
 1

Quantitative Assessment of the Significance of Inconsistencies in

Object-Oriented Designs

George Spanoudakis, Hyoseob Kim

Department of Computing, City University

Northampton Square, London, EC1V 0HB

Tel: + 44 20 74778413, Fax: + 44 20 74778587

E-mail: {gespan | hkim69} @soi.city.ac.uk

Abstract: This paper presents a framework

for assessing the significance of

inconsistencies which arise in object-oriented

design models that describe systems from

multiple perspectives. The framework allows

the definition of significance criteria and

measures the significance of inconsistencies

as beliefs for the satisfiability of these criteria.

1. Introduction

The need to describe complex software

systems from different design perspectives,

such as those of the static structure and the

interactions of the components of a system,

may result in the construction of many partial

system design models (or simply "models"

henceforth). These models may be

constructed independently by different

designers, may advocate specific modelling

angles and may reflect disparate perceptions

of these designers. As a result, they may be

inconsistent with each other.

Inconsistencies occur when partial models

refer to common aspects of the system under

development and make assertions which

violate consistency rules applicable to these

aspects [4,11]. As an example consider an

object-oriented design model that consists of

an object interaction diagram and a class

diagram. Assume also a consistency rule

requiring that for any message received by an

object in the interaction diagram, an operation

with the same signature as the message must

have been defined for one of the classes of the

object in the class diagram. In this model an

inconsistency would arise if there was a

message with no counterpart operation, thus

 2

violating the above consistency rule.

Inconsistencies are inevitable in software

development [13]. And, although they will

have to be settled eventually, they may need

to be tolerated temporarily to give designers a

chance to work independently developing

their own parts of a model without the need

for continual reconciliation [4,11]. In settings

providing freedom for groupwork, it is

important to be able to diagnose the

significance of an inconsistency in order to

decide when and with what degree of priority

it has to be settled [4,11]. In one of the

experiments reported in [10], we detected 278

violations of the consistency rule mentioned

above. In such cases having a mechanism to

assess the significance of inconsistencies and

order them by this significance would be

undoubtedly useful. This paper introduces a

framework that we have developed to support

this assessment.

The main premise of our framework is that

the significance of an inconsistency depends

on the significance of the model elements that

give rise to it for the model. Our framework

assumes models expressed in the Unified

Modelling Language (UML [7]) and defines a

set of characteristics which indicate the

significance of the main kinds of elements in

such models.

The assessment of whether or not an element

has a particular characteristic in a model is

approximate; the framework incorporates

belief functions measuring the extent to which

it may be believed from its modelling that an

element has the characteristic. The need for

approximate reasoning arises because it

cannot always be guaranteed that the model

provides a consistent, complete and accurate

description of the system it describes at the

different stages of its evolution. Also it cannot

be guaranteed that the element will retain the

characteristic in the next version of the model.

In the rest of this paper, we introduce the

characteristics which indicate the significance

of model elements and the belief functions

associated with them (§2), establish a scheme

for expressing consistency rules and

significance criteria which determine the

characteristics that the elements violating

them must have for the violations to be

significant (§3), give an example of how to

 3

use these criteria to evaluate the significance

of inconsistencies and rank them (§4),

overview related work (§5), and conclude

with a summary and directions for further

work (§6).

2. Characteristics of significant model

elements

The UML models assumed by our framework

can be composed of any number of class and

sequence diagrams. Class diagrams specify

the static structure of, and the relationships

between the classes of a system. Classes can

have attributes, operations, and be related by

associations and generalisation (Is-a)

relations. Sequence diagrams specify

interactions between the instances of these

classes (the terms "sequence diagram" and

"interaction" are used synonymously in the

rest of the paper). An interaction consists of a

set of messages exchanged between objects to

deliver part of the functionality of a system. A

complete description of the semantics of these

kinds of UML model elements is beyond the

scope of this paper and may be found in [7].

In our framework, the significance of the

above kinds of UML model elements is

indicated by six characteristics: the genericity

and coordination capacity of classes, the

functional essentiality of attributes and

association ends, the charactericity of

operations, and the functional dominance and

coordinating capacity of messages. These

characteristics are described below.

2.1 Class genericity

In software models, classes with numerous

subclasses normally specify interfaces (i.e.

sets of operation signatures) for groups of

services which are provided by their

subclasses and the internal state of the

instances of these subclasses which is

required to realise the services. In effect, such

generic classes provide a basis for specifying

clients capable of using the services without

knowing the exact class which provides them.

An inconsistency involving the specification

of a generic class is significant since it may

-imp

InsertCommand

exec()

SearchCommand

SByAuthor

exec()

Keyword

ImplementorCommand

exec()
getImp() : Implementor

1..11..1

ComboBoxSForm

SByKeyword
key : Keyword

exec()

1..1 +searchForm1..1

SMenu

DBHandler

Statement

 4

affect both its subclasses and the clients of the

services specified by it.

The belief to the genericity of a class in our

framework is measured as the likelihood of an

arbitrary class on the longest generalisation

path that involves it in a model being a

subclass of it:

Definition 1: The belief to the genericity of a

class c in a model M (denoted by the predicate

gen-c(c)) is defined as:

m1(gen-c(c)) = Lsub/(Lsub+Lsup) if c.Sub* ≠ ∅

m1(gen-c(c)) = 0 otherwise

m1(¬gen-c(c)) = 1 − m1(gen-c(c))

where

• Lsub is the length of the longest path of Is-a

relations in M ending at c

• Lsup is the length of the longest path of Is-a

relations in M starting from c

• c.Sub* is transitive closure of the subclasses

of c

Figure 1: UML class diagram for a library system

Given this definition, the beliefs to the

genericity of the command classes (in the

sense of [3]) Command, SearchCommand and

SByKeyword shown in the class diagram of

Figure 1 (class diagram of a library system,

cf. Section 2.2 below) are 1, 0.5 and 0,

respectively.

The reason why we are considering only the

longest generalisation path involving a class

in a model is that this path gives the most

accurate indication of the number of the

successive layers at which the class may be

specialised or generalised [8].

2.2 Coordination capacity of classes

Some classes in the design of a system may

have a coordination capacity, that is they may

exist to coordinate interactions between other

classes. Coordinating classes are very

important in a design since they encapsulate

protocols of interactions between the classes

they coordinate and, thus, they appear in

numerous design patterns (e.g. mediator,

observer, facade [3]). An inconsistency

involving a coordinating class is important

since it is likely to affect all the classes and

the interactions it coordinates.

A common characteristic of coordinating

classes across all the different coordination

patterns they may realise is that they send

 5

messages to or receive messages from all the

classes that they coordinate. Drawing upon

this observation, we measure the belief to the

coordination capacity of a class c in a set of

interactions S as the likelihood of an arbitrary

class in S be communicating with it:

Definition 2: The belief to the coordination

capacity of a class c in a subset S of the

interactions of a model (denoted by the

predicate coord-c(c,S)) is defined as:

m2(coord-c(c,S))=|Com(c,S)|/|Classes(S)−{c}|

m2(¬coord-c(c,S)) = 1 − m2(coord-c(c, S))

where

• Com(c,S) is the set of the classes whose

instances send messages to or receive

messages from the instances of c in the

interactions of the set S excluding c

• Classes(S) is the set of the classes which

appear as receivers or senders of messages

in the interactions of S.

Figure 2: I1 - Sequence diagram of a library

system

The sequence diagram of Figure 2 shows an

interaction between the classes of a library

system. The interaction takes place when the

system is used to search for library items by

keywords. As shown in the diagram, a search

menu (SMenu) is used to activate the option

of searching for library items by keywords.

This option is modelled by the command

class SByKeyword. When activated to execute

the operation exec(), SByKeyword displays a

search form (setVisible(True)), gets some

keywords (getKeyword()), constructs a string

representing an SQL query (formQuery()) and

invokes the operation

execQuery(String,OCol) in the class

DBHandler (i.e., a database driver) to execute

this query.

According to Definition 2, the beliefs to the

coordination capacity of the classes SByKeyword ,

DBHandler, SMenu in the diagram are 0.6, 0.4 and 0.2,

respectively. These beliefs reflect the strong

coordination capacity of SByKeyword in the entire

interaction, the less strong coordination capacity of

DBHandler for a part of the interaction and the almost

negligible coordination capacity of SMenu.

 : ComboBox : SMenu : SByKeyword : SForm : DBHandler : Statement

exec() setVisible(True)

getKeywords()
getText()

formQuery()

execQuery(String,OCol) executeQuery()

toObjCol(result)

 6

2.3 Functional essentiality of attributes

and association ends

Attributes and association ends may provide

the only channels for sending messages

between the instances of the classes

connected to them. Consider, for instance, an

interaction where an instance of a class ci

sends a message to an instance of another

class cj. Unless ci has an attribute or an

association end whose type is the class cj (and

therefore its instances have a means of

holding references to the instance of cj) or the

message has an argument of type cj, the

instance of ci will not be able to identify and

send the message to the instance of cj.

Note also that in cases where ci has more than

one attributes or navigable association ends of

type cj it is impossible to identify from the

model which of these attributes or association

ends is used by the sender of the message1.

Nevertheless, it is plausible to assume that the

more the messages sent by the instances of ci

(or its subclasses) to instances of the type of

1 The graphical syntax of UML for sequence diagrams

does not allow the specification of the exact attribute or

association end whose value is used as the receiver of a

message in an interaction.

an attribute or association end a and the fewer

the other attributes or association ends of ci

having the same type as a, the higher the

chance that at least one of these messages is

dispatched through a and thus the higher the

functional essentiality of a for the class ci.

Drawing upon this observation, we define the

belief to the functional essentiality of

attributes and association end as follows:

Definition 3: The belief to the functional

essentiality of an attribute or association end

a for a class c in a model M (denoted by the

predicate fessen-a(a,c)) is defined as:

m3(fessen-a(a,c)) =

1 − (1−1/(|Rel(a,c)| +1))|Mes(a, c, M)|

m3(¬fessen-a(a,c)) = 1 − m3(fessen-a(a,c))

where

• Mes(a,c,M) is the set of messages sent by

the instances of c (or its subclasses) to

instances of the type of the attribute or the

association end a which do not have an

argument of the same type as a

• Rel(a,c) is the set of the attributes and

navigable association ends defined in or

inherited by the class c that have the same

type as a

 7

m3 measures the likelihood of the instances of

c sending messages to objects that constitute

the value of the attribute or association end a.

In Definition 3, the cardinality of Rel(a,c) is

increased by one to account for the possibility

of sending the message to an instance of c

that is created within the method that

implements the operation invoked by the

message. This is necessary since this creation

might not be evident from the interaction

itself.

According to Definition 3, the beliefs to the

functional essentiality of the association end

searchForm and the attribute keyword for the

class SForm in Figure 1 − given the sequence

diagram of Figure 2 − are 0.75 and 0,

respectively. These beliefs reflect the fact that

searchForm is likely to be the association end

used to identify the receivers of at least one of

the messages in the diagram sent to instances

of SForm. Unlike it, the attribute keyword

does not appear to have any functional role

for SForm since no messages are sent to

instances of its type (that is the class

Keyword).

An inconsistency involving a functionally essential

attribute or association end is significant because it

may affect the ability of the objects to request the

execution of operations.

2.4 Operation charactericity

An operation overridden by most of the

classes in its scope, that is the set of the

classes which introduce or inherit it in a

model, is significant for the design of a

system because it constitutes a basic kind of

behaviour which must be provided by objects

of different types (even if realised in different

ways by these objects). We refer to this

characteristic of operations as "operation

charactericity" and define the belief to it as

follows:

Definition 4: The belief to the charactericity

of an operation o in a model M (denoted by

the predicate char-o(o)) is defined as

m4(char-o(o)) =

Πc ε Oclasses(o) |Ov(o,c)∪{c}| / | c.Sub*∪{c}|

m4(¬char-o(o)) = 1 − m4(char-o(o))

where

• Oclasses(o) is the set of the most general

superclasses of the class of o which define

an operation with the same signature as o

 8

• Ov(o,c) is the set of the subclasses of c

which override o

m4 measures the likelihood of an arbitrary

class in each of the possible scopes of an

operation overriding it.

According to Definition 4, the beliefs to the

charactericity of the operations exec() and

getImp() in the class diagram of Figure 1 are

0.8 and 0.2, respectively. The former belief

measure reflects the fact that exec() is an

operation that has to be defined in every

command class (since it is used to trigger the

execution of these commands [4]) but

implemented differently by each of these

command classes. Unlike it, the operation

getImp(), which returns the object that

implements a command, has a single

implementation in the abstract command class

Command. The fact that getImp() is not

overridden by any of the different command

classes in the Is-a hierarchy of Figure 1

indicates the relatively insignificant

functional role of it for these classes.

2.5 Coordination capacity of messages

Messages in interactions are exchanged

between objects to invoke operations in these

objects. These operations may: (a) provide

part of the internal functionality of the object,

or (b) coordinate the interaction of a group of

other objects by invoking other operations in

them, combining the data that the latter

operations may generate, and eventually

notifying the combined outcome of the

interaction to the object that invoked them.

The operations of the latter kind (and

therefore the messages invoking them) are

more critical for the design of the system than

those of the former kind. This is because they

realise the protocols of the required

coordinations between objects. Note,

however, that in a UML design model, the

only evidence about the operations invoked

when a specific operation is executed comes

from the messages dispatched by the message

that invokes the operation. Also, depending

on the elaboration stage of a model, the

messages which appear in sequence diagrams

may not have counterpart operations defined

for the classes of their receivers (or their

superclasses) in the class diagrams. To cope

with these phenomena, we have defined the

 9

coordination capacity as a characteristic of

messages:

Definition 5: The belief to the coordination

capacity of a message m in a subset S of the

interactions of a model M (denoted by the

predicate coord-m(m,S)) is defined as:

m5(coord-m(m,S)) = |Dsig(m,S)|/ |Asig(m,S)|

 if Asig(m, S) ≠ ∅

m5(coord-m(m, S)) = 0 if Asig(m, S) = ∅

m5(¬coord-m(m,S)) = 1 − m5(coord-m(m,S))

where

• Dsig(m, S) is the set of the signatures of the

messages directly dispatched by m in the

interactions of S

• Asig(m,S) is the set of the signatures of the

messages which are directly or indirectly

dispatched by m in the interactions of S

m5 measures the likelihood of an arbitrary

message x in the transitive closure of the

messages dispatched by a message m being

directly (as opposed to indirectly) dispatched

by m.

According to Definition 5, the beliefs to the

coordination capacity of the messages

execQuery(String,OCol), exec(),and

setVisible(True) in Figure 2 are 1, 0.57 and 0,

respectively. These beliefs indicate that

execQuery(String,OCol) has a co-ordination

capacity in the part of the interaction which

deals with the retrieval of data from the

database of the library system, exec() has

some co-ordination capacity for the entire

interaction, and setVisible(True) has no

coordination capacity.

2.6 Functional dominance of messages

We consider messages that invoke operations

triggering a substantial part of the behaviour

of objects in an interaction being functionally

dominant in it. In our framework, the basic

belief to the functional dominance of a

message m in an interaction is defined as the

likelihood of an arbitrary message in it being

dispatched by m as shown below:

Definition 6: The belief to the functional

dominance of a message m in an interaction I

of a model M (denoted by the predicate fdom-

m(m,S)) is defined as:

m6(fdom-m(m,I))=(|Asig(m,{I})|+1)/|Sg(I,m)|

m6(¬fdom-m(m,I)) = 1 − m6(fdom-m(m,I))

where Sg(I,m) is the set of the signatures of

 10

the messages in I excluding the signature of

m.

According to Definition 6, the beliefs to the

functional dominance of the messages exec()

and execQuery(String,OCol) are 1 and 0.28,

respectively. These belief measures reflect the

fact that the former message triggers the

entire interaction while the latter message

triggers only a small part of it.

3. Specification of consistency rules and

significance criteria

As we discussed in Section 1, we define an

inconsistency as a violation of a specific

consistency rule. To assess the significance of

inconsistencies, our framework introduces a

scheme for specifying significance criteria

and associating them with consistency rules.

These criteria define the characteristics that

the elements involved in the violation of a

rule should have for the violation to be

significant.

We express consistency rules using the Object

Constraint Language (OCL is defined as part

of [7]) and significance criteria using a subset

of OCL and the predicates introduced in

Section 2, and wrap them in UML objects

related as indicated in the extension of the

UML meta-model that we have made and is

shown in Figure 3.

Figure 3: Consistency rules and significance
criteria

As shown in Figure 3, each consistency rule

is associated with a specific UML model

element, called the "context" of the rule.

Consequently, the OCL expression that

specifies the rule can make references to all

the named structural and behavioural features

of its context as well as to the associations

and generalisations which may relate it to

other model elements. The classes of a UML

model along with built-in OCL types which

represent primitive data types and collections

of values/objects (for example Set [7]) are the

legitimate types for the OCL expressions

written for it.

+context

{ordered}

ModelElement
name : Name

SignificanceCriterion
expression : S-expression

ConsistencyRule
expression : OCL_Expression

1..1

0..*

1..1

0..*

0..*

1..1

+criterion 0..*

+rule
1..1

 11

Figure 4: UML model elements

(adopted from [7])

An OCL expression specifies conditions over

the values of the features it references using

the standard logical operators "and", "or",

"implies" and "not" and the set operators

"forall" and "exists". The semantics of these

set operators are the same as the semantics of

the universal and existential quantifier of

predicate calculus. Thus, an expression of the

form set->forall(x | OCL-condition-over-x)

and set->exists(x | OCL-condition-over-x)

becomes true if OCL-condition-over-x is true

for all or at least one of the elements of set,

respectively.

As an example of specifying consistency rules

using OCL consider a rule requiring that for

every message in a sequence diagram there

must be either an association or an attribute

between its sender and its receiver navigable

from the former to the latter class. This rule

can be defined in the context of the UML

meta-class Message (i.e., the class of all the

messages which appear in the interactions of a

model, see Figure 4) using OCL as follows2:

Rule-1

context: Message

expression:

self.action.oclIsTypeOf(CallAction)

implies self.sender.feature−>exists(a

a.oclIsTypeOf(Attribute) and

(a.type = self.receiver) or

Association.allInstances−>exists(r

r.connection−>exists(e1, e2 (e1 <> e2) and

(e1.type = self.sender) and (e2.type =

self.receiver) and (e2.isNavigable = True)))

A significance criterion in our framework is

specified by a significance expression (S-

2 In OCL and S-expressions strings in boldface and

Italics are reserved OCL keywords and names

established in the UML meta-model, respectively. self

in these expressions refers to an instance of the class

that constitutes the context of the consistency rule and

consequently the context of the S-expression that

defines a criterion associated with it.

{ordered}

ModelElement
(from Core)

Operation
(from Core)

CallAction
(from Common Behavior)

1

*

+operation1

*

Interaction

Action
(from Common Behavior)

Message
*

0..1

*

+activator

0..1

*

*

*
+predecessor

*

1

1..*

+interaction1

+message1..*

1

*

+action

1

*

Association
(from Core)

Attribute

ClassifierRole

multiplicity : Multiplicity

1

*

+sender1

*

*

1

*

+receiver

1

Feature

StructuralFeature

AssociationEnd

isNavigable : Boolean
ordering : OrderingKind
aggregation : AggregationKind
targetScope : ScopeKind
multiplicity : Multiplicity
changeability : ChangeableKind
visibility : VisibilityKind

2..*

1

+connection

2..*

+association

1

0..1*

+associationEnd

0..1

+qualifier

*

Classifier
(from Core)

*

1..*

*

+base

1..*

* 1

+feature

*

+owner

1

1

*

+type1

* *

1

*

+type

1

association

 12

expression) and must be associated with a

consistency rule (see Figure 3). The S-

expression specifies a logical combination of

the characteristics which the model elements

giving rise to the violation of the rule (or

other model elements connected to them) are

required to have for the inconsistency to be

significant. These characteristics are specified

by using the special predicates defined in

Section 2. An S-expression has the same

context as the consistency rule associated

with the criterion it defines and, therefore, it

can reference any named feature in the

closure of the features of the model elements

which are reachable from this context.

Tables 1 and 2 present the syntactic forms of

the S-expressions definable in our framework

and the typing conditions that these

expressions have to satisfy in order to be

valid. More specifically, Table 1 presents the

syntactic forms of, and the type validity

conditions for the so-called "atomic S-

expressions" (these are expressions consisting

of only one of the predicates introduced in

Section 2). The type validity condition

determines the valid type(s) for the element(s)

that the predicate of an expression refers to.

Table 2 presents the syntactic forms of, and

the validity conditions for "non atomic S-

expressions" (these are logical combinations

of atomic S-expressions). Thus, for instance,

according to Table 1 the S-expression gen-

c(elem) is valid only if the type of the model

element denoted by elem is the UML meta-

class Class. The complete grammar for S-

expressions is given in [10].

Atomic S-expression Belief Type validity condition
gen-c(elem) Bel(gen-c(elem)) =

m1(gen-c(elem))
elem.type = Class

fessen-a(elem1,elem 2) Bel(fessen-a(elem1,elem 2)) =
m3(fessen-a(elem1,elem 2))

elem1.type = Attribute OR
elem1.type = AssociationEnd AND
elem2.type = Class

char-o(elem) Bel(char-o(elem)) =
m4(char-o(elem))

elem.type = Operation

coord-c(elem1,elem 2) Bel(coord-c(elem1,elem 2)) =
m2(coord-c(elem1,elem 2))

elem1.type = Class AND
elem2.type = Set (Interaction)

coord-m(elem1,elem2) Bel(coord-m(elem1,elem 2)) =
m5(coord-m(elem1,elem 2))

elem1.type = Message AND
elem2.type = Set (Interaction)

fdom-m(elem1,elem2) Bel(fdom-m(elem1, elem2)) =
m6(fdom-m(elem1, elem2))

elem1.type = Message AND
elem2.type = Set (Interaction)

 13

Table 1: Syntactic forms, typing conditions and beliefs for valid atomic S-Expressions

Non atomic S-Expression Belief Validity condition

p1 and …and pn Bel(andi=1,…,n pi) =
Π i=1,…,n Bel (pi)

pi : valid atomic S-expression
(forall i=1,…,n)

Non
quantified
expressions p1 or …or pn Bel(ori=1,…,n pi) =

ΣJ⊆{1,…,n}(-1)|J| +1Bel(andiεJpi)
pi : valid atomic S-expression
(forall i=1,…,n)

elem->exists(x |
OCL-exp-over-x
and se(x))

ΣJ⊆S (-1)|J| + 1Bel(andxεJ se(x))

where
S = {x | (x ε elem) and
OCL-exp-over-x = True}

elem.type = Set(ModelElement)
AND
se(x): is a valid non quantified
S-expression over x

Quantified
expressions

elem->forall(x |
OCL-exp-over-x
and se(x))

Πx ε elem Bel(se(x))
 If elem->forall(x |
 OCL-exp-over-x) = True)
0, Otherwise

elem.type = Set(ModelElement)
AND
se(x): is a valid non quantified
S-expression over x

Table 2: Syntactic forms of and validity conditions for non atomic S-Expressions

As an example of specifying a significance

criterion consider the case where the

violations of Rule-1 above should be

considered significant only if they are caused

by messages which are functionally dominant

and have coordinating capacity in their

interactions. This criterion of significance

can be specified as follows:

Criterion-1

Rule: Rule-1

S-expression:

fdom-m(self, self.interaction)

and coord-m(self, self.interaction)

In the S-expression of this criterion, "self"

refers to the instances of the context of Rule-

1, that is the UML meta-class Message. By

using the special predicates fdom-m and

coord-m, this S-expression specifies that the

message that violates the rule must be

functionally dominant and have a

coordinating capacity in the interaction

(sequence diagram) it belongs to (that is the

value of the feature: self.interaction).

To assess the significance of the violations of

a specific consistency rule, we compute

degrees of belief for the satisfiability of the S-

expression of the criterion associated with the

rule by the elements of the model which this

expression refers to. These elements are

related to the model elements that gave rise to

 14

the violation of the rule as specified by the S-

expression. Subsequently, the violations the

rule are ranked in descending order of these

degrees of belief.

Tables 1 and 2 show the formulas used to

compute the degrees of belief for the different

forms of atomic and non-atomic S-

expressions. These formulas are derived using

the axioms of the Dempster-Shafer theory of

evidence [9] as we prove in [10]. Their

derivation is based on the fact that − as we

have also proven in [10] − the belief functions

introduced in Section 2 satisfy the axiomatic

foundation of Dempster-Shafer basic

probability assignments [9].

In the following section, we give an example

of computing degrees of belief for the

satisfiability of significance criteria and

ranking inconsistencies according to them.

4. Example

As an example of detecting and assessing the

significance of inconsistencies in our

framework, consider the UML model

consisting of the class and sequence

diagrams, shown in Figures 1 and 2. These

diagrams are inconsistent with respect to

Rule-1 in Section 3 since there are no

attributes and/or associations between the

sender and the receiver of the following

messages: exec(), getText(),

execQuery(String,OCol).

If the significance of these inconsistencies is

assessed according to Criterion-1 in Section

3, the inconsistency caused by the message

exec() becomes the one with the highest

significance, followed by the inconsistencies

caused by the messages

execQuery(String,OCol), and getText(). This

is because the degrees of belief about the

satisfiability of Criterion-1 by each of these

messages are (according to the belief

functions of Tables 1 and 2):

1) Bel(fdom-m(exec(),I1) and

coord-m(exec(),{I1})) =

m6(fdom-m(exec(),I1)) ×

m5(coord-m(exec(),{I1})) = 1 × 0.57 = 0.57

2) Bel(fdom-m(execQuery(String,OCol),I1)

and

coord-m(execQuery(String,OCol),{I1})) =

m6(fdom-m(execQuery(String,OCol),I1)) ×

m5(coord-m(execQuery(String,OCol),{I1})) =

 15

0.286 × 1 = 0.286

3) Bel(fdom-m(getText(),I1) and

coord-m(getText(),{I1})) =

m6(fdom-m(getText(),I1)) ×

m5(coord-m(getText(),{I1})) =

0 × 0 = 0

5. Related work

A substantial body of research has been

concerned with the problem of detecting and

resolving inconsistencies between software

system specifications [2,4,11,13,14,15,16] but

only two strands of work [2,4] have been

concerned with the diagnosis of

inconsistencies. Emmerich et al [2] have

developed a framework for managing the

compliance of software documentation

artefacts with consistency rules which realise

document representation standards. In their

framework, software designers can implement

diagnostic checks to assess the importance

and the difficulty of making a document

compliant with the rule it violates. In [4],

diagnosis has been realised as the

identification of parts of formal specifications

which are not affected by an inconsistency

and, therefore, they are safe to reason from.

Software metrics similar to some of the metrics defined

in our framework have been proposed in the literature

but have not been used to assess the significance of

inconsistencies in software models.

More specifically, the depth of inheritance

tree (DIT) [1] and the class hierarchy nesting

level [6] are similar to m1. Note, however, that

unlike m1, DIT does not take into account the

length of the longest path to the most specific

subclass of the class of concern and therefore

treats as generic classes which have no

subclasses. Such classes are not as important

as classes that m1 would spot as generic since

they have no subclasses that could also be

affected by inconsistencies involving them.

Also class coupling (CBO) [1] and the

number of collaborating classes (NCC) [5]

are similar to m2. The difference between m2

and CBO and NCC is that m2 provides a

relative measure of inter-class collaboration in

a specific set of system interactions.

Also it has to be appreciated that, what clearly

differentiates the metrics used in our

framework from the above software metrics is

their common underlying axiomatic

interpretation as D−S beliefs. This, as

 16

discussed in [10], provides a sound basis for

deriving the beliefs for the significance

criteria presented in Section 3.

6. Summary and future work

This paper presented a framework for

assessing the significance of inconsistencies

in design models of software systems

expressed in UML based on criteria that

software designers can specify to establish the

characteristics that the model elements

involved in an inconsistency should have for

the inconsistency to be significant.

On going work focuses on the experimental evaluation

of the framework, investigation of the possibility of

expanding it with more characteristics of model

elements. We are also extending the current

implementation of the framework on the top of the

CASE tool Rational Rose [12].

Acknowledgements

The work presented in this paper has been partially

funded by the British Engineering and Physical

Sciences Research Council (IMOOSD project, EPSRC

grant No. GR/M57422).

References

1. Chidamber S., Kemerer C., 1994. A
Metrics Suite for Object Oriented Design,
IEEE Transactions on Software
Engineering, 20(6), pp. 476-493.

2. Emmerich W., et al., 1999. Managing
Standards Compliance. IEEE Transactions
on Software Engineering 25(6).

3. Gamma E., et al., 1995. Design Patterns:
Elements of Reusable Object-Oriented
Software, Addison Wesley.

4. Hunter A. and Nuseibeh B., 1998.
Managing Inconsistent Specifications:
Reasoning, Analysis and Action, ACM
Transactions in Software Engineering and
Methodology, 7(4), pp. 335-367

5. Jacobson I., et al., 1995. Object-Oriented Software

Engineering: A Use Case Driven Approach,

Addison-Wesley.

6. Lorenz M., 1993. Object-Oriented Software

Development: A Practical Guide, Prentice Hall.

7. OMG, 1999. OMG Unified Modelling Language

Specification, V. 1.3a. Available

from:ftp://ftp.omg.org/pub/docs/ad/99-06-08.pdf.

8. Rosch E. et al., 1976. Basic Objects in
Natural Categories, Academic Press.

9. Shafer G., 1975 A Mathematical Theory of
Evidence, Princeton University Press.

10. Spanoudakis G., Towards an Evidential
Significance Diagnosis Framework for
Elements of UML Software Models,
Technical Report, Technical Report
Series, City University, Department of
Computing, 1999

11. Spanoudakis G., Finkelstein A. Managing
Interference, Proc. of the SIGSOFT '96
workshops, ACM Publications, pp. 172-
174

12. Rational Software Corporation, 1998.

 17

Rational Rose '98: Extensibility Reference
Manual. See also:
http://www.rational.com/products/rose/ind
ex.jtmpl

13. Schwanke W., Kaiser E., Living with
Inconsistency in Large Systems, Proc. of
the Int. Workshop on Software Version
and Configuration Control, pp. 98-118

14. van Lamsweerde A., Darimont A., Letier
E., 1998. Managing Conflicts in Goal-
Driven Requirements Engineering, IEEE
Transactions on Software Engineering,
Special Issue on Inconsistency

Management, November 1998
15. Heitmeyer C., Labaw B. and Kiskis D.,

1995. Consistency Checking of SCR-Style
Requirements Specifications, Proc. of the
2nd Int. Symposium on Requirements
Engineering, IEEE CS Press, pp. 56-63.

16. Robinson W., Fickas S., 1994. Supporting Multiple

Perspective Requirements Engineering, Proc. of

the 1st Int. Conference on Requirements

Engineering, IEEE CS Press, pp. 206-215

