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Abstract 

 

This work presents a technique to circumvent one of the major problems associated with 
building and applying techniques to build software quality estimation models, namely the 
use of precise metric thresholds values; we used a fuzzy binary decision tree to 
investigate the stability of a reusable class library interface, using structural metrics as 
stability indicators. To evaluate this new approach, we conducted a study on different 
versions of a commercial C++ class library. The obtained results are very promising 
when compared to those of two classical machine learning approaches, Top Down 
Induction of Decision Trees and Bayesian classifiers. 
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1. Introduction 
Object-oriented software products are becoming more complex and time consuming, so is 
also the writing of newer versions. Pressman estimated at 60% the part devoted to 
maintenance in the total effort of the software development industry [19], from which 
80% is devoted directly or indirectly to software evolution (adaptive and perfective 
maintenance) [18]. In spite of the benefits of object-oriented technology, OO class 
libraries, like the majority of software systems, are not exempt from this rule. Moreover, 
their evolution must take into account an additional constraint: to preserve, as much as 
possible, the compatibility among versions. 

In this respect, it has become important to develop tools that allow the prediction of class 
evolvability through the symptomatic detection of potential instabilities during the design 
phase of such libraries. This may help avoid later problems.  

In our context, we define evolvability as the ease with which a software system or a 
component can evolve while preserving its design as much as possible. In the case of OO 
class libraries, we restrict the preservation of the design to the preservation of the library 
interface. This is important when we consider that the evolution of a system that uses a 
library is directly influenced by the evolvability of the library. For instance, a system that 
uses version i of a library can easily be upgraded with version i+1 of the same library if 
the new version preserves the interface of the older one.  



In this paper, we study the hypothesis that the inheritance aspects of an OO class library 
may be good indicators of its capacity to evolve. To this end, we propose a fuzzy logic-
based approach for building and assessing evolvability estimation models. In a first step, 
we used two well-known techniques of machine learning, Top Down Induction of 
Decision Trees (TDIDT) using C4.5 [21] and Bayesian classification using RoC [12]. 
Then, we tried a new approach using fuzzy logic in an attempt to improve the obtained 
prediction accuracy rates by solving the problem of thresholds values. 

2. Predicting interface evolution using inheritance aspects 
An important part of the quality characteristics of software products is not directly 
measurable a priori. As a result, empirical investigations of measurable internal attributes 
and their relationship to external quality characteristics are a crucial issue for improving 
the assessment of a software product quality [10]. In this context, a large number of 
object-oriented (OO) measures have been proposed in the literature (see for example [4], 
[7], [14] and [3]).  

Basili & al. show in [1] that most of the metrics proposed by Chidamber and Kemerer in 
[7] are useful for predicting the fault-proneness of classes during the design phase of OO 
systems. In the same context, Li and Henry showed that the maintenance effort could be 
predicted with combinations of metrics collected from the source code of OO 
components [14].  

In the case of reusable components, Demeyer and Ducasse show in [9] that, for the 
particular domain of OO frameworks, size and inheritance metrics are not reliable to 
detect problems, but are good indicators for the stability of a framework. Basili & al. [2] 
conducted a study to model and understand the cost of rework for a library of reusable 
software components. A predictive model of the impact of error source on rework effort 
was built. In the same vein, Price and Demurjian [20] presented a technique to analyze 
and measure the reusability of OO designs; a set of eight metrics were derived from the 
combination of two classifications: general vs. specific and related to other classes vs. 
unrelated. These metrics would help evaluate OO systems from a reuse standpoint. For 
example, a dependency from a General class to another General class in related 
hierarchies is good for reuse, while a dependency from a General class to a Specific class 
in related hierarchies is bad for reuse.  

In the past, our team explored both statistical and machine learning techniques as 
modeling approaches for software product quality. For instance, we have proposed a set 
of models to measure reusability [15] and class fault-proneness [5]. In [8], we conducted 
an empirical study of different ML algorithms to determine their capability of generating 
accurate correctability models. The study was accomplished on a suite of very-well 
known, public-domain ML algorithms belonging to three different families of ML 
techniques. The algorithms were compared in terms of their capability to assess the 
difficulty of correct Ada faulty components.  

2.1 Working hypothesis 
Because, we cannot easily measure the ability of a software product to evolve in a direct 
way, starting from its initial version, an indirect approach is to perform the assessment 



using the relationships that may exist between evolvability and measurable characteristics 
such as size, cohesion, coupling or inheritance.  

In this work, we focused our attention on how inheritance aspects can be good indicators 
of the interface evolution of an OO class library. More specifically, we investigated 
whether there is a causal relationship between some inheritance metrics, defined below, 
and the stability of OO library interfaces.  

2.2 Identifying changes in library interfaces 
Changes in object-oriented software were widely studied from the perspective of their 
impact. Kung et al. [11] propose a set of types of changes in an OO class library. Changes 
can concern data, a method, a class or the class library. 25 types changes are identified. In 
the same way, Li and Offutt define in [13] another set of change types for OO software. 
Changes are classified in two categories: change on a method (7 types of changes) and 
change on a data member (6 types of changes). More recently, Chaumum et al. [6] adapt 
this classification by adding changes on classes; 13 types of changes are identified.  

In these three projects, the authors were interested in an exhaustive classification of 
changes to study their impact on the software. In the present work, we were specifically 
interested in the impact that changes among the versions of a class library have on 
systems that use a given version of the library and that are upgraded to the next version. 

In this respect, we identified two categories of changes at the class level, each one 
organized into types. Let’s Ci be the interface of a class C in version i of the library and 
Ci+1 be the interface of C in the version i+1. The two categories of changes for C are: 

A. The interface Ci is no longer valid in version i+1. This happens in four cases: 

1. C is removed 

2. Ci+1 = Ci – some public members 

3. Ci+1 = Ci – some protected members 

4. Ci+1 = Ci – some private members 

B. The interface Ci is still valid in version i+1. This happen in two cases 

5. Ci+1 = Ci 

6. Ci ⊂ Ci+1 

Types of change (1 to 6) are ranged from worst to best (5 and 6 being equal) according to 
the degree of impact of each type. For example, the deletion of a class has a more serious 
impact than the deletion of a subset of its protected methods. Also, the types are 
exclusive: The change of class is classified into type k only if it cannot be classified into 
the k-1 previous types. For example, if, for a class C, some public methods are deleted 
and some other public methods are added, C belongs to type 2 and not to type 6. Finally, 
if a class is renamed, this is considered as a deletion of the class (type 1) and the creation 
of a new class. In the same way, a change in a method signature is considered as a 
method deletion. A scope change that narrows the visibility of a method (from public to 
protected or private and from protected to private) is considered also as a method 
deletion.  



2.3 Defining the inheritance metrics  
Three aspects of inheritance that may influence the evolution of a class interface are: (1) 
the location of the class in the inheritance tree; (2) the ancestors and descendants of the 
class; (3) the addition, inheritance and overwriting of methods. Each of these aspects will 
be studied in the case of simple inheritance. 

Since the location of a class may be defined with respect to either the root of the 
inheritance tree or a leaf, we used two metrics, DIT and CLD (see Table 1), to specify its 
value. On the other hand, it may be more interesting to measure the location of the class 
relative to the longest path containing the class. Indeed, the information that a class is in 
the third level of inheritance out of a path of 8 levels is more meaningful than just saying 
the class is in the third level. This led us to define an additional metric, PLP, to provide 
this information. 

The ancestors and descendents of the class were measured using three standard metrics1, 
NOC, NOP and NOD (see Table 2 for definitions).  

Finally, counting the new and the inherited methods was accomplished with the 
following metrics: NMA, NMI, NMO and NOM (see Table 3 for definitions). In the 
same way as for the location parameter, the percentages of added, inherited and 
overridden methods, PMA, PMI and PMO, were introduced to possibly provide more 
useful information that than just counting absolute numbers. 

Symbol Name Comments 

DIT  Depth of Inheritance Tree Measures the size of the longest path from a class 
to a root class within the same inheritance tree. 

CLD  Class to leaf Depth Measures the size of the longest path from a class 
to a leaf class within the same inheritance tree. 

PLP Position in the longest path DIT/(CLD+DIT) 

Table 1. Class location metrics 

Symbol Name Comments 

NMA  Number of methods added New methods in a class 

NMI  Number of methods inherited Methods inherited and not overridden 

NMO  Number of methods overridden Methods overridden 

NOM  Number of methods NMA + NMI +NMO 

PMA  Percentage of methods added NMA/NOM 

PMI  Percentage of methods inherited NMI/NOM 

PMO  Percentage of methods overridden NMO/NOM 

Table 2.  Class methods-related metrics 

                                                 
1 We do not consider the number of ancestors (NOA) since it is equal to DIT in the case of simple inheritance 



Symbol Name Comments 

NOC  Number of children  

NOD  Number of descendants  

NOP Number of parents NOP ∈{0, 1} in the case of simple inheritance 

Table 3. Class ancestors/descendents metrics  

3. Machine learning techniques 
In previous work, we have privileged the use of ML algorithms in order to build software 
quality predictive models. Our raison was that real-life software engineering data are 
incomplete, inexact, and often imprecise; in this context, ML could provide good 
solutions. Another reason was that, somehow, ML produces predictive models with 
superior quality than models based on statistical analysis. ML is also fairly easy to 
understand and use. But, perhaps the biggest advantage of a ML algorithm –as a 
modeling technique- over statistical analysis lies in the fact that the interpretation of 
production rules is more straightforward and intelligible to human beings than principal 
components and patterns with numbers that represent their meaning. 

In most ML techniques, the classification process depends on threshold values that are 
derived from a learning set. This dependency creates a problem in the light of the 
representativity of the training samples, which, often, do not reflect the variety of real-life 
systems. In this respect, what is need is not the determination of specific thresholds but 
the identification of trends. 

Another problem concerns the classification problem itself. During the process of 
classifying a new case, an algorithm such as C4.5 exploits the first valid path/rule while 
we would expect it to consider all the valid paths/rules and, then, deduce a more 
consensual result.  

To address these concerns, we propose the fuzzy logic approach of the next section 

3.1 A fuzzy logic-based approach 
The main cause for the problems outlined above is that, for most decision algorithms 
based on classical ML approaches, only one rule is fired at a time while traversing the 
decision tree. As a result, only one branch is followed from any given node, leading to 
one single leave as a conclusion, and exclusive of all other possible paths. While this 
approach works well for disjoint classes where different categories can be separated with 
clearly defined boundaries, it is not representative of most real-life problems where the 
input information is vague and imprecise, when not fragmentary. For such problems, the 
idea of setting thresholds at the nodes, and, then, of following decision paths based on 
whether given input attribute values are above of below the thresholds, may lead to 
opposite conclusions for any two values that are close to a threshold from opposite 
directions. In such situations, one would like to be able to:    

− Partially fire a rule; 



− Simultaneously fire several rules. 

These possibilities are not available from algorithms such as C4.5, RoC, and most 
algorithms that rely on statistics or classical information theory to build the decision tree. 
In each case, the obtained tree leads to a set of rules of which only one is validated at a 
time, and where the antecedent of each rule is evaluated to be either true of false, leading 
to a consequent that is also either true or false. Because each antecedent consists of 
threshold comparisons to determine whether a given input falls within a decision region, 
the end result is that only one of the leaves in the tree will be reached at any given time, 
all the other leaves being ignored. 

On the other hand, the use of a fuzzy decision process allows for two or more rules to be 
simultaneously validated with gradual certainty and the end result will be the outcome of 
combining several partial results, each contributing its weight to the decision process. 

 The creation of a fuzzy decision tree follows the same steps as that of a classical decision 
tree: a training set of examples is used in conjunction with a set of attributes to define the 
tree based on some metric. Then partitions of the attributes are defined and a chain of if-
then rules is applied to subsequent inputs in modus-ponens fashion to identify a given 
class.  The differences between the two approaches stems from the metrics used, the way 
partitions are created and the way the obtained tree is interpreted. 

3.1.1 Creation of a fuzzy decision tree 

As we obtained better results using the C4.5 algorithm over RoC, we decided to study a 
fuzzy version of C4.5. The TDIDT approach is easily transplantable to the creation of 
fuzzy decision trees. However, in this case, fuzzy entropy is used to measure the 
information provided by a node. Fuzzy entropy (also called star entropy) is an extension 
of Shannon's entropy where classical probabilities are replaced by fuzzy ones [22]. For a 
class C with a set of values {ck}, it is defined as: 

where P*() usually stands for the fuzzy probability defined by Zadeh [23]: 

Fuzzy probabilities differ from normal probabilities in that they represent the weighted 
average of a set of values provided by a membership function µ.  These values represent 
the degrees of membership of a fuzzy event, related to class ck, to the different elements 
ei of a fuzzy set. 

 In a fuzzy decision tree, the processing of input attribute values starts with the 
fuzzification of each attribute so that it takes values from a discrete set of labels. Each 
label has an associated membership function that sets the degree of membership of a 
given input value to that label. Because the membership functions of adjacent labels 
overlap, this results in the weighted and simultaneous membership to multiple labels of 
each input value, the degree of membership being equal to the value of the membership 
function (figure Figure 1).  
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Figure 1. Basic concepts of fuzzy logic  

Contrary to classical methods of converting numerical intervals into discrete partitions, 
the obtained fuzzy partitions are not disjoint but consist of overlapping domains, each of 
which consists of an independent fuzzy kernel and a shared transition region.  Thus, the 
partitioning of a learning set into fuzzy attribute partitions involves both the identification 
of the partition domains, and the identification of the overlap boundaries. These tasks are 
often done heuristically, using an expert’s experience. In this work, they were automated 
using an algorithm based on mathematical morphology [16]. The algorithm works by 
applying a sequence of antagonistic, but asymmetrical filtering operations to the input 
data, until fuzzy kernels are obtained where only representatives of one class exist for 
each.  

3.1.2 Fuzzy tree inference for object classification 

Another difference between a classical and a fuzzy decision tree is the decision process 
that they use. Figure 2 illustrates two binary trees of the same height, where one uses 
sharp thresholds and the other fuzzy thresholds to process the input data. For the given 
input, applying the rules of binary inference for the first tree and of fuzzy inference for 
the second, the conclusion reached by the first tree is that the input data corresponds to 
class 1 (with no possible assignment to class 0). On the other hand, the fuzzy decision 
tree leads to the conclusion that the input corresponds to class 0 with truth-value 0.65 and 
class 1 with truth-value 0.32. 

                                                 
2 The results where obtained by using the minmax algorithm : minimum truth value along each tree path, maximum truth value for 
each end leaf. 



Decision example for (DIT=3,CLD=2,NOM=4)

DIT >> 2

CLD >> 0 NOM >> 8

0 11 0

DIT >> 2

CLD >> 0 NOM >> 8

0 11 0

0.65 0.35

0.2 0.8 0.7 0.3

0.2 0.65 0.35 0.3  

Figure 2. Classification using binary inference (left) and fuzzy inference (right) 

The obtained fuzzy results may be defuzzified by computing the center-of-gravity of 
classes 0 and 1 considered as singletons (i.e. by computing the average of classes 0 and 1, 
weighted by their truth values) and then by choosing the class that is closest in value to 
the obtained COG. Alternately, we may simply select the class with the maximum truth-
value. This is the approach used in this work as both methods of defuzzification yield the 
same result in the case of a decision tree with two classes.   

4. Experiment  
As stated in the first section, our hypothesis is that inheritance aspects may serve as 
indicators of library interface stability or, more precisely, that there is a relation between 
some inheritance metrics and a measure of OO library interface stability.  

4.1 Data collection 
To build the estimation model, we used three versions of a C++ class library called OSE 
[17]. Version 4.3 of the library contains 120 classes while version 5.2 contains 126. For 
each of the 246 classes (120 +126), we extracted the change type and the values for the 
inheritance metrics. Then, we randomly selected 75% of the classes to serve in the 
learning process and 25% for testing the generated evolvability model. 

Looking at the distribution of the cases (classes) by change types given in table Table 4, 
we notice that change types 0, 2 and 4 are not sufficiently represented. This observation 
led us to also consider, in our experiment, the change categories (A and B), as additional 
factors (see table Table 5).  

 

Change type Learning data Test data Total  

0 2 2 4 

1 35 13 48 



2 2 1 3 

3 46 17 63 

4 6 3 9 

5 89 30 119 

Total 180 66 246 

Table 4. Distribution of classes by change types 

Categories Learning data Test data Total  

0 or A 88 30 118 

1 or B 95 33 128 

Total 183 63 246 

Table 5. Distribution of classes by change categories  

4.2 Building interface evolution models 
We conducted experiments using both absolute metrics (DIT, CLD, NOC, NOP, NOD, 
NMA, NMI, NMO and NOM) and relative metrics (PLP, PMA, PMI, PMO) substituted 
for the corresponding absolute metrics. In addition we looked at their effect on both 
change types and categories. This led us to build four prediction models with each of the 
three ML techniques that were described above. The models were as follows:  

1) Model A2 based on the 2 categories of changes and the absolute metrics. 

2) Model A6 based on the 6 types of changes and the absolute metrics. 

3) Model R2 based on the 2 change categories and the set of metrics obtained by 
combining absolute and relative metrics. 

4) Model R6 based on the 6 types of changes and using the same metrics as in model 
R2. 

4.3 Results and discussion 
Figure 3 presents one of four decision trees obtained by using the fuzzy logic approach, 
corresponding to model R2. Each node contains a condition of classification relating to a 
metric and an interval which defines the values for which there is an uncertainty on the 
truth of the condition (see section 3.1.1).The remaining 15 models are not shown for lack 
of space but follow similar patterns. 



NOP <= 0.5
[0, 1]

NOM <= 100.5
[2.5, 198.5]

0NOM <= 21
[2.5, 39.5]

0

NMI/NOM <= 52%
[49%, 55%]

0

NOM <= 17
[7.5, 26.5]

1

01

NOD <= 6
[4, 8]

1NMI/NOM <= 49.5%
[31%, 68%]

NMO/NOM <= 6%
[5%, 7%]

10  

Figure 3. An example of fuzzy decision tree (evolvabiliy estimation model) 

One striking observation that can be made from this figure is the absence of class location 
metrics (DIT, CLD and PLP). This was true for all the obtained models, leading to the 
conclusion, within the limitations of our training set representativeness, that these metrics 
do not appear to be good indicators of class interface stability between consecutive 
library versions. All the others metrics appeared at least in one of the four models 
associated with each technique and, therefore, were retained as potential indicators. 

As all approaches yielded the same results regarding the relevance of the proposed 
metrics as indicators, the use of a fuzzy decision tree did not appear to bring 
improvements over existing ML techniques. 
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Figure 4. Estimation accuracy rates of class interface stability 

We also compared the three techniques form the standpoint of estimation accuracy rates. 
The comparison was made using the computed estimation accuracy rates obtained with 
both the training data and the test data. In addition, we compared the loss of accuracy 
when moving form the learning to the test data. 

Our results show that C4.5 presents the higher estimation accuracy rates for all four 
models while the fuzzy approach has comparable rates in most cases as shown in Figure 
4; RoC provides the lowest rates. 

When using the test data, the fuzzy-based algorithm has the best rates in the majority of 
cases while the rates of C4.5 drop by about 12% in three out of the four models. RoC 
maintains its rates (see Figure 4). 

Consequently, the results shows that the fuzzy technique improves the estimation 
accuracy rates either from the perspective of stability as we move from the training to the 
test data (in comparison to C4.5), or from that of numerical value (in comparison with 
RoC). This can be explained by the facts that the fuzzy approach modifies C4.5 by 
keeping its inherent strength at identifying relevant indicators and removing the 
inconvenience of using absolute threshold values.  

5. Conclusion and future directions 
This paper presented a fuzzy-based approach for building interface stability estimation 
models for OO class libraries. Through an empirical study conducted on various versions 
of a commercial OO class library, we tried to answer the two following questions: 

1. Can inheritance aspects be used as indicators for class library interface stability? 

2. Does fuzzy-based learning improves the quality of the estimation models. 

If we analyze the results, we can say that the answer to question 1, like the used models, 
comprises uncertainties: Yes, if we consider that the obtained models show that aspects 
such as types of methods, and the ancestors/descendents have a relationship with the 
categories of changes. No, if we consider that our sample may not be representative 
enough to generalize our results and if we consider that the obtained estimation rates are 
still not as high as desired (about 60%).  

The response to the second question is definitely yes. First, the threshold values in C4.5 
and the other “classical” techniques are too specific to the learning sample to be easily 



generalized. This explains the difference between the learning and the test rates. By 
changing the threshold values to intervals, we capture trends rather than specific values, 
thereby increasing the estimation accuracy rates. Also, this work uses a simple fuzzy 
algorithm for building our estimation models. The use of more comprehensive algorithms 
that use fuzzy logic to its full potential (B trees rather than binary trees, better 
fuzzification of the inputs, etc.), would probably yield more significant results. 
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