A Sizing Approach for OO-environments
John Kammelar, CFPA
IQUIP InformaticaB.V.
P/O Box 263
1110 AG Diemen
Netherlands
E-mal: j.mkammdar@igquip.nl

Abstract

FPA is by far the most popular high qudity sizing method for atraditional development environment.
It complies to certain degree to the ISO standards for a 'Functional sizing method' (FSM) [12].
When FPA is applied to Object Oriented development methods the OO concepts and
characterigtics have to be trandated into FPA terms. As a result the outcome of the function point
count is difficult to relate to effort estimation. But the need for a seamlesdy fitting Functional Szing
method (FSM) for OO-environments is growing fast now in the emerging environment of
Component Based Development (CBD).This document proposes a new FPA-dike estimation
technique for OO-environments in such away that the determined functiona size is composed from
eements which may be candidates for reusable software components. This approach is not
consdered a fina product but rather as a gtarting point for further elaboration to develop an
estimation approach for CBD.

I ntroduction

OO-concepts

According to the OO-concepts and characteristics objects manifest themselves to the user through
their data and behavior. Both data (attributes) and behavior (operations) are encapsulated in
autonomous components. Objects are classified into groups (classes) and communicate with other
objects or with the user by means of passng messages. User requirements are fulfilled through

sarvices provided by the syssem. A service performs one or more eementary functions, a group of

sarvices which achieves a specific god for the user is considered a use case. One or more use cases
may comprise a workflow; a business process encompasses one or more workflows. The context
(functiond domain) of our eaboration conssts of busness information systems

Why FPA doesnot fit into OO

The usud approach for applying FPA to an OO-environment can be summarized as ‘'mapping the
OO-concepts into the FPA abstract model and follow the existing FPA rules. This approach results
in the misfits as described heresfter. We characterize this gpproach as '‘paradigm trandation'. In
figure 1 below, this approach isillustrated.

OO conceptual model abstract fpa model

=>

translate

= I
Business Objects @g ! !:
‘ counting elements

Data functions
ILF's
EIF’'s
Processfunctions
El
EO
E

fig. 1 Paradigmtrandation

This gpproach is described as a set of mapping rules by Thomas Fetcke et d. [1].

The following shortcomings of FPA in relation to an OO-environment are encountered.

a

b.

o

The separation of a function point count into a number of 'deta-related’ points and ‘process-
related’ pointsis contradictory to the OO-paradigm.

The proportiona assignment of function points to ‘process and 'datd is questionable and does
not relate to OO- concepts

Over-representetion of visible functiondity (data eements).

Assgnment of functiondity to class(es) is not provided.

The functiona break down directly into FPA-functions (eementary process) fal to recognize
(reusable) components.

These $ortcomings impose that FPA needs to be modernized in a way that it can cope with new
devel opment environments and that it becomes sengtive for reusable functionality.

The new gpproach, which can be described as ‘gpplying the line of thought of FPA to the OO-
conceptua modd' has never successfully been eaborated. We characterize this approach as a
‘paradigm shift'. This gpproach isillustrated by figure 2.

OO conceptual model

USER INTERFACE

Business Objects

‘ counting elements

»‘é' Data functions
Classes . ILF's
Operations) enetemy EIF's
. in Processfunctions
Transformations line of thought El
) EO
Services EQ

fig. 2 Paradigm shift

The line of thought of FPA is applied to the OO-conceptua model and encapsulated elements. New
counting rules and definitions are provided for new counting elements. This gpproach resultsin a new
FPA -dike szing method which fully comply with maingream OO-terms.

Objectives of a new approach

The objective of this approach is to express the functiond size of a OO-gpplication in terms of its
development context. Therefore the functiond user requirements (FUR's) are mapped to OO-
functiond components. It is emphasized that the proposed counting types are implementation
technique independent. The functiond size is expressed in component object points(COP's) to
avoid confusion with function points. By means of COP's one is able to measure the functiona size of
object-oriented or object-based components. With respect to the emerging CBD-technology, the
szing rules accumulate eementary object/component-sizes to higher level components. It is an
experimenta FPA-alike FSM for OO-environments that does not suffer from the addressed
shortcomings of FPA.

The focus is on functiond szing for purpose of project estimation and management. We have
experienced that for these purposes functiona size measurement which does not take into account
the development context is insufficient accurate. With this respect there is a relation between the
purpose and the scope of the measurement. The relevant purpose/scope combinations are indicated
in the table below.

Purpose Scope Required Accuracy Metaphor

Portfolio Analysis Organization, Business | Low Artist impression of a .
Process, (Development- building, total volume (m°)
Entire information Environment and type of volume
requirement independent) (storage, office, etc.)
(separated in domains)

Project Estimation, Application Medium Architect drawing,

Tender comparison Entire information- (Development- specification,

Budgeting requirement Environment environment/neighborhood

(separated in domains dependent)

Project Management Component High Workplan and actual
Scheduling Information-requirements | (Implementation- constructing together with
Task assignment in their context Technique dependent) the materials and

purchased parts

Purpose/Scope combinations for size measurement

The described approach focuses on Project Estimation in an OO-environment, whereas FPA is
perfectly gpplicable to Portfolio Andyss and Project Estimation (in a traditiond development
environment). Approaches usng OO-metrics primarily focus on project management [3, 5, 9, 11]
and quality [2, 6].

Related Work

Functiond szing and effort prediction in an OO-environment have been subject for eaboration in the
last decade. The mgority of these studies ded with metricsmeasures and focus rather on quality
aspects than on size and related development effort. Chidamber & Kemerer [2] are recognized as
founders of useful metrics for OO design. More recently they described the managerid use of

metrics for object oriented software [3] showing quantitative and sgnificant ingght into the impact of
OO desgn decisons on managerid variables like cost and productivity. Lorenz & Kidd [4] have
elaborated a set of meaningful metrics for measuring project progress and quality. The purpose of
their effort reads. "helping red development teams on OO projects estimate, schedule, and measure
quaity more effectively.” Haynes, Menzies and Ptilips [5] atempted to use classes and methods as
the basis for early effort estimation. They have measured productivity figures a the class leve.
Ramaskrishnan [6] describes related work. With respect to our approach the findings of Hastings [7]
are of importance. He studied the gpplicability of FPA tot contemporary systems and concluded that
FPA and derivatives do address al the needs of contemporary systems, in particular the ability to
adequately measure complexity. But it is not clear whether he recognizes FPA (applied to OO
environments) as inadequate from the scientific and engineering perspective.

Primarily focused on size estimation are the four steps sizing approach of Laranjeira[8]. Lower level
class szes are aggregated into higher leve classes and findly the system size equas the sum of the
sizes of the top level classes. Zhao & Stockman [9] have extended the Larangeira modd with
physical size factors and reuse size factors. This approach determines the size with a higher degree of
detall. A corrdation between FPA and the number of objects and methods was found by
Catherwood, Sood & Armour [10], which may be understood as a valuable contribution in the fidd
of FPA and effort prediction for OO-systems. The most recent remarkable approach is the one
developed by PRICE systems and described by Teologlou [11] as size measurement for OO
software usng predictive object points (POP's). This approach uses well-known OO-metrics for
purpose of effort prediction. Coincidentally this development took place during the same time frame
as the one described in this report.

Approach

Conceptual szing model

The figure below shows a conceptud sizing modd for OO-environments. The white boxes show the
entities which determine the functiond Sze of an guplication. The entities exist within the gray
rectangles representing the User Domain and the System Domain separated by the user interface.
This separation of concern represents the border between the "what" and the "how" aspect. The
columns & the sides show specifications, recommended in OO-literature. Modd and diagram names
refer to UML [13, 21]. The Definition of Elementary Processis an exception. Thisis a FPA ground
rule and is used to assure the same degree of granularity between the different Szing methods.

Specifications Specifications

User Domain .
Workflow Business
Diagram Process
| | Business
. Object Model
Use case Use case Business
Diagram Object oby Lo
user interface Cycle Diagr.
Activity . Class
Service Class i
Diagram Diagram
Def. Elem. | |
Process
Operation/ Obj. interactio
Transform. Diagram
System Domain

fig. 3 Conceptual sizing model for OO-environments

To our opinion the modd is generic and as such a Szing-paradigm. The user domain comprises the
edements by which the Sze of a process can be determined fully independent of the
devel opment/implementation environment. The eements in the user domain are expressed as FUR's
and define the system in implementation-technique independent terms.

The system domain comprises e ements by which the FUR's are implemented. The type of dements
may vary according to the chosen development environment. In an OO-environment the
computationa support for a use case will be implemented by services provided by objects, grouped
in classes. Services may comprise anumber of operations carried out by (a collaboration of) classes.
Classes, sructures and operations are the elements to which the functiona size is assigned: the Base
Functional Components (BFC's).

The conceptud modd is in line with the postioning and perspectives of use case (“outdde the
system”) and collaboration (“inside the system boundary™) of UML [21]. This approach describes
how to measure the functiond size of the computational support of use cases in OO-terms. It
provides two types of count each with their own degree of accuracy to be used for purpose of
project estimation and project management .

Counting elements

User Domain Elements (FUR'S)

A business process is a coherent complex of business activities which aim for a discrete goa and for
which a computer gpplication have to be developed. The focus is on the process as a whole. The
activities within a business process are modeled as use cases.

The use case has the proportion of asaries of activities. The forma definition which is used within the
scope of this report reads a sequence of activities (usudly determined by unity of time, place and
action) which is carried out under the responsihility of one user (actor). Use cases are supported by
the computer gpplication by performing one or more services. The functiond sze of ause caseis
measured. This Size is to be understood as an estimation of the functiond of the glue logic between
services which are an implementation of businessrules.

A business object is a group of data which describes 'things relevant to the business (person, thing,
event, screen, contract etc.). Business objects and their mutua associations are structured in a
conceptua business object model. The interaction between business processes and business objects
isrecognized as service/class relations.

System Domain Elements (BFC's)

Services are the equivdent of the FPA -transactions, and as such have to comply to the definition of
the elementary process. Services are the implementation of atransaction (i.e. a computer supported
activity within a use case). Besides functiondity visible to the user is dso functiondity invoked by non
human actors is provided by services. Services are implemented by one or more operations
(responsibilities) provided by classes.

A Class is a combination of ettributes, their respective values and operations. These eements
determine the behavior and respongbilities of the class. In our gpproach operations are considered
as a separate recognizable functiona eement (BFC) which is counted apart from the attributes.

Operations and transformations are the actua providers of processing required for the redization of
sarvices. Operations are the amdlest recognizable unit of functionality. Operations represent a
significant part of the functiondity required by the user and subsequently form a sgnificant part of the
functiona sze. Operations are clasdfied by their nature in ‘query’' - and 'modify’- operations.

A transformationis a (series of) arithmetic operation(s) that changes input into aforma output result.
With the definition of transformations we follow 3D Function Points from Whitmire [16]. Within a
use case, transformations often appear as 'uses-services. Transformations are considered gpart from
operations because this can facilitate a possible refinement of the technique in the future. 1t probably
enlarges the field of gpplication for this gpproach to other functional domains.

Types of count

Our szing approach distinguishes three types of estimation with an increasing degree of accuracy.
The count types correspond to purpose and scope described in the objectives.

Domain model count

Preferably filled in with FPA because the vast number of benchmark materia has greet vaue. This
requires an investigation to the relation between COPs and FP's.

Analysis count

The objective of the andlysis count is to measure the amount of functionality required by the user in
terms of functiond units (COP's), based on the results of the analysis stage.

Counting e ements (BFC's)

use case services (computer supported activities)
sgnificant classes and object structures (shown in the class diagram)
relation service/class
transformations

The andysis count results in a ligt of use cases, with every use case condgting of one or more
services with their respective size expressad in COP's. Apart from the use cases the andysis count
resultsin alist of sgnificant classes with their respective functiond Sze, determined from service/class
relations.

The counting results are aggregated at the level use cases and classes. Optiondly the Size of classes
participating in an object structure can be aggregated at the level of highest super-class. Through
aggregation the counted elements can be mapped into a structure of patterns or sub-componentsto
be redized as devdopment increments. The idea behind the aggregation of Szing results is thet for
eech increment a design time-box estimate can be obtained from the rdative sze of the sub-
component(s) together with a productivity slandard for the appropriate development environment.

Design count

The objective of the design count is to provide an accurate measurement of the amount of
functionality required by user expressed in COP's, based on the results of the first (logical) design
iteration.

Counting dements(BFC's)
use case services
classes (directly referenced)
specification service/class relation (operation)
transformations

The design count results in an accurate product-Sze reported in service- and class-functiondity.
Transformations and their Sze are reported separately. Although not eaborated in this first proposd
it is the intention to develop a tool st with reporting facilities by which (sub-)components or

development increments can be reported as a recognizable unit. Through this facility these units can
be matched by class engineers with class- or component-libraries in order to carry out a gross/nett
comparison and to determine the nett project size.

Required specifications

For each count type a set of specifications are required which describe the counting eements. The
minimal specifications required for each type of count are listed hereafter.

The andys's count requires the following specifications:
business processes (workflow diagrams, activities/use cases, tasks/services)
business object mode
class diagram (corceptud view, showing Sgnificant classes and object-structures)
relation service/class (use case modd, activity-diagram, collaboration/sequence: diagram)
[object life cycle diagrams (recommended)]
[application boundary, interfaces with other applications]

For adesign count the same specifications are required as for an analysis count.
. Usecasemodds (activity diagram)
class diagrams and descriptions (describing responsihilities, i.e. attributes, operations)
collaboration/sequence diagram (interactions between objects)
[object life cycle diagrams (not necessary, recommended)]
[application boundary, interfaces with other gpplications]

Counting gtructure

Thetota sze of an gpplication is derived by adding the service functiondity to the class-functionality.
The dtructure of the gpplication Szeisshown in figure 4.

Application
Total size

service

¢ . class/object
functionality

functionality

key class
size

Q

service * 1 0,1
size

usec
size

operation attribute Structure
size part part

fig.4 size structure of an OO-application

Valuation of counting elements

One of the preconditions for the development of this estimation technique is to am for the same
proportions as FPA. The reason is to be able to compare results from our size estimations with
results of domain mode counts in FP's. This implies that there was no attempt to apply mathematical
rules or models for the expression of functiona sizein the unit of measure COP. Instead an extensive

experimental period have been worked through, to derive "weighted values' as aresult of interaction
with developers on a basis of tria and error. We aimed for a "good feding" about the perceived
amount of functiondity and the development effort. Besides "good feding” the vauesin the vauation
matrices were tuned to the vaues of the Programming Language Tables of Jones [19] and those
collected by Putnam [20]. The Function Point Counting Practices. Case Study 3 [18] has been used
for comparison.

Pilots and field experience

Three projects were selected for tryout. Two are to be considered business information systems, one
as a combination of control software, embedded software, and recording/ presentation software.
Project-1 was a smal to medium "tool rental gpplication” for industrid equipment. Project-2 was a
"Billing & Customer Care gpplication” for telecom sarvices, the gze is qudified as big. Project-3
from which only certain parts were taken for tryout was a complex system for "medica equipment”,
the 9ze of the entire sysem is qudified as very big.

The pilots suffered from an undesirable lack of standardization in the functiond OO-specifications
between different organizations (the UML did not come one day too soon and to our opinion
supports the early development stage of "domain modeing” insufficiently). For al three projects an
andyss count could be carried out. But only Project-3 was specified in a sufficient degree of
precison for a desgn count. Nevertheless we find the results of the two other projects encouraging
because an andys's count gave interesting indgght in the measured amount of functiondity and the
divison thereof over the key classes. The overdl conclusion of the pilots is that project estimetion
benefits the most from the analysis count because it requires a limited effort and gives vauable insight
about the way the required functiondity is spread over the key-classes, without a necessity of too
precise specifications as input. The resut isafairly accurate estimation expressed in COP's on which
atime-budget for (a part of) the project can be made.

Futureresearch

As mentioned in the abgtract the development of this estimation gpproach has been continued with a
focus on component based development. The conceptuad model remains the same, but classes are
replaced by "components'. The next steps have dready been taken and a functiond szing gpproach
for components and assemblies, based on the described method is in the pilot stage.

Preliminary counting rules

Process stepsfor analysis and design counts

The counting process for the andysis and design type counts conssts of the following steps.
Determine count type.

Determine the counting boundary and granularity.

Review the specifications of the counting elements with respect to the count type.
Identify and vauate use case services.

Identify and valuate use case service / classreations.

Identify and vauate classes and structures within the domain modd.

Identify and va uate operaions and transformations (design count only)

Determine reusable dements (design count only)

Determine the tota Sze of the gpplication

CoNOURrWDNPE

Counting rulesfor analysisand design count

Step 1 Deter mine count type

This gep is aforma one and is based on the purpose of the count. The point in time as well as the
availability of the required specifications determine which count type can be carried out.

Step 2 | dentify the counting boundary

For this step the rules from Fetcke [1] are adopted. "The view of the GDSE use case mode
corresponds to the boundary concept of Function Points, as the actors are outside the gpplication
and the use cases define the gpplication's functiondlity.” Jacobson [14] cdls this boundary the system
delimitation. The same goes for the comparison between FPA-users and OOSE actors from
Fetcke[1]. "Each user of the gpplication has to appear as an actor. Similarly, every other application
which communicates with the gpplication under consideration must apply as an actor too." Non-
human actors which are part of the counted system are not recognized as a vaid actor.

Note that if the underlying system is an assembly of autonomous components a counting boundary
may be drawn around each component. All other components except the subject of counting are
vaid actorsin such a situation.

Step 3 Review the specifications of the counting eements

The specifications to be usad as input for the count have to be reviewed againg a set of minimum
requirements. It is required that use case / activity descriptions and business object-/class diagrams
have the same degree of detail and are consistent i.e. contain the same object names. Inconsistencies
have to be reported and a decision have to be made whether a count nevertheless can be carried out
or not.

Step 4 I dentify and valuate use case services

A use case is decomposed in activities which are to be supported by the application through
services Services are compared with the definition of an dementary process. All types of services
are counted whether they are visible to the user or automated. The amount of functiondity a service
represents is determined by the number of operations/transformations invoked. It represents the logic
as animplementation of businessrulesand control.

During the use case analysis alist of classes referenced in the use case descriptions have to be build.
The dass ligt will be used to determine significant classes during dass-diagram andysis.

Counting rules (Analysis count)

1. Decompose the use case attivities into services. Services have to comply to the
definition of an dementary process (i.e must leave the system in a consgent dae after
execution).

2. Count 2 points per service, summarize per use case.

Counting rules (Design count)

1. Decompose the use case activities into services. Services have to comply to the definition of
an elementary process.

2. Vdudae savices usng the Service matrix; summarize per use case.

Servicesvaluation matrix

#Operations/ 1 2-3 >3
transformations

COP's 1 2 4

Step 5 I dentify and valuate service/ classrelations (analysis count only)

In this step the relation between services and classes are investigated. At the level of consideration of
an andysis count, only the existence of such ardation is rdevant. The investigation of this rlation is
based on CRC-card modeling [13, 15] which we consider as a precursor of collaboration described
in UML [21]. This gpproach does match remarkably well with the level of consderation during an
andysis count. The high level classes are being defined at this stage and so are the use cases and
containing services. During the analysis count a cross reference between services and responsible
classesis drawn up. During a design count the relation between services and classes are identified as
operations and qudified by their nature.

Note: in an environment with typed classes, only entity type classes are considered. An other way to
distinguish classes to be consdered and classes which are not is a differentiation in key-classes and
supporting classes as indicated by Lorenz & Kidd [4]. "A key-class is one that would cause grest
difficulty in developing and maintaining the system if it did not exis". Key-classes are the carriersto
which functiondity is assigned.

Counting rules service/class relations (Analysis count)
1. Andyze the services within a use case and relate the service to al classes that collaborate to
provide (parts of) the service.

2. Count 3 points as responshility-functiondity for every unique relation service/dass and
accumul ate to the appropriate class.

Counting rules Transformations (Analysis count)
1. Anayze use case activities to discover transformations (in the context of a service), and count
5 COP'sfor each transformation.

2. The amount of functiondity resulting from trangformations is accumulated separatdly from
sarvice-functiondity.

Step 6 I dentification of business objects, classes, object structures

The Business Object Modd is used as a reference modd for the interpretation of a more detailed
Class Diagram. The following counting dements determine the functiond size: sgnificant classes,
structures of classes (object-structures). As a sarting point class diagrams are determined after a
possible system-wide modeling has been carried out, in order to discover significant collaborating
classes. The dgnificance of dasses is in proportion with the level of detal of the modding
specifications.
Sgnificance implies

- must be modeled in the conceptud class-diagram

- must be referred in one or more use cases (directly or as a collaborating class)

- can be considered a key-class

All classes are counted for the attribute aspect and separately for the structure aspect if applicable.
The counting rules are explained heregfter. Apart from dementary sub-classesin a aggregetion fairly
al (entity type) classes turn out to be significant (and key-class).

Classes

A class is recognized as super- or sub-class depending on the pogtion in a sructure. All classes
shown in the dass-diagram are counted for their atribute-part regardless of their pogdtion in a
Structure. The classes are counted for their own number of attributes. Inherited attributes are not
regarded. The structure aspect of a class is counted depending on the type of structure they are part
of.

Counting rules for the attribute aspect (both types of count)

The attribute-aspect is counted by the number of attributes according to the matrix mentioned
heregfter. If the number of attributesis not specified 5 COP's are counted.

Class attribute valuation matrix

Attribute part| # Attributes <3 3-6 >6
COP's 2 5 7

Object structures

Object gtructures implying functiondity to the user are counted. Generdization/ specidization and
aggregation/composition are such structures. Cardindity associations are ignored as is the case in
FPA.

Class-diagrams are determined according to the following table. Every sgnificant class have to be
processed according to the tablerules.

Table 1l

Q1 |lIstheclass a generalization?

go to Al in table 2

Q2 |lIsdeclass anelementary specialization? Apply counting rule for gen./spec. structure

Q3 Is the class an aggregation/composition? Apply counting rule for aggr./comp. structure

z|l< z|<|z]|=<

Table 2

Al [Has the structure from which the actual| Y | no action
class is part of already been counted?

N | - apply counting rule gen./spec.
- return to Q3 in table 1

Remark: it should be noticed that classes can be both an aggregation structure and a generalization
structure. Both aspects represent functiondity and are taken into account.

Counting rulesfor Generalization/specialization structures (both count types)

1. The entire gructure from which the sgnificant class is part of is recognized as a significant
structure. Count al structure levels up to and including the highest super-class. The structure
obtains the name of the highest super-class.

2. Vdudion: 3 COP'sper structurelevel

Counting rules Aggregation/composition structures (both count types)
1. Count dl the component sub-classes which are part of the structure.
2. Vdudion: 2 COP'sper sub-class

Object-gtructure valuation matrix

Structure Association type | Gen./Spec. Aggr./Comp.
part

COP's #Lvls*3 #Sub-cl*2

Total class vauation = COP'Sy e pat 7 COP'Savitnse-part

Example

Travel
% | Arrangement

JAN

Group Personal
Arrangement Arragement

Y

Hotel

Ticket .
reservation

Provided dl classes shown in the example are significant. The class diagram shows three object
gtructures, which are counted as follows:

Structure name type # levels # sub-classes COP's
Travel Arrangement Gen./Spec. 1 - 3
Group Arrangement Aggr./Comp. - 1 2
Personal Arrangement Aggr./Comp. - 2 4

[Classes which represent two different structures are counted for twice (for each structure).
This does not imply a double count because different elements are counted (#levels as
opposed to #sub-classes)]

[Constraints and invariants

Congtraints do have a significant effect on complexity and as such represent functionality. It is
assumed that the number of congtraints is reasonably in line with the number of attributes, and as such
are represented by the number of attributes. This approach is in the line of thought of FPA. The
‘attribute’-part of the class therefore represents the functionality from both the attributes and their
congtraints)

Step 7 I dentify and valuate operations & transformations (design count only)

The relation between services and classes are differentiated by identifying the nature of the requested
operation. The nature of the operation is defined usng two criteria type of operation
(Query/Modifying) and whether or not collaborating classes are involved.

Implicit operations

Some operations can be assumed to be mandatory for each dass and may not be formaly identified.
These are cdled implicit operations. Wdl-known important implicit operations are create, destroy,
update and read. Although these operations may be automaticaly generated by the development
environment, they have to be formally identified, because they represent sgnificant functiondity to the
user. The standard implicit operations are classified as reusable dements, which implies no effort.
Implicit operations with pre- and post-conditions are not trivial and have to be counted anyway
because the business rules represent FUR's.

Transformations

Transdformations are vauated usng only one criteria the number of collaborating classes. The
complexity aspects from arithmetic expressons are expressed by applying a higher number op
COP's than for operations.

Counting rules operations

1. Fordl sarvicesidentify the relation between the service and the first responsible class as

one or mor e operations.

2. Thevaueof an operation is determined by means of the vauation matrix asfollows

- the type of operaion determines the row (if the operation changes an object it is
recognized as a Modifying operation, eseit is recognized as a Query operation.

- collaborating class(es) determine the appropriate column.

3. Addthe number of pointsto the appropriate class.

Counting rulestransformations
1. Andyze use case activities to discover transformations (in the context of a service).
2. Vduate transformations using the Operation/transformation matrix.

3. Accumulate the amount of functiondity resulting from transformations separately from service-
functiondity.

Operation/transfor mation valuation matrix

Collaborating N Y
Classes

Query 2 3
Modify 3 4
Transformation 4 6

Step 8 Deter mine reusable elements

Thisstep is il to be developed and is strongly dependent on the development environment. A case-
tool furnished with a class-catalogue or repository hasto be considered a prerequisite. The results of
adesign count will be drawn up in away that groups of functiondity can be consdered separately. A
computerized tool is recommended but not available at this moment.

Step 9 Determinethetotal size of the application

The totd size of the application is derived by adding the sarvice functiondity to the class-
functiondity.

Acknowledgments

I wish to thank the project teams at IQUIP Informatica B.V., Netherlands for their cooperation and
explanation of their development process. Specid thanks is granted to René van Oosterwijk of
Informatie Beheer Groep, Groningen, Netherlands for his contributions and sparring sessons.

Refer ences

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Thomas Fetcke et d., "Mapping the OO- Jacobson Approach into Function Point
Andysis',Proceedings of Tools-23'97 Santa Barbara, CA

S.R. Chidamber and C.F. Kemerer, "Towards a Metrics Suite for Object-Oriented
Desgn"*, OOPSLA '91 Conference Proceedings, Special Issue of SGPLAN Notices
Vol. 26 No. 11, November 1991, pp. 197 - 211.

S.R. Chidamber and C.F. Kemerer, Managerial Use of Metrics for Object Oriented
Software: an exploratory analysis KGSB Working paper no. 750, Pittsburgh, PA 15260,
1997.

Mark Lorenz, Jeff Kidd , Object-Oriented Software Metrics
Prentice Hall Object-Oriented Series, 1994

Philip Haynes, Tim Menzies, Geoffrey Phipps, Using the Sze of Classes and Methods as
the Basis for Early Effort Prediction; Empirical Observations, Initial Application; A
Practitioners Experience Report, September 1995

Sta Ramakrishnan, An Ongoing Experiment in O-O Software Process and Product
Measurements TR95/22, Dept. Software Development, Monash University, Audtrdia

Tim Hadtings, Adapting Function Points to contemporary software systems: a review of
proposals P95-5, Dept. Software Development, Monash University, Audrdia

L. Laranjeira, Software Size Edimation of Object- Oriented Systems, | EEE Transactions on
Software Engineering, Vol. 167, No. 5, May 1990, pp. 510 - 522.

Tony Stockman, Hua Zhao, "Software Szing for OO Software Development- Object
Function Point Anaysis’, Proceedings GSE Conference, Berlin, March 1996.

B. Catherwood, M. Sood, F. Armour, "Continued Experiences Measuring Object Oriented
System Size", Proceedings ESCOM'97, Berlin, May, 1997.

Georges Teologlou, "Measuring object oriented software with predictive object points’,
Project Control for Software Quality, (proceedings of ESCOM SCOPE 99 Conference,
May 1999, Herstmonceux, England, Shaker Publishing, 1999

International Organization for Standardization, Information Technology - Software
Measurement - Functional size measurement - Part 1. Definition of concepts 1SO/IEC
14143-1: 1998.

Martin Fowler, Kenddl Scott, UML Didtilled, Applying the standard Object Modding
Language, Addison Wedey, 1998

Ivar Jacobson, M. Christerson, at a., Object-Oriented Software Engineering
'A use case driven approach’, Addison-Wedl ey, 1992

Scott W. Ambler, CRC Modeling: Bridging the Communication Gap between Developers
and Users, A White Paper, 1997

Scott A. Whitmire, 3D Function Points: Applications for Object-Oriented Software
Boeing Commercid Airplane Group, PO Box 3707 MS6C-FL, Sedttle Washington
98124-2207.

[17]

[18]

[19]

[20]

[21]

International Function Point Users Group, Counting Practice Manual Rel. 4.0, Wedterville,
OH 43081-4899, 1994.

Internationa Function Point Users Group, Function Point Counting Practices. Case Study
3, Westerville, OH 43081-4899, 1994.

Capers Jones, Programming Languages Table, Release 8.2, March 1996, Software
Productivity Research.

Lawrence H. Putnam, Ware Myers, Measures for Excdlence, Reliable Software on Time,
within Budget, Y ourdon Press, P T R Prentice-Hall, 1992.

Hans- Erik Eriksson, Magnus Penker, UML Toolkit, John Wiley & Sons, Inc., 1998.

