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Abstract: This paper presents a framework 

for assessing the significance of 

inconsistencies which arise in object-oriented 

design models that describe systems from 

multiple perspectives. The framework allows 

the definition of significance criteria and 

measures the significance of inconsistencies 

as beliefs for the satisfiability of these criteria. 

 

1. Introduction  

 

The need to describe complex software 

systems from different design perspectives, 

such as those of the static structure and the 

interactions of the components of a system, 

may result in the construction of many partial 

system design models (or simply "models" 

henceforth). These models may be 

constructed independently by different 

designers, may advocate specific modelling 

angles and may reflect disparate perceptions 

of these designers. As a result, they may be 

inconsistent with each other. 

Inconsistencies occur when partial models 

refer to common aspects of the system under 

development and make assertions which 

violate consistency rules applicable to these 

aspects [4,11]. As an example consider an 

object-oriented design model that consists of 

an object interaction diagram and a class 

diagram. Assume also a consistency rule 

requiring that for any message received by an 

object in the interaction diagram, an operation 

with the same signature as the message must 

have been defined for one of the classes of the 

object in the class diagram.  In this model an 

inconsistency would arise if there was a 

message with no counterpart operation, thus 
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violating the above consistency rule. 

 

Inconsistencies are inevitable in software 

development [13]. And, although they will 

have to be settled eventually, they may need 

to be tolerated temporarily to give designers a 

chance to work independently developing 

their own parts of a model without the need 

for continual reconciliation [4,11]. In settings 

providing freedom for groupwork, it is 

important to be able to diagnose the 

significance of an inconsistency in order to 

decide when and with what degree of priority 

it has to be settled [4,11]. In one of the 

experiments reported in [10], we detected 278 

violations of the consistency rule mentioned 

above. In such cases having a mechanism to 

assess the significance of inconsistencies and 

order them by this significance would be 

undoubtedly useful. This paper introduces a 

framework that we have developed to support 

this assessment. 

 

The main premise of our framework is that 

the significance of an inconsistency depends 

on the significance of the model elements that 

give rise to it for the model. Our framework 

assumes models expressed in the Unified 

Modelling Language (UML [7]) and defines a 

set of characteristics which indicate the 

significance of the main kinds of elements in 

such models.  

 

The assessment of whether or not an element 

has a particular characteristic in a model is 

approximate; the framework incorporates 

belief functions measuring the extent to which 

it may be believed from its modelling that an 

element has the characteristic. The need for 

approximate reasoning arises because it 

cannot always be guaranteed that the model 

provides a consistent, complete and accurate 

description of the system it describes at the 

different stages of its evolution. Also it cannot 

be guaranteed that the element will retain the 

characteristic in the next version of the model.  

 

In the rest of this paper, we introduce the 

characteristics which indicate the significance 

of model elements and the belief functions 

associated with them (§2), establish a scheme 

for expressing consistency rules and 

significance criteria which determine the 

characteristics that the elements violating 

them must have for the violations to be 

significant  (§3), give an example of how to 
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use these criteria to evaluate the significance 

of inconsistencies and rank them (§4), 

overview related work (§5), and conclude 

with a summary and directions for further 

work (§6). 

 

2. Characteristics of significant model 

elements 

 

The UML models assumed by our framework 

can be composed of any number of class and 

sequence diagrams. Class diagrams specify 

the static structure of, and the relationships 

between the classes of a system. Classes can 

have attributes, operations, and be related by 

associations and generalisation (Is-a) 

relations. Sequence diagrams specify 

interactions between the instances of these 

classes (the terms "sequence diagram" and 

"interaction" are used synonymously in the 

rest of the paper). An interaction consists of a 

set of messages exchanged between objects to 

deliver part of the functionality of a system. A 

complete description of the semantics of these 

kinds of UML model elements is beyond the 

scope of this paper and may be found in [7]. 

 

In our framework, the significance of the 

above kinds of UML model elements is 

indicated by six characteristics: the genericity 

and coordination capacity of classes, the 

functional essentiality of attributes and 

association ends, the charactericity of 

operations, and the functional dominance and 

coordinating capacity of messages. These 

characteristics are described below.  

 

2.1 Class genericity 

 

In software models, classes with numerous 

subclasses normally specify interfaces (i.e. 

sets of operation signatures) for groups of 

services which are provided by their 

subclasses and the internal state of the 

instances of these subclasses which is 

required to realise the services. In effect, such 

generic classes provide a basis for specifying 

clients capable of using the services without 

knowing the exact class which provides them. 

An inconsistency involving the specification 

of a generic class is significant since it may 

-imp
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affect both its subclasses and the clients of the 

services specified by it. 

 

The belief to the genericity of a class in our 

framework is measured as the likelihood of an 

arbitrary class on the longest generalisation 

path that involves it in a model being a 

subclass of it: 

 

Definition 1: The belief to the genericity of a 

class c in a model M (denoted by the predicate 

gen-c(c)) is defined as: 

m1(gen-c(c)) = Lsub/(Lsub+Lsup) if c.Sub* ≠ ∅ 

m1(gen-c(c)) = 0 otherwise 

m1(¬gen-c(c)) = 1 − m1(gen-c(c)) 

where 

• Lsub is the length of the longest path of Is-a 

relations in M ending at c 

• Lsup is the length of the longest path of Is-a 

relations in M starting from c 

• c.Sub* is transitive closure of the subclasses 

of c 

Figure 1: UML class diagram for a library system 

 

Given this definition, the beliefs to the 

genericity of the command classes (in the 

sense of [3]) Command, SearchCommand and 

SByKeyword shown in the class diagram of 

Figure 1 (class diagram of a library system, 

cf. Section 2.2 below) are 1, 0.5 and 0, 

respectively. 

 

The reason why we are considering only the 

longest generalisation path involving a class 

in a model is that this path gives the most 

accurate indication of the number of the 

successive layers at which the class may be 

specialised or generalised [8].  

 

2.2 Coordination capacity of classes 

 

Some classes in the design of a system may 

have a coordination capacity, that is they may 

exist to coordinate interactions between other 

classes. Coordinating classes are very 

important in a design since they encapsulate 

protocols of interactions between the classes 

they coordinate and, thus, they appear in 

numerous design patterns (e.g. mediator, 

observer, facade [3]). An inconsistency 

involving a coordinating class is important 

since it is likely to affect all the classes and 

the interactions it coordinates.  

 

A common characteristic of coordinating 

classes across all the different coordination 

patterns they may realise is that they send 
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messages to or receive messages from all the 

classes that they coordinate. Drawing upon 

this observation, we measure the belief to the 

coordination capacity of a class c in a set of 

interactions S as the likelihood of an arbitrary 

class in S be communicating with it: 

 

Definition 2: The belief to the coordination 

capacity of a class c in a subset S of the 

interactions of a model (denoted by the 

predicate coord-c(c,S)) is defined as: 

m2(coord-c(c,S))=|Com(c,S)|/|Classes(S)−{c}| 

m2(¬coord-c(c,S)) =  1 − m2(coord-c(c, S)) 

where 

• Com(c,S) is the set of the classes whose 

instances send messages to or receive 

messages from the instances of c in the 

interactions of the set S excluding c  

• Classes(S) is the set of the classes which 

appear as receivers or senders of messages 

in the interactions of S. 

Figure 2: I1 - Sequence diagram of a library 

system 
 

The sequence diagram of Figure 2 shows an 

interaction between the classes of a library 

system. The interaction takes place when the 

system is used to search for library items by 

keywords. As shown in the diagram, a search 

menu (SMenu) is used to activate the option 

of searching for library items by keywords. 

This option is modelled by the command 

class SByKeyword. When activated to execute 

the operation exec(), SByKeyword displays a 

search form (setVisible(True)), gets some 

keywords (getKeyword()), constructs a string 

representing an SQL query (formQuery()) and 

invokes the operation 

execQuery(String,OCol) in the class 

DBHandler (i.e., a database driver) to execute 

this query. 

 

According to Definition 2, the beliefs to the 

coordination capacity of the classes SByKeyword , 

DBHandler, SMenu in the diagram are 0.6, 0.4 and 0.2, 

respectively. These beliefs reflect the strong 

coordination capacity of SByKeyword  in the entire 

interaction, the less strong coordination capacity of 

DBHandler for a part of the interaction and the almost 

negligible coordination capacity of SMenu. 

 

 : ComboBox : SMenu  : SByKeyword  : SForm  : DBHandler  : Statement

exec() setVisible(True)

getKeywords()
getText()

formQuery()

execQuery(String,OCol) executeQuery()

toObjCol(result)
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2.3 Functional essentiality of attributes 

and association ends  

 

Attributes and association ends may provide 

the only channels for sending messages 

between the instances of the classes 

connected to them. Consider, for instance, an 

interaction where an instance of a class ci 

sends a message to an instance of another 

class cj. Unless ci has an attribute or an 

association end whose type is the class cj (and 

therefore its instances have a means of 

holding references to the instance of cj) or the 

message has an argument of type cj, the 

instance of ci will not be able to identify and 

send the message to the instance of cj. 

 

Note also that in cases where ci has more than 

one attributes or navigable association ends of 

type cj it is impossible to identify from the 

model which of these attributes or association 

ends is used by the sender of the message1. 

Nevertheless, it is plausible to assume that the 

more the messages sent by the instances of ci 

(or its subclasses) to instances of the type of 

                                                 
1 The graphical syntax of UML for sequence diagrams 

does not allow the specification of the exact attribute or 

association end whose value is used as the receiver of a 

message in an interaction. 

an attribute or association end a and the fewer 

the other attributes or association ends of ci 

having the same type as a, the higher the 

chance that at least one of these messages is 

dispatched through a and thus the higher the 

functional essentiality of a for the class ci.  

Drawing upon this observation, we define the 

belief to the functional essentiality of 

attributes and association end as follows: 

 

Definition 3: The belief to the functional 

essentiality of an attribute or association end 

a for a class c in a model M (denoted by the 

predicate fessen-a(a,c)) is defined as: 

m3(fessen-a(a,c)) = 

1 − (1−1/(|Rel(a,c)| +1))|Mes(a, c, M)| 

m3(¬fessen-a(a,c)) =  1  −  m3(fessen-a(a,c)) 

where 

• Mes(a,c,M) is the set of messages sent by 

the instances of c (or its subclasses) to 

instances of the type of the attribute or the 

association end a which do not have an 

argument of the same type as a 

• Rel(a,c) is the set of the attributes and 

navigable association ends defined in or 

inherited by the class c that have the same 

type as a 
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m3 measures the likelihood of the instances of 

c sending messages to objects that constitute 

the value of the attribute or association end a. 

In Definition 3, the cardinality of Rel(a,c) is 

increased by one to account for the possibility 

of sending the message to an instance of c 

that is created within the method that 

implements the operation invoked by the 

message. This is necessary since this creation 

might not be evident from the interaction 

itself.  

 

According to Definition 3, the beliefs to the 

functional essentiality of the association end 

searchForm and the attribute keyword for the 

class SForm in Figure 1 − given the sequence 

diagram of Figure 2 − are 0.75 and 0, 

respectively. These beliefs reflect the fact that 

searchForm is likely to be the association end 

used to identify the receivers of at least one of 

the messages in the diagram sent to instances 

of SForm. Unlike it, the attribute keyword 

does not appear to have any functional role 

for SForm since no messages are sent to 

instances of its type (that is the class 

Keyword). 

 

An inconsistency involving a functionally essential 

attribute or association end is significant because it 

may affect the ability of the objects to request the 

execution of operations. 

 

2.4 Operation charactericity 

 

An operation overridden by most of the 

classes in its scope, that is the set of the 

classes which introduce or inherit it in a 

model, is significant for the design of a 

system because it constitutes a basic kind of 

behaviour which must be provided by objects 

of different types (even if realised in different 

ways by these objects). We refer to this 

characteristic of operations as "operation 

charactericity" and define the belief to it as 

follows: 

 

Definition 4: The belief to the charactericity 

of an operation o in a model M (denoted by 

the predicate char-o(o)) is defined as 

m4(char-o(o)) = 

Πc ε Oclasses(o) |Ov(o,c)∪{c}| / | c.Sub*∪{c}| 

m4(¬char-o(o)) = 1 − m4(char-o(o)) 

where  

• Oclasses(o) is the set of the most general 

superclasses of the class of o which define 

an operation with the same signature as o 
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• Ov(o,c) is the set of the subclasses of c 

which override o 

 

m4 measures the likelihood of an arbitrary 

class in each of the possible scopes of an 

operation overriding it.  

 

According to Definition 4, the beliefs to the 

charactericity of the operations exec() and 

getImp() in the class diagram of Figure 1 are 

0.8 and 0.2, respectively. The former belief 

measure reflects the fact that exec() is an 

operation that has to be defined in every 

command class (since it is used to trigger the 

execution of these commands [4]) but 

implemented differently by each of these 

command classes. Unlike it, the operation 

getImp(), which returns the object that 

implements a command, has a single 

implementation in the abstract command class 

Command. The fact that getImp() is not 

overridden by any of the different command 

classes in the Is-a hierarchy of Figure 1 

indicates the relatively insignificant 

functional role of it for these classes. 

 

2.5 Coordination capacity of messages 

 

Messages in interactions are exchanged 

between objects to invoke operations in these 

objects. These operations may: (a) provide 

part of the internal functionality of the object, 

or (b) coordinate the interaction of a group of 

other objects by invoking other operations in 

them, combining the data that the latter 

operations may generate, and eventually 

notifying the combined outcome of the 

interaction to the object that invoked them. 

 

The operations of the latter kind (and 

therefore the messages invoking them) are 

more critical for the design of the system than 

those of the former kind. This is because they 

realise the protocols of the required 

coordinations between objects. Note, 

however, that in a UML design model, the 

only evidence about the operations invoked 

when a specific operation is executed comes 

from the messages dispatched by the message 

that invokes the operation. Also, depending 

on the elaboration stage of a model, the 

messages which appear in sequence diagrams 

may not have counterpart operations defined 

for the classes of their receivers (or their 

superclasses) in the class diagrams. To cope 

with these phenomena, we have defined the 
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coordination capacity as a characteristic of 

messages: 

 

Definition 5: The belief to the coordination 

capacity of a message m in a subset S of the 

interactions of a model M (denoted by the 

predicate coord-m(m,S)) is defined as: 

m5(coord-m(m,S)) = |Dsig(m,S)|/ |Asig(m,S)| 

 if Asig(m, S) ≠ ∅ 

m5(coord-m(m, S)) = 0 if Asig(m, S) = ∅ 

m5(¬coord-m(m,S)) = 1 − m5(coord-m(m,S)) 

where 

• Dsig(m, S) is the set of the signatures of the 

messages directly dispatched by m in the 

interactions of S 

• Asig(m,S) is the set of the signatures of the 

messages which are directly or indirectly 

dispatched by m in the interactions of S 

 

m5  measures the likelihood of an arbitrary 

message x in the transitive closure of the 

messages dispatched by a message m being 

directly (as opposed to indirectly) dispatched 

by m. 

 

According to Definition 5, the beliefs to the 

coordination capacity of the messages 

execQuery(String,OCol), exec(),and 

setVisible(True) in Figure 2 are 1, 0.57 and 0, 

respectively. These beliefs indicate that 

execQuery(String,OCol) has a co-ordination 

capacity in the part of the interaction which 

deals with the retrieval of data from the 

database of the library system, exec() has 

some co-ordination capacity for the entire 

interaction, and setVisible(True) has no 

coordination capacity.  

 

2.6 Functional dominance of messages 

 

We consider messages that invoke operations 

triggering a substantial part of the behaviour 

of objects in an interaction being functionally 

dominant in it. In our framework, the basic 

belief to the functional dominance of a 

message m in an interaction is defined as the 

likelihood of an arbitrary message in it being 

dispatched by m as shown below:  

 

Definition 6: The belief to the functional 

dominance of a message m in an interaction I 

of a model M (denoted by the predicate fdom-

m(m,S)) is defined as: 

m6(fdom-m(m,I))=(|Asig(m,{I})|+1)/|Sg(I,m)| 

m6(¬fdom-m(m,I)) = 1 − m6(fdom-m(m,I)) 

where Sg(I,m) is the set of the signatures of 
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the messages in I excluding the signature of 

m.  

 

According to Definition 6, the beliefs to the 

functional dominance of the messages exec() 

and execQuery(String,OCol) are 1 and 0.28, 

respectively. These belief measures reflect the 

fact that the former message triggers the 

entire interaction while the latter message 

triggers only a small part of it. 

 

3. Specification of consistency rules and 

significance criteria  

 

As we discussed in Section 1, we define an 

inconsistency as a violation of a specific 

consistency rule. To assess the significance of 

inconsistencies, our framework introduces a 

scheme for specifying significance criteria 

and associating them with consistency rules. 

These criteria define the characteristics that 

the elements involved in the violation of a 

rule should have for the violation to be 

significant. 

 

We express consistency rules using the Object 

Constraint Language (OCL is defined as part 

of [7]) and significance criteria using a subset 

of OCL and the predicates introduced in 

Section 2, and wrap them in UML objects 

related as indicated in the extension of the 

UML meta-model that we have made and is 

shown in Figure 3.  

Figure 3: Consistency rules and significance 
criteria 

 

As shown in Figure 3, each consistency rule 

is associated with a specific UML model 

element, called the "context" of the rule. 

Consequently, the OCL expression that 

specifies the rule can make references to all 

the named structural and behavioural features 

of its context as well as to the associations 

and generalisations which may relate it to 

other model elements. The classes of a UML 

model along with built-in OCL types which 

represent primitive data types and collections 

of values/objects (for example Set [7]) are the 

legitimate types for the OCL expressions 

written for it. 

+context

{ordered}

ModelElement
name : Name

SignificanceCriterion
expression : S-expression

ConsistencyRule
expression : OCL_Expression

1..1

0..*

1..1

0..*

0..*

1..1

+criterion 0..*

+rule
1..1
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Figure 4: UML model elements 

(adopted from [7]) 

 

An OCL expression specifies conditions over 

the values of the features it references using 

the standard logical operators "and", "or", 

"implies" and "not" and the set operators 

"forall" and "exists". The semantics of these 

set operators are the same as the semantics of 

the universal and existential quantifier of 

predicate calculus. Thus, an expression of the 

form set->forall(x | OCL-condition-over-x) 

and set->exists(x | OCL-condition-over-x) 

becomes true if OCL-condition-over-x is true 

for all or at least one of the elements of set, 

respectively.  

 

As an example of specifying consistency rules 

using OCL consider a rule requiring that for 

every message in a sequence diagram there 

must be either an association or an attribute 

between its sender and its receiver navigable 

from the former to the latter class. This rule 

can be defined in the context of the UML 

meta-class Message (i.e., the class of all the 

messages which appear in the interactions of a 

model, see Figure 4) using OCL as follows2: 

Rule-1 

context: Message 

expression: 

self.action.oclIsTypeOf(CallAction) 

implies self.sender.feature−>exists(a 

a.oclIsTypeOf(Attribute) and 

(a.type = self.receiver) or 

Association.allInstances−>exists(r  

r.connection−>exists(e1, e2  (e1 <> e2) and 

(e1.type = self.sender) and (e2.type = 

self.receiver) and (e2.isNavigable = True))) 

 

A significance criterion in our framework is 

specified by a significance expression (S-

                                                 
2 In OCL and S-expressions strings in boldface and 

Italics are reserved OCL keywords and names 

established in the UML meta-model, respectively. self 

in these expressions refers to an instance of the class 

that constitutes the context of the consistency rule and 

consequently the context of the S-expression that 

defines a criterion associated with it. 

{ordered}

ModelElement
(from Core)

Operation
(from Core)

CallAction
(from Common Behavior)

1

*

+operation1

*

Interaction

Action
(from Common Behavior)

Message
*

0..1

*

+activator

0..1

*

*

*
+predecessor

*

1

1..*

+interaction1

+message1..*

1

*

+action

1

*

Association
(from Core)

Attribute

ClassifierRole

multiplicity : Multiplicity

1

*

+sender1

*

*

1

*

+receiver

1

Feature

StructuralFeature

AssociationEnd

isNavigable : Boolean
ordering : OrderingKind
aggregation : AggregationKind
targetScope : ScopeKind
multiplicity : Multiplicity
changeability : ChangeableKind
visibility : VisibilityKind

2..*

1

+connection

2..*

+association

1

0..1*

+associationEnd

0..1

+qualifier

*

Classifier
(from Core)

*

1..*

*

+base

1..*

* 1

+feature

*

+owner

1

1

*

+type1

* *

1

*

+type

1

association
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expression) and must be associated with a 

consistency rule (see Figure 3). The S-

expression specifies a logical combination of 

the characteristics which the model elements 

giving rise to the violation of the rule (or 

other model elements connected to them) are 

required to have for the inconsistency to be 

significant. These characteristics are specified 

by using the special predicates defined in 

Section 2. An S-expression has the same 

context as the consistency rule associated 

with the criterion it defines and, therefore, it 

can reference any named feature in the 

closure of the features of the model elements 

which are reachable from this context. 

 

Tables 1 and 2 present the syntactic forms of 

the S-expressions definable in our framework 

and the typing conditions that these 

expressions have to satisfy in order to be 

valid. More specifically, Table 1 presents the 

syntactic forms of, and the type validity 

conditions for the so-called "atomic S-

expressions" (these are expressions consisting 

of only one of the predicates introduced in 

Section 2). The type validity condition 

determines the valid type(s) for the element(s) 

that the predicate of an expression refers to. 

Table 2 presents the syntactic forms of, and 

the validity conditions for "non atomic S-

expressions" (these are logical combinations 

of atomic S-expressions). Thus, for instance, 

according to Table 1 the S-expression gen-

c(elem) is valid only if the type of the model 

element denoted by elem is the UML meta-

class Class. The complete grammar for S-

expressions is given in [10]. 

 

 

Atomic S-expression Belief Type validity condition 
gen-c(elem) Bel(gen-c(elem)) = 

m1(gen-c(elem)) 
elem.type = Class 

fessen-a(elem1,elem 2) Bel(fessen-a(elem1,elem 2)) = 
m3(fessen-a(elem1,elem 2)) 

elem1.type = Attribute OR 
elem1.type = AssociationEnd AND 
elem2.type = Class 

char-o(elem) Bel(char-o(elem)) = 
m4(char-o(elem)) 

elem.type = Operation 

coord-c(elem1,elem 2) Bel(coord-c(elem1,elem 2)) = 
m2(coord-c(elem1,elem 2)) 

elem1.type = Class AND 
elem2.type = Set (Interaction) 

coord-m(elem1,elem2) Bel(coord-m(elem1,elem 2)) = 
m5(coord-m(elem1,elem 2)) 

elem1.type = Message AND 
elem2.type = Set (Interaction) 

fdom-m(elem1,elem2) Bel(fdom-m(elem1, elem2)) = 
m6(fdom-m(elem1, elem2)) 

elem1.type = Message AND 
elem2.type = Set (Interaction) 
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Table 1: Syntactic forms, typing conditions and beliefs for valid atomic S-Expressions 

 
Non atomic S-Expression Belief Validity condition 

p1 and …and pn Bel(andi=1,…,n pi) = 
Π i=1,…,n Bel (pi) 

pi : valid atomic S-expression 
(forall i=1,…,n) 

Non 
quantified 
expressions p1 or …or pn Bel(ori=1,…,n pi) = 

ΣJ⊆{1,…,n}(-1)|J| +1Bel(andiεJpi) 
pi : valid atomic S-expression 
(forall i=1,…,n) 

elem->exists(x | 
OCL-exp-over-x 
and se(x)) 

ΣJ⊆S (-1)|J| + 1Bel(andxεJ se(x)) 
 
where 
S = {x | (x ε elem) and 
OCL-exp-over-x = True} 

elem.type = Set(ModelElement) 
AND 
se(x): is a valid non quantified 
S-expression over x 

Quantified 
expressions 

elem->forall(x | 
OCL-exp-over-x 
and se(x)) 

Πx ε elem Bel(se(x))  
       If elem->forall(x | 
      OCL-exp-over-x) = True) 
0,   Otherwise 

elem.type = Set(ModelElement) 
AND 
se(x): is a valid non quantified 
S-expression over x 

Table 2: Syntactic forms of and validity conditions for non atomic S-Expressions 

 

As an example of specifying a significance 

criterion consider the case where the 

violations of Rule-1 above should be 

considered significant only if they are caused 

by messages which are functionally dominant 

and have coordinating capacity in their 

interactions.  This criterion of significance 

can be specified as follows: 

 

Criterion-1 

Rule:  Rule-1 

S-expression: 

fdom-m(self, self.interaction) 

and  coord-m(self, self.interaction) 

In the S-expression of this criterion, "self" 

refers to the instances of the context of Rule-

1, that is the UML meta-class Message.  By 

using the special predicates fdom-m and 

coord-m, this S-expression specifies that the 

message that violates the rule must be 

functionally dominant and have a 

coordinating capacity in the interaction 

(sequence diagram) it belongs to (that is the 

value of the feature: self.interaction). 

 

To assess the significance of the violations of 

a specific consistency rule, we compute 

degrees of belief for the satisfiability of the S-

expression of the criterion associated with the 

rule by the elements of the model which this 

expression refers to. These elements are 

related to the model elements that gave rise to 
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the violation of the rule as specified by the S-

expression. Subsequently, the violations the 

rule are ranked in descending order of these 

degrees of belief. 

 

Tables 1 and 2 show the formulas used to 

compute the degrees of belief for the different 

forms of atomic and non-atomic S-

expressions. These formulas are derived using 

the axioms of the Dempster-Shafer theory of 

evidence [9] as we prove in [10]. Their 

derivation is based on the fact that − as we 

have also proven in [10] − the belief functions 

introduced in Section 2 satisfy the axiomatic 

foundation of Dempster-Shafer basic 

probability assignments [9]. 

 

In the following section, we give an example 

of computing degrees of belief for the 

satisfiability of significance criteria and 

ranking inconsistencies according to them. 

 

4. Example 

 

As an example of detecting and assessing the 

significance of inconsistencies in our 

framework, consider the UML model 

consisting of the class and sequence 

diagrams, shown in Figures 1 and 2. These 

diagrams are inconsistent with respect to 

Rule-1 in Section 3 since there are no 

attributes and/or associations between the 

sender and the receiver of the following 

messages: exec(), getText(), 

execQuery(String,OCol). 

 

If the significance of these inconsistencies is 

assessed according to Criterion-1 in Section 

3, the inconsistency caused by the message 

exec() becomes the one with the highest 

significance, followed by the inconsistencies 

caused by the messages 

execQuery(String,OCol), and getText(). This 

is because the degrees of belief about the 

satisfiability of Criterion-1 by each of these 

messages are (according to the belief 

functions of Tables 1 and 2): 

1) Bel(fdom-m(exec(),I1) and 

coord-m(exec(),{I1})) = 

m6(fdom-m(exec(),I1)) × 

m5(coord-m(exec(),{I1})) = 1 × 0.57 = 0.57 

2) Bel(fdom-m(execQuery(String,OCol),I1) 

and 

coord-m(execQuery(String,OCol),{I1})) = 

m6(fdom-m(execQuery(String,OCol),I1)) × 

m5(coord-m(execQuery(String,OCol),{I1})) = 
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0.286 × 1 = 0.286 

3) Bel(fdom-m(getText(),I1) and 

coord-m(getText(),{I1})) = 

m6(fdom-m(getText(),I1)) × 

m5(coord-m(getText(),{I1})) = 

0 × 0 = 0 

 

5. Related work 

  

A substantial body of research has been 

concerned with the problem of detecting and 

resolving inconsistencies between software 

system specifications [2,4,11,13,14,15,16] but 

only two strands of work [2,4] have been 

concerned with the diagnosis of 

inconsistencies. Emmerich et al [2] have 

developed a framework for managing the 

compliance of software documentation 

artefacts with consistency rules which realise 

document representation standards. In their 

framework, software designers can implement 

diagnostic checks to assess the importance 

and the difficulty of making a document 

compliant with the rule it violates. In [4], 

diagnosis has been realised as the 

identification of parts of formal specifications 

which are not affected by an inconsistency 

and, therefore, they are safe to reason from. 

Software metrics similar to some of the metrics defined 

in our framework have been proposed in the literature 

but have not been used to assess the significance of 

inconsistencies in software models. 

 

More specifically, the depth of inheritance 

tree (DIT) [1] and the class hierarchy nesting 

level [6] are similar to m1. Note, however, that 

unlike m1, DIT does not take into account the 

length of the longest path to the most specific 

subclass of the class of concern and therefore 

treats as generic classes which have no 

subclasses. Such classes are not as important 

as classes that m1 would spot as generic since 

they have no subclasses that could also be 

affected by inconsistencies involving them. 

Also class coupling (CBO) [1] and the 

number of collaborating classes (NCC) [5] 

are similar to m2. The difference between m2 

and CBO and NCC is that m2 provides a 

relative measure of inter-class collaboration in 

a specific set of system interactions. 

 

Also it has to be appreciated that, what clearly 

differentiates the metrics used in our 

framework from the above software metrics is 

their common underlying axiomatic 

interpretation as D−S beliefs. This, as 
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discussed in [10], provides a sound basis for 

deriving the beliefs for the significance 

criteria presented in Section 3. 

 

6. Summary and future work 

 

This paper presented a framework for 

assessing the significance of inconsistencies 

in design models of software systems 

expressed in UML based on criteria that 

software designers can specify to establish the 

characteristics that the model elements 

involved in an inconsistency should have for 

the inconsistency to be significant.  

 

On going work focuses on the experimental evaluation 

of the framework, investigation of the possibility of 

expanding it with more characteristics of model 

elements. We are also extending the current 

implementation of the framework on the top of the 

CASE tool Rational Rose [12]. 
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