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Abstract

This work presents a technique to circumvent one of the mgor problems associated with
building and goplying techniques to build software qudity esimation modds, namdy the
use of precise metric thresholds vaues we used a fuzzy binary decison tree to
investigate the dability of a reusdble class library interface, usng dructurad metrics as
dability indicators. To evduae this new gpproach, we conducted a sudy on different
versons of a commercid C++ class libray. The obtained results are very promising
when compared to those of two classcd machine learning approaches, Top Down
Induction of Decisgon Trees and Bayesan classfiers.
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1. Introduction

Object-oriented software products are becoming more complex and time consuming, O is
adso the writing of newer versons. Pressman edimated at 60% the part devoted to
maintenance in the totd effort of the software development industry [19], from which
80% is devoted directly or indirectly to software evolution (adeptive and perfective
maintenance) [18]. In spite of the benefits of object-oriented technology, OO class
libraries, like the mgority of software sysems, are not exempt from this rule. Moreover,
their evolution must take into account an additional condraint: to preserve, as much as
possible, the compatibility among versons.

In this respect, it has become important to develop tools that dlow the prediction of class
evolvahility through the symptomatic detection of potentid ingabilities during the desgn
phase of such libraries. Thismay help avoid later problems.

In our context, we define evolvability as the ease with which a software sysem or a
component can evolve while preserving its design as much as possble. In the case of OO
class libraries, we redtrict the preservation of the design to the preservetion of the library
interface. This is important when we consider that the evolution of a sysem that uses a
library is directly influenced by the evolvability of the library. For indance, a system that
uses verson i of a library can easlly be upgraded with verson i+1 of the same library if
the new verson preserves the interface of the older one.



In this paper, we study the hypothesis that the inheritance aspects of an OO class library
may be good indicators of its cagpacity to evolve. To this end, we propose a fuzzy logic-
based gpproach for building and assessing evolvability esimation models. In a first step,
we used two wdl-known techniques of machine learning, Top Down Induction of
Decison Trees (TDIDT) usng CA5 [21] and Bayesan classfication usng RoC [12].
Then, we tried a new gpproach using fuzzy logic in an attempt to improve the obtained
prediction accuracy rates by solving the problem of thresholds values.

2. Predicting interface evolution using inheritance aspects

An important pat of the quaity characteristics of software products is not directly
measurable a priori. As a result, empiricd investigations of measurable internd  atributes
and ther reationship to externad qudity charecteristics are a crucid issue for improving
the assessment of a software product qudity [10]. In this context, a large number of
object-oriented (OO) measures have been proposed in the literature (see for example [4],
[7], [14] and [3]).

Basli & d. show in [1] that most of the metrics proposed by Chidamber and Kemerer in
[7] are useful for predicting the fault-proneness of classes during the design phase of OO
sysems. In the same context, Li and Henry showed that the maintenance effort could be
predicted with combinations of metrics collected from the source code of OO
components [14].

In the case of reusable components, Demeyer and Ducasse show in [9] that, for the
paticular domain of OO frameworks, Sze and inheritance metrics are not reiable to
detect problems, but are good indicators for the stability of a framework. Basli & a. [2]
conducted a study to mode and understand the cost of rework for a library of reusable
software components. A predictive model of the impact of error source on rework effort
was built. In the same vein, Price and Demurjian [20] presented a technique to andyze
and measure the reusability of OO designs, a set of eight metrics were derived from the
combination of two classfications. generd vs specific and related to other classes vs.
unrelated. These metrics would help evaduate OO systems from a reuse standpoint. For
exanple, a dependency from a Genera cdass to another Generd class in related
hierarchies is good for reuse, while a dependency from a Genera class to a Specific class
in related hierarchiesis bad for reuse.

In the past, our team explored both dHatigticd and meachine learning techniques as
modeing approaches for software product qudity. For instance, we have proposed a set
of modds to measure reusability [15] and dass fault-proneness [5]. In [8], we conducted
an empiricd dudy of different ML dgorithms to determine their capability of generaing
accurate correctability models. The study was accomplished on a suite of very-wdl
known, public-doman ML dgorithms bedonging to three different families of ML
techniques. The agorithms were compared in terms of ther cgpability to assess the
difficulty of correct Adafaulty components.

2.1 Working hypothesis

Because, we cannot easly measure the ability of a software product to evolve in a direct
way, dating from its initid verson, an indirect approach is to perform the assessment



using the relationships that may exis between evolvability and measurable characterigtics
such as size, cohesion, coupling or inheritance.

In this work, we focused our attention on how inheritance aspects can be good indicators
of the interface evolution of an OO dlass library. More specificdly, we investigated
whether there is a causd rdationship between some inheritance metrics, defined below,
and the gability of OO library interfaces.

2.2 Identifying changes in library interfaces

Changes in object-oriented software were widdly studied from the perspective of ther
impact. Kung et a. [11] propose a set of types of changes in an OO class library. Changes
can concern data, a method, a class or the class library. 25 types changes are identified. In
the same way, Li and Offutt define in [13] another set of change types for OO software.
Changes are classfied in two categories. change on a method (7 types of changes) and
change on a data member (6 types of changes). More recently, Chaumum et d. [6] adapt
this classfication by adding changes on classes; 13 types of changes are identified.

In these three projects, the authors were interesed in an exhaudive classfication of
changes to study their impact on the software. In the present work, we were specificaly
interested in the impact that changes among the versons of a class libray have on
systems that use agiven verson of the library and that are upgraded to the next verson.

In this respect, we identified two categories of changes a the class level, each one
organized into types. Let's C; be the interface of a class C in verson i of the library and
Ci+1 betheinterface of C intheverson i+1. The two categories of changesfor C are:

A. Theinterface C; isno longer vaid in verson i+ 1. This happensin four cases:
1. Cisremoved
2. Ci+1 = Cj —some public members
3. Cis+1 = C; — some protected members
4. Cis1 = Cj —some private members
B. Theinterface C; isdill vaidinverson i+ 1. This happen in two cases
5. Ci+1 = Ci
6. Cil Cis
Types of change (1 to 6) are ranged from worst to best (5 and 6 being equal) according to
the degree of impact of each type. For example, the deletion of a dass has a more serious
impact than the deletion of a subset of its protected methods. Also, the types are
exclusve The change of dass is dassfied into type k only if it cannot be dassfied into
the k-1 previous types. For example, if, for a class C, some public methods are deleted
and some other public methods are added, C belongs to type 2 and not to type 6. Findly,
if a class is renamed, this is consdered as a deletion of the class (type 1) and the crestion
of a new class In the same way, a chage in a method sgnature is conddered as a
method deetion. A scope change that narrows the vishility of a method (from public to

protected or private and from protected to private) is consdered adso as a method
deletion.



2.3 Defining the inheritance metrics

Three aspects of inheritance that may influence the evolution of a dass interface ae (1)
the location of the class in the inheritance tree; (2) the ancestors and descendants of the
dass, (3) the addition, inheritance and overwriting of methods. Each of these aspects will
be studied in the case of smple inheritance.

Since the location of a class may be defined with respect to ether the root of the
inheritance tree or a leaf, we used two metrics, DIT and CLD (see Table 1), to specify its
vaue. On the other hand, it may be more interesting to measure the location of the class
relative to the longest path containing the class. Indeed, the information that a class is in
the third level of inheritance out of a path of 8 levds is more meaningful than just saying
the class is in the third level. This led us to define an additiona metric, PLP, to provide
thisinformation.

The ancestors and descendents of the class were measured using three standard metrics',
NOC, NOP and NOD (see Table 2 for definitions).

Findly, counting the new and the inherited methods was accomplished with the
following metrics. NMA, NMI, NMO and NOM (see Table 3 for définitions). In the
sane way as for the location parameter, the percentages of added, inherited and
overridden methods, PMA, PMI and PMO, were introduced to possibly provide more
useful information that than just counting absolute numbers.

Symbol Name Comments

DIT Depth of Inheritance Tree Measures the size of the longest path from a class
to a root class within the same inheritance tree.

CLD Class to leaf Depth Measures the size of the longest path from a class
to a leaf class within the same inheritance tree.

PLP Position in the longest path DIT/(CLD+DIT)

Table1. Class|ocation metrics

Symbol  Name ~ Comments

NMA Number of methods added New methods in a class

NMI Number of methods inherited Methods inherited and not overridden
NMO Number of methods overridden Methods overridden

NOM Number of methods NMA + NMI +NMO

PMA Percentage of methods added NMA/NOM

PMI Percentage of methods inherited NMI/NOM

PMO Percentage of methods overridden NMO/NOM

Table2. Class methods-related metrics

! We do not consider the number of ancestors (NOA) since it is equal to DIT in the case of simple inheritance




Symbol Name Comments

NOC Number of children
NOD Number of descendants
NOP Number of parents NOP 1 {0, 1} in the case of simple inheritance

Table 3. Class ancestors/descendents metrics

3. Machine learning techniques

In previous work, we have privileged the use of ML dgorithms in order to build software
qudity predictive modds. Our rason was that red-life software engineering data are
incomplete, inexact, and often imprecise; in this context, ML could provide good
solutions. Another reason was that, somehow, ML produces predictive modes with
superior qudity than models based on ddidicd andyss ML is dso farly easy to
understand and use. But, perhaps the biggest advantage of a ML dgorithm —as a
modding technique- over ddidicd andyss lies in the fact tha the interpretation of
production rules is more draghtforward and intdligible to human beings than principa
components and patterns with numbers that represent their meaning.

In most ML techniques, the classfication process depends on threshold vaues that are
derived from a leaning set. This dependency crestes a problem in the light of the
representativity of the training samples, which, often, do not reflect the variety of red-life
gysems. In this respect, what is need is not the determination of specific thresholds but
the identification of trends.

Another problem concerns the cdassfication problem itsdf. During the process of
classfying a new case, an dgorithm such as C4.5 exploits the firgt vaid path/rule while
we would expect it to consder dl the valid pathsrules and, then, deduce a more
consensud result.

To address these concerns, we propose the fuzzy logic approach of the next section

3.1 Afuzzy logic-based approach

The main cause for the problems outlined above is that, for most decison agorithms
based on classcd ML approaches, only one rule is fired a a time while traversng the
decison tree. As a result, only one branch is followed from any given node, leading to
one dngle leave as a concluson, and exclusve of dl other possble paths. While this
approach works wdl for digoint classes where different categories can be separated with
clearly defined boundaries, it is not representative of mogt red-life problems where the
input information is vague and imprecise, when not fragmentary. For such problems, the
idea of setting thresholds a the nodes, and, then, of following decison paths based on
whether given input atribute values are above of below the thresholds, may lead to
opposite conclusons for any two vaues that are close to a threshold from opposite
directions. In such stuations, one would like to be able to:

- Patidly firearule




- Smultaneoudy fire severd rules.

Thee posshilities ae not avalable from dgorithms such as C4.5, RoC, and most
dgorithms that rey on datistics or classcad information theory to build the decison tree.
In each case, the obtained tree leads to a set of rules of which only one is vaidated a a
time, and where the antecedent of each rule is evauated to be ather true of fase, leading
to a consequent that is dso ether true or fase Because each antecedent consists of
threshold comparisons to determine whether a given input fals within a decison region,
the end reault is that only one of the leaves in the tree will be reached a any given time,
al the other leaves being ignored.

On the other hand, the use of a fuzzy decison process alows for two or more rules to be
amultaneoudy vaidated with gradud certainty and the end result will be the outcome of
combining severd partid results, each contributing its weight to the decision process.

The credtion of a fuzzy decison tree follows the same steps as tha of a classcd decison
tree a training set of examples is used in conjunction with a st of atributes to define the
tree based on some metric. Then partitions of the attributes are defined and a chain of if-
then rules is goplied to subsequent inputs in modus-ponens fashion to identify a given
class. The differences between the two agpproaches sems from the metrics used, the way
partitions are created and the way the obtained tree isinterpreted.

3.1.1 Creation of a fuzzy decision tree

As we obtained better results using the C4.5 dgorithm over RoC, we decided to study a
fuzzy vason of C45. The TDIDT approach is eadly transplantable to the creation of
fuzzy decison trees. However, in this case, fuzzy entropy is used to measure the
information provided by a node. Fuzzy entropy (dso caled star entropy) is an extenson
of Shannon's entropy where classica probabilities are replaced by fuzzy ones [22]. For a
class C with aset of values{cy}, itisdefined as:

H(C) =- & P'(c)loglP’ ()
k

where P*() usualy stands for the fuzzy probability defined by Zadeh [23]:

P (6)=- & e )Ple)

Fuzzy probabilities differ from normd probabilities in that they represent the weighted
average of a set of vaues provided by a membership function m These vaues represent
the degrees of membership of a fuzzy event, reated to class ¢, to the different dements
g of afuzzy .

In a fuzzy decison tree, the processng of input atribute vaues dats with the
fuzzification of each attribute so that it takes vaues from a discrete set of labels. Each
labe has an associated membership function that sets the degree of membership of a
given input vaue to that labd. Because the membership functions of adjacent labes
overlap, this results in the weghted and Imultaneous membership to multiple labels of
eech input vaue, the degree of membership being equd to the vaue of the membership
function (figure Figure 1).
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Figure 1. Basic concepts of fuzzy logic

Contrary to classcd methods of converting numericd intervals into discrete partitions,
the obtained fuzzy partitions are not digoint but consst of overlapping domains, each of
which condsts of an independent fuzzy kernd and a shared trangtion region. Thus, the
patitioning of a learning st into fuzzy dtribute partitions involves both the identification
of the partition domains, and the identification of the overlap boundaries. These tasks are
often done heuridicdly, usng an expert’'s experience. In this work, they were automated
usng an dgorithm based on mathematicd morphology [16]. The dgorithm works by
aoplying a sequence of antagonistic, but asymmetricd filtering operations to the input
data, until fuzzy kernels are obtained where only representatives of one class exigt for
each.

3.1.2 Fuzzy tree inference for object classification

Another difference between a classicd and a fuzzy decison tree is the decison process
that they use. Fgure 2 illudrates two binary trees of the same height, where one uses
sharp thresholds and the other fuzzy thresholds to process the input data. For the given
input, goplying the rules of binary inference for the fird tree and of fuzzy inference for
the second, the conclusion reached by the firgt tree is that the input data corresponds to
class 1 (with no possble assgnment to class 0). On the other hand, the fuzzy decison
tree leads to the conclusion that the input corresponds to class 0 with truth-value 0.65 and
dlass 1 with truth-value 0.3,

2 The results where obtained by using the minmax algorithm : minimum truth value along each tree path, maximum truth value for
each end leaf.



Decision example for (DIT=3,CLD=2,NOM=4)

DIT>>2
DIT>>2
0.65 0.35
CLD>>0 NOM >>8
CLD>>0 NOM >> 8
. . . . 0.2 0.8 0.7 0.3
© ) @ ©@
0.2 0.65 0.35 0.3

Figure 2. Classification using binary inference (Ieft) and fuzzy inference (right)

The obtaned fuzzy results may be defuzzified by computing the center-of-gravity of
classes 0 and 1 conddered as singletons (i.e. by computing the average of classes 0 and 1,
weighted by ther truth values) and then by choosing the class tha is closest in vaue to
the obtained COG. Alternately, we may smply sdect the class with the maximum truth-
vadue. This is the gpproach usad in this work as both methods of defuzzfication yield the
same result in the case of a decision tree with two classes.

4. Experiment

As dated in the firgt section, our hypothess is that inheritance aspects may serve as
indicators of library interface gtability or, more precisdy, that there is a relation between
some inheritance metrics and a measure of OO library interface gahility.

4.1 Data collection

To build the etimation model, we used three versons of a C++ class library caled OSE
[17]. Verson 4.3 of the library contains 120 classes while verson 5.2 contains 126. For
each of the 246 classes (120 +126), we extracted the change type and the values for the
inheritance metrics. Then, we randomly sdected 75% of the cdlasses to serve in the
learning process and 25% for testing the generated evolvability mode!.

Looking at the digtribution of the cases (classes) by change types given in table Table 4,
we naotice that change types 0, 2 and 4 are not sufficiently represented. This observation
led us to dso condder, in our experiment, the change categories (A and B), as additiona
factors (see table Table 5).




2 2 1 3

3 46 17 63
4 6 3 9

5 89 30 119
Total 180 66 246

Table4. Distribution of classes by change types

OorA 88 30 118
lorB 95 33 128
Total 183 63 246

Table5. Distribution of classes by change categories

4.2 Building interface evolution models

We conducted experiments using both absolute metrics (DIT, CLD, NOC, NOP, NOD,
NMA, NMI, NMO and NOM) and relative metrics (PLP, PMA, PMI, PMO) substituted
for the corresponding absolute metrics. In addition we looked & their effect on both
change types and categories. This led us to build four prediction models with each of the
three ML techniques that were described above. The models were as follows:

1) Modd A2 based on the 2 categories of changes and the absolute metrics.
2) Modd A6 based on the 6 types of changes and the absolute metrics.

3) Modd R2 based on the 2 change categories and the sat of metrics obtained by
combining absolute and relative metrics.

4) Modd R6 based on the 6 types of changes and usng the same metrics as in modd
R2.

4.3 Results and discussion

Figure 3 presents one of four decison trees obtained by using the fuzzy logic approach,
corresponding to model R2. Each node contains a condition of classfication relating to a
metric and an interval which defines the vaues for which there is an uncertainty on the
truth of the condition (see section 3.1.1).The remaining 15 models are not shown for lack
of gpace but follow smilar patterns.
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Figure 3. An example of fuzzy decision tree (evolvabiliy estimation model)

One driking observetion that can be made from this figure is the absence of class location
metrics (DIT, CLD and PLP). This was true for al the obtained models, leading to the
concluson, within the limitations of our training set representativeness, that these metrics
do not appear to be good indicators of class interface ability between consecutive
library verdons. All the others metrics gppeared a least in one of the four modds
associated with each technique and, therefore, were retained as potentia indicators.

As dl approaches yidded the same results regarding the relevance of the proposed
metrics as indicators, the use of a fuzzy decison tree did not appear to bring
improvements over existing ML techniques.
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Figure4. Estimation accuracy rates of classinterface stability

We dso compared the three techniques form the standpoint of estimation accuracy rates.
The comparison was made using the computed estimation accuracy rates obtained with
both the training data and the test data. In addition, we compared the loss of accuracy
when moving form the learning to the test data.

Our results show that C4.5 presents the higher estimation accurecy raes for al four
modes while the fuzzy approach has comparable rates in most cases as shown in Fgure
4; RoC providesthe lowest rates.

When using the test data, the fuzzy-based agorithm has the best rates in the mgority of
cases while the rates of C4.5 drop by about 12% in three out of the four models. RoC
maintainsits rates (see Figure 4).

Consequently, the results shows that the fuzzy technique improves the edimation
accurecy rates ether from the perspective of Sability as we move from the training to the
tes data (in comparison to C4.5), or from that of numericd vaue (in comparison with
RoC). This can be explaned by the facts that the fuzzy approach modifies C4.5 by
kesping its inherent drength a  identifying relevant indicators and removing the
inconvenience of using absolute threshold vaues.

5. Conclusion and future directions

This paper presented a fuzzy-based agpproach for building interface dability estimation
models for OO dass libraries. Through an empirica study conducted on various versons
of acommercid OO dasslibrary, we tried to answer the two following questions:

1. Can inheritance aspects be used asindicators for class library interface stability?
2. Does fuzzy-based learning improves the quality of the estimation modes.

If we andyze the results, we can say that the answer to question 1, like the used models,
comprises uncertainties: Yes, if we congder that the obtained models show that aspects
such as types of methods, and the ancestors/descendents have a rdationship with the
categories of changes. No, if we condder that our sample may not be representative
enough to generdize our results and if we congder that the obtained edtimétion rates are
gl not as high as desired (about 60%).

The response to the second quedtion is definitely yes. Firdt, the threshold vaues in C4.5
and the other “classca” techniques are too specific to the learning sample to be easly




generdized. This explains the difference between the learning and the tet rates. By
changing the threshold vaues to intervas, we capture trends rather than specific vaues,
thereby increasng the edtimation accuracy rates. Also, this work uses a smple fuzzy
dgorithm for building our estimation modes. The use of more comprehensve dgorithms
tha use fuzzy logic to its full potentid (B trees rather than binary trees, better
fuzzification of the inputs, etc.), would probably yield more sgnificant results.
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