
A Metric Extraction Framework Based on a High-Level Description
Language

El Hachemi Alikacem
Centre de Recherche Informatique de Montréal

Montreal, Qc, Canada
alikacem@crim.ca

Houari A. Sahraoui
Département d’informatique et recherche opérationnelle

Université de Montréal
Montreal, Qc, Canada

sahraouh@iro.umontreal.ca

Abstract—Nowadays, many tools are available for metric
extraction. However, extending these tools with new metrics or
modifying the calculation of existing ones is often difficult,
sometimes impossible. Indeed, many of them are black box
tools. Others can be extended only by modifying third-party
code. Moreover, metric specifications often lack precision,
which leads to implementations that do not correspond
necessarily to users’ expectations. In this paper, we propose a
flexible approach for metric collection based on a metric
description language that allows manipulating basic data
extracted from the code. These data are mapped to a generic
object-oriented meta-model that is language agnostic. This
makes it easy to focus on the metric specification rather than
language specific constructs. Metric specifications are
interpreted automatically to extract their corresponding values
for a target program.

Keywords-Metric extraction; object-oriented metrics; source
code representation; meta-model.

I. INTRODUCTION
Metrics are powerful support tools in software

development and maintenance. They are used to assess
software quality [5], estimate complexity [10], predict
cost/effort [11, 2], and control/improve processes. A huge
number of metrics have been proposed [1, 2, 7, 8, 11] during
the last two decades, and new metrics are introduced
continuously. However, most of them are defined informally,
using natural language. Due to this lack of formalization,
different tools implement the same metrics differently, and
the results may vary significantly depending on the language
targeted by a metric extraction tool. This makes it very
difficult to compare different analysis approaches that use
the same metrics based on empirical results [3].

Most of the existing tools are black boxes. The
specifications of the implemented metrics are embedded in
the code and may not correspond to the users’ expectations.
Moreover, they are significantly limited by their inability to
be extended to support new metrics. Indeed, it is often very
difficult to define new metrics without putting a lot of efforts
understanding and modifying the existing code.

In order to circumvent the limitations presented above,
we propose an approach for metric collection that uses two
main mechanisms. The first is a source-code representation
mechanism which is based on a language-independent meta-

model. The elements of the meta-model allow representing
relevant information derived from the source code. The
second mechanism is a declarative language to describe
metrics. It is constituted of operations and a set of primitives
to manipulate the elements of the source-code
representations. These two mechanisms form a generic and
flexible framework that allows users to define new metrics
without addressing specifically the particularities of a
programming language. Indeed, the meta-model is designed
in a way that allows supporting many object-oriented (OO)
languages. The metric description language is also generic in
the sense that new metrics can be added without modifying
the code of the framework.

The remainder of this paper is structured as follows. In
the next section, we present an overview of our approach.
Section 3 is dedicated to the description of the program
representation meta-model. The metric description language
is explained in Section 4. Section 5 is dedicated to case
studies that illustrate the specification and the collection of a
representative set of existing metrics. Related work is
discussed in Section 6, and concluding remarks are presented
in Section 7.

II. OVERVIEW OF THE APPROACH
We propose a generic framework to collect metrics for

object-oriented applications. The architecture of our
framework, shown in Fig. 1, contains two main components:
(1) the source code representation sub-system that is
responsible for parsing and mapping programs and (2) the
metric collection sub-system that implements the mechanism
for metric specification and extraction.

The goal of the source code representation sub-system is
the extraction, from the source code, of the basic elements
that are necessary for metric computation. For each
supported programming language, a module, named parsing
& mapping (see Fig. 1), maps a program to a representation
that conforms to the generic meta-model described in
Section 3.

The metric collection sub-system includes the metric
description language and an evaluation module that
interprets and executes the metrics descriptions on the
generated representations. As metric descriptions are
intended to be interpreted and executed automatically,
metrics are specified in an unambiguous way. The details of

2009 Ninth IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-3793-1/09 $25.00 © 2009 IEEE

DOI 10.1109/SCAM.2009.27

159

2009 Ninth IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-3793-1/09 $26.00 © 2009 IEEE

DOI 10.1109/SCAM.2009.27

159

the metric description languages are given in Section 5. The
module Evaluator uses a generic procedure to interpret the
metric descriptions and to compute the values accordingly.

Figure 1. Architecture of the metric extraction framework

III. OO PROGRAM REPRESENTATION
As stated before, metrics are computed using data

extracted from the source code. To facilitate the
manipulation of these data, we defined a meta-model that
includes OO programming key concepts. Indeed, this meta-
model is designed to support typed object-oriented programs
written in different programming languages (e.g., C++, C#,
Eiffel, and Java).

Achieving independence from programming languages is
far from being a trivial task. In fact, even if some concepts
are syntactically equivalent in different languages, their
semantics might be significantly different from one language
to another. In [6], examples of such semantics variations are
discussed. Although the independence is difficult to achieve,
in our case, the problem is made easier by the fact that we
limit ourselves uniquely to those concepts that are relevant to
the metric computation.

In the design of the meta-model, we consider three parts,
each corresponding to a category of concepts:
1. Common concepts for which the syntax and the

semantics are similar for all supported languages. These
are the common concepts of object-oriented languages
such as classes, methods and attributes. In this case, the
mapping is straightforward. Such concepts are mapped
to the elements ClassDef, Method, and Attribute in the
meta-model for instance (see the partial view of the
meta-model in Fig. 2).

2. Variable concepts with similar syntax but variation
in the semantics. A well-known example of this
category is inheritance. Indeed, different languages have
different operational semantics of inheritance with, in
particular, different method-lookup strategies. To
circumvent this problem, the semantic of these concepts
is interpreted and explicitly represented during the
mapping of the source code. In the case of inheritance
relationship, methods and attributes are duplicated in the
sub-classes according to the semantic of the considered
language. Therefore, during metric extraction, the
description is interpreted without any adaptation to the
source language. Other examples of concepts that fall
into this category are polymorphism (gathering
overloaded methods), attribute access (collecting
attributes manipulated by a given method), method
invocation (collecting methods called within a given
method), etc.

3. Specific concepts that exist only in a particular
language. Language specific concepts are integrated in
the meta-model explicitly. For example, Entity
represents the notion of abstraction in the different OO
languages (Fig. 2). It is specialized in Interface, Union,
or Template that are present in Java or C++. In other
words, we simply include in the meta-model the specific
concepts of each language we consider.

Considering the three categories of concepts presented

above, we obtain a generic meta-model in which both
syntactical constructs and semantic aspects are mapped.
General metrics are specified using the two first categories
concepts. The third category is sometimes used at an abstract
level. For example, in some metrics we can count the entities
independently from their specific nature. Language specific
metrics are specified using the three categories.

As it is presented in Fig. 1, the code representation
conforming to the meta-model is generated by a module
parsing and mapping. Thus, in order to adapt the framework
to a particular programming language, a module should be
implemented specifically for this language. This module is
responsible for identifying the three categories of concepts
and mappings them according to their nature.

The proposed meta-model currently supports common
OO concepts. Based on our experience with OO languages,
we suggest that supporting new ones or considering new
language releases will require very few changes in the meta-
model, in addition to modifying/adding mapping modules.

IV. 4. METRIC DESCRIPTION AND EXTRACTION

A. Description Language
Our framework is designed for product metrics that can

be calculated from the source code. These include design
metrics (e.g., design coupling metrics). Extraction uses
information derived from the generic representations.
Therefore, to express a metric, we need mechanisms able to

Metric

Descriptions

Code Representation

Metric Results

Code capturing

Source
Code

Evaluator

Parsing

&
Mapping

160160

File

System

Module
TypedStructure

Entity

Class Interface

BasicType ArrayType
Feature

Method
Attribute

Parameter
Statement

has

has

IVarDeclarator

used

has

name

name

name

name

visibility=public|protected|private
modifier

name name

name
modifier

VarDeclatation

has

MethodUse
used

usedBy
CInheritance

VariableUse

Figure 2. A Partial View of Source Code Meta-Model

access data in the representation and perform operations

on them. Thus, we identify the following four main
mechanisms that can be combined:

• Selection. Roughly speaking, in source code

representations, occurrences (program elements) of a
meta-model concept have properties and are related
by different types of relationships. For many metrics,
it is necessary to select the instances of a particular
concept, e.g., all the classes of a program.

• Filtering. Selection allows collecting all the
instances of the same concept. In many case, not all
the instances are of interest. We need then to choose
a subset whose elements share one or more
properties, e.g., only the public attributes.

• Navigation. Selection and filtering concentrate on
concepts and their properties. Navigation allows
exploring the neighborhood of an element through
its relations. As a result metrics that involve multiple
concepts can be expressed. For example, by
navigation, one can determine the set of attributes of
a particular class or the parameters of a method.

• Operations. The three previous mechanisms allow
mainly the derivation of sets of elements. To go
from sets to metric values, specific operations are
needed. These can be set or arithmetic operations.
Comparators are also necessary for expressing
conditions for filtering and navigation.

Starting from the four above-mentioned mechanisms, we
designed the metric description language, named PatOIS (for
Primitives, Operations, Iterator, and acceSsors), whose
features are described in the remainder of this section.

The basic features of PatOIS are Primitives. These are
procedures that allow selecting the base sets from the code
representation. Primitives are hard-coded and are used as
library functions when describing metrics. Two types of
primitives are defined. The basic ones return a set of
instances for a given concept in the meta-model. classes(),
interfaces(), and methods() are examples of primitives that
select the instances of respectively concepts Class, Interface,
and Method for a particular program. The second type of
primitives return a set of the elements related to a specified
element by a particular relationship. Examples of these
primitives are methods(c), parameters(m), children(c) that
give respectively the set of methods of a class c, the
parameters of a method m, and the subclasses of a class c.
The third type of primitives is the user-defined ones. They
are implemented either for complex calculation or to reuse
recurring descriptions. Examples of these metrics are the
calculation of the distance between a class c and a root/leaf
classes in the inheritance tree.

The second important feature is Operations. Three
categories of operations can be used: arithmetic (sum, minus,
max, min, etc.), comparison (between numbers such as ==
and >, or between strings), and set (union, intersection, etc.)
operations. A particular and useful operation is cardinality

161161

that converts sets into numbers by giving their sizes. It can
be applied to a basic primitive set such as |classes()| or
relationship primitive such as |parameter(m)|.

Property access is the third category of features. They
allow to access element properties. For example, the
operation c.visibility returns the visibility of the class c.

The last feature is Iterator. It enables the manipulation
of elements of a set. The simplified syntax of this operator is

forAll (x : inputSet ;

 condition_clause ;
 SET AssignOperator expression)

For each element x of inputSet, if the condition

(condition_clause) is true, then the predefined variable SET
receives the value of expression. The returned value is the set
of element in SET at the end of the iteration. For example,
the set of public classes can be obtained by iterating on the
elements of the primitive classes() with the condition that the
property visibility is equal to public. Formally:

);.();:(cSETpublicvisibilitycclassescforAll =+==

The language has a very few simple syntactic constructs.

It does not require an important learning effort. Moreover, as
it will be seen in Section 5, it can be used to implement the
commonly-used metrics such as complexity, inheritance,
cohesion and coupling metrics with very few primitives and
compact descriptions.

B. Evaluator Module
As we mentioned previously, metric computation is

performed by the Evaluator module. The latter takes as input
the metric descriptions file and evaluates it.

A metric description file is composed of two parts. The
first part contains the individual descriptions of a set of
metrics. The second part contains the operational statements
that allow specifying the output format (text, tables, or
histograms) and the computation scope. For example, class
metrics can be computed on all the classes of a program or
only on a subset satisfying a condition (same for method
metrics).

The evaluator is a language interpreter. First, it parses the
description file and generates a syntax graph. The parser is
developed using Flex and Cup generators1. Then, it performs
type checking on the graph nodes and tags them accordingly
(primitive call, property access, etc.). Finally, it evaluates the
nodes according to the implementation of the corresponding
features.

V. CASE STUDY
To evaluate the usefulness of our framework, we first

implement a large set of commonly used metrics at program
level (10 metrics), class level (20 metrics) and method level
(6 metrics). Metrics measure size/complexity, inheritance,

1 Flex:flex.sourceforge.net
Cup: www2.cs.tum.edu/projects/cup/

coupling, and cohesion attributes. Some are at the design
level, others at the implementation level. Examples of these
metrics are given in the first subsection. Secondly, we use
the framework on a set of C++ and Java programs with size
varying between 100 and 400 classes (second subsection)

A. Implemented Metrics
When implementing the metrics, we identified four

categories depending on features involved. We describe here
these four categories.

1) Basic Metrics: These are metrics whose
implementation requires mainly cardinality operators on
basic primitives.

At the program level for example, the number of classes
CLS is calculated as follows:

():() classesCLS

Similarly, the number of methods NOM in the program

or a class c is expressed respectively as:

():() methodsNOM

)(:):(cmethodsclasscNOM

Finally at the method level, the number of parameters
PAR of a method m is simply described by:

)(:):(mparametersmethodmPAR

2) Complex Metrics: For some metrics, complex
constructs are involved (mainly Iterator). Consider, for
example, at the program level, metrics NIC, measuring the
number of independent classes, i.e., classes with neither
parents nor children. Its calculation necessitates to iterate
over the classes as follows:

;|);0)(

&&0)(;():(|:()

cSETcchildren

cparentclassescforAllNIC

=+==

==

At the class level, the metric ACAIC (Ancestor Class-

Attribute Import Coupling) is also a complex metric in which
different features are involved in its implementation. This
metric corresponds to the number of the attributes of a class
c, whose types are within the ancestors of c. Its
implementation is as follows:

|)
;)()(&&)(

;)(:(|:):(

aSET
cancestorsatypeofaisNew

cattributesaforAllclasscACAIC

=+
∈

In the implementation of ACAIC, in which iterator

feature is used and the primitives isNew and typeof as well,
we iterate over the attributes of the class c. The primitive
isNew(a) is a predicate that returns true if the attribute is

162162

defined in class c. The primitive typeof (a) returns the type of
the attribute a.

The primitive attributes(c) (and methods(c) as well)
returns the attributes (or methods) defined in the class c and
those inherited from its ancestors. The predicates isNew,
isInherited and isOverriden (only for methods) could be used
to identify the status the attribute (or the method).

For some metrics, it is necessary to define intermediate
calculations that can be called from the metric description.
For example, LCOM [8] measures the lack of cohesion
within a class c as the number of pairs of methods defined in
c that do not access to the same attributes. Its calculation is
based on the sets: attributeDef(c) (attribute defined in c, i.e.,
not inherited), methodDef(c) (same as for attributes), and
attributeUse(c, m, n) (attributes defined in c, which are
accessed jointly by methods m and n). These three sets are
first described as follows:

)(
)()(

:):,:,:(
));(&&)(

);(:(:):(
));(

);(:(:):(

nccessattributeA
mccessattributeAcefattributeD

methodnmethodmclasscseattributeU
mSETmnisOverridemisNew

cmethodsmforAllclasscmethodDef
aSETaisNew

cattributesaforAllclasscefattributeD

∩∩

=+

=+

The metric is then described by call the above-mentioned

sets:

{ } 2/|),
;)(&&!

;)(:,)(:(|
:):(

nmSET
emptySetcseattributeUnm

cmethodsDefncmethodsDefmforAll
classcLCOM

=+
===

3) Metrics based on other metrics: PatOIS allows the

use of already implemented metrics to define new ones.
Hence, already described metrics can be used as library
functions and called when needed. Many metrics can be
described concisely by reusing existing ones.

The metric AID (Average Inheritance Depth) [7] is such a
metric which is based on other metrics. This metric is a ratio
between the depth in inheritance tree for each class (metric
DIT which is presented in the next sub-section) and the
number of all classes (metric CLS presented previously).

()/)))(;();:((
:()

CLScDITSETclassescforAllsum
AID

=+

The implementation of AID requires the use of the built-

in function sum.
4) Metrics with specific primitives: In the previous

examples, we used primitives that return a set of instances of
a given concept in the meta-model. For some metrics more
complex primitives are needed, for example, the metric DIT
(Depth in Inheritance Tree) which represents the level of the

class in its inheritance hierarchy. In the meta-model,
inheritance is represented by a recursive link from the entity
(e.g., class or interface) concept to itself. It corresponds to
the inheritance relationship between an entity and its parent.
Thus, an inheritance hierarchy is represented by a chain of
entities. We defined a primitive, called inheritanceLevel,
which returns the distance between two entities in the
inheritance hierarchy. Therefore, DIT could be implemented
by using this primitive. Its implementation is:

))),(
;;)(:((max:):(

dceLevelinheritancSET
cancestorsdforAllclasscDIT

=+

B. Program Mapping
In a first experiment, we considered C++ language. We

used a parser, called Datrix, which produces an AST in text
format. We implemented a mapping module to build the
representation based on the meta-model. The constructs
handled by the mapping module are classes, union, struct,
template definitions, methods, attributes and functions. This
module also mapped inheritance, method overriding, and
friend relationship.

We applied our approach on a C++ system, called
LALO. It is a multi-agent system developed internally,
which contains about 120 classes. We implemented a
number of metrics related to complexity mainly such as the
number of classes, templates and other entities, number of
methods and attributes. We also calculated some coupling
metrics based on the number of classes used to declare the
attributes of a given class. For instance, ACAIC, OCAIC, and
DCAEC.

The parser Datrix produces an incomplete document
(Text file of the AST) which does not contain some typing-
related data. As a result, some concepts in the meta-model
were not mapped (e.g., methods invocation and attributes
access). Therefore, the calculation of some metrics was not
performed, such as LCOM, CBO and metrics based on
method calls and attribute access.

In the second experiment, we considered Java language,
for which we implemented a Java parser that performs the
mapping to all concepts of the meta-model. We used Cup2
and JLex3 generators for the implementation of the Java
parser. It also includes Java typing which is needed to map
specific concepts, e.g., method calls and attribute access.

The framework was applied on a set of small programs
(less than 20 classes) for which it is easier to validate the
results, on two medium size programs which contain 340 and
380 classes, and finally on one more larger program (almost
670 classes) to calculate over 35 metrics4.

The results we obtained were verified manually.
Actually, we calculated by hand all the metrics on the small
programs and a subset of them (such as DIT, CLS, NMA and
NMN) on the three larger programs used in the

2 www.cs.princeton.edu/~appel/modern/java/JLex/
3 www2.cs.tum.edu/projects/cup/
4 Tables 1,2, and 3 present a large selection of these metrics.

163163

experimentation, and compared them with the values
obtained by our framework. Some metrics, e.g., coupling

metrics, are complex to calculated by hand on non small
programs.

TABLE I. TABLE TYPE STYLES

TABLE II. TABLE TYPE STYLES

TABLE III. TABLE TYPE STYLES

CLS: Number of classes Number of classes defined in the whole program.

NBM: Number of module Number of all the modules of the program.

NBF: Number of files Number of files of the program.

NIS: Number of interface Number of all the interfaces defined in the program.

NIC: Number of Independent classes Number of classes that do not have neither super classes nor sub-classes.

TBI: Total base interfaces of system Number of interfaces that do not have neither super interfaces nor sub-
interfaces.

AID: Average inheritance depth Ratio between the depth inheritance tree for each class and the total number
of classes.

DIT: Depth of Inheritance tree Class level in the inheritance tree.

CLD: Class to Leaf Depth Higher distance between the class and its sub-classes.

NOC/NOP: Number Of Children/Parents Number of direct sub/super classes.

NOD/NOA: Number Of Descendants/Ancestors Number of all sub/super classes.

NMO/NMI/NMN: Number of Methods Overridden/
Inherited/New

Number of methods Overridden/ Inherited/New.

NMA: Number Of Attributes Number of all the attributes. It includes the inherited ones.

ACAIC: Ancestor class-attribute import coupling Number of classes, within the ancestors, used in attributes
declaration.

OCAIC: Others class-attribute import coupling Number of classes used in attributes declaration.

DCAEC: Descendants class-attribute export coupling Number of classes, within the descendants, used in attributes
declaration.

ACMIC: Ancestors class-method import coupling Number of parameters whose type is within ancestors.

DCMEC: Descendants class-method export coupling Number of parameters whose type is within descendants.

CBO: Coupling between Object Number of other classes to which a class is coupled.

LCOM: Lack of Cohesion Lack of cohesion in a class.

PAR: Number of parameters Parameters number of a method.

NEM: Number of external called method Number of called method that are defined in other classes.

NEA: Number of external used Attribute Number of accessed attributes that are defined in other classes.

164164

The results of most of the metrics are obtained in a
reasonable time (less then one minute for the larger
programs). However, some metrics take a longer time to be
calculated, such as LCOM and CBO since their
implementations are complex, and iterate over many sets

As we mentioned previously, the Java parser performs
typing. After implementing most of the typing specification
[17], which is very long, we could use the framework to
collect metrics on most of the existing Java programs.
However, instead of completing the implementation of
typing specification, we plan to implement a new mapping
module based on Eclipse framework parser and migrate to
Java 5 grammar at the same time.

VI. RELATED WORKS
Metric collection is the basis for any measurement

program. The adoption of such program depends heavily on
the availability of flexible and efficient measurement tools.
In this context, a number of approaches/tools are proposed.
Some of them adapt existing technologies for the purpose of
computing metrics. Baroni et al. [3, 4], for example, use
OCL as a means to express metrics. Since OCL is defined to
express constraints on UML class diagrams, design-related
metrics can be implemented mainly as post-conditions. On
the other hand, metrics in which implementation-related data
are involved, such as implementation coupling metrics,
cannot be directly defined using OCL.

Similarly, Harmer and Wilkie [9] define a meta-model in
the form of relational database schema, and use SQL to
express metric calculations. However, for some complex
metrics, SQL is mixed with a programming language.

The SQL-based approach is also used by Lavazza et
al.[13], to collect only UML-based metrics (design level).

In the same family, El-Wakil et al. [14] propose the use
of XQuery to compute metrics on UML models that are
represented in XML documents. Eichberg et al.[15] also
developed a framework, called QScope, for measuring
software projects. It is built on top of Magellan framework in
which all documents of a project are stored as XML
documents. XQuery is used as a definition language to
express metrics. This approach allows the user to collect
metrics on different artifacts with the use of a uniform
mechanism, i.e., XQuery.

Using XML technology to represent UML models is not
a complex task when dealing with design artifacts. However,
in the case of source code, its representation in XML is very
complex. Therefore, the implementation of metrics requires
less intuitive and very complex XQuery code.

The first limitation of the above-mentioned approaches is
the lack of expressiveness of the languages used to
implement many metrics. Indeed, these languages are not
designed for this purpose. Moreover, they are by far more
complex than our language because they use advanced
programming language constructs.

The second family of approaches proposes dedicated
formalisms/languages. Mens et al. [12] define an object-
oriented meta-model as graphs and a formalism for metric

definition based on graph manipulation. Using this
formalism, they define three generic metrics: NodeCount,
EdgeCount and PathLength, and a number of complementary
higher-order metrics (e.g. ratio, sum, and average). Starting
from these generic and higher-order metrics, more than 30
object-oriented metrics have been implemented. Although,
this contribution is similar to our, it is limited to metrics that
can be formulated in terms of nodes count, edges count, and
path length.

Marinescu et al. [16] propose a simplified
implementation of object-oriented design metrics. In their
approach, a new interpreted language, called SAIL, is
defined to express metrics. This language, which has
similarities with a programming language augmented with
SQL-style constructs, aims at simplifying and reducing the
complexity overhead caused by the use of a programming
language. Indeed, it offers constructs in order to implement
key mechanisms, such as filtering, navigation, and selection.
In comparison with our language, SAIL is at a lower
abstraction level and can be rather compared to SQL queries.

VII. CONCLUSION
In this paper, we presented our framework for metric

extraction, based on a high-level description language
dedicated to metric computation. Our approach enables users
to adapt existing metrics to their needs, and extend new
metrics with reasonable effort. Moreover, it allows
specifying metrics that can be calculated on programs written
in different languages. The metric description language
PatOIS allows combining existing primitives and eventually
pre-existing metrics using operations and iterators to produce
new metrics in an unambiguous way.

Using our framework, we implemented a variety of
existing size/complexity, inheritance, coupling and cohesion
metrics in the form of concise descriptions at program, class
and method levels. Once, the language is understood few
minutes are needed to implement most of the existing
metrics compared to the long coding and debugging time
when using a programming language. A screenshot of the
framework is shown in Fig. 3.

Although the experiments showed that our approach is
feasible and scalable, there is still a room for improvement.
For example, the Evaluator module can be optimized to
efficiently calculate metrics such as coupling metrics.
Optimization techniques from compiler domain such as loop
optimization might be considered. We also plan to consider
implementation of mapping modules for other language such
as C#.

REFERENCES
[1] F. B. Abreu, M. Goulao, and R. Esteves, “Toward the design

quality evaluation of object-oriented software systems,”
Proceedings of the 5th International Conference on Software
Quality, Austin, Texas, USA, October 1995.

[2] F. B. Abreu, and W. L. Melo, “Evaluating the impact of
object-oriented design on software quality,” 3rd International
Software Metrics Symposium (Metrics'96), Berlin, Germany,
March. 1996.

165165

Figure 3. Screenshot of th framework

[3] A. L. Baroni, and F. Brito e Abreu, “An OCL-Based

formalization of the MOOSE metric suite,” In Proc. of
QUAOOSE'2003, at ECOOP'2003. Darmstadt, Germany.
July, 2003.

[4] A. L. Baroni, and F. Brito e Abreu, “A formal library for
aiding metrics extraction,” International Workshop on Object-
Oriented Re-Engineering at ECOOP'2003. Darmstadt,
Germany. July, 2003.

[5] V. R. Basili, L. Briand, and W. L. Melo. “A validation of
object-oriented design metrics as quality indicators,” IEEE
Transactions on Software Engineering, Vol. 22, No. 10, pp.
751-761, October 1996.

[6] A. Beugnard, “Method overloading and overriding cause
encapsulation flaw: an experiment on assembly of
heterogeneous components,” Proceedings of the 2006 ACM
Symposium on Applied Computing , (SAC), Dijon, France,
April 2006.

[7] L. C. Briand, J. W. Daly, and J. Wüst, “A unified framework
for coupling measurement in object-oriented systems,”
Technical report ISERN 96-14, Fraunhofer Institute for
Experimental Software Engineering, Germany, 1996.

[8] S. R. Chidamber, and C. F. Kemerer, “A metrics suite for
object-oriented design,” IEEE Transactions on Software
Engineering, 20 (6), 476-493, 1994.

[9] T. J. Harmer, and F. G. Wilkie. “An extensible metrics
extraction environment for object-oriented programming
languages,” Proceedings of IEEE International Conference on
Software Maintenance, Montreal, Canada, October 1 2002,
IEEE Computer Society, ISBN 0-7695-1793-5. 2002.

[10] S. Henry, and C. Selig, “Predicting source-code complexity at
the design stage,” IEEE Software 7, 2, pp. 36-44. 1990.

[11] W. Li, and S. Henry. “Object-oriented metrics that predict
maintainability,” Journal of Systems and Software, 23(2), pp.
111-122. 1993.

[12] T. Mens, and M. Lanza. “A graph-based metamodel for
oriented-oriented software metrics,” Electronic Notes in
Theoretical Computer Science, vol. 72, no. 2, 2002.
http://h20000.www2.hp.com/bizsupport/TechSupport/Home.j
sp.

[13] L. Lavazza, and A. Agostini, “Automated measurement of
UML models: an open toolset approach,” Journal of Object
Technology, 4(4):115-134. 2005.

[14] M. El Wakil, A. El Bastawissi, M. Boshra, A. Fahmy, “A
novel approach to formalize and collect object-oriented

166166

design-metrics,” In: Proceedings of the 9th International
Conference on Empirical Assessment in Software
Engineering. (2005).

[15] M. Eichberg, D. Germanus, M. Mezini, L. Mrokon, and T.
Schäfer, “QScope: an open, extensible framework for
measuring software projects,” In Proceedings of 10th
European Conference on Software Maintenance and
Reengineering (CSMR’06).

[16] C. Marinescu, R. Marinescu, and T. Gîrba, “Towards a
simplified implementation of object-oriented design metrics,"
in IEEE METRICS, p. 11, 2005.

[17] J. Gosling, B. Joy, G. Steele, G. Bracha, “The Java Language
Specification,” 2nd Edition.

167167

