
1

On the Measurement of Event-Based Object-Oriented
Conceptual Models

Geert Poels

Management Information Systems Group
Department of Applied Economic Sciences

Katholieke Universiteit Leuven
Naamsestraat 69, B-3000 Leuven, Belgium

geert.poels@econ.kuleuven.ac.be

Abstract

A suite of measures is presented that addresses two problem areas within contemporary object-oriented
software measurement, i.e. the lack of measures for the early stages of system development, like conceptual
modeling, and the lack of measures for dynamic models of an object-oriented system. Our suite of
measures is based on a formally defined object-interaction model, called the object-event table. Generally,
the objects in a domain are affected by the occurrence of real-world events. A framework for measurement
is presented that expresses and measures aspects of the data, function and dynamic behaviour dimensions
of a domain, in terms of (common) event participations.

1. Introduction

After so many years of research into object-oriented software measurement, a huge amount of
measures for object-oriented software models and artifacts has been produced. Zuse (1998)
provides a list of no less than 137 of such measures and estimates the actual number of measures
at more than threehunderd. In spite of these research efforts there are still areas that remain
largely untouched by object-oriented software measurement research. In this paper we present an
approach that addresses two of these research 'niches'.

A first problem area, identified during the previous WQAOOSE (Brito e Abreu et al. 1999),
concerns the lack of measures for models that capture the dynamic aspects of an object-oriented
software system. A typical measure suite for object-oriented software, like for instance MOOSE
(Chidamber and Kemerer 1994), focuses on the data and function dimensions of software, but
ignores the dynamic behaviour dimension as captured by behavioural and object-interaction
models like state-transition diagrams and activity diagrams.

A second problem area concerns the lack of measures for object-oriented software
specifications (Briand et al. 1999). Although industry begs for measurement instruments that can
be applied in the early phases of the development process (mainly for early quality control and
project budgeting decisions), nearly all published object-oriented software measures can only be
used after (high-level) system design. Some exceptions known to us are measures for object-
oriented analysis models (e.g. task points (Graham 1995) for Graham's SOMA, the QOOD
measure suite (Badri et al. 1995) for Coad and Yourdon's OOA, and the complexity measures
presented in (Genero et al. 1999) for Rumbaugh's OMT).

We believe these two problem areas to be somewhat related. Modern, UML-compliant
approaches towards domain analysis, object-oriented analysis and design, and component-based
software engineering, like for instance Catalysis (D'Souza and Wills 1999), put emphasis on both
the static and dynamic aspects of a domain or software system. However, in an object-oriented
implementation the dynamic aspects become somewhat subordinate to the static aspects. Many
of the 'rules' that were explicitly captured during behavioural and object-interaction modeling, are
translated into class invariants or into preconditions and postconditions that are attached to

2

specific methods within the class definitions. Strangly enough, these types of assertions haven't
received the attention of research into object-oriented design and code measurement either.

In this paper, we present part of a framework for measuring object-oriented conceptual models.
Conceptual modeling is used to model, structure and analyse a (part of a) domain,1 irrespective of
the software system that must be built. Defining a domain model is part of the requirements
engineering step in the development of a software system. All the rules described in the domain
model have to be supported by the system. Object-oriented analysis in general also aims at
modeling and analysing the specific system requirements (user interface, data storage, workflow
aspects, quality requirements, etc.). The conceptual model can be considered as an early object-
oriented analysis artifact. As a consequence, our framework is suited for early measurement.

Conceptual models are combinations of different sub-models. The part of the framework
presented here is based on one of these sub-models: the object-interaction model. To model the
interaction (and communication) between objects the framework assumes the event broadcasting
mechanism, which from a conceptual modeling point of view is to be preferred above the
message passing mechanism.2 The cornerstone of the measurement framework is a formally
defined object-interaction model based on event broadcasting, called the object-event table
(OET). The OET provides a formal basis for a suite of measures that is defined in terms of
(common) event participations.

In section 2 the object-event table is presented. A compact suite of measures, including size,
coupling, inheritance, specialisation, propagation and polymorphism measures is presented in
section 3. Finally, section 4 contains conclusions and topics for further research.

2. The object-event table

In conceptual modeling, the events that are modeled are real-world events, sometimes also
referred to as business events. Real-world events are characterised by the following properties:
• A real-world event corresponds to something that happens in the real world. This 'real world'

is the universe of discourse, i.e. the domain or relevant part of the domain that must be
modelled.

• A real-world event has no duration, i.e. it occurs or is recognised at one point in time.
• The real-world events that are identified during conceptual modeling are not further

decomposable. They are defined at the lowest level of granularity and cannot be
meaningfully split into other, more fine-grained, events.

It is common to model events as event types, rather than referring to specific event
occurrences. Since real-world events are the focal point in event-based conceptual modeling, a
notation is needed to designate the set of event types that is relevant for a particular universe of

1 Strictly spoken, conceptual modeling is different from domain analysis or engineering. Domain analysis
methods like FODA (Kang et al. 1990) are used to derive models that are common to a collection of
individual organisations. An analysis of the similarities and differences between the individual enterprise
models (also called business models) plays a crucial role in such methods. When we use the term 'domain'
or 'domain model' in this paper, we mean a 'domain' in a more general sense. It can refer to a real domain
model (e.g. stock/inventory management, front-office, manufacturing), but as well to an enterprise model
that is specific to a particular organisation.
2 In reality, objects do not pass messages to each other. For instance, if a person rents a car, then the person
does not send a 'rent' message to the car, nor does the car send a 'rent' message to the person. However,
both objects (person and car) are involved in the same real-world event, i.e. the renting of the car by the
person. The event broadcasting mechanism simultaneously notifies all participating objects of the event
occurrence, without deciding on an order yet as with message passing (e.g. the person notifies the car or the
car notifies the person). Compared to message passing, the event broadcasting mechanism leads to more
maintainable and reusable conceptual models (Snoeck and Poels 2000).

3

discourse. A capital A is used to denote the universe of event types associated with some
universe of discourse. All event types relevant to the universe of discourse are elements of A.

An example is presented of a simplified loan circulation process in the context of a library.
Assume that the scope of the LIBRARY conceptual model is initially delimited such that the
universe of event types is
A = {start_membership, end_membership, acquire, catalogue, borrow, renew, return, sell,
reserve, cancel, fetch, lose}

A conceptual model also identifies the entities (persons, things, etc.) in the universe of
discourse that participate in real-world events. Such entities are said to be 'relevant to' the
universe of event types A. In object-oriented conceptual modeling these entities are represented
as objects. Objects are characterised as follows:
• Each object in the conceptual model corresponds to a real-world concept.
• Objects are described by a number of properties. The properties of an object are specified in

an object type (e.g. a UML classifier with an <<object type>> stereotype).
• Objects exist for a certain period of time.
• An object always participates in at least two real-world events: a creating event and an ending

event. The participation in the ending event does not imply that the object is physically
destroyed. It means that the object can no longer participate in real-world events.

Objects have a state and a set of operations. Although the specific form of communication
(e.g. message passing) is not relevant for conceptual modeling, we assume that for each type of
event that an object participates in, there is an operation specified in the object type. The state of
an object is represented by its values for the attributes that have been specified in the object type.
These attributes must be seen as abstract attributes, i.e. they must not necessarily be stored
attributes in the class definition of the object. The effect of an event participation is modeled by
specifying how the operation that is triggered by the event, affects the state of the participating
object. The set of operations / triggering event types for an object type is called its alphabet. It is
a subset of the universe of event types.

Event participations are modeled using an object-event table (OET). The type of involvement
of an event participation is create (C), modify (M), or end (E). A modifying event type for an
object type does not create object instances of the type, nor does it end their lives. A modifying
event may however change the state of an object. Table 1 contains the OET for LIBRARY. Apart
from a type of involvement indication, we also indicate the type of provenance of an event
participation. An operation / event type in the alphabet of an object type is either acquired
through propagation (A) (cf. infra), inherited (I), or specialised, i.e. inherited in a specialised
version (S) (cf. infra). The class of 'own' event types (O) completes the partitioning.

To formally define the measures in the next section, the notion of object-event table is
formalised (Snoeck et al. 1999). The set of object types relevant to the universe of event types A
is denoted by a capital T.

Let A be the universe of event types and T be the set of object types.
The object-event table is a map τ: A × T → {O, A, S, I} × {C, M, E} ∪ {(' ',' ')}
When τ(e,P) = (R,J) with R ∈ {O, A, S, I, ' '} and J ∈ {C, M, E, ' '}, we write that τ(e,P) = R/J.
We define the partial maps τP and τI that return the type of provenance and the type of
involvement as
τP: A × T → {O, A, S, I, ' '} and τI: A × T → {C, M, E, ' '}

Event-based conceptual modeling is also concerned with modeling the static structure of the
universe of discourse. This means that associations between object types, with their optionalities
and cardinalities, are identified. A key feature of event-based conceptual modeling is that the
effect of associations on event participation is explicitly modeled.

4

Table 1. OET for LIBRARY

IT
E

M

V
O

L
U

M
E

C
O

PY

R
E

SE
R

V
A

T
IO

N

M
E

M
B

E
R

L
O

A
N

N
O

T
_R

E
N

E
W

A
B

L
E
_L

O
A

N

R
E

N
E

W
A

B
L

E
_L

O
A

N

acquire O/C
acquire_volume S/C
acquire_copy S/C
catalogue O/M I/M I/M
sell O/E
sell_volume S/E
sell_copy S/E
reserve A/M O/C A/M
cancel A/M O/E A/M
fetch A/M O/E A/M O/C
start_membership O/C
end_membership O/E
borrow A/M O/C
create_not_renewable_loan A/M A/M S/C
create_renewable_loan A/M A/M S/C
return A/M A/M A/M O/E I/E I/E
lose A/M O/E
lose_volume A/E A/M S/E
lose_copy A/E A/M S/E
renew A/M A/M O/M

One type of association is specialisation. One object type can specialise another object type.
A subtype inherits the alphabet of its supertype.3 It may also extend this alphabet, by
participating in additional types of event. We also allow for event type specialisation, i.e. objects
of a subtype may participate in events of a type that specialises an event type in the alphabet of
the supertype (cf. Table 1).4

For the other types of association we follow a modeling strategy that factors all associations
into binary existence dependency associations (Snoeck et al. 1999). Such associations put special
restrictions on optionalities and cardinalities.5 Moreover, they allow a formal definition of
'propagation' of operations. It is required that an object (hereafter called the master object)
participates in all events in which its existence dependent objects participate. All these event
participations are propagated from the existence dependent object to the master object (cf. Table
1). The operations in the existence dependent object type are also propagated into the master
object type.6

3 By convention, the inherited operations are explicitly specified in the subtype. This does not mean that
they must be implemented in the class definition of the subtype. Conceptual modeling is not concerned
with issues regarding implementation inheritance.
4 The operations of the supertype that are specialised are not included in the subtype. Note that some
object-oriented analysis methods (e.g. Catalysis) do not support event type / operation specialisation.
5 The association is mandatory and has a cardinality of one for the existence dependent object type.
Moreover, an existence dependent object is during its life always associated to the same object.
6 This does not mean that all propagated operations must also be implemented in the class definition of the
master object type.

5

Figure 1 shows the structural model of LIBRARY. Note that the object type ITEM has two
subtypes: VOLUME and COPY. If we assume that volumes can be borrowed, but their loans cannot
be renewed, then the object type LOAN must also be specialised.

<<object type>>
MEMBER

start_membership(…)
reserve(…)
cancel(…)
fetch(…)
borrow(…)
create_not_renewable_loan(…)
create_renewable_loan(…)
return(…)
lose(…)
lose_volume(…)
lose_copy(…)
renew(…)
end_membership(…)

<<object type>>
LOAN

borrow(…)
return(…)
lose(…)

1

0..*

<<object type>>
RENEWABLE_LOAN

fetch(…)
create_renewable_loan(…)
return(…)
lose_copy(…)
renew(…)

<<object type>>
NOT_RENEWABLE_LOAN

create_not_renewable_loan(…)
return(…)
lose_volume(…)

<<object type>>
VOLUME

acquire_volume(…)
catalogue(…)
create_not_renewable_loan(…)
return(…)
sell_volume(…)
lose_volume(…)

<<object type>>
COPY

acquire_copy(…)
catalogue(…)
reserve(…)
cancel(…)
fetch(…)
create_renewable_loan(…)
renew(…)
return(…)
sell_copy(…)
lose_copy(…)

1

1 0..1

0..1

<<object type>>
ITEM

acquire(…)
catalogue(…)
sell(…)

<<object type>>
RESERVATION

reserve(…)
cancel(…)
fetch(…)

1

0..*

10..*

Figure 1. Structural model for LIBRARY

3. An OET-based measure suite

For the measure definitions, assume a universally qualified conceptual model S with universe
of event types A, set of object types T relevant to A, and an object-event table τ. We use the
symbol # for the cardinality of a set.

3.1 Size measures: Informally, the size of a software artifact is a function of the number of finer-
grained elements that are used to define, specify, build or compose it. Size can be expressed and
measured in terms of event participations. There are good reasons to do so. The more event
types an object type is involved in, the more operations must possibly (but not necessarily) be
implemented in the class definition. Hence, the count of event participations provides an early
size estimate for classes. Early size estimates are useful (and essential) for project budgeting
purposes. They are the basis for effort and cost estimates, and for pricing, outsourcing and
scheduling decisions.

6

Table 2. Size measures based on the OET

MEASUREMENT OBJECT MEASURE DESCRIPTION MEASURE DEFINITION

Object type: P ∈ T Count of Event Participations CEP(P) = #{e ∈ A τ(e,P) ≠ ' '/' '}
Conceptual model: S Level of Object-Event Interaction LOEI(S) = ∑

∈ TP

CEP(P)

3.2 Coupling measures: Coupling can be described as the degree of interdependence between
software artifacts (e.g. modules, classes, components, etc.). The main arguments in favour of low
coupling are that the stronger the coupling between software artifacts, (i) the more difficult it is to
understand individual artifacts, and hence to maintain them; (ii) the larger the extent of
(unexpected) change and defect propagation effects across artifacts, and consequently the more
testing required to achieve satisfactory reliability levels; (iii) the lower the reusability of
individual artifacts. We therefore need to assess, and if needed reduce, the level of coupling in a
software system. The earlier this is done the better.

Traditionally, coupling in object-oriented software has been measured in terms of message
passing. In conceptual modeling we do not wish to decide yet whether object communication
will be based on message passing. In our opinion, it might thus be useful to express coupling in
terms of common event participations. Object types are then coupled if their instances participate
in the same types of event.

Table 3. Coupling measures based on the OET

MEASUREMENT OBJECT MEASURE DESCRIPTION MEASURE DEFINITION

Object type: P ∈ T Count of Coupled Object types CCO(P) = #{Q ∈ T - {P}
∃ e ∈ A: τ(e,P) ≠ ' '/' ' ∧ τ(e,Q) ≠ ' '/' '}

Conceptual model: S Level of Object type Coupling LOC(S) = ∑
∈ TP

CCO(P)

The OET provides also the basis to measure specific types of coupling, related to the dynamic
behaviour of objects. An example is synchronisation-based coupling. In LIBRARY,
RESERVATION and RENEWABLE_LOAN are not (directly) related through associations (cf. Figure
1). However, their alphabets contain the common event type fetch. A RESERVATION object and a
RENEWABLE_LOAN object synchronise their lives when they participate in the same fetch event
(i.e. the fetch ends the life of a RESERVATION object and creates a new RENEWABLE_LOAN
object).

Table 4. Measures for synchronisation-based coupling

MEASUREMENT OBJECT MEASURE DESCRIPTION MEASURE DEFINITION

Object type: P ∈ T Count of Synchronisation-based
Coupled Object types

CSCO(P) = #{Q ∈ T - {P} ∃ e ∈ A:
(τI(e,P) = C ∧ τI(e,Q) = E) ∨ (τI(e,P) = E ∧
τI(e,Q) = C)}

Conceptual model: S Level of Synchronisation-based
Object type Coupling

LSOC(S) = ∑
∈ TP

CSCO(P)

3.3 Inheritance, specialisation and propagation measures: Several measures for quantifying
the absolute or relative amount of inherited properties in an object-oriented system have been
proposed. The measures proposed in the literature are generally design or code measures that
consider the inheritance of class methods. During conceptual modeling, models are built using
type definitions, rather than class definitions, and consequently it has not been decided yet which

7

operations must be implemented, or inherited, overridden, etc. Nevertheless, early estimates of
the degree of inheritance can be obtained by considering the type of provenance of event
participations. Generally, operations that correspond to 'own' or specialised event participations
are implemented as class methods, whereas inherited operations are not (unless there is a need to
override the method body in the subclass).

As far as we know, there are no measures to assess the degree of propagation of operations.
Nevertheless, propagation of operations is not an exclusive characteristic of existence dependency
associations. For instance, in the context of the IS-PART-OF relation operations might also
propagate from the aggregate to the parts (e.g. cascading deletes). Having an idea of the
(relative) amount of propagated operations in an object type is useful, as these operations must
not necessarily be implemented as methods in the own class definition.

Table 5. Inheritance, specialisation and propagation measures based on the OET

MEASUREMENT OBJECT MEASURE DESCRIPTION MEASURE DEFINITION

Object type: P ∈ T Degree Of Inheritance
Degree Of Specialisation
Degree Of Propagation

DOI(P) = #{e ∈ A τP(e,P) = I}/CEP(P)
DOS(P) = #{e ∈ A τP(e,P) = S}/CEP(P)
DOP(P) = #{e ∈ A τP(e,P) = A}/CEP(P)

Conceptual model: S Degree Of Inheritance

Degree Of Specialisation
Degree Of Propagation

DOI(S) = ∑
∈ TP

#{e ∈ A τP(e,P) = I}/LOEI(S)

(analogue definitions for DOS and DOP)

3.4 Polymorphism measures: Literally, polymorphism refers to the ability to take different
forms. The general idea of polymorphism is that different classes define a method with the same
name and signature, but with a different implementation. Mostly, polymorphism is then
considered in the context of inheritance, overriding and dynamic binding. However, methods
with the same name and signature may also appear in classes not related through inheritance.

A potential polymorphic situation exists when more than one object type is involved in the
same event type. So, the number of potential polymorphic situations is easily measured from the
perspective of the event types. The type of provenance indications further allow to distinguish
specific types of polymorphism, like non-inheritance-related polymorphism.

The following table presents the degree of polymorphism measures. They are relative
measures, i.e. they relate the actual number of potential polymorphic situations of the type
considered to the maximum number of such situations. Note that polymorphism is only defined
for conceptual models.

Table 6. Polymorphism measures based on the OET

MEASUREMENT OBJECT MEASURE DESCRIPTION MEASURE DEFINITION

Conceptual model: S Degree of
POlymorphism

Degree of Non-
inheritance-related
POlymorphism

DPO(S) = (∑
∈ Ae

#{P ∈ T τ(e,P) ≠ ' '/' '} - #A) / LOEI(S)

DNPO(S) = (∑
∈ Ae

#{P ∈ T τP(e,P) ∈ {O, A, S}} - #A) /

(LOEI(S) - ∑
∈ Ae

#{P ∈ T τP(e,P) = I})

8

4. Conclusions and topics for further research

This paper presented part of a framework for the measurement of object-oriented conceptual
models. Conceptual modeling is part of the requirements engineering process and as such our
work addresses the need for measurement support in the early stages of system development.

The cornerstone of the measurement framework is the object-event table. In fact, to measure
characteristics related to the data, function, as well as dynamic behaviour dimensions of object-
oriented conceptual models, the framework assumes that the object-event interactions are
somehow modeled. Information regarding such interactions is normally available when modeling
and analysing a domain. But even if a method does not prescribe the use of an object-event table
or an equivalent object-event interaction model, this information can easily be derived, as long as
the method does not ignore behavioural aspects altogether.

This paper did not address the issue of measure validity. Regarding the theoretical validity of
the measures we must note that all direct measures have been developed using a Measurement
Theory-based approach described in (Poels and Dedene 2000). Regarding the usefulness of the
measures we must note that a series of empirical investigations has been planned. It would be
useful to examine whether the measures can indeed be used as early effort and quality predictors,
and whether dynamic aspects of software are related to these variables. Preliminary results of a
first experiment will be presented at the workshop.

Acknowledgements

Geert Poels is a Postdoctoral Fellow of the Fund for Scientific Research - Flanders (Belgium)(F.W.O.) and
wishes to acknowledge the financial support of the Fund for Scientific Research.

References

L. Badri, M. Badri, and S. Ferdenache, "Towards Quality Control Metrics for Object-Oriented Systems
Analysis", Proceedings of TOOLS Europe'95, Versailles, France, March 1995, pp. 193-206.
L. Briand, E. Arisholm, S. Counsell, F. Houdek, and P. Thévenod-Fosse, "Empirical Studies of Object-
Oriented Artifacts, Methods, and Processes: State of The Art and Future Directions", Technical Report
IESE 037.99/E, Fraunhofer Institute for Experimental Software Engineering, Kaiserslautern, Germany,
1999.
F. Brito e Abreu, H. Zuse, H. Sahraoui, and W. Melo, "Quantitative Approaches in OO Software
Engineering", ECOOP'99 Workshop Reader, Lecture Notes in Computer Science, Springer Verlag, 1999.
S.R. Chidamber and C.F. Kemerer, "A Metrics Suite for Object Oriented Design", IEEE Transactions on
Software Engineering, Vol. 20, No. 6, June 1994, pp. 476-493.
D.F. D'Souza and A.C. Wills, Objects, Components, and Frameworks with UML: the Catalysis Approach,
Addison-Wesley, 1999.
M. Genero, M.E. Manso, M. Piattini, and F.J. Garcia, "Assessing the Quality and the Complexity of OMT
Models", Proceedings of the 2nd European Software Measurement Conference, Amsterdam, October 1999,
pp. 99-109.
I. Graham, Migrating to Object Technology, Addison-Wesley, 1995.
K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Peterson, "Feature-Oriented Domain Analysis
(FODA) Feasibility Study", Technical Report CMU/SEI-90-TR-21 (ESD-90-TR-222), Software
Engineering Institute, Carnegie-Mellon University, Pittsburgh, Pennsylvania, USA, November 1990.
G. Poels and G. Dedene, "Distance-based software measurement: necessary and sufficient properties for
software measures", Information and Software Technology, Vol. 42, No. 1, January 2000, pp. 35-46.
M. Snoeck, G. Dedene, M. Verhelst, and A. Depuydt, Object Oriented Enterprise Modelling with
MERODE, Academic Press Leuven, Belgium, 1999.
M. Snoeck and G. Poels, "Improving the Reuse Possibilities of the Behavioural Aspects of Object-Oriented
Domain Models", 2000, submitted for publication.
H. Zuse, A Framework for Software Measurement, Walter de Gruyter, Berlin, 1998.

