously, the Java parser performs 
typing. After implementing most of the typing specification 
[17], which is very long, we could use the framework to 
collect metrics on most of the existing Java programs. 
However, instead of completing the implementation of 
typing specification, we plan to implement a new mapping 
module based on Eclipse framework parser and migrate to 
Java 5 grammar at the same time.  

VI. RELATED WORKS  
Metric collection is the basis for any measurement 

program. The adoption of such program depends heavily on 
the availability of flexible and efficient measurement tools. 
In this context, a number of approaches/tools are proposed. 
Some of them adapt existing technologies for the purpose of 
computing metrics. Baroni et al. [3, 4], for example, use 
OCL as a means to express metrics. Since OCL is defined to 
express constraints on UML class diagrams, design-related 
metrics can be implemented mainly as post-conditions. On 
the other hand, metrics in which implementation-related data 
are involved, such as implementation coupling metrics, 
cannot be directly defined using OCL.  

Similarly, Harmer and Wilkie [9] define a meta-model in 
the form of relational database schema, and use SQL to 
express metric calculations. However, for some complex 
metrics, SQL is mixed with a programming language.  

The SQL-based approach is also used by Lavazza et 
al.[13], to collect only UML-based metrics (design level).  

In the same family, El-Wakil et al. [14] propose the use 
of XQuery to compute metrics on UML models that are 
represented in XML documents. Eichberg et al.[15] also 
developed a framework, called QScope, for measuring 
software projects. It is built on top of Magellan framework in 
which all documents of a project are stored as XML 
documents. XQuery is used as a definition language to 
express metrics. This approach allows the user to collect 
metrics on different artifacts with the use of a uniform 
mechanism, i.e., XQuery.  

Using XML technology to represent UML models is not 
a complex task when dealing with design artifacts. However, 
in the case of source code, its representation in XML is very 
complex. Therefore, the implementation of metrics requires 
less intuitive and very complex XQuery code.  

The first limitation of the above-mentioned approaches is 
the lack of expressiveness of the languages used to 
implement many metrics. Indeed, these languages are not 
designed for this purpose. Moreover, they are by far more 
complex than our language because they use advanced 
programming language constructs.  

The second family of approaches proposes dedicated 
formalisms/languages. Mens et al. [12] define an object-
oriented meta-model as graphs and a formalism for metric 

definition based on graph manipulation. Using this 
formalism, they define three generic metrics: NodeCount, 
EdgeCount and PathLength, and a number of complementary 
higher-order metrics (e.g. ratio, sum, and average). Starting 
from these generic and higher-order metrics, more than 30 
object-oriented metrics have been implemented. Although, 
this contribution is similar to our, it is limited to metrics that 
can be formulated in terms of nodes count, edges count, and 
path length. 

Marinescu et al. [16] propose a simplified 
implementation of object-oriented design metrics. In their 
approach, a new interpreted language, called SAIL, is 
defined to express metrics. This language, which has 
similarities with a programming language augmented with 
SQL-style constructs, aims at simplifying and reducing the 
complexity overhead caused by the use of a programming 
language. Indeed, it offers constructs in order to implement 
key mechanisms, such as filtering, navigation, and selection. 
In comparison with our language, SAIL is at a lower 
abstraction level and can be rather compared to SQL queries. 

VII. CONCLUSION 
In this paper, we presented our framework for metric 

extraction, based on a high-level description language 
dedicated to metric computation. Our approach enables users 
to adapt existing metrics to their needs, and extend new 
metrics with reasonable effort. Moreover, it allows 
specifying metrics that can be calculated on programs written 
in different languages. The metric description language 
PatOIS allows combining existing primitives and eventually 
pre-existing metrics using operations and iterators to produce 
new metrics in an unambiguous way.  

Using our framework, we implemented a variety of 
existing size/complexity, inheritance, coupling and cohesion 
metrics in the form of concise descriptions at program, class 
and method levels. Once, the language is understood few 
minutes are needed to implement most of the existing 
metrics compared to the long coding and debugging time 
when using a programming language. A screenshot of the 
framework is shown in Fig. 3.  

Although the experiments showed that our approach is 
feasible and scalable, there is still a room for improvement. 
For example, the Evaluator module can be optimized to 
efficiently calculate metrics such as coupling metrics. 
Optimization techniques from compiler domain such as loop 
optimization might be considered. We also plan to consider 
implementation of mapping modules for other language such 
as C#. 
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