Quantitative Assessment of the Significance of | nconsistenciesin

Object-Oriented Designs

George Spanoudakis, Hyoseob Kim

Department of Computing, City University

Northampton Square, London, EC1V OHB

Tel: + 44 20 74778413, Fax: + 44 20 74778587

E-mail: {gespan | hkim69} @soi.city.ac.uk

Abgtract: This paper presents a framework
for asessng the dgnificance of
inconggtencies which arise in object-oriented
desgn models that describe sysems from
multiple perspectives. The framework dlows
the definition of dgnificance criteria and

meesures the dgnificance of inconggencies

as bdiefsfor the satidfiahility of these criteria

1. Introduction

The need to describe complex software
sydems from different desgn perspectives,
such as those of the satic structure and the
interactions of the components of a system,
may rexult in the condruction of many partid
system desgn modds (or smply “"modes’
henceforth). These modds may be

condructed independently by different

desgners, may advocate specific moddling
angles and may reflect digparate perceptions
of these desgners. As a reault, they may be
inconsstent with each other.

Inconsstencies occur when partid models
refer to common aspects of the system under
devdopment and make assertions which
violate consstency rules applicable to these
aspects [4,11]. As an example consder an
object-oriented desgn mode that consgs of
an object interaction diagram and a class
diagram. Assume dso a condgtency rule
requiring that for any message recelved by an
object in the interaction diagram, an operation
with the same dgnaure as the messsge must
have been defined for one of the classes of the
object in the cdlass diagram. In this modd an
incondgency would aise if there was a

message with no counterpart operation, thus

violating the above consgtency rule.

Inconsgtencies are inevitable in software
devdopment [13]. And, dthough they will
have to be sdtled eventudly, they may need
to be tolerated temporarily to give designers a
chance to work independently developing
their own parts of a model without the need
for continuad reconciliaion [4,11]. In settings
providing freedom for groupwork, it is
important to be able to diagnose the
dgnificance of an incondgency in order to
decide when and with what degree of priority
it has to be setled [4,11]. In one of the
experiments reported in [10], we detected 278
violaiions of the consgency rule mentioned
above. In such cases having a mechanism to
assess the dgnificance of inconsgencies and
order them by this gSgnificance would be
undoubtedly useful. This paper introduces a
framework that we have developed to support

this assessment.

The man premise of our framework is that
the dgnificance of an incongstency depends
on the dgnificance of the mode dements that
give rise to it for the modd. Our framework

assumes models expressed in the Unified

Moddling Language (UML [7]) and defines a
st of characteristics which indicate the
sgnificance of the man kinds of dements in
such models.

The assessment of whether or not an eement
has a paticular characteridic in a modd is
approximate; the framework incorporates
belief functions measuring the extent to which
it may be bdieved from its moddling that an
dement has the characteriic. The need for
gpproximate reasoning aises because it
cannot dways be guaranteed that the mode
provides a consstent, complete and accurate
description of the system it describes a the
different stages of its evolution. Also it cannot
be guaranteed that the dement will retain the

characterigtic in the next verson of the modd.

In the rest of this paper, we introduce the
characterigics which indicate the gSgnificance
of modd edements and the belief functions
associated with them (82), establish a scheme
for expressng condsency rules and
ggnificance criteria which determine the
charecterigics that the dements violating
them mugst have for the violations to be

ggnificant (83), give an example of how to

use these criteria to evduae the sgnificance
of inconsgencies and rank them (84),
overview relaed work (85), and conclude
with a summay and directions for further
work (86).

2. Characterigtics of dgnificant mode

elements

The UML modes assumed by our framework
can be composed of any number of class and
sequence diagrams Class diagrams specify
the datic Sructure of, and the relationships
between the classes of a system. Classes can
have attributes, operations, and be related by
associations and
Sequence diagrams specify

interactions between the ingtances of these

generalisation (Is-a)

relations.

classes (the terms "sequence diagram® and
"interaction” ae used synonymoudy in the
rest of the paper). An interaction congds of a
st of messages exchanged between objects to
deliver part of the functiondity of a sysem. A
complete description of the semantics of these
kinds of UML modd eements is beyond the
scope of this paper and may be found in [7].

In our framework, the dgnificance of the

above kinds of UML modd dements is
indicated by gx characteristics the genericity
and coordination capacity of classes, the
functional essentiality of attributes and
asociation ends, the charactericity of
operations, and the functional dominance and
coordinating capacity of messages. These

characteristics are described bel ow.

2.1 Classgenericity

In software modds, cdasses with numerous

MP [jmplementor
1.1 4

JAY ——

InsertCommand SearchCommand SMenu

—i
é Statement
SByKeyword SByAuthor

Key : Keyword
exec(| DBHandler |

execQ
———

ComboBox
—
—

eeeeeeeeeeeeeeeeee

execQ

subclasses normaly specify interfaces (i.e.
sets of operation sgnatures) for groups of
svices which ae provided by ther
subclasses and the internd date of the
indances of these subclasses which is
required to redise the services. In effect, such
generic classes provide a bass for specifying
clients cgpable of usng the services without
knowing the exact class which provides them.
An inconsgency involving the gspecification
of a generic dass is dgnificant since it may

affect both its subclasses and the dients of the

sarvices specified by it.

The bdief to the genericity of a class in our
framework is measured as the likelihood of an
arbitrary class on the longest generdisation
path that involves it in a modd beng a

subclass of it:

Definition 1. The bdief to the genericity of a

class c in amodd M (denoted by the predicate

gen-c(c)) isdefined as:

mu(gen-c(C)) = Law/(Lawtlsp) ifc.Sub* 1 A

my(genc(c)) =0 otherwise

my(@gen-c(c)) = 1- muy(gen-c(c))

where

- Lsup is the length of the longest path of Is-a
relaionsin M ending a c

- Lsyp Is the length of the longest peth of Is-a
relaionsin M darting from ¢

. c.2ub* is trangtive closure of the subclasses

of c
Figure 1: UML classdiagram for alibrary system

Given this ddfinition, the bdiefs to the
genericity of the command dasses (in the
sense of [3]) Command, SearchCommand and
ByKeyword shown in the dass diagram of
Figure 1 (class diagram of a library system,

cf. Section 2.2 below) are 1, 05 and O,
repectively.

The reason why we are conddering only the
longest generdisation pah involving a dass
in a modd is tha this pah gives the mogt
accurate indiction of the number of the
successive layers a which the class may be

specialised or generdised [8].

2.2 Coordination capacity of classes

Some clases in the desgn of a sysem may
have a coordinaion capecity, that is they may
exist to coordinate interactions between other
classes. Coordinating classes ae vey
important in a design since they encapsulate
protocols of interactions between the classes
they coordinate and, thus, they appear In
numerous design paterns (eg. mediator,
observer, facade [3]). An inconsstency
involving a coordinating class is important
gance it is likdy to affect dl the classes and

the interactions it coordinates.

A common chaecterigtic of coordinating
classes across dl the different coordination

patterns they may redise is that they send

messages to or recelve messages from dl the
classes that they coordinate. Drawing upon
this observation, we measure the belief to the
coordination capacity of a class ¢ in a st of
interactions S as the likelihood of an arbitrary

cassin S be communicating with it:

Definition 2: The bdief to the coordination

capacity of a class ¢ in a subset S of the

interactions of a modd (denoted by the

predicate coord-c(c,S)) is defined as.

mp(coord-c(c,S))=|Com(c,S)|/|Classes(S)- {c} |

mp(@coord-c(c,S)) = 1- mp(coord-c(c, S))

where

. Com(c,S) is the st of the classes whose
instances send messages to or recelve
messages from the indances of c in the
interactions of the set Sexduding ¢

. Classes(S) is the st of the classes which
appear as receivers or senders of messages

in the interactionsof S.

I : SMenu i I :SByKevwordi I : SForm “ : ComboBox|
L)L il

I : DBHandler ” : Statement
JL

exec)__ |setVisible(Trug)|

h
getKeywords() T

getText()
d

|
|
|
I
_toanlueryo I

IS _ execQuery(String.dCol) L. executeQuel

|

I toObjCol(resulf)
1=

I <

Figure 2: |1 - Sequence diagramof a library

system

The sequence diagram of Figure 2 shows an
interaction between the classes of a library
sysem. The interaction tekes place when the
sysdem is used to search for library items by
keywords. As shown in the diagram, a search
menu (SMenu) is used to activate the option
of searching for library items by keywords.
This option is moddled by the command
class ByKeyword. When activated to execute
the operation exec(), ByKeyword displays a
search form (setVigble(True)), gets some
keywords (getKeyword()), constructs a string
representing an SQL query formQuery()) and
invokes the operation
execQuery(Sring,0Cal) in the dass
DBHandler (i.e., a database driver) to execute

this query.

According to Definition 2, the beliefs to the
coordination capacity of the classes SByKeyword,
DBHandler, SMenu in the diagram are 0.6, 0.4 and 0.2,
respectively. These beliefs reflect the strong
coordination capacity of SByKeyword in the entire
interaction, the less strong coordination capacity of
DBHandler for a part of the interaction and the almost

negligible coordination capacity of SMenu.

2.3 Functional essentiality of attributes

and association ends

Attributes and association ends may provide
the only chands for sending messages
between the ingances of the classes
connected to them. Consder, for instance, an
interaction where an indance of a dass ¢
sends a message to an ingtance of another
class ¢. Unless ¢ has an atribute or an
asociation end whose type is the class g (and
therefore its indances have a means of
holding references to the instance of ¢) or the
message has an argument of type ¢, the
indance of ¢ will not be able to identify and

send the message to the instance of .

Note also that in cases where g has more than
one attributes or navigable association ends of
type ¢ it is impossble to identify from the
mode which of these attributes or association
ends is used by the sender of the message’.
Nevertheless, it is plaugble to assume that the
more the messages sent by the instances of ¢

(or its subclasses) to ingtances of the type of

! The graphical syntax of UML for sequence diagrams
does not allow the specification of the exact attribute or
association end whose value is used asthe receiver of a
message in an interaction.

an attribute or association end a and the fewer
the other atributes or association ends of c;
having the same type as a, the higher the
chance that a least one of these messages is
digpatched through a and thus the higher the
functiond essatidity of a for the class c.
Drawing upon this observation, we define the
beif to the functiond essentidity of

attributes and association end as follows:

Definition 3: The bdief to the functiond

essentidity of an atribute or association end

a for aclass cinamodd M (denoted by the

predicate fessen-a(a,c)) is defined as

my(fessen+a(a,c)) =

1- (1- Y(Rel(ac)| +1y)Mesa c M

me(Dfessen-a(a,c)) = 1 - my(fessen-a(a,c))

where

. Mes(a,c,M) is the set of messages sent by
the indances of ¢ (or its subclasses) to
ingtances of the type of the attribute or the
association end a which do not have an
argument of the sametypeasa

- Re(a,c) is the st of the atributes and
navigable association ends defined in or

inherited by the class ¢ that have the same

typeasa

mz measures the likdihood of the instances of
c sending messages to objects that conditute
the vaue of the attribute or association end a.
In Definition 3, the cardindity of Rel(a,c) is
increased by one to account for the possbility
of sending the message to an indance of ¢
that is created within the method that
implements the operation invoked by the
message. This is necessary dince this creation
might not be evident from the interaction
itsdlf.

According to Definition 3, the beiefs to the
functiond essentidity of the associaion end
searchForm and the attribute keyword for the
class SForm in Figure 1 - given the sequence
diagran of Figure 2 - ae 0.75 and O,
regpectively. These beliefs reflect the fact that
searchForm is likely to be the association end
used to identify the receivers of at least one of
the messages in the diagram sent to indtances
of SForm. Unlike it, the aitribute keyword
does not agppear to have any functiona role
for SForm since no messages ae sent to
indances of its type (that is the class

Keyword).

An inconsistency involving a functionally essential

attribute or association end is significant because it
may affect the ability of the objects to request the

execution of operations.

24 Operation charactericity

An operation overidden by most of the
clases in its scope, that is the st of the
classes which introduce or inherit it in a
modd, is dgnificant for the desgn of a
system because it conditutes a basic kind of
behaviour which must be provided by objects
of different types (even if redised in different
ways by these objects). We refer to this
charecteristic of operations as "operation
charactericity” and define the beief to it as

follows

Definition 4. The bdief to the charactericity

of an operation o0 in a modd M (denoted by

the predicate char-0(0)) is defined as

my(char-o(0)) =

P ¢ eodassesto) IOV(O,0)E{c} |/ | ¢.SUb*E{c} |

my(Dchar-o(0)) = 1 - ny(char-o(0))

where

. Oclasses(0) is the st of the most generd
superclasses of the class of o which define

an operation with the same signature as o

. Ov(o,c) is the sat of the subclasses of ¢

which overrideo

m; measures the likdihood of an ahitrary
dass in each of the possble scopes of an

operation overriding it.

According to Definition 4, the beiefs to the
charactericity of the operations exec() and
getimp() in the class diagram of Figure 1 are
0.8 and 0.2, respectively. The former belief
measure reflects the fact that exec() is an
operation that has to be defined in every
command class (since it is usad to trigger the
execution of these commands [4]) but
implemented differently by each of these
command classes. Unlike it, the operaion
getimp(), which returns the object that
implements a command, has a dngle
implementation in the abdract command class
Command. The fact that getlmp() is not
overridden by any of the different command
clases in the Isa hierachy of Figure 1
indicates the

relaively insignificant

functiond role of it for these dlasses.

25 Coordination capacity of messages

Messages in interactions are exchanged
between objects to invoke operations in these
objects. These operations may: (@ provide
pat of the internd functiondity of the object,
or (b) coordinate the interaction of a group of
other objects by invoking other operations in
them, combining the data that the latter
operations may generate, and eventudly
notifying the combined outcome of the

interaction to the object that invoked them.

The operaions of the later kind (and
therefore the messages invoking them) are
more critica for the design of the sysem than
those of the former kind. This is because they
redise the protocols of the required
coordinations between objects. Note,
however, that in a UML desgn modd, the
only evidence about the operations invoked
when a specific operdtion is executed comes
from the messages dispaiched by the message
that invokes the operation. Also, depending
on the daboration stage of a modd, the
messages which appear in sequence diagrams
may not have counterpart operations defined
for the classes of their recevers (or ther

superclasses) in the class diagrams. To cope

with these phenomena, we have defined the

coordination capacity as a characterigic of

messages:

Definition 5: The beief to the coordination
capacity of a message m in a subset S of the
interactions of a modd M (denoted by the
predicate coord-m(m,S)) is defined as.
me(coord-m(m,S)) = [Dsig(m,S)}/ |Asig(m,S)|
if Asgim, St A
mg(coord-m(m, S)) =0 if Asig(m, §) = A&
ms(Bcoord-m(m,S)) = 1 - mg(coord-m(m,S))
where
. Dsig(m,) is the set of the sgnatures of the
messages directly dispatched by m in the
interactionsof S
. Asig(m,S) is the set of the sgnatures of the
messages which are directly or indirectly

dispatched by min theinteractionsof S

ms measures the likdihood of an arbitrary
message X Iin the trangtive closure of the

messages dispaiched by a message m beng
directly (as opposed to indirectly) dispatched

by m.

According to Definition 5, the bdiefs to the
coordination capacity of the messages

execQuery(Sring,0Cal), exec(),and

setVisble(True) in Figure 2 are 1, 0.57 and O,
repectivdy. Thee Dbdiefs indicate that
execQuery(Sring,0Col) has a co-ordination
capecity in the pat of the interaction which
deds with the retrieval of data from the
datebase of the library system, exec() has
some co-ordination cgpacity for the entire
interaction, and setVisble(True) has no

coordination capacity.

2.6 Functional dominance of messages

We consder messages that invoke operations
triggering a subdantid pat of the behaviour
of objects in an interaction being functionaly
dominant in it. In our framework, the basc
belief to the functiond dominance of a
message m in an interaction is defined as the
likdihood of an arbitrary message in it being
dispatched by m as shown below:

Definition 6: The bdief to the functiond
dominance of a message m in an interaction |
of amode M (denoted by the predicate fdom-
m(m,S)) is defined as:
my(fdom-m(m,|))=(|Asig(m,{1})+1)/|Sg(1,m)|
me(Bfdom-m(m,1)) = 1 - mg(fdom-m(m,l))

where Sg(I,m) is the set of the sgnatures of

the messages in | excduding the dgnaure of

m.

According to Definition 6, the bdiefs to the
functiond dominance of the messages exec()
and execQuery(String,0Col) are 1 and 0.28,
regpectively. These belief measures reflect the
fact tha the former message triggers the
entire interaction while the latter message
triggersonly asmdl part of it.

rules and

3. Specification of consistency

significancecriteria

As we discussed in Section 1, we define an
inconddency as a violdaion of a gspecific
condgtency rule. To assess the dgnificance of
inconsstencies, our framework introduces a
sheme for gpecfying dgnificance criteria
and asociding them with congstency rules
Thee criteria define the characteridics that
the dements involved in the violgtion of a
rule should have for the violation to be

sgnificant.

We express condstency rules using the Object

Constraint Language (OCL is defined as part

10

of [7]) and ggnificance criteria usng a subset
of OCL and the predicates introduced in
Section 2, and wrgp them in UML objects
related as indicated in the extenson of the

UML meamodd that we have made and is

ModelElement
+context |name : Name

1..1

SignificanceCriterion
lexpression : S-expression

+criterion| 0..*
{ordered}

0..4 ConsistencyRule
expression : OCL_Expression 1.1

+rule

shown in Figure 3.

Figure 3: Consistency rules and significance
criteria

As shown in Figure 3, each condstency rule

is asociaed with a specific UML mode

dement, cdled the "context" of the rule

Consequently, the OCL expression that
specifies the rule can make references to dl
the named dructurd and behavioura festures
of its context as well as to the associations
and genedisations which may rdae it to
other model elements. The classes of a UML
modd dong with built-in OCL types which
represent primitive data types and collections
of vaues/objects (for example Set [7]) are the
legitimate types for the OCL expressons

written for it.

Boolean

Attribute qualifier

+ {ordered} 0.1 |aggregation : Aggregationkind
targetScope : Scopekind
multiplicity : Multiplicity
c

visibility : VisibilityKind

Figure 4: UML model elements
(adopted from[7])

An OCL expresson specifies conditions over
the vdues of the features it references usng
the gdandard logicd operators "and', "or",
“implies’ and "not" and the st operators
“ford|" and "exigs'. The semantics of these
st operators are the same as the semantics of
the universd and exigentid quantifier of
predicate caculus. Thus, an expresson of the
foom set->forall(x | OCL-condition-over-x)
and set->exists(x | OCL-condition-over-x)
becomes true if OCL-condition-over-x is true

for dl or a& leas one of the dements of s,

respectively.

As an example of specifying conggtency rules

usng OCL condder a rule requiring that for
every message in a sequence diagram there
must be dther an association or an attribute
between its sender and its recelver navigable
from the former to the latter class. This rule
can be defined in the context of the UML
meta-class Message (i.e, the class of dl the
messages which appear in the interactions of a
model, see Figure 4) using OCL as follows’:
Rule-1
context: Message
expression:
self.action.ocll sTypeOf(Call Action)
implies self.sender feature- >exists(ay
a.ocll sTypeOf(Attribute) and
(atype = self.receiver) or
Association.alll nstances- >exists(r ¥2
r.connection- >exists(e;, & Y2(e; <> &) and
(er.type = self.sender) and (ex.type =
self.receiver) and (e;.isNavigable = True)))

A dgnificance citerion in our framework is

gecified by a dgnificance expresson (S

2 In OCL and Sexpressions strings in boldface and
Italics are reserved OCL keywords and names
established in the UML meta-model, respectively. self
in these expressions refers to an instance of the class
that constitutes the context of the consistency rule and
consequently the context of the S-expression that
defines acriterion associated with it.

expression) and must be associated with a

condsency rule (see Fgure 3). The S
expresson specifies a logicad combinaion of
the characterisics which the modd dements
giving rie to the violaion of the rule (or
other model elements connected to them) are
required to have for the incondgtency to be
sgnificant. These characteristics are Specified
by usng the specid predicaes defined in
Section 2. An S-expresson has the same
context as the consgstency rule associated
with the criterion it defines and, therefore, it
can reference any named feature in the
closure of the festures of the mode eements

which are reachable from this context.

Tables 1 and 2 present the syntactic forms of

the S-expressons defindble in our framework

expressons have to satisfy in order to be
vadid. More specificdly, Table 1 presents the
gyntactic forms of, and the type vdidity
conditions for the so-cdled "aomic S
expressons’ (these are expressons conssting
of only one of the predicates introduced in
Section 2). The type vdidity condition
determines the vdid type(s) for the dement(s)
that the predicate of an expression refers to.
Table 2 presents the syntactic forms of, and
the vdidity conditions for "non aomic S-
expressons’ (these are logicd combinations
of aomic S-expressons). Thus, for instance,
according to Table 1 the S-expresson gen-
c(elem) is vdid only if the type of the modd
dement denoted by edem is the UML meta

class Class. The complete grammar for S

expressonsisgivenin[10].

and the typing conditions tha these

Atomic S-expression Belief Type validity condition

genc(dem) Bed(gen-c(dem)) = dem.type = Class
my(gen-c(elem))

fessen-a(demy,demy) Bel(fessen-a(demy demy)) = elemy.type = Attribute OR
me(fessen-a(demy, elemy)) elemy.type = AssociationEnd AND

elemp.type = Class
char-o(elem) Be(char-o(elem)) = dem.type = Operation

my(char-o(elem))

coord-c(elemy,dems,)

Bel(coord-c(demy eemy)) =
mg(coord-c(elemy lems))

elemy.type = ClassAND
elenp.type = Set (Interaction)

coord-m(elemy , dem)

Bel(coord-m(demy dem,)) =
me(coord-m(elemy, eems))

elemy.type = Message AND
elemp.type = Set (Interaction)

fdom-m(elemy,elemy)

Bel(fdom-m(elemy, deny)) =
me(fdom m(dlemy, elemy))

elemy.type = Message AND
elenp.type = Set (Interaction)

12

Table 1: Syntactic forms, typing conditions and beliefs for valid atomic S-Expressions

Non atomic S-Expression Belief

Validity condition

Non prand...and p, | Bd(andiz1,.. npi) = pi : vaid alomic S-expression
guantified P i-1...nBd (p) (fordl i=1,...,n)
EXPressions | p; or ...or py Bd(orizy,..n Pi) = p; : vaid aomic S-expression
Si (..M ' Bel(@ndigp) | (foral i=1,...,n)
Quantified | dem>exists(x| | Sy s(-1)V* 1Bel(andxes S2(X)) | elem.type = Set(Model Element)
expressions | OCL-exp-over-x AND
and sg(x)) where s=(X): isavdid non quantified
S={x|(x e dem) ad S-expression over X
OCL-exp-over-x = True}
eem->forall(x | P x edem Bel(S5(X)) dem.type = Set(Model Element)
OCL-exp-over-x If dem->forall(x | AND
and se(x)) OCL-exp-over-x) = True) | S(X): isavalid non quantified

0, Otherwise

S-expression over X

Table 2: Syntactic forms of and validity conditions for non atomic S-Expressions

As an example of specifying a dgnificance

criterion condder the case where the
violaions of Rulel above should be
congdered dgnificant only if they are causd
by messages which are functiondly dominant
their

and have coordinating capacity in

interactions. This criterion of dgnificance

can be specified asfollows.

Criterion-1
Rulee Ruel
S-expression:
fdom-m(self, self.interaction)
and coord-m(self, self.interaction)
In the S-expresson of this criterion, "sHf"

refers to the insances of the context of Rule-

13

1, that is the UML meta-class Message. By
usng the gspecid predicates fdom-m and
coord-m, this S-expresson specifies that the
message that violaes the rule must be

functiondly dominat ad hae a

coordinating capacity in the interaction
(sequence diagram) it belongs to (that is the

vaue of the feeture: self.interaction).

To as=ss the dgnificance of the vidlations of
a 9ecific consgency
degrees of belief for the satisfiability of the S

rue, we compute

expresson of the criterion associated with the
rule by the dements of the modd which this
expresson refers to. These dements ae

related to the model eements that gave rise to

the violation of the rule as specified by the S
expresson. Subsequently, the violations the
rule are ranked in descending order of these

degrees of belief.

Tables 1 and 2 show the formulas used to
compute the degrees of bdief for the different
foms of aomic and nonaomic S
expressons. These formulas are derived using
the axioms of the Dempster-Shafer theory of
evidence [9] as we prove in [10]. Ther
derivation is based on the fact that - as we
have dso proven in [10] - the beief functions
introduced in Section 2 sisfy the axiometic
basic

foundation of Dempder-Shafer

probability assignments [9].

In the following section, we give an example
of computing degrees of bdief for the
stidfigbility of dgnificance criteia and

ranking incong stencies according to them.

4, Example

As an example of detecting and assessing the

dgnificance of inconddencies in our

framework, condder the UML modd

consdsing of the dass and sequence

14

diagrams, shown in Fgures 1 and 2. These
respect to

in Section 3 dnce there are no

diagrans ae incondgtent with
Rule-1
atributes and/or associations between the
sender and the recaver of the following

exec(), getText(),

messages.
execQuery(Sring,0Cal).

If the dgnificance of these incondgencies is
assessed according to Criterion-1 in Section
3, the incongstency caused by the message
exec() becomes the one with the highest
ggnificance, followed by the inconsdencies

caused by the

messages
execQuery(Sring,0Coal), and getText(). This
is because the degrees of belief about the
sidiability of Criterion-1 by each of these
messages ae (according to the bdief
functions of Tables 1 and 2):
1) Be(fdom-m(exec(),l1) and
coord-m(exec(),{1:})) =
me(fdom-m(exec(),I 1))
ms(coord-m(exec(),{1:}))=1" 0.57=0.57
2) Be(fdom-m(execQuery(String,0Col),l)
and
coord-m(execQuery(String,0Col){11})) =
me(fdom-m(execQuery(String,0Cal),11))

ms(coord-m(execQuery(String,0OCol) {1.})) =

0.286" 1=0.286

3) Bel(fdom-m(getText(),l,) and
coord-m(getText(),{1.})) =
me(fdom-m(getText(),11))
ms(coord-m(getText(){1.})) =
0" 0=0

5. Rdated work

A subgtantid body of research has been
concerned with the problem of detecting and
relving incondgtencies between software
system specifications [2,4,11,13,14,15,16] but
only two dsrands of work [24] have been
with the

concerned diagnoss of

incongdencies. Emmerich e d [2] have
developed a framework for managing the
compliance of software documentation
artefacts with conssency rules which redise
document representation standards. In thelr
framework, software designers can implement
diagnostic checks to assess the importance
and the difficulty of meking a document
compliant with the rule it violaes In [4],
diagnoss has been redised as the
identification of pats of formd specifications
which are not affected by an inconsstency

and, therefore, they are safe to reason from.

15

Software metrics similar to some of the metrics defined
in our framework have been proposed in the literature
but have not been used to assess the significance of

inconsistencies in software models.

More specificaly, the depth of inheritance
tree (DIT) [1] and the class hierarchy nesting
level [6] are Smilar to m;. Note, however, that
unlike mq, DIT does not take into account the
length of the longest path to the most specific
subclass of the class of concern and therefore
treats as generic classes which have no
subclasses. Such classes are not as important
as classes that my would spot as generic since
they have no subclasses that could adso be
affected by inconggencies involving them.
Also class coupling (CBO) [1] and the
number of collaborating classes (NCC) [5]
ae gmilar to mp. The difference between m;
and CBO and NCC is that mp provides a

rdative measure of inter-class collaboration in

aspecific set of system interactions.

Also it has to be appreciated that, what clearly

differentictes the mearics used in our

framework from the above software metrics is

ther common underlying axiomdic

interpretation as D-S bdiefs. This as

discussed in [10], provides a sound bass for

deriving the bdiefs for the dgnificance

criteria presented in Section 3.

6. Summary and futurework

This paper presented a framework for
assessing the ggnificance of inconsgencies
in desgn modds of software systems
expressed in UML based on criteria that
software designers can specify to establish the
characterigtics tha the modd eements
involved in an inconsstency should have for

the inconsstency to be sgnificant.

On going work focuses on the experimental evaluation
of the framework, investigation of the possibility of
expanding it with more characteristics of model
elements. We are also extending the current
implementation of the framework on the top of the

CASE tool Rational Rose[12].

Acknowledgements

The work presented in this paper has been partially
funded by the British Engineering and Physical
Sciences Research Council (IMOOSD project, EPSRC

grant No. GR/M57422).

16

References

1. Chidamber S, Kemee C. 1994. A
Metrics Suite for Object Oriented Design,
|EEE Transactions on Software
Engineering, 20(6), pp. 476-493.

2. Emmerich W., e 4d. 1999. Managing
Standards Compliance. IEEE Transactions
on Software Engineering 25(6).

3. Ganmma E., ¢ d., 1995. Desgn Patterns.
Elements of Reusdble Object-Oriented
Software, Addison Wedey.

4. Hunter A. and Nusebeh B., 1998.
Managing Incondstent Specifications
Reasoning, Andyss and Action, ACM
Transactions in Software Engineering and
Methodology, 7(4), pp. 335-367

5. Jacobson 1., et a., 1995. Object-Oriented Software
Engineering: A Use Case Driven Approach,
Addison-Wesley.

6. Lorenz M., 1993. Object-Oriented Software
Development: A Practical Guide, Prentice Hall.

7. OMG, 1999. OMG Unified Moddling Language
Specification, V. 1.3a Available
from:ftp://ftp.omg.orag/pub/docs/ad/99-06-08.pdf.

8. Rosth E. e al., 1976. Basc Objects in
Natural Categories, Academic Press.

9. Shdfer G., 1975 A Mathematicd Theory of
Evidence, Princeton University Press.

10. Spanoudekis G., Towards an Evidentid
Sgnificance Diagnoss Framework for
Elements of UML Software Modds,
Technicd Report, Technicd Report
Series, City Universty, Depatment of
Computing, 1999

11. Spanoudekis G., Finkdstein A. Managing
Interference, Proc. of the SIGSOFT '96
workshops, ACM Publications, pp. 172-
174

12. Rationa Software Corporation,

1998.

13.

14.

Rationd Rose '98: Extenghility Reference
Manud. See aso:
http://www.rationd .com/products'rosefind
ex.jtmpl

Schwanke W., Kaser E.,, Living with
Inconsstency in Large Sysems, Proc. of
the Int. Workshop on Software Verson
and Configuration Control, pp. 98-118

van Lamsweerde A., Darimont A., Letier
E., 1998. Managing Conflicts in God-
Driven Requirements Engineering, |EEE
Transctions on Software Engineering,
Specid Issue on Inconsstency

17

15.

16.

Management, November 1998
Heitmeyer C., Labaw B. and Kiskis D.,
1995. Consstency Checking of SCR-Style
Requirements Specifications, Proc. of the
2nd Int. Symposum on Requirements
Engineering, IEEE CS Press, pp. 56-63.

Robinson W., Fickas S., 1994. Supporting Multiple
Perspective Requirements Engineering, Proc. of
the 1st Int. Conference on
Engineering, IEEE CS Press, pp.

Requirements
206-215

