
A Formal Approach to Building a Polymorphism Metric

in Object-Oriented Systems

 Claudia Pons* Luis Olsina♦ Máximo Prieto*

* Lifia, Universidad Nacional de La Plata

Calle 50 esq.115, 1er.Piso,
(1900) La Plata, Argentina

E-mail: cpons@sol.info.unlp.edu.ar

♦GIDIS, Facultad de Ingeniería,

UNLPam, Calle 9 y 110
(6360) Gral.Pico, LP, Argentina

E-mail: olsinal@ing.unlpam.edu.ar

Key words: Object-oriented software quality metrics, formal methods, polymorphism, dynamic logic.

Abstract

Although quality is not easy to evaluate since it is a complex concept compound by different
aspects, several properties that make a good object-oriented design have been recognized and
widely accepted by the software engineering community. We agree that both the traditional and
the new object-oriented properties should be analyzed in assessing the quality of object-oriented
design. However, we believe that it is necessary to pay special attention to the polymorphism
concept and metric, since they should be considered one of the key concerns in determining the
quality of an object-oriented system.

In this paper, we have given a rigorous definition of polymorphism. On top of this formalization we
propose a metric that provides an objective and precise mechanism to detect and quantify
dynamic polymorphism. The metric takes information coming from the first stages of the
development process giving developers the opportunity to early evaluate and improve the quality
of the software product. Finally, a first approach to the theoretical validation of the metric is
presented.

1. Introduction

Object-oriented (O-O) software engineers need a better understanding of the desirable and non-desirable
properties of O-O systems design, and their effect onto the quality factor. The desirable properties must
represent those characteristics that ultimately lead to more efficient, reusable, maintainable and extensible
software products.

The key issues related to the quality assessment of O-O systems are:

§ It is necessary to determine the desirable and non-desirable properties of systems.
§ There must be a formal definition of these properties.

§ It is necessary to provide mechanisms to detect (and quantify) the presence of these properties. These
mechanisms must be formal and objective.

Although quality is not easy to evaluate since it is a complex concept integrated by different aspects, several
properties that make a good O-O design have been recognized and widely accepted by the community.
Despite the fact that the properties of coupling, cohesion, modularity, complexity and size, generally used to
characterize quality in traditional structural design are also important in O-O designs, traditional metrics are
not suitable for O-O designs. This problem is due to the presence of additional properties that are inherent
to the O-O paradigm, such as abstraction, inheritance and polymorphism. These new concepts are vital for
the construction of reusable, flexible and adaptable software products, and they must be taken into
consideration by O-O software quality metrics.

The applicability problem of traditional techniques has been analyzed in the works of Chidamber and
Kemerer (1994), Tegarden et al. (1992) and Wilde and Huitt (1992) among others. Special metrics for O-O
systems have been investigated, see for example the works of Chen and Lu (1993), Kim et al. (1994) and

Li and Henry (1993). There are numerous proposals addressing the assessment of the traditional properties
into O-O systems; for example the works of Poulin (1997), Briand et al. (1997), Price and Demurjian (1997),
Benlarbi (1997). But less work has been done in the field of the specific O-O properties; see for example the
works of Moore (1996), Bansiya (1997; 1999-a; 1999-b), Benlarbi and Melo (1999), Abreu and Carapuça
(1994) and Zuse (1998).

An additional problem is that many of the currently available metrics can be applied only when the product is
finished or almost finished, since data is taken from the implementation. This makes the quality-weakness
problems be detected too late. It is desirable to have a tool that takes information coming from the first
stages of the development process (i.e. requirement analysis phases); this will give developers the
opportunity to early evaluate and improve the quality of the product in the development process.

In this paper, new metrics to measure the quality of an O-O design are defined. These metrics are applied to
the conceptual model of a system expressed in the Unified Modeling Language UML (1999), thus permitting
an early analysis of the system quality. Although we agree that both the traditional and the specific O-O
properties or attributes should be analyzed in assessing the quality of O-O design, our purposes are not to
define a complete quality evaluation mechanism (in the sense that it considers every system property), but
only to characterize some aspects of the polymorphism attribute.

Polymorphism concept can be considered one of the key concerns in order to determine the quality of an O-
O design. Regarding the literature, e.g., Benlarbi et al. (1999), different kinds of polymorphisms have been
classified, namely: pure, static, and dynamic ones. For instance, considering the latter, for two methods to be
polymorphic, they need to have the same name and signature (parameter types and return type) and also
the same effects (changing the state of the receiver in the same way and raising the same messages to
other objects in the system). Dynamic binding lets one substitute objects that are polymorphic for each other
at run-time. This substitutability is a key concept in O-O systems. Polymorphic systems have several
advantages. They simplify the definition of clients, since as long as a client only uses the polymorphic
interface, it can substitute an instance of one class for another instance of a class that has the same
interface at run-time. Because all instances behave the same way.

We formally define the polymorphism concept, giving foundations for its detection and quantification. Thus,
the polymorphism measure should be combined with the measures of the rest of the properties (such as
coupling, cohesion, entropy, etc.) with the aim of determining the total quality of the system. However, this
metrics combination task is beyond the scope of this work.

2. The formal domain

We introduce the M&D-theory, a proposal for giving formal semantics to the Unified Modeling Language UML
(1999). The basic idea behind this formalization is the definition of a semantic domain integrating both the
model level and the data level. In this way, both static aspects and dynamic aspects of either the model or
the modeled system, can be described within a first order formal framework.

Dichotomy of entities

The entities defined by the M&D-theory are classified in two disjoint sets: Modeling entities and Modeled
entities. Figure 1, shows this dichotomy of entities. Modeling entities correspond to concrete syntax of the
UML, such as Classes or StateMachine. In contrast, modeled entities, such as Object or Link represent run-
time information, i.e. instances of classes and processes running on a concrete system.

Structure of the theory

The M&D-theory is a first-order order-sorted dynamic logic theory1, consisting of three sub-theories:

M&D-theory = UML-theory + SYS-theory + JOINT-theory

1 A first-order order-sorted dynamic logic therory Th consists of a signature ΣΣ that defines the language of
the theory, and a set of ΣΣ-axiomas φφ: Th = (ΣΣ, φφ)

A signature ΣΣ consists of a a set of sort symbols S, a partial order relation between sorts ≤≤, a set F of
function symbols, a set P of predicate symbols , and a set A of Action symbols : ΣΣ = ((S, ≤≤), F, P, A)

The language of the theory intentionally follows the notation of the UML metamodel (UML, 1999) and the
Object Constraint Language OCL (UML, 1999).

The sub theory UML-theory:

The theory describes modeling entities (i.e. models). In the UML, Class Diagrams model the structural
aspects of the system. Classes and relationships between them, such as Generalizations, Aggregations and
Associations constitute Class Diagrams. On the other hand, the dynamic part of the system is modeled by
Sequence and Collaboration diagrams that describe the behavior of a group of instances in terms of
message sendings, and by State Machines that show the intra-object dynamics in terms of state transitions.

Modeling entities are related to other modeling entities. Consider for example the association between Class
and StateMachine by the relation labeled ‘behavior’. This association indicates that StateMachines can be
used for the definition of the behavior of the instances of a Class. Other example is given by the relation
existing between StateMachine and State, that specifies that a StateMachine is composed by a set of States.
It is important to formally define how the different UML diagrams are related to one another, to be able to
maintain the consistency of the model. Moreover, it is important to specify the effect of modifications of these
diagrams, showing what is the impact on other diagrams, if a modification to one diagram is made.

The theory consists of a signature ∑∑UML= ((SUML,≤≤), FUML, PUML, AUML) and a formula φUML over ΣUML:

UML-theory = (ΣUML , φUML)

The set SUML contains sort symbols representing modeling elements, such as Class and StateMachine. The
order relation between sorts allows for the hierarchical specification of the elements.

The sets of symbols FUML and PUML define functions and predicates on modeling entities.

The set AUML consists of action symbols representing evolution of specifications over their life cycle. One of
the most common forms of evolution involves structural changes such as the extension of an existing
specification by addition of new classes of objects or the addition of attributes to the original classes of
objects. At the other hand, evolution at this level might reflect not only structural changes but also behavioral
changes of the specified objects. Behavioral changes are reflected for example in the modification of
sequence diagrams and state machines.

The formula φUML is the conjunction of two disjoint sets of formulas, φS and φD of static and dynamic formulas
respectively. The former consists of first-order formulas which have to be valid in every state the system

goes through (they are invariants or static properties or well-formedness rules of models). These rules are
used to perform schema analysis and to report possible schema design errors. The latter consists of modal
formulas defining the semantics of actions, that is to say, the evolution of models.

The sub-theory SYS-theory:

This theory describes the modeled entities (i.e. data and process). The elements in the data level are
basically instances (data value and objects) and messages. At the data level a system is viewed as a set of
related objects collaborating concurrently. Objects communicate each other through messages that are
stored in semi-public places called mailboxes. Each object has a mailbox where other objects can leave
messages.

Modeled entities are related to other modeled entities. For example the relationship named ‘slot’ between
Object and AttributeLink, denotes the connection between an Object and the values of its attributes.

The theory consists of a signature ∑∑SYS= ((SSYS,≤≤), FSYS, PSYS, ASYS) and a formula γSYS over ΣSYS:

SYS-theory = (ΣSYS , γSYS)

The set SSYS contains sort symbols representing the data in the system and its relationships, such as
objects, links, messages, etc. The sets of symbols FSYS and PSYS define functions and predicates on data.

The set ASYS consists of action symbols representing evolution of data at run time, such as object state
changes. The formula γSYS is the conjunction of two disjoint sets of formulas, γS and γD of static and dynamic
formulas respectively. The former consists of first-order formulas which have to be valid in every state the
system goes through (they are invariants or static properties or well-formedness rules of data). Whereas, the
latter consists of modal formulas defining the semantics of actions, that is to say the possible evolution of
the data.

The sub-theory JOINT-theory:

This part of the theory describes the connection between model and data levels. Modeling entities are
related to modeled entities. There is a special relationship among some modeled entities with their
corresponding modeling entity. This relationship denotes ‘instantiation’, for example, an Object is an instance
of a Class, whereas Links are instances of Associations (see figure 1).

Finally, φJOINT is a formula constructed in the extended language ΣM&D, and thus it can express at the same
time data properties (e.g. behavioral properties of objects), model properties (e.g. properties about the
specification of the system) and properties relating both aspects.

Figure 2, shows a sample of the M&D-theory. More details of the theory can be found in (Pons et al., 1999
and Pons, 1999).

Advantages of the integration

The integration of modeling entities and modeled entities into a single formalism allows us to express both
static and dynamic aspects of either the model or the modeled system within a first order framework. The
validity problem (i.e. given a sentence φ of the logic, to decide whether φ is valid) is less complex for first-
order formalisms than for higher order formalisms. Although first order logic is undecidable, computer
systems satisfy certain properties (e.g. systems are interpreted over arithmetic structures, the state of a
program is given by a finite set of values) that allow us to calculate the validity of formulas in an effective
way. The four different dimensions: static aspects of models, static aspects of data, dynamic aspects of
models, dynamic aspects of data, are highlighted in figure 2.

The integrated formalism is suitable for the definition of a variety of properties of O-O systems, structural
properties as well as behavioral properties.

The logic allows us to define structural properties such as: depth of class hierarchy, size of class interface,
number and type of associations between classes, etc. These properties can be expressed because classes,
associations, generalization, etc. are first-class citizens in the logic. On the other hand, instances and their
behavior are also first-class citizens of the logic, as a consequence, it is possible to define behavioral
properties such as pre/post conditions of operations, equivalence of behavior, among others.

Specification of Classifier
Sorts Classifier
Taxonomy Classifier≤GeneralizableElement
Updatable functions

features: Classifier→Seq of Feature
associationEnds: Classifier→Set of AssociationEnd
behavior: Classifier →StateMachine
............

Updatable predicates
PartOf: Classifier x Classifier

Actions
addFeature: Classifier x Feature → ModelEvolution
deleteFeature: Classifier x Feature → ModelEvolution

Axioms ∀c:Classifier ∀f:Feature ∀e:AssociationEnd
Static axioms

[1]No Attributes may have the same name within a Classifier
∀f,g∈attributes(c) (name(f) = name(g) → f=g)
[2] symmetry rules
 f∈features(c) ↔owner(f)=c ∧ e∈associationEnds(c) ↔type(e)=c
.................

Dynamic axioms
〈addFeature(c,f)〉true →f∉allFeatures(c)
[addFeature(c,f)] (Exists(f) ∧ f∈features(c) ∧ owner(f)=c)
..................

End specification of Classiffier

Specification of Instance
Sorts Instance
Taxonomy Instance≤DataElement
Updatable functions

slots: Instance → Set of AttributeLink
linkEnds: Instance → Set of LinkEnd
classifier: Instance → Classifier
mailBox: Instance → Seq of Message
currentStates: Instance →State
............

Actions
-.-: Instance, Message → Modification

Axioms ∀i:Instance ∀l:LinkEnd
Static axioms

[1] the AttributeLinks matches the declarations in the
Classifier.
∀l∈slots(i) (attribute(l)∈allAttributes(classifier(i)))
[2] symmetry
l∈linkEnds(i)↔ instance(l)=i
.................

Dynamic axioms
[1] effect of call actions:
previousStates=currentStates(o) ∧
firing=firingTransitions(behavior(classifier(o)),m) →
[o.m] (currentStates(o)=(previousStates - {source(t)t∈firing})
 ∪ {target(t)t∈firing}
 ∧ ∀ t∈firing ∀a∈effect(t) sent(a)
 ∧ m ∉ mailBox(o))
..........................

End specification of Instance

 Figure 2: sample of the M&D-theory

Dynamic aspects
of models

Static aspects
of models

Static aspects
of data

Dynamic aspects
of data

3. Using the M&D-theory to formalize an O-O model

We formally define the semantics of the UML using a two-step approach:

1- interpretation (or translation) of the UML to the M&D-theory.

2- semantics interpretation of the M&D-theory.

That is to say, UML-constructions àtranslation M&D-theory àsemantics Semantics-domain

The semantics mapping Sem is the composition of both functions, Sem=semantics οο translation

The first step converts an UML model instance to the modal logic theory, the conversion provides a set of
formulas that serves as an intermediate description for the meaning of the UML model instance. The key
components of this step are rules for mapping the graphic notation onto the formal kernel model.

The second step is the formal interpretation of this set of formulas. The semantics domain where dynamic
logic formulas are interpreted is the set of transition systems. A transition system, U=(SU,wo,mU), is a set of
possible worlds or states with a set of transition relations on worlds; For details about semantics of dynamic
logic, see Harel et al (1999) or Wieringa and Broersen (1998). Formally, let Σ=((S, ≤), F, P, A) be a first-
order dynamic logic signature and let ΣΝ=((S, ≤), FN, PN) be the non-updatable part of Σ. Let U=(A,mU) be a
ΣΣΝΝ-algebra, providing a domain for the interpretation of static terms. Formulas of the language are interpreted
on Kripke-frames as follows: U=(SU,wo,mU) . Where:

ü SU is the set of states. Each state w∈SU, is a function that maps terms to the algebra U, in the following
way:

- if f∈FN then w(f)=fU (i.e, the static interpretation given by U).

- if f∈FU y f:s1,..,sn→s then w(f): Us1,..,Usn →Us.

- if p∈PN then w(p)=pU (i.e, the static interpretation given by U).

- if p∈PU y p:s1,..,sn then w(p): Us1,..,Usn

- if x is a variable of sort s, then w(x)∈Us.

- if α∈A then w(α)=αU (i.e, the static interpretation given by U).

ü w0∈SU is the initial state.

ü mU associates each action α to a binary relation called the input/output relation of α: mU(α) ⊆ SU x SU

The domain for states is an heterogeneous algebra (a ΣΣΝΝ-algebra) whose elements are both model elements
(such as classes) and data elements (such as objects).

Interpretation of formulas

The interpretation of a term t in a state w given v (written as intw(t)) is defined in the usual way.

The satisfaction of a closed formula in a structure U and a state w is defined as follows:

U,w |= (t1=t2) iff intw(t1)= intw(t2)

U,w |= ¬φ iff not(U,w|=φ)

U,w |= φ∧γ iff U,w |=φ and U,w |=γ

U,w |= [a]φ iff ∀w’, if (w,w’)∈ mU(α), then U,w’|=φ.

A model for a specification sp=(S,F,P,A, φ) is a structure U such that U,w0|=φ.

4. Formal Definition of Polymorphism
In this section, we give a rigorous definition of polymorphism in the framework of the M&D-theory. Main
definitions of the polymorphism concept can be read in (Woolf, 1997). Let M be an UML model of an O-O
system. Let U be the formal semantics of that model, i.e. U =Sem(M).

Definition 1: Polymorphic Methods

For two methods to be polymorphic, they need to have the same name and signature (parameter types and
return type) and also the same effects (changing the state of the receiver in the same way and raising the
same messages to other objects in the system).
Let m be a method name. Let C1 and C2 be two classes existing in the model M.
The methods named m are polymorphic in C1 and C2 in the model U if the following formula holds:

U |= Polymorphic(m,C1,C2)

Where the predicate Polymorphic is defined as follows:

Def 1.1:
∀m:Name ∀C1,C2:Class •
Polymorphic(m,C1,C2) ↔ ∃m1,m2 • (m1∈C1.operations ∧ m2∈C2.operations ∧

m1.name=m ∧ m2.name=m ∧ m1.visibility=m2. visibility
∧ hasSameSignature(m1,m2)
∧ hasSameBehavior(m,C1,C2))

The predicate hasSameSignature applied on two methods is true if both methods have the same signature. It
is defined in the M&D-theory as follows:

Def 1.2:
∀b,b´:BehavioralFeatures •
hasSameSignature(b,b’) ↔ (b.name= b’.name ∧ areEquivalent(b.parameters, b’.parameters))

Where areEquivalent is defined as follows:

Def 1.3:
areEquivalent(λ,λ)=true
areEquivalent(p:ps, λ)=false
areEquivalent(λ,p:ps)=false
areEquivalent(p1:ps,p2:ps´)=equivalent(p1,p2)∧areEquivalent(ps,ps´)

Where λ denotes the empty sequence and p:ps denotes a non-empty sequence made up from a head
(denoted by p) and a tail (denoted by ps).

And finally, the predicate equivalent is applied on two single parameters determining their equivalence:

Def 1.4:
∀p1,p2:Parameter • equivalent(p1,p2) ↔ (p1.defaultValue=p2.defaultValue ∧
 p1.kind= p2.kind ∧ p1.type=p2.type)
Two methods named m have the same behavior in
C1 and C2 if they are indistinguishable, i.e., for every
two objects o1 and o2 (being o1 instance of C1 and o2

instance of C2), the effect of executing o.m is the
same as the effect of executing o.m, where o.m
denotes that object o receives and execute the
method named m. The predicate is defined as
follows:

Def 1.5:

U,w |= hasSameBehavior(m,C1,C2) iff

∀o:Object • o.classifier=C1 then

∀w1 • (w,w1) ∈ mU(o.m) then

∃ w’,w’1 • ((w,w´) ∈ mU(o.migrates(C2))

 ∧ (w´,w´1) ∈ mU(o.m)
 ∧ (w´1,w1) ∈ mU(o. migrates(C1)))

That is to say, the diagram in figure 3 commutes, where the action o.migrates(C) represents that object o
switches its class to C (see definition 1.6).

o.migrates(C1)

o.migrates(C2)

o.m

o.m
w1

w’

w

w’1

Figure 3: commutativity of polymorphic methods

Def 1.6: [o.migrates(C)] o.classifier=C

Corollary: for every formula φ , the following schema is valid in the class of models satisfying that the method
named m is polymorphic in classes C1 and C2:

∀o∈instances(C1) [o.m]φ ↔ [o.migrates(C2)] [o.m] [o.migrates(C1)] φ

Definition 2: Polymorphic Classes

Two classes are polymorphic if they define the same methods, and these methods are polymorphic. Two
objects belonging to polymorphic classes are polymorphic objects. Dynamic binding lets you substitute
objects that are polymorphic for each other at run-time. This substitutability is a key concept in O-O systems.

Formally, two classes C1 and C2 are polymorphic in model U, if the following condition holds:

U |= Polymorphic(C1,C2)

Where the predicate Polymorphic is defined in the following way:

Def 2.1:
∀C1,C2: Class • Polymorphic(C1,C2) ↔

interface(C1)=interface(C2) ∧ ∀n∈ interface(C1) • polymorphic(n,C1 ,C2)

Function interface returns the set of names of public methods of a class. It is defined in the following way:

Def 2.2: ∀C:Class • ∀a:Name • (n∈interface(C) ↔ ∃f∈C.allFeatures • (f.name=n ∧ f.visibility=#public))

Definition 3: Polymorphic Hierarchy

The concept of polymorphic class that was previously defined is too strong, because in general only some of
the methods of a class are polymorphic, not all of them. Therefore, a more flexible concept of polymorphism
has been defined (see Woolf, 1997), named core interface. A core interface is a set of polymorphic methods
that several classes share. For a hierarchy to be polymorphic all its classes must share a core interface.

Polymorphic hierarchies have several advantages. They simplifies the definition of clients, since as long as a
client only uses the core interface, it can substitute an instance of one class for other instance of a class that
has the same core interface at run-time. Because all of instances behave the same, one works just as well
as another, with regard to the core interface.

Formally, let H be a set of classes in an O-O hierarchy. Hierarchy H is polymorphic in the model U if there
exists a core class (this core class might not belong to the set H). The formula below defines the concept of
polymorphic hierarchy:

U |= Polymorphic(H)

Where the predicate Polymorphic is defined in the following way:

Def 3.1:
∀H:Set of Class • (Polymorphic(H) ↔ ∃C:Class • isCore(C,H))

Where:
Def 3.2:

∀ H:Set of Class • ∀C:Class • (isCore(C,H) ↔
 (interface(C)≠∅ ∧ ∀S∈H • (interface(C)⊆interface(S) ∧ ∀n∈interface(C) • polymorphic(n,C,S))))

The degree of polymorphism depends on the size of the core interface. The larger the core is, the higher the
polymorphism degree is.

5. The Polymorphism metric

In the previous sections, we have given a rigorous definition of polymorphism in the framework of the M&D-
theory (Pons et al. 99) . On top of this formalization we propose a metric for measuring polymorphism, that
provides an objective and precise mechanism to detect and quantify polymorphism.

We define the following functions on O-O UML models.

Let S be a UML Model, that is to say, a Package containing a hierarchy of modelElements that together
describe an abstraction of a physical system (UML, 1999).

• hierarchies(S) returns a collections containing every non-trivial, pair-wise disjoint hierarchy defined in S.

Then we define the following functions on a class hierarchy h (we restrict h to be a tree):

• classes(h) returns a set containing all of the classes belonging to hierarchy h.

• methods(h) returns a bag containing all of the methods defined in the hierarchy, as follows:

methods(h)= ⊕c∈classes(h) interface(c), where ⊕ represents bags union(with repetitions).

• core(h) returns the largest core in the hierarchy h.

• width(h) returns the width of the hierarchy, it is defined as follows:

width(h) = #(interface(core(h))) , where the symbol # denotes set cardinality.

• children(h) returns the set of direct sub-hierarchies of hierarchy h.

Let S be an UML model, the polymorphism metric of S is the average polymorphism measure of every
pairwise disjoint hierarchies in S. The polymorphism metric function is defined as follows:

polymorphism_metric: System → [0..1]

polymorphism_metric(S) = ∑∑h∈∈hierarchies(S) polymorphism_measure(h)

 #hierarchies(S)

polymorphism_measure: Hierarchy → [0..1]

Trivial Case:

if #classes(h)=1 then polymorphism_measure(h)=0

General Case:

if #classes(h)>1 then polymorphism_measure(h)=polymorphic_methods(h) / #methods(h)

Where:

polymorphic-methods(h)= width(h) * #classes(h)

 + ∑hi∈children(h) polymorphic-methods(hi–core(h))

Where (hi – core(h)) stands for the hierarchy resulting after removing from hi all of the methods belonging to
core(h). Let us remark that the result of the function polymorphism_metric is in the interval [0...1], where
the number zero represents the absence of polymorphism, while the number 1 represents the highest degree
of polymorphism (i.e., all of the methods in the hierarchy are polymorphic). In the case of trivial hierarchies
(i.e., hierarchies made up from a single class), the metrics returns zero.

6. Examples

6.1 Identifying polymorphism

The hierarchy of collections has been defined and implemented in numerous O-O languages. Figure 4,
shows a part of the Collection hierarchy of the Smalltalk language (Lalonde 1994). Using the formal
definitions of the M&D-theory we can identify the presence of polymorphic methods in this hierarchy, for
example: size, includes:, select:, collect: reject:, remove:, add:,etc. As an example, we show the formal proof
of that the method named remove: is polymorphic for classes Set and Bag. The statement
aCollection.remove:anElement denotes that the element equal to anElement is removed from the receiver
collection. In the case the receiver is a Set, at most one occurrence can belong to the set, but in the case the
receiver is a Bag, several occurrences of the same object may belong to it. In the same way, it is possible to

proof that method add: is not polymorphic for classes Set and Bag (i.e. = ¬Polymorphic(add:, Set, Bag))
due to the detection of duplicated elements.

Classes Public Instance Methods

Collection size, includes:, select:, collect:, reject:, detect:

NotIndexedCollection remove:

Set add:

Bag add:

IndexedCollection last, first, at:, at:put:

FixedSizeCollection

Array

String < , >

VariableSizeCollection remove:

OrderedCollection add:

SortedCollection add:

Figure 4: part of the Collection hierarchy in Smalltalk2

Theorem 1: remove is polymorphic for classes Set and Bag: = Polymorphic(remove, Set,Bag)

Hypothesis:

Let Set and Bag the classes in the Smalltalk hierarchy. There exists an operations removeInSet belonging to
Set.interface, and there exists an operation removeInBag belonging to Bag.interface, such that:

[h0] removeInSet∈Set.interface ∧ removeInBag∈Bag.interface
[h1] removeInSet.name=remove ∧ removeInSet.visibility=public
[h2] removeInSet.parameters= <p1>
[h3] p1.defaultValue=nullElement
[h4] p1.kind=in
[h5] p1.type=Object
The specification of the operation is given by the following dynamic logic formula:
[h6] ∀s,e:Object • (s.classifier=Set → [s.remove(e)]e∉s)
[h7] removeInBag.name=remove ∧ removeInBag.visibility=public
[h8] removeInBag.parameters= <p2>
[h9] p2.defaultValue= nullElement
[h10] p2.kind = in
[h11] p2.type=Object
The specification of the operation is given by the following dynamic logic formula:
[h12] ∀b,e:Object (b.classifier=Bag ∧ occurrences(b,e)=n → [b.remove(e)]occurrences(b,e)=n-1)

Lets first prove the following lemmas:

Lemma 1: both operations have the same signature: = hasSameSignature(removeInSet,removeInBag)

Proof of lemma 1:

[l1] p1.defaultValue=p2.defaultValue (from [h3] and [h9])
[l2] p1.kind=p2.kind (from [h4] and [h10])
[l3] p1.type=p2.type (from [h5] and [h11])
[l4] equivalent (p1,p2) (applying def 1.4 to [l1], [l2] and [l3])
[l5] AreEquivalent(<p1>,<p2>) (applying def 1.3 to [l4],
[l6] AreEquivalent(removeInSet.parameters, removeInBag.parameters) (from [h2] and [h8])
[l7] HasSameSignature(removeInSet, removeInBag) (applying def 1.2 to [h1], [h7] and [l6])

Lemma 2: the method remove: has the same behavior in both classes:

2 In the chart, every polymorphic method appears only once in the hierarchy of classes. For example, every
class of the hierarchy has a polymorphic method named select:. Instead of including the method in each
class, we only include it once in the root of the hierarchy.

= hasSameBehavior(remove, Set, Bag) ∧ hasSameBehavior(remove, Bag, Set)

Proof of lemma 2:

We have to prove that the corollary holds. Since this dynamic logic has a minimal change semantics, only it
is necessary to analyze the post-conditions of the method remove, because no other change is allowed to
happen. That is to say, the instance of the corollary we have to prove is:

∀s∈Set.instances ∀e:Object • [s.remove(e)] e∉s ↔[s.migrates(Bag)] [s.remove(e)] [s.migrates(Set)] e∉s

∧∀b∈Bag.instances ∀e:Object •

[b.remove(e)] occurrences(b,e)=n-1↔[b.migrates(Set)] [b.remove(e)] [b.migrates(Bag)] occurrences(b,e)=n-1

Where n is equal to occurrences(b,e) before the removing.

The proof of the first implication of the first part of the conjunction is shown below, the rest of the proof is
omitted, but it is similar to this.

[m1] ∀s:Set.instances [s.migrates(Bag)] s.classifier=Bag (from def. 1.6)
[m2] ∀s∈Set.instances •∀e:Object • occurrences(s,e) ≤1 (because sets have no repetitions)
[m3] ∀s∈Set.instances •∀e:Object •

[s.migrates(Bag)] [s.remove(e)] occurrences(s,e)≤0
(applying modus ponens to [h12], [m1] and
[m2]

[m4] ∀s∈Set.instances •∀e:Object • [s.migrates(Bag)]
[s.remove(e)] [s.migrates(Set)] occurrences(s,e)≤0

(from [m3] because action migrates has no
effect on the number of elements in the bag
)

[m5] ∀s∈Set.instances •∀e:Object • [s.migrates(Bag)]
[s.remove(e)] [s.migrates(Set)] e∉s

(from [m4] because the expression
occurrences(s,e)≤0 is equivalent to the
expression e∉s)

Proof of the theorem:

Now we can prove the theorem:

[t1] ∃m1,m2 • (m1∈Set.operations ∧ m2∈Bag.operations
 ∧ m1.name= remove ∧ m2.name= remove
 ∧ m1.visibility=m2. visibility
 ∧ hasSameSignature(m1,m2)

 ∧ hasSameBehavior(remove,Set,Bag))

(from lemma 1, lemma2, [h0], [h1] and [h7])

[t2] Polymorphic(remove,Set,Bag) (applying modus ponens to def. 1.1 and [t1])

6.2 Applying the metric

The polymorphism metric is applied to the Smalltalk Collection hierarchy in figure 4. In that figure
polymorphic methods have been previously detected (using the definitions in section 4) and moved up in the
hierarchy (i.e. the root class of the hierarchy is also the largest core class in the hierarchy). Methods
appearing twice (or more times) in the hierarchy actually are non-polymorphic methods, for example, the
method add: is non-polymorphic for Set and Bag.

Measuring Polymorhism to the Collection hierarchy:

polymorphism_measure(hC) = polymorphic_methods(hC) / #methods(hC)
= polymorphic_methods(hC) / 106 (because #methods(hC) =106)

= (width(hC) * #classes(hC)

 + ∑hi∈children(hC) polymorphic-methods(hi – core(hC))) / 106 (from definition of polymorphic_methods(hC))

= (6 * 11 + ∑hi∈children(hC) polymorphic-methods(hi – core(hC))) /106 (because width(hC)=6, #(classes(hC)=11)

= (66 + polymorphic-methods(sub-hierarchy-NotIndexedCollection) +

 polymorphic-methods(sub-hierarchy-IndexedCollection)) / 106
= (66 + 3 + 31) / 106 = 0.94 (or 94 %)

Value to the NotIndexedCollection sub-hierarchy (hN):

polymorphic_methods(hN) = (width(hN) * #classes(hN) + ∑hi∈children(hN) polymorphic-methods(hi – core(hN)))

= (1 * 3 + ∑hi∈children(hN) polymorphic-methods(hi – core(hN))) = (1 * 3 + 0) = 3 (because children of hN are trivial

hierarchies)

Value to the IndexedCollection sub-hierarchy (hX):

polymorphic_methods(hX) = (width(hX) * #classes(hX) + ∑hi∈children(hX) polymorphic-methods(hi – core(hX)))

= (4 * 7 + ∑hi∈children(hX) polymorphic-methods(hi – core(hX))) = (28 + polymorphic-methods(sub-hierarchy-

FixedSizeCollection) + polymorphic-methods(sub-hierarchy-VariableSizeCollection)) = (28 + 0 + 3) = 31

Value to the VariableSizeCollection sub-hierarchy (hV):

polymorphic_methods(hV) = (width(hV) * #classes(hV) + ∑hi∈children(hV) polymorphic-methods(hi – core(hV)))

= (1 * 3 + ∑hi∈children(hV) polymorphic-methods(hi – core(hV))) = (3 + 0) = 3 (because children of hV are trivial

hierarchies)

It can be observed in the outcome, the high degree of polymorphism of the Collection hierarchy (reaching the
value of 94 %), which contributes potentially to the readability, extensibility, and ultimately to their
maintainability. However, some studies, that should further be confirmed, indicate that polymorphism may
increase the probability of faults in O-O software –see for example, Benlarbi and Melo (1999).

7. Towards a Validation of the Polymorphism Metric

There are two strategies to corroborate or falsify the validity of metrics: the theoretical and the empirical
validation. The theoretical validation is mainly based on mathematical proofs that allows us to formally
confirm that the measure does not violate the properties of the empirical systems, the definition models and
criteria. On the other hand, the empirical validation consists on the realization of experiments and
observations on the real world in order to corroborate or falsify the metric.

In addition, validation approaches can be classified according to the class of attribute that is taken into
consideration. From this point of view a metric is valid internally or “valid in the narrow sense” (Fenton and
Pfleeger, 1997), if it analyses properties that are inherent of the system, while a metric is valid externally or
“valid in the wide sense” if it considers higher level characteristics (e.g., cost, quality, maintainability, etc.)
mainly for prediction purposes. Finally, some metrics can be measured directly (such as the number of
classes or methods of a class hierarchy), while others can only be measured indirectly by means of an
equation or model.

In this section, we will analyze aspects of the theoretical validation for the polymorphism metrics discussed
and exemplified in sections 5 and 6. These metrics consider internal attributes of a product entity, e.g., an O-
O design specification of a software system. In a general sense, the Kitchenham et at. (1996) assumption is
that in order for a measure to be valid these two conditions must be held: 1) the measure must not violate
any necessary property of its elements; 2) each model used in the process must be valid. The structural
framework of Kitchenham et at. (1996) can be combined with the axiomatic framework of Zuse (1998) to
yield a wider conceptual framework (Olsina et al., 2000). Regarding the proposed conceptual framework in
order to decide whether a metric is valid, it is necessary at least to check:

ü Attribute validity, i.e., whether the attribute is actually exhibited by the entity being measured. For a
given attribute, there is always at least an empirical relationship of interest that can be captured and
represented in the numerical domain, enabling us to explore the relationship analytically. This can imply a
theoretical and/or empirical validation.

ü Unit and Scale Type validity, i.e., whether the measurement unit and scale type being used are an
appropriate means of quantifying the internal or external attribute. When we measure a specific attribute
of a particular entity, we consider a scale type and unit in order to obtain magnitudes of type value. Thus,
the measured value can not be interpreted unless we know to what entity is applied, to what attribute is
measured and in what unit is expressed (i.e., the empirical and numeric relational systems should be
clearly specified). On the other hand, a scale type is defined by admissible transformations of measures.

ü Instrument validity, i.e., whether any model underlying a measuring instrument is valid and the same
one is properly calibrated. In order to obtain the measured value we can do it either manually or
automatically by using partial or totally a measurement instrument (a software tool).

ü Protocol validity, i.e., whether an acceptable measurement protocol has been used in order to
guarantee repeatability and reproducibility in the measurement process.

Regarding the polymorphism metric, some empirical considerations should be made. As aforementioned, the
hierarchies(S) function returns the collection containing all the non-trivial disjoint hierarchies defined in S.
This guarantees, for example, that the intersection between two hierarchies gives the empty set. In addition,
we are only considering tree hierarchies which allow us to model single inheritance (Java and Smalltalk
languages, among others, only support single inheritance). In order to try guarantee the ratio scale for the
polymorphism_measure metric, we started to investigate the modified extensive structure and the additive
properties discussed in Zuse (1998). However, the initial results draw that the metric does not accomplish
the independence condition C1, and the axiom of weak monotonicity. So, for that metric the absolute scale
has in principle been validated as follows:

Attribute Scale
Type

Unit Criteria and Properties that Apply

#classes(h) Number of classes in h

#methods(h) Total number of
methods in h
(regarding bags)

width(h) Number of polymorphic
methods (to h)

#hierarchies(S)

Absolute

Number of hierarchies
in the S specification

ü These internal attributes are exhibited in O-O
design and implementation specifications. They
are simply direct metrics.

ü Different hierarchy specifications may have
different number of classes, methods, etc. for
the respective attribute. Conversely, different
hierarchy specifications may have the same
number of classes, methods, etc.

ü They fulfill the representation condition

ü The unit and scale type are defined and
confirmed. Accordingly, they are obtained by
counting elements where an absolute scale is
generally implied (but not always). The only
possible transformation is the identity.

Polymorphic_m
ethods.

Absolute (Number of
polymorphic methods *
Number of classes)

ü It is an indirect metric. The equation is shown in
Section 5.

ü The unit and scale type are defined. It yields an
absolute scale.

Polymorphism_
measure.

Absolute [(Number of
polymorphic methods *
Number of classes) /
Total number of
methods to h],
It represents the
percentage of
polymorphic methods
of a hierarchy

ü It is an indirect metric. The equation is shown in
Section 5.

ü It fulfills the representation condition (That is,
greater number of polymorphic methods with
regard to the total amount of methods of a
hierarchy leads to a higher degree of
polymorphism –hence, the specification can be
more understandable, reusable and extensible).
The absence of polymorphic methods in a
hierarchy yields a zero value. Conversely, the 1
value (or 100%) means that all methods are
polymorphic.

ü The unit and scale type are defined. It yields an
absolute scale as demonstrated by the theorem
7.1.

Figure 5: Descriptions of theoretical validity for the polymorphism metric and its elements

Theorem 7.1: The scale type of the metric is absolute.

Proof: Let m = A/B be the metric, and let A, B be absolute values (1)

Where A represents the polymorphic_measure attribute; and B represents the total number of methods of a
hierarchy (#methods(h)). It is always satisfied that A <= B, and therefore it holds that A ⊆ B. The relationship
between A and B can be described by:

A = c B; with c>0. (2)

Replacing (1) in (2), the following equation is obtained: m = c B/B = c.

The resulting m is an absolute scale, as considered by Zuse. Percentage measures can be used as an
absolute scale, but they do not assume an extensive structure (Zuse, 1998), pp. 237-238.

Figure 5, shows descriptions of the theoretical validity for a set of used functions for the metric. The target
entity is an O-O design specification or a source code of an O-O program. The instrument validity is
applicable because data collection and calculations can be carried out automatically. The main algorithm is
supported by the recursive model.

Ultimately, the measure of polymorphism of a set of disjoint hierarchies defined in the S specification is
computed by making an average as shown in Section 5. This statistical analysis is allowed to magnitudes of
an absolute scale type.

Concluding Remarks

Although quality is not easy to evaluate since it is a complex concept compound by different aspects, several
properties that make a good O-O design have been recognized and widely accepted by the software
engineering community.

We agree that both the traditional and the new O-O properties or attributes should be analyzed in assessing
the quality of O-O design. But we believe that it is necessary to pay special attention to the concepts and
metrics for polymorphism, since it should be considered one of the key concerns in determining the quality of
an O-O software system.

In this paper, we have given a rigorous definition of polymorphism in the framework of the M&D-theory (Pons
et al. 99). Besides, on top of this formalization we propose a metric for measuring polymorphism, that
provides an objective and precise mechanism to detect and quantify dynamic polymorphism. It is proven that
the metric is valid regarding a theoretical validation framework. Furthermore, it is important to remark that
the metric takes information coming from the first stages of the development lifecycle giving developers the
opportunity to early evaluate and improve the quality of the software product.

References

Abreu, F.B. and Carapuça,R. Object Oriented Software Engineering: Measuring and controlling the
development process, 4th International Conference on Software Quality, Virginia, USA, 1994.

Bansiya, J. , Assessing quality of object-oriented designs using a hierarchical approach, OOPSLA’97
Workshop#12 on Object-oriented design quality. Atlanta, USA, October 1997.

Bansiya, J. Davis, C. Etzkorn L. and Li, W. (a) An entropy-based complexity measure for object oriented
designs, Theory and Practice of Object Oriented Systems, 5(2), 1999.

Bansiya, J. Davis, C. Etzkorn L. and Li, W. (b) A class cohesion metric for object oriented design, Journal of
Object Oriented Programming, January 1999.

Benlarbi, S., Object-oriented design metrics for early quality prediction, OOPSLA’97 Workshop#12 on
Object-oriented design quality. Atlanta, USA, October 1997.

Benlarbi, S. and Melo, W. Polymorphism measures for early risk prediction, In International Conference of
Software Engineering (ICSE’99), Los Angeles, CA, USA, 1999.

Briand, L. Devanbu P.and Melo, W., An investigation into coupling measures for C++. In International
Conference of Software Engineering (ICSE’97), Boston, USA, May 1997.

Chidamber S.and Kemerer, C., A metric suite for object oriented design, IEEE Transaction on Software
Engineering, 20. 1994.

Chen J.and Lu, J., A new metric for object oriented design, Information and Software Technology, 35. 1993.

Fenton, N.E.; Pfleeger, S.L., Software Metrics: a Rigorous and Practical Approach, 2nd Ed., PWS Publishing
Company. 1997.

Harel, D., Kozen, D. and Tiuryn, J. Book on Dynamic Logic. to appear.

Kim, E. Chang, O. Kusumoto, S. Kikuno, T., Analysis of metrics for object oriented program complexity,
Procs. 18th Annual International Computer Software and applications Conference, COMPSAC´94.

Kitchenham, B., Pfleeger, S. L., Fenton, N., 1996, Towards a Framework for Software Measurement
Validation. IEEE Transactions on Software Engineering, 21(12), pp. 929-944

Lalonde, Wilf, Discovering Smalltalk. Addison Wesley. 1994.

Li W.and Henry, S., Object oriented metrics that predict maintainability, The Journal of Systems and
Software, #23. 1993.

Moore, Ivan, Automatic inheritance hierarchy restructuring and method refactoring, in proceedings of
OOPSLA’96, ACM Sigplan, vol.31,no.10, October 1996.

Olsina, L.; Pons, C; Rossi, G.; 2000, Toward Metric and Model Validation in Web-site QEM. Submitted
paper.

Poulin, J., Measuring Software Reuse- Principles and Practices and Economical Models, Addison Wesley,
1997.

Pons, C. Baum G.and Felder, M., Foundations of Object-oriented modeling notations in a dynamic logic
framework, In Fundamentals of Information Systems, Chapter 1, T.Polle,T.Ripke,K.Schewe Editors,
Kluwer Academic Publisher, 1999.

Pons,C., Ph.D Thesis, Faculty of Science, University of La Plata, Buenos Aires, Argentina, http://www-
lifia.info.unlp.edu.ar/~cpons/ (1999)

Price M.and Demurjian, S., Analysing and measuring reusability in object-oriented design, in proceedings
OOPSLA’97, Atlanta, USA, 1997.

Tegarden, D. Sheetz S.and Monarchi, D., Effectiveness of traditional software metrics for object-oriented
systems. 25th Annual Conference of System Science, Maui,HI. 1992.

UML 1.3, Object Management Group, The Unified Modeling Language (UML) Specification – Version 1.3, in
http://www.omg.or (1999).

Wieringa R.and Broersen, J., Minimal Transition System Semantics for Lightweight Class and Behavior
Diagrams, In PSMT Workshop on Precise Semantics for Software Modeling Techniques, Ed: M.Broy,
D.Coleman, T.Maibaum, B.Rumpe, Technische Universitat Munchen, Report TUM-I9803, April 1998.

Wilde N.and Huitt, R., Maintenance support of object-oriented programs, IEEE Transactions on Software
Engineering, 18. 1992.

Woolf, B., Polymorphic hierarchy. The Smalltalk Report. January 1997.

Zuse, H., A Framework of Software Measurement, Walter de Gruyter, Berlín-NY. 1998.

