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Abstract 

The assessment of the changeability of 
software systems is of major concern for buyers 
of the large systems found in fast-moving 
domains such as telecommunications. One way 
of approaching this problem is to investigate the 
dependency between the changeability of the 
software and its design, with the goal of finding 
design properties that can be used as 
changeability indicators. In the realm of object-
oriented systems, experiments have been 
conducted showing that coupling between 
classes is such an indicator. However, class 
cohesion has not been quantitatively studied in 
respect to changeability. In this research, we set 
out to investigate whether low cohesion is 
correlated to high coupling and thus is a 
changeability indicator, too. As cohesion 
metrics, LCC and LCOM were adopted, and for 
measuring coupling, the Chidamber and 
Kemerer coupling metrics and variants thereof 
were used. The data collected from three test 
systems of industrial size indicate no such 
correlation. Suspecting that the cohesion metrics 
adopted for the experiment do not adequately 
capture the cohesion property, we analyzed 
manually the classes with lowest cohesion 
values. We found various reasons why these 

classes, despite of their low cohesion values, 
should not be broken into smaller classes. We 
conclude that cohesion metrics should not only 
be based on common attribute usage between 
methods and on method invocation, but also on 
patterns of interaction between class members 
and, ultimately, on the functionality of methods 
and attributes. 
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1 Introduction 

The use of object-oriented (OO) technology for 
developing software has become quite widespread. 
Researchers assert that OO practice assures good 
quality software. By quality software, they mean 
maintainable, reusable, and easily extensible 
software. Industrial buyers want to be sure of the 
product quality they acquire. For this, they need OO 
measures, to evaluate the software they want to buy.  

For various reasons, Bell Canada, the industrial 
partner in this project, is interested in buying large-
scale software rather than developing it. It needs to be 
sure of the quality of the systems it acquires. The 
SPOOL project (Spreading desirable Properties into 
the design of Object-Oriented, Large-scale software 
systems), is a joint industry/university research 
project between the Quality Engineering and 
Research team of Bell Canada and the GELO group 
at the Université de Montréal. As part of the project, 
design properties are investigated as changeability 
indicators. 

Cohesion is an important quality property of OO 
designs. Several metrics have been proposed to 
quantify and measure this design property. In this 
paper, we try to assess cohesion as an indicator of 
changeability. In some previous works, coupling has 
been validated as a quality indicator. By showing a 
correlation between cohesion and coupling, we will 
be able to assert that cohesion is quality indicator, 
too. The paper is organized as follows. Section 2 
presents an overview of cohesion as a quality 
indicator and describes a potential relationship 
between cohesion and coupling. This relationship was 
tested empirically, as reported in Section 3. The 
negative result of the test led us to investigate the 
reasons behind this lack of relationship. This 
investigation is described in Section 4. Section 5, 
finally, summarizes the work and provides an outlook 
into future work. 

2 Cohesion and design quality 

Building quality OO systems relies on good design. 
To assess with some objectivity the quality of a 
design, we need to quantify design properties. Several 
software metrics have been developed to assess and 
control the design phase and its products. One of the 
most important criteria in OO design is cohesion. 
Module cohesion was introduced by Yourdon and 
Constantine as “how tightly bound or related the 
internal elements of a module are to one another” 
[YC79]. A module has a strong cohesion if it 

represents exactly one task of the problem domain, 
and all its elements contribute to this single task. 
They describe cohesion as an attribute of design, 
rather than code, and an attribute that can be used to 
predict reusability, maintainability, and changeability. 
However, these assumptions have never been 
supported by experimentation. 

2.1  Cohesion and cohesion metrics 

There is a consensus in the literature on the concept 
of class cohesion. A class is cohesive if it cannot be 
partitioned into two or more sets defined as follows. 
Each set contains instance variables and methods. 
Methods of one set do not access directly or indirectly 
variables of another set. Many authors have implicitly 
defined class cohesion by defining cohesion metrics. 
In the OO paradigm, most of the cohesion metrics are 
inspired from the LCOM metric defined by 
Chidamber and Kemerer (C&K) [CDK94]. 
According to these authors “if an object class has 
different methods performing different operations on 
the same set of instance variables, the class is 
cohesive”. As a metric for assessing cohesion, they 
define LCOM (Lack of Cohesion in Methods) as the 
number of pairs of methods in a class, having no 
common attributes, minus the number of pairs of 
methods sharing at least one attribute. The metric is 
set to zero when the value is negative. 

Li and Henry [LH93] redefine LCOM as the number 
of disjoint sets of methods accessing similar instance 
variables. 

Hitz and Montazeri [HM95] restate Li’s definition of 
LCOM based on graph theory. LCOM is defined as 
the number of connected components of a graph. A 
graph consists of vertices and edges. Vertices 
represent methods. There is an edge between 2 
vertices if the corresponding methods access the same 
instance variable. Hitz and Montazeri propose to split 
a class into smaller, more cohesive classes, if LCOM 
> 1. 

Bieman and Kang [BK95] propose TCC (Tight Class 
Cohesion) and LCC (Loose Class Cohesion) as 
cohesion metrics, based on Chidamber and Kemerer’s 
approach. They too consider pairs of methods using 
common instance variables. However, the way in 
which they define attribute usage is different. An 
instance variable can be used directly or indirectly by 
methods. An instance variable is directly used by a 
method M, if the instance variable appears in the 
body of the method M. The instance variable is 
indirectly used, if it is directly used by another 
method M’ which is called directly or indirectly by 
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M. Two methods are directly connected if they use 
directly or indirectly a common attribute. TCC is 
defined as the percentage of pairs of methods that are 
directly connected. LCC counts the pairs of methods 
that are directly or indirectly connected. We recall 
that constructors and destructors are not taken into 
account for computing LCC and TCC. The range of 
TCC and LCC is always in the [0,1] interval. They 
propose three ways to calculate TCC and LCC: (1) 
include inherited methods and inherited instance 
variables in the analysis, (2) exclude inherited 
methods and inherited instance variables from the 
analysis, or (3) exclude inherited methods but include 
inherited instance variables. In respect to the three 
ways of calculating their metrics, Bieman and Kang 
do not express any preference. We opted for 
evaluating them according to the first way, 
considering inheritance as an intrinsic facet of OO 
systems. LCC is an extension of TCC in that 
additional features are taken into account. LCC being 
more comprehensive than TCC, we adopted LCC, 
together with LCOM, as the prime cohesion metrics 
of our experimentation. 

2.2  Relationship between cohesion and 
coupling 

As a principle of good OO design, the components of 
a class should contribute to one specific task. A non-
cohesive class means that its  components tend to 
support different tasks. According to common 
wisdom, this kind of class has more interactions with 
the rest of the system than classes encapsulating one 
single functionality. Thus, the coupling of this class 
with the rest of the system will be higher than the 
average coupling of the classes of the system. This 
relationship between cohesion and coupling means 
that a non-cohesive class should have a high coupling 
value. But in spite of the widely-held belief in this 
relationship, it has never been thoroughly 
investigated. However, the coupling property has 
extensively been studied. Class coupling is usually 
defined as class interaction. 

Many metrics that capture interactions between 
classes have been defined. Chidamber and Kemerer 
proposed two coupling metrics [CDK94] that have 
been validated as fault prone indicators [BBM96]: 

CBO (Coupling between Object Classes): A class is 
coupled to another one if it uses its member 
functions and/or instance variables, and vice 
versa. CBO provides the number of classes to 
which a given class is coupled. 

RFC (Response for a Class): This is the number of 
methods that can potentially be executed in 
response to a message received by an object of 
that class. 

Briand et al. describe coupling as the degree of 
interdependence among the components of a software 
system. They defined 18 coupling metrics. This suite 
takes into account the different OO design 
mechanisms provided by the C++ language 
[BDM97]. 

While the relationship between cohesion and quality 
has not been quantitatively assessed, several coupling 
metrics have been shown to be good quality 
indicators with respect to some specifics quality 
aspect. We decided to investigate the potential of 
cohesion metrics as changeability indicators by 
looking for relationships between cohesion and 
coupling.  

3 Empirical validation of cohesion-coupling 
relationship 

3.1 Objectives 

Most large-scale software systems have a long life 
span. Over the years, they require changes to improve 
performance, to address new needs, or to adapt the 
system to a changing environment. Since our 
industrial partner has a vested interest in software 
changeability, we conducted our experiment with 
respect to changeability. One way to assess the 
changeability of a software system is to find some 
design properties that can be used as changeability 
indicators.  

In the realm of OO systems, experiments have been 
conducted showing that coupling between classes is 
an indicator of changeability. Chaumun et al. defined 
a model of software changes and change impacts at 
the conceptual level. They observed a high 
correlation between changeability and some coupling 
metrics, across different industrial systems and across 
various types of changes [CKKL99]. 

However, class cohesion has not been studied 
quantitatively with respect to changeability. Weak 
class cohesion leads to high coupling with the rest of 
the system, and thus to high change impact. Weak 
class cohesion is therefore expected to result in poor 
changeability. One way to investigate cohesion as a 
changeability indicator, is to prove whether low 
cohesion is indeed correlated to high coupling.  
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Such a proof would confirm our intuition that there is 
a correlation between cohesion and changeability. We 
are aware that this latter hypothesis would require a 
study in its own right, which is beyond the scope of 
this paper. 

3.2 Selection of metrics 

To test our hypothesis “low cohesion is correlated 
with high coupling”, we adopted some well-known 
cohesion and coupling metrics found in the literature. 
As cohesion metrics, we chose LCC and LCOM (see 
Section 2.1). For measuring coupling, we adopted 
CBO and RFC, since these two metrics have been 
proven to be good indicators of quality [BBM96] and 
changeability [CKKL99, CKK+99]. To assess our 
hypothesis empirically, the following correlation 
hypotheses must be tested statistically: 

• For the test system, there is a relationship 
between the LCC and CBO metrics. 

• For the test system, there is a relationship 
between the LCC and RFC metrics. 

• For the test system, there is a relationship 
between the LCOM and CBO metrics. 

• For the test system, there is a relationship 
between the LCOM and RFC metrics. 

Thus, in our experiment, we attempted to correlate 
the LCC and LCOM metrics with the C&K coupling 
metrics (CBO, RFC) and extend the scope of the LCC 
and LCOM metrics to the changeability property. 
During experimentation, we decided to include in our 
study the NOC (number of children) metric which is 
usually considered as a coupling metric. Furthermore, 
we considered four metrics that we derived from the 
NOC and CBO metrics. Recall that CBO is 
“approximately equal to the number of coupling with 
other classes (where calling a method or instance 
variable from another class constitutes coupling)” 
[CDK98]. Below, we present the four metrics, 
together with the rationale for their consideration. 

NOC* (Number Of Children in subtree): when 
some component of a class is changed, it may 
affect not only its children but also the whole 
subtree of which the changed class is the root. 

CBO_NA (CBO No Ancestors: same as CBO, but 
the coupling between the target class and its 
ancestors is not taken into consideration): the 
coupling between the class and its ancestors, 
taken into consideration by CBO, is irrelevant 
for change impact, since the ancestors of the 
target class will never be impacted. To 

eliminate such “noise”, ancestors are excluded 
in CBO_NA. 

CBO_IUB (CBO Is Used By: the part of CBO that 
consists of the classes using the target class): 
the definition of CBO merges two coupling 
directions: classes using the target class and 
classes used by the class. For changeability 
purposes, the former seems mo re relevant than 
the latter one, hence the split. 

CBO_U (CBO Using: the part of CBO that consists 
of the classes used by the target class): 
introduced as a consequence of CBO_IUB, to 
cover the part of CBO not considered by 
CBO_IUB. 

In summary, seven metrics were considered: the two 
C&K coupling metrics (CBO, RFC), one other C&K 
design metric (NOC) and four changeability-oriented 
refinements of the C&K metrics suite (NOC*, 
CBO_NA, CBO_IUB, CBO_U). 

To achieve significant and general results, the data 
used to test the correlation between cohesion and 
coupling were collected from three different 
industrial OO systems, as described below. 

3.3  Experimentation set up 

In this section, we first present the three test systems 
of the experiment. Then, the environment in which 
the experiment was conducted is described. Finally, 
we discuss the experimental procedure that was 
adopted. 

Three industrial systems were considered. They vary 
in class size and application domain. The first test 
system is XForms, which can be freely downloaded 
from the web [Xfo97]. It is a graphical user interface 
toolkit for X window systems. It is the smallest of the 
test systems (see Table 1). ET++, the second test 
system, is a well-known application framework 
[WGM98]. The version used in the experiment is the 
one included in the SNiFF+ development 
environment [Tak99]. The third and largest test 
system was provided by Bell Canada, and is called, 
for confidentiality reasons, System-B. It is used for 
decision making in telecommunications. Table 1 
provides some size metrics for these systems. Note 
that header files from the compiler are included in the 
numbers shown in the lower part of the table (last six 
rows), whereas the numbers in the upper part (first 
four rows) represent the system that was effectively 
investigated in the study. 
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Table 1: Size metrics of test systems 

 XForms ET++ System-B 

Lines of code 7 117 70 796 291 619 

Lines of pure comments 764 3 494 71 209 

Blank lines 1 009 12 892 90 426 

# of effective classes 83 584 1 226 

# of classes 221 722 1 420 

# of files (.C/.h) 143 485 1 153 

# of generalizations 75 466 941 

# of methods 450 6 255 8 594 

# of variables 1 928 4 460 13 624 

Size in repository 2.9 MB 19.3 MB 41.0 MB 

 

To calculate the metrics involved in the 
experimentation, we used the SPOOL environment 
(see Figure 1). This environment is being developed 
for the entire SPOOL project and comprises various 
analysis and visualization capabilities to cope with 
large-scale software systems [KSRP99].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Environment for metrics calculation 

The environment provides a repository-based 
solution. A parsing tool, e.g., a compiler front-end, 
parses the test system source code. GEN++, the C++ 
implementation of GENOA [Dev92], was used in this 
extraction process. The parsed information contains 
data about all classes and links in the system. This 

information is captured and fed into a design 
repository. The schema of the design repository is 
based on our extended UML (Unified Model 
Language) metamodel [RJB99]. The OO database 
management system POET 5.1 [Poe99] serves as the 
repository backend, with the schema being 
represented as a Java 1.1 class hierarchy. Metrics 
requests are batch-processed using a flexible report 
generator mechanism. They typically contain 
information on the metrics as well as on the target 
class, methods, and variables. This triggers a set of 
queries corresponding to the specified metrics. The 
code in these queries uses the metrics request 
information as parameters to interrogate the 
repository. Raw results are fetched and processed into 
ASCII files that obey a specific format and can 
readily be transferred into spreadsheet programs such 
as Excel for further statistical processing. 

We collected cohesion metrics values from the three 
test systems. Furthermore, we gathered the values for 
all seven metrics explained in Section 3.2. For each 
metric involved in the experimentation, we calculated 
some descriptive statistics (minimum, maximum, 
mean, median, and standard deviation; see tables 2 
and 3). To test the four correlation hypotheses, we 
calculated for the two cohesion metrics the Pearson 
coefficient of correlation in respect to the seven 
metrics of Section 3.2 (see Appendix C). 

3.4 Results 

Descriptive statistics of the three test systems are 
summarized in Appendix A. NOC and NOC* have 
the same median value for the three systems; 0 for 
NOC and NOC*. A median of 0 for number of 
children (NOC) and for NOC* means that for the 
three systems, half the classes are leaves. Based on 
this and on the mean value of NOC, it can be stated 
that classes that do have children have on the average 
less than two children. These results were found in 
software systems of different size and application 
domain, and we conclude that in general inheritance 
is not strongly used in OO development. Thus, the 
class trees of such systems will generally be flat. 

Appendix B shows descriptive statistics of the 
cohesion metrics of the three test systems. Based on 
these values, and referring to the definition of both 
LCOM and LCC, we early concluded that the three 
test systems are not strongly cohesive. 

The Pearson correlation coefficients are presented in 
Appendix C. We found no correlation between the 
LCC and LCOM metrics and CBO and RFC (we also 
checked for outliers). Moreover, no correlation was 
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found between the tested cohesion metrics and the 
seven other metrics of the study. No general 
conclusion was drawn at this stage. However, these 
negative results were found for two cohesion metrics 
and seven coupling metrics (CBO, RFC, NOC, 
NOC*, CBO_NA, CBO_IUB, CBO_U), across three 
industrial systems of different size and origin. 
Therefore, we put forward the following hypothesis: 
in general, there is no relationship between these 
cohesion metrics and coupling metrics.  

4 Class cohesion and methods coupling 

The goal of our study was to find a correlation 
between cohesion and coupling, but the result was 
negative. Consequently, we set out to reason about 
this absence of correlation, especially with respect to 
the two genuine coupling metrics CBO and RFC. 

4.1 Reasoning about results 

Given negative results reported above, we came up 
with the following two explanations: 

(1) The cohesion metrics or the coupling metrics 
chosen for the experimentation are not the 
right ones. 

(2) There is no relationship between cohesion and 
coupling whatsoever.  

Hypothesis (2), being counter to a widely-held belief 
in the design community, was discarded. We then 
focused our investigation on hypothesis (1). 

From hypothesis (1) we derived the following two 
sub-hypotheses: 

(1A) The LCC and LCOM metrics do not 
correctly measure cohesion. 

(1B)  CBO and RFC do not measure the coupling 
property of a class as s tated by Yourdon and 
Constantine. 

Sub-hypothesis (1B) was rejected on the grounds that 
the coupling metrics adopted in the study are quite 
well understood and validated. Basili et al., for 
instance, validated CBO and RFC as quality 
indicators [BBM96]. Another example of validation 
is the work of Chaumun et al., who experimented 
with extended C&K design metrics as changeability 
indicators [CKK+99].  

On the other hand, we question the quality of the 
investigated cohesion metrics (sub-hypothesis (1A)). 
Intuitively, when they show a high class cohesion 
(LCC =1 or LCOM = 0), the classes are probably 

quite cohesive. However, we are doubtful about the 
expressiveness of LCOM and LCC in the presence of 
weak class cohesion. Thus, we set out to study 
manually various weakly cohesive classes occurring 
in the three test systems. 

4.2 Study of weakly cohesive classes 

According to the cohesion concept, a weakly 
cohesive class is designed in an ad hoc manner, and 
unrelated components are included in the class. The 
class represents several disparate concepts and may 
be split into classes that model only one single 
concept. Based on anecdotal evidence, we suspected 
that, although LCC and LCOM indicate weak 
cohesion, it might not necessarily be true that the 
classes at hand must be broken into smaller 
components. To consolidate this idea, we decided to 
manually inspect weakly cohesive classes. 

We chose from each of the three test systems classes 
that exhibit weak cohesion (LCC < 0.5 and/or LCOM 
> 0), to verify if they are real candidates for splitting. 
After studying these classes, we found that many of 
them should not be split. Appendix D lists, for 
illustration, some of these classes. We came up with 
four major reasons for not splitting them. 

First, some classes had no variables (such as the class 
Glob in ET++; see Appendix D) or only abstract 
methods (such as class App in XForms), yielding low 
LCC values (and positive LCOM values). 

Second, we noticed that for some classes, the LCC 
value is reduced by counting inherited variables or 
inherited values. For these cases, we calculated LCC 
without taking into account inherited components, 
and not surprisingly, we obtained LCC values 
indicating stronger class cohesion. The 
PeCollectClients class in ET++ is such an example. It 
contains three methods sharing the same instance 
variables. LCC should be equal to 1, but inherited 
methods reduce LCC to 0.3 (see Appendix D). Note 
that in this and several other examples, the three ways 
of calculating LCC led to widely different cohesion 
results.  

Third, some classes have multiple methods that share 
no variables but perform related functionality. 
Consider for example the class RevObjListIter in 
ET++ (Appendix D) which is used to manage lists of 
objects. Its methods carry out different list 
management operations on lists that are passed to the 
class as parameters. Putting each method in a 
different class would be counter to good OO design 
and the very idea of cohesiveness. 
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Fourth, we identified several classes that have 
numerous attributes for describing internal states, 
together with an equally large number of methods for 
individually manipulating these attributes. For 
example, the class DRRequests in System-B contains 
22 attributes together with pairs of get and set 
methods for each of them. However, these attributes 
belong together and should not be separated. 

Based on this analysis, we notice that low values of 
LCC and high values of LCOM do not assure a 
weakly cohesive class. We conclude that as 
measured, LCC and LCOM do in general not reflect 
the cohesion property of a class. 

4.3 Additional cohesion properties 

The results obtained in our study call for a refinement 
of the definition of cohesion metrics, in order to 
better measure the cohesion property as stated by OO 
design principles. It is our belief that a true cohesion 
metrics will have to go beyond the simple sharing of 
class variables and capture additional information. 

Briand et al. provide a categorization of cohesion 
metrics [BDPW98]. LCOM is counted as a cohesion 
metrics based on common attribute usage in a class. 
LCC belongs to the cohesion metrics category that is 
based on both common attribute usage and method 
invocations within a class.  

Chae and Kwon, in their recent paper, reflect on the 
weakness of current research on class cohesion 
measures [CK98]. They observe that existing 
approaches do not consider the special methods that 
interact with only part of the instance variables and 
thus reduce class cohesion. As examples, they 
mention accessor methods, delegation methods, 
constructors, and destructors. They propose that 
special methods be treated such that they do not 
compromise the value of the cohesion metrics. 
Furthermore, Chae and Kwon suggest that cohesion 
metrics take into account additional characteristics of 
classes, for instance, the patterns of interaction among 
the members of a class. Their reasoning about special 
methods confirms the fourth reason we brought up in 
the previous section.  

We believe that this work clearly constitutes an 
improvement in calculating class cohesion. However, 
it is our contention that we must take into account not 
only the patterns of interaction among class members, 
but also the semantics of these interactions. Based on 
our investigation results, we furthermore assert that 
cohesion measures must take into account the 
functionality of class methods as well as the unity of 
the data that describe the entity modeled by the class. 

5 Conclusion 

In this paper, our major goal was to validate cohesion 
metrics as changeability indicators. To this end, we 
tried to correlate cohesion metrics with coupling 
metrics that had been proven as quality indicators. 
We chose LCC and LCOM as cohesion metrics, and 
CBO and RFC were chosen as the primary coupling 
metrics. We collected data about these metrics on 
three different industrial systems. Our 
experimentation showed no correlation between 
cohesion and coupling metrics chosen. 

According to OO design principles, a good design 
exhibiting high class cohesion goes together with low 
coupling between classes. A relationship should 
therefore exist between cohesion and coupling. We 
suspected that the cohesion metrics used in the 
experimentation do not reflect the real cohesion of a 
class. We decided to investigate manually classes 
with low cohesion metric values. We found that 
although some classes have low LCC and/or high 
LCOM, these classes are actually cohesive.  

A cohesion measure based on the variable sharing 
aspect is a special way of capturing class cohesion. 
This restricted definition led to cohesion measures 
with misleading values in several situations. Such 
situations occur, for instance, when classes have 
abstract methods or when a class inherits a large 
number of methods or instance variables from its 
superclass. When taking into account these abstract 
methods or inherited components, the cohesion value 
of a class is reduced, resulting in misleading class 
cohesion values. In our belief, class cohesion metrics 
should not exclusively be based on common attribute 
usage and method invocation, but also on patterns of 
interaction between class members, on the 
functionality of class methods, and on the conceptual 
unity of its instance variables. 
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Appendix A: Descriptive statistics of the three test systems 

 

System 
 

NOC NOC* CBO 
CBO_

NA 
CBO_

IUB 
CBO_

U RFC 

XForms Minimum 0 0 0 0 0 0 0 

83 classes Maximum 14 60 20 20 19 9 45 
 Mean 0.82 2.57 4.13 3.16 0.98 3.16 6.52 
 Median 0 0 4 3 0 4 2 

 Std. Dev. 2.34 9.57 3.16 3.16 3.05 1.95 9.85 
ET++ Minimum 0 0 0 0 0 0 0 

584 classes Maximum 56 361 301 301 293 76 746 
 Mean 0.78 2.09 24.48 22.5 5.01 19.80 90.65 
 Median 0 0 24 21.5 0 21 36.5 

 Std. Dev. 3.45 17.05 25.40 24.63 21.28 15.89 128.98 
System-B Minimum 0 0 0 0 0 0 0 

1226 classes Maximum 29 266 707 707 707 93 2735 
 Mean 0.88 3.42 32.49 29.36 7.06 25.77 171.02 
 Median 0 0 21 18 1 17 47 

 Std. Dev. 2.53 18.51 36.14 34.96 29.48 23.95 286.85 

 

 

Appendix B: Metrics results for the three test systems 

 

System 
 

LCC LCOM 

XForms Minimum 0 0 

83 classes Maximum 1 208 
 Mean 0.62 5.81 
 Median 0.69 1 

 Std. Dev. 0.27 25.40 
ET++ Minimum 0 0 

584 classes Maximum 1 4714 
 Mean 0.42 89.07 
 Median 0.33 6 

 Std. Dev. 0.31 352.81 
System-B Minimum 0 0 

1226 classes Maximum 1 11706 
 Mean 0.56 145.73 
 Median 0.61 10 

 Std. Dev. 0.31 695.72 
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Appendix C: Correlation coefficients for the three test systems 

 

 

Cohesion 
Metrics 

System NOC NOC* CBO CBO_
NA 

CBO_
UIB 

CBO_
U 

RFC 

XForms -0.09 -0.15 -0.17 -0.10   -0.030 -0.22 -0.17 
ET++ -0.10 -0.05 -0.11 -0.10  0.04 -0.23 -0.05 LCC 

System-B -0.06 -0.08 -0.02 -0.01 -0.05 -0.03 -0.07 
XForms  0.12 -0.01  0.06  0.11   0.17 -0.17  0.33 
ET++  0.30  0.31  0.44  0.45   0.39  0.21  0.38 LCOM 

System-B  0.08  0.21  0.28  0.30   0.32  0.07  0.36 

 

 

 

Appendix D: Example of weakly cohesive class that are not candidate 
for splitting 

 

 

Classes Systems  LCC LCOM 

Glob ET++ 0 3 

PeCollectClients ET++ 0.3 0 

App XForms 0 6 

RevObjListIter ET++ 0.16 1 

DRRequests System-B 0.023 858 

 


