Towards a Metric Suite for Evaluating
Factorization and Generalization in Class Hierarchies

M. Dao*, M. Huchard**, H. Leblanc**, T. Libourel**, C. Roume**
* France Télécom RED, DAC/OAT, 38-40 av. Général Leclerc,
92794 Issy-les-Moulineauz cedex 9, France, email: michel.dao@francetelecomn.com
** LIRMM, 161 rue Ada, 84892 Montpellier Cedex 5, France, email: {name}@lirmm.fr

May 18, 2001

Abstract

In the context of object-oriented development, several software quality criteria (e.g.
reusability, easy maintenance and evolution) are influenced by factorization and general-
ization. This proposal is a first advance towards a metric collection entirely dedicated to
feature and class generalization measurement. These metrics are classified into four levels:
feature, generic feature, class and hierarchy. We show that these measurements are difficult
to do because of a semantic aspect which is not entirely captured by the syntactic constructs
of a program or of a class diagram. We present and discuss preliminary experimental results.

This work is part of MACAO", a joint project of France Télécom?, SOFTEAM? and LIRMM*,
supported by the french department of research and industry (RNTL).

1 Introduction

Two of the main benefits of object-oriented approaches are reusability and extensibility that
facilitate design, development and maintenance. This is closely related to the use of a general-
ization process that is mainly based on feature factorization. For example, it is well known that
code duplication is an obstacle to maintenance and evolution. Moreover, finding reusable classes
is often based on the emergence of classes and features that generalize the initial classes.

We are currently working on tools that help programmers and designers to build class hierar-
chies [1, 2, 3]. These hierarchies may be design hierarchies (UML [4]) or implemented hierarchies
(Java, C++, Eiffel, etc.). The techniques we use in these tools follow a general model (based
on Galois lattice) introduced by [5] in the framework of class hierarchy construction. The main
principle is building class hierarchies maximally factorized, while introducing as few classes as
possible for feature factorization.

Besides providing construction tools, we think essential to propose evaluation tools. In par-
ticular, they may allow to quantify the improvements carried out by a reconstruction tool: as
we know that the resulting hierarchy is maximally factorized, a first problem is to measure the
level of factorization in the original one, a second problem is to evaluate the quality of con-
cepts (represented by new classes) stemming from the maximal factorization. More generally,
these measurements may highlight design defects connected with feature factorization, such as

"http://www.lirmm.fr/ “macao/
*http://www.francetelecom.fr/

3http://www.softeam.fr/

4CNRS et Université Montpellier 2, http://www.lirmm.fr/

features which are obviously redundant, classes useless with regard to feature factorization and
generalization. Such informations are really interesting to guide more local improvements.

In a preliminary bibliographical study about metrics, we have found some metrics more
or less connected to the problems of factorization and generalization, e.g. those counting at-
tributes and methods overridden, the specialization index [6], the pure inheritance index [7] or
the method/attribute inheritance factor [8]. Nevertheless, we could not find a metric collection
entirely dedicated to the factorization and generalization measurement. This paper is a first
attempt to define such a metric collection.

Section 2 introduces several useful notations and vocabulary. Then we propose metrics that
apply to different elements: features (Section 3), sets of features connected by specialization
(Section 4), classes (Section 5), and then hierarchies (Section 6). In each category, we give some
examples of the metrics we have defined. These metrics are gathered in a table at the end of
the each section. Section 7 describes first experiments. Section 8 gives some perspectives of this
work.

2 Definitions and Notations

We define a class hierarchy as an oriented acyclic graph GH = (C,U) where C is the set of classes,
and U the set of inheritance links. GH induces an order denoted by H = (C, <g). We will rather
use H to denote the hierarchy. We will use also the following notations:

e feat(C), set of the features of a class C' € C; attributes, methods and association ends (in
the case of UML class diagrams) are considered as potential features. In this feature set,
we count all the inherited features, even if they are overridden (this could be a variant),

e inherit(C), set of the features inherited by a class C € C,

e declar(C), set of the features syntactically declared in a class C; note that we may have
inherit(C) N declar(C) # 0,

e Feat(H), set of all the features that appear in the hierarchy; Feat(H) = Ugec feat(C),

e Rpyr denotes the binary relation between classes and features (Has the Feature), (C, f) €
Rurif C€C, f € Feat(H) and f € feat(C),

e a feature occurrence is a pair o = (f,C), where C is a class which declares the feature f.

3 Feature factorization

Metrics are defined having in mind what is a maximal feature factorization.

DEFINITION 1 (MAXIMAL FEATURE FACTORIZATION —MFF) A feature must have only one
occurrence, therefore it must be declared by only one class.

Note that, for a given relation Ryr between a class set and a feature set, there are several class
hierarchies that verify the maximal feature factorization property.

In this section, except the last metric, which is dedicated to a specific feature occurrence, the
others take into account the whole set of occurrences of a feature.

The first two metrics are based on the redundancy number (RN) of a feature f, that is
the number of classes which declare f (or the number of occurrences of f), less one, because
we consider that at least one occurrence is necessary to preserve the services provided by the
hierarchy. In Figure 1, RN(p) =3, RN(q) =1, RN(z) = 0 because z is maximally factorized.

The redundancy ratio (RR) is the number of redundancies of f divided by the number of
classes that own f: it is useful to distinguish for example a feature declared 5 times but owned
by 50 classes (RR = 4/50 = 0.08) from a feature declared 4 times but owned by 4 classes

c4
qx
\
C8
< c7 }
3}

Figure 1: Hierarchy illustrating metrics at the feature level

(RR = 3/4 = 0.75). The former is rather well factorized, while the latter is not. If a feature is
maximally factorized, RR is always 0. For a feature never inherited, the more it has occurrences,
the more the redundancy ratio is close to 1, this bound being never reached. In Figure 1,
RR(p) =3/10 = 0.3, RR(q) =1/11 = 0.09, RR(z) = 0/1 = 0. q is better factorized than p.
Two other metrics (MON and its associated ratio MOR) are a variant where only mazimal
occurrences of a feature f are considered. This number is interesting because it provides an
upper bound for the number of links to be added in <y in order to factorize f, while RN(f)
counts also occurrences that only need to be removed to obtain a maximal factorization of f.

DEFINITION 2 (MAXIMAL OCCURRENCE) A feature occurrence o = (f,C) is mazimal if none
of the super-classes of C also declares f.

In Figure 1, MON (p) = 3, MOR(p) = 3/10, due to the maximal occurrences (p, C1), (p,C7)
and (p,C5); MON(q) = 2, MOR(q) = 2/11, due to the maximal occurrences (g, C1), (g, C4);
MON(z) = 1, = has only one maximal occurrence (z,C4). In these metrics, p is no more
penalized by the occurrence (p,C3). MOR seems to be not significant when MON = 1.

A metric LFF, dual of RR, intends to capture in which proportion a feature is factorized. The
definition of the metric is based on the fact that a feature is factorized every time it is inherited
(and not redeclared). In Figure 1, LFF(p) =7/10, LFF(q) = 10/11, LFF(z) =5/5 = 1. Once
again, we see that x is maximally factorized, proportionally ¢ is better factorized than p.

The last metric we present in this part tries to highlight the importance of an occurrence
o = (C, f) in the subclasses of C. This importance is measured by the number of subclasses
of C that inherit f only from C, divided by the number of subclasses of C. In Figure 1,
IOD(o1 = (p,C1)) = 2/5, IOD(02 = (p,C5)) = 1/2 (C13 is excluded because it also inherits
p from C7), IOD(03 = (q,C4)) = 4/4. o9 is (slightly) more important in its descent® than oy,
while o3 is really important. The more IO D is close to 1, the more important it is in its subclasses.

RN Redundancy Number
RN(f)=|{C € H/f € declar(C)}| — 1
RR Redundancy Ratio

_ RN(f)
RR(f) = foenyre featony
MON Maximal Occurrence Number
MON(f) = |{C € H/f € declar(C), and VC' >y C, f & declar(C")}|

MOR Maximal Occurrence Ratio

_ MON(f)
MOR(f) = qoen;reeatory
LFF Level of Factorization for a Feature

_ {c¢/feinherit(C)\declar(C)}|+1
LFF(f) = [{C/ e feal(OT1]
10D Importance of an occurrence in its descent

c! c/7c" £c,c"ec,c” C! with declar(C"

I0D(o = (f,C)) = 1¢=<uC/3C77 St fedeclar(C™)}|

5We call descent of a class the set of all its subclasses.

do
abstract void print() throws Exception
dl
abstract void print() throws ExcPrint

d2 d3
void print(){body1} yoid print()throws ExcPrint { body3}

d6 ds
void print(){ body1;body2} void print() throws ExcPrint{ body3;body6}

void print(){ body4}
d4

void print(){ body4;body5}
d7

c2
a4

print, <

Figure 2: left a generic feature print; right an initial hierarchy

4 Feature generalization

4.1 Generic Features

To discuss this point, we introduce the notion of generic feature.

DEFINITION 3 A generic feature F is a set of features semantically connected and partially or-
dered by specialization.

For example, a generic method in Java is the set of all methods that have the same name,
return type and parameter list. The specialization order may consider:

e an abstract form of the method is more general than a concrete form,

e exception classes that are declared in a method header can be specialized or can disappear
when the method is specialized,

e the super keyword used in a body can lead to interpret that the overriding method (that
contains super) is a specialization of the overridden method (called through super).

Figure 2 (left) shows an example of a specialization order for a generic feature print. The
reader is invited to imagine that super.print () was replaced by the code called that way; for
example, bodyl in method db corresponds to the replacement of super.print().

Such generic features are difficult to detect in practice. Some aspects can be automatically
deduced; in the case of Java, for example, a program can extract from a hierarchy all the
methods having a same name, return type and parameter list, and organize these methods
through a specialization order deduced from the rules given in the previous paragraph (about
generic methods). But the whole semantics of a design is rarely captured by such syntactic
aspects, and we think that at this step, a designer may come in to change the specialization
order F being deduced (adding, removing features and links) with respect to usual rules of
design or programming. A frequent change would be to add abstract forms of methods when
they are missing. In general, several specialization orders can be considered for a given generic
feature F, and each of these specialization orders can be a basis for measurement: it gives a
theoretical model of the generic feature validated by a human designer.

4.2 Metrics based on generic features

Then, in order to measure the quality of the factorization of a generic feature F (and for a generic
feature, the factorization is also made through specializations and generalizations), three points
are considered:

C1

c1
d3
do
x]
] 4
da /\ /A\
y t z u y t z u

Figure 3: left a maximal feature factorization; right a least maximal generic feature factorization

5

e the position of the elements of F in H,
e 3 specialization order on F,

e an extension of the definition of the maximal factorization in the case of a generic feature,
which is used as an ideal reference.

We thought of two different definitions of the maximal generic feature factorization. We
develop here only the one that we call the least mazrimal generic feature factorization. It is
basically defined considering that for any two occurrences of a generic feature, the least common
generalization of these features should appear (in a right place) in the hierarchy.

DEFINITION 4 (LEAST MAXIMAL GENERIC FEATURE FACTORIZATION (LMGFF)) Let F be a
generic feature, and let GH be a class hierarchy, ¥Yfi, fo € F, f1 and fa are each declared in a
unique class (resp. C1 and Cy3), and every least upper bound of fi and fo in <z is declared in
one and only one common superclass of C1 and Cs.

Figure 3 shows, for the initial hierarchy of Figure 2, a maximal feature factorization (left)
and then a LMGFF (right) deduced from print, <prin:. The difference to note between the two
factorizations, is that, in order to obtain a LMGFF, the feature d3 has been added since it is the
least upper bound of d4 and d5.

In a hierarchy under construction, the degree of satisfaction of two criteria may be measured.
Firstly, the generalization of the occurrences of the generic features; secondly, the accordance of
the order <z with the order <p. The ultimate goal is that those two criteria are fully satisfied.

The metric NMGL counts the number of generalizations that are missing with respect to a
LMGFF. The set MGL(F) of missing generalizations is the fix point of the following series of
sets (lub stands for “set of least upper bounds”).

MGLy(F) ={fi/fi € F, fi & Feat(H)et 3f1, fo € Feat(H) withf; € lub(f1, f2)} (1)

MGL;i(F) ={fi/fi € F, fi &€ Feat(H)et 3f1, fo € MGL;_1 U Feat(H) withf; € lub(f1, f2)}

@)

A ratio, not detailed here, could be obtained by dividing this number by the number of

features. For example, in the original hierarchy of Figure 2 (right) d4 and d5 have a missing
least upper bound, which is d3, and we have NM G L(print) = 1.

The lack of accordance between a generic feature provided with its specialization order and

<y is measured by two metrics: the first (NIHR) counts the number of relationships in H that

break <, the second (NMR) counts the number of relationships of <z that are missing in H.

Cc2

1 Cl11
1 ; -

I
7~ [#] [°]

‘
;
f3 fa
10

C

w
Fo< F Hierarchy H

Figure 4: Counting the discrepancies between <z and SGI(F)

Let SGI(F) be the subgraph induced by the occurrences of F in GH. To obtain ratios, on the
one hand, NITHR(F) is divided by the number of edges of the transitive closure of SGI(F): this
gives the metric THRR; on the other hand, we divide NM R by the number of relations of <z
that should appear in SGI(F): this gives the metric RMR.

In Figure 4, NTHR(F) = 6 (the edges are ticked on the figure), THRR(F) = 6/12 = 0.5
(half of the edges are incorrect), NMR(F) = 5, because the edges (f3, f0), (f4, f0), (f1, f0),
(f4, f2), and (f3, f2) of <y are missing at least one time in <y. RMR(F) = 5/6, revealing
that nearly all the relations of <r are not respected at least one time in the hierarchy.

We also have define variants of these metrics that capture the number of times a generaliza-
tion is missing, or a link is incorrect.

NMGL | Number of Missing Generalizations w.r.t. a LMGFF

NMGL(F) = [MGL(F)|

NIHR | Number of Incorrect Hierarchy Relations

NIHR(F) = |{(Ci,C54) with Ci subclass of Cj (Ci <g Cj) that contradict
<z: Joi = (fi,C%) and o5 = (fj,Cj) with fj is not a generalization of f3

(fi £7 f4)}]
ITHRR | Incorrect Hierarchy Relation Ratio
_ NIHR(]:)
THRR(F) = mcicy/ci<aCi,Cr and CIeSGT

NMR | Number of Missing Relations of <

NMR(F) = |{(f1, fj)s.t.fi <z fj, but there are two occurrences oi = (fi, C)
and oj = (f7,Cj) with Ci £ Cj}|

RMR | Ratio of Missing Relations

B NMR(F)
RMR(F) = (i fifieFeat(H, and i<z Fil]

5 Class impact in factorization and generalization

The first metric (RCFF) reports the role of a class C in the factorization of a feature f. It
is defined as the quotient of the number of subclasses of C' (plus one for C) by the number of
classes that own f. In Figure 1, RCFF(C1,p) = 6/10, that is C1 factorizes about half of the
times the feature p is owned.

The second metric (RCFGF) reports the role of a class in the factorization of a generic
feature. In this case, we consider that a class C that declares f is useful to factorize the features
of the subclasses of C' that specialize f. In Figure 5, RCFGF(C2,print) = 2/3, since C2

col

abstract int compute()
-1

co2 co3
c3 int compute(){ bodyX} int compute(){ bodyY}

dé N d3| d4|d5| d6 | d7|col| co2 [co3| x| y
CI
A
ca cs ce o x
X X
co3 da fad m c4 x| x X

d3 - 4 / C5
C6

C7

“ :

C10
c1
C12

a
=
o
s

x|

=%
HE

x| x| x| x| x| x| x| x| x| =

Figure 5: Hierarchy illustrating class impact metrics (using also the previous generic method
print)

generalizes (d2,C2) and (d6,C12), but not (d6,C7). RCFGF(C3,print) = 3/5, since C3
generalizes (d3,C3), (d4,C6) and (d7,C8), but not (d4,C5) and (d5,C9). C2 and C3 are
roughly equivalent in the factorization of print.

A first variant consists in considering all the owned features rather than the declared ones. A
dual metric could consist in counting the features of F in the subclasses C that do not specialize
f- In fact, this is close to compute NTHR on the subgraph induced by C and its subclasses.

Then, to have a more general idea about the role of a class C in the factorization of the
features it declares or owns, we have followed two directions. The first, not developed here
is based on an average of the previous metrics weighted by the respective importance of each
feature in the whole hierarchy. A bad factorization is indeed less serious for a generic feature
that has very few occurrences. A second direction (metric RC'F'), more global and perhaps less
precise, is to consider that C is responsible for its subclasses for all the features C owns. In
Figure 5, RCF(C2) = 3 x 3/42 = 0.2, RCF(C3) = 3 x 5/42 = 0.3; as a result C3 is slightly
more important in factorization than C2.

RCFF Role of a Class in the Factorization of a Feature f
_ _{¢'/C’<uC}|
ROFF(C, f) = qorjfefeattont]

RCFGF Role of a Class in the Factorization of a Generic Feature F
For a class C with f € declar(C), and f € F,

_ [{C/C<nC and 35’ <, ['edectar(Ch)]
ROFGF(C,F) = "0l mpe g, pededar @I

RCF Role of a Class C in the Factorization
RCF(C) = |feat(C)|x[{C"/C' <uC}|
RuF]

6 Factorization and generalization level of a class hierarchy

6.1 Direct measurements in the hierarchy

A first way to measure the level of factorization in the whole hierarchy is based on several averages
on the previous metrics. We do not detail here the metrics we deduced that way.

6.2 Metrics based on a comparison with other organizations of the hierarchy

The first metric (LF H) captures the level of factorization of a hierarchy H by comparison with
the flattened hierarchy deduced from H (the same classes with the same feature sets, but without

X1
(C5,C6) NC1

p q
- -
X2 X3
(C1.C2,C3,C10,C11,C12) (C4,C8,C9)
X

X4
(C7,C13)

Figure 6: More compact maximal feature factorization equivalent to hierarchy Fig. 1

C1

d1i

NC1

d0| d1| d2|d3| d4 |d5| d6 | d7| col| co2| co3| x| y
c1 [x|x col
C2 | x [x]|x X /"%
C3 | X |X X x| x
Ca | x i X X x NC2 NC3 ¢
C5 | X X | X X
C6 X [X X | X X X d3 co2 d2
Cc7 X | X|x X X| X
c8 | x |X x| x x| X| x
co [x[x X x
C10| X [X [x M | x " c4 C9 c5 c3 c12
cu X [¥[x X x| x X co3 ds m 6
Cl12| X X | X X X \/
c6
c7
c8 c12 cin
a7 X y

Figure 7: More compact maximal generic feature factorization equivalent to hierarchy Fig. 5

inheritance links). Here again we consider that each occurrence of feature inheritance corresponds
to an instance of factorization. |Rpr|— |Feat(H)| represents the number of redundancies in the
flattened hierarchy. LFH(H) = 1 if the hierarchy is maximally (feature) factorized, provided
that the non maximal occurrences are removed. For the hierarchy of Figure 1, it is equal to
19/26. For the hierarchy of Figure 5, the value is 28/42.

We have also defined metrics based on a comparison between the hierarchy under measure-
ment and an equivalent (in terms of services) hierarchy that should be maximally (feature or
generic-feature) factorized using the less classes as possible (the most compact) [5, 1].

This second hierarchy, “ideal” in terms of factorization, is called below the Galois Sub-
Hierarchy (GSH), a name that comes from its construction [1]. The GSH associated with the
hierarchy of Figure 1 is given in Figure 6. Several classes of the initial hierarchy are represented
by a single class of the GSH, for example, C'4, C'8 and C'9 are represented by a same class X 3.

The GSH associated with the hierarchy of Figure 5, is given in Figure 7. In order to obtain
this GSH, the hierarchy is flattened and a new Ry is built in such a way that classes keep the
same semantics. Each class C' now owns:

1. the features declared by C in the initial hierarchy,
2. the features inherited and not overridden by C' in the initial hierarchy,

3. the features that generalize (in the associated generic feature orders) the features of 1. and
2.

We are currently investigating comparisons between the GSH and the initial hierarchy, as
well as metrics that indicate the quality of concepts produced in the GSH. We give here simple
examples of metrics that can be used. In the following, Fact denotes the classes of the GSH
that are needed only to factorize features (their feature set is not equal to any feature set of
a class in the initial hierarchy). For instance, Figure 6, Fact = {NC1}, Figure 7, Fact =
{NC1,NC2,NC3}. I'mp denotes the classes of the GSH that are needed to represent a class of
the initial hierarchy (their feature set is equal to the feature set of a class in the initial hierarchy).
For instance, Figure 6, Imp = {X1, X2, X3, X4} and Figure 7, Imp = {C1..C11}.

Firstly, the number of classes (concepts) of the two hierarchies can be compared, using the
metric CNC. Figure 6, CNC(H) = 13/5 = 2.6 and Figure 7, CNC(H) = 11/14 = 0.7. In some
cases the GSH reduces the number of classes (when several classes have the same set of features),
while in most cases, the GSH increases the number of classes, due to the factorization. CNC > 1
reveals class definitions which are redundant, while CNC < 1 reveals feature redundancy.

Secondly, the number of features in the classes of GSH that only factorize features is very im-
portant: a factorization class of GSH which contains very few features is maybe not an interesting
class. ANFDFC(C, that counts the average number of features in factorization concepts partly
plays this role. Figure 6, ANFDFC =1/1 =1, and Figure 7, ANFDFC = 4/3 = 1.33. A vari-
ant consists in counting the average number of features (declared and inherited) in factorization
concepts.

The last metric presented here (FCR) shows if many classes were needed only to factorize,
relatively to the number of classes that had to be represented (without counting classes that
have the same feature sets). Figure 6, FCR = 1/4 = 0.25, and Figure 7, FCR = 3/11 = 0.27.
In the two cases, the number of added factorization concepts is reasonable with respect to the
number of initial classes.

LFH Factorization Level of the Hierarchy
_ H(C.,f)/ feinherit(C)}|
LFH(H) = e i [Feat(m)
CNC Class Number Comparison
CNC(H) = .4
[Casnl

ANFDFC| Average Nb of Features Declared in Factorization Concepts
ANFDFC(H) = 2cerae eclar(©)

[Fact|
FCR Factorization Concept Ratio
_ |Fact|
FCR(H) = Tmp)

7 Experiments under way

The experiments that we carried out relate to several packages of the JAVA language (LINUX
JDK 1.1.7). In this work, we implemented and applied a relevant subset of our metrics to
specification hierarchies derived from JAVA code. The introspection mechanism of this language
allowed us to extract the feature signatures (except for static features, private features as well
as features of the inner classes). The signatures have the following forms:

e for an attribute: type name

e for a method: abstract/concrete return_type name [parametersList] [exceptionsList]

Measurements are made on a package or on a set of packages carried out recursively. In
order to take into account all inherited features, we have examined all super-classes (resp. super-
interfaces) of the classes (resp. interfaces) under study.

In accordance with our proposal of metrics, the results are presented at the feature level, at
the generic feature level, at the class level and at the hierarchy level.

Table 1: MON(f) and MOR(f)

‘ package H property f ‘ MON ‘ MOR ‘
lang concrete String toString() 1| 1/81
" concrete double doubleValue() 7 x
K abstract double doubleValue() 1 1/7
io concrete boolean markSupported() 2 2/22
7 byte[] buf o 5/5
K int count 7 /7

7.1 Feature level measurements

We have implemented the MON and M OR metrics and we give results concerning the packages
java.lang (basic classes of the language) and java.io (stream classes) in Table 1.
On the whole package java.lang (respectively java.io), we found:

e 297 features (resp. 231) having one maximal occurrence (M ON(f) = 1) and owned by less
than 2 classes (|[{C/f € feat(C)}| < 2),

e 29 features (resp. 50) having one maximal occurrence (MON(f) = 1) and owned by more
than 2 classes (|[{C/f € feat(C)}| > 2),

e 41 features (resp. 117) having more than one maximal occurrence (MON(f) > 1) and
regarded as potentially badly factorized.

More precisely, Table 1 shows that, the two methods concrete String toString() and
concrete boolean markSupported() are well factorized features (concrete String toString()
being maximally factorized).

On the other hand, the method concrete double doubleValue() having only maximal
occurrences, is thus not factorized on the level of its specification. The code analysis of the
occurrences shows that six of them are identical, which confirms our interpretation. The presence
of the method abstract double doubleValue() which seems well factorized confirms us in the
idea that a code factorization is missing for double doubleValue(). Attributes byte[] buf
and int count are also not well factorized. This defect is found for many features in the package
java.io which, in our opinion, was not designed with the objective of a complete generalization
of the input-output streams.

7.2 Generic feature level measurements

A generic feature F is a set of features semantically connected and partially ordered by special-
ization. Here the semantic connection consists with the equality of reduced signatures (same
return_type name [parametersList]), and the specialization order <z follows the two follow-
ing rules:

Let m1 and ms9 be two occurrences in F, mi; <z myo if and only if:

1. (m; is abstract) = (mq is abstract)

2. Ve; € [exceptionsList](my), Jey € [exceptionsList](ms) s.t. e; = ey or e; <p €3
Considering the way certain generic features are constituted, we thought interesting to imple-
ment NIHR(F). The result shows that elements of the generic features boolean equals(Object)

and ListIterator listIterator(int) appear in classes whose links in <gy contradict the spe-
cialization orders <egyars and <jistrterator- In both cases, this is expressed by a concrete method

10

Table 2: RCFF(C, f) and RCF(C) for java.lang

‘ class c ‘ property f ‘ RCFF H RCF
Object 11 x 81/1669 = 0.533
Throwable | String getLocalizedMessage () 46/46
Throwable | void notify() 46/81
Throwable 17 x 46/1669 = 0.468
Runnable | abstract void run() 4/4
Runnable 1 x4/1669 = 0.023
Process abstract int exitValue() 2/2
Process 17 x 2/1669 = 0.020

Table 3: RCFGF(C,F) for java.util

‘ class C ‘ generic feature F ‘ RCFGF ‘
Collection void clear() 14/14 =1
AbstractCollection | void clear() 6/10 = 0.6
Map void clear() 5/14 = 0.357

generalizing an abstract method. In the first case, concrete boolean equals(Object) declared
by Object appears higher in <y than abstract boolean equals(0Object) which is declared
by Permission. In the second case, concrete ListIterator listIterator(int) declared by
AbsractList appears higher in <y than abstract ListIterator listIterator(int) which
is declared by the subclass AbstractSequentiallist. We may question the specialization of a
concrete method by an abstract method in <z, perhaps to enforce overriding ?

7.3 Class level measurements

RCF, RCFF, RCFGF metrics were implemented; we give some results concerning the packages
java.lang and java.util (abstract data types) in the tables 2 and 3.

The values of RCF(C) show that the classes Throwable and Object have a strong capacity
of factorization whereas the classes Runnable and Process are not of great importance for the
factorization of the features. For the values of RCFF(C, f), the class Throwable inheriting
the method void notify() takes part for 50% in the factorization of this feature while for the
method String getLocalizedMessage() that this class declares, its participation is 100%.

According to our experiments, it appears that the fractions (e.g. 9/14) are more interesting
than the values (e.g. 0.64) for the interpretation of the metric RCFGF(C,F). Concerning
the generic property void clear(), the interfaces Collection and Map declare the maximal
element of the order < eq, yielding two maximal occurrences (MON (clear) = 2). The class
AbstractCollection declares a feature which is declared or specialized 10 times in the whole
hierarchy, and more precisely 6 times in its subclasses. It factorizes 60% of void clear().

7.4 Hierarchy level measurements

CNC, Fact, ANFDC and FCR metrics were implemented and we give some results on the
packages java.lang, java.util and java.io in Table 4.

11

Table 4: CNC(H), Fact(H), ANFDC(H),FCR(H) for java.lang, java.util, java.io

‘ Package ‘ java.lang ‘ java.io ‘ java.util

Total Number of Classes | 84 84 25

Total Number of Features | 357 398 153

Cardinal of R 1669 1981 864
CNC(H) 84/47 =1.78 | 84/112 = 0.75 | 25/36 = 0.69
Fact(H) 12 44 13
ANFDC(H) 25/12 =2.08 | 103/44 =2.34 | 19/13 = 1.46
FCR(H) 12/35=10.34 | 44/68 =0.64 | 13/23 = 0.56

These various measurements show that if we comparatively consider the packages java.lang
and java.io that have about the same numbers of classes and features, it is necessary to factorize
103 features using 44 additional classes for java.io, for only 25 features and 12 additional classes
for java.lang. The interpretation of CNC shows that the packages java.io and java.util
could have a better feature factorization while the package java.lang contains a certain num-
ber of classes having the same specification. The average number of the features declared by
the classes of factorization (ANFDC) is relatively low, the added classes of factorization will
certainly have to be grouped to get more interesting concepts.

The whole set of metrics that we evaluated constitutes a coherent unit which enabled us
to point out a certain number of factorization problems in the specifications that could help a
designer. However, several remarks have been obtained only after code examination, which is
the next stage of our work.

8 Conclusion

We have partially presented a first set of metrics dedicated to the factorization measurement.
This set is not definitive, we are still discussing on variants and experiments are yet under
way. We have mentioned that some of these metrics actually are not so easy to compute in
practice. Problems are mainly due to the feature naming, which can cause conflicts, and to
the difficulties that occur when one wants to know or compute generalization/specialization
relations between features. All the feature comparisons are indeed difficult to solve using only
their syntactic aspects (name, type, parameters, exceptions thrown, body, etc.): semantic aspects
play an important role to decide whether a feature is a specialization of another, or whether two
features with a same name are semantically connected. As we have mentioned, before any metric
computation, a designer could fruitfully come in to adjust a pre-computed set of specialization
relations between features. Another important point was to use the Galois sub-hierarchy as an
ideal reference to evaluate a class hierarchy. This research way seems to be very promising. We
also have in mind to study the cohesion [9, 10] of factorization classes to improve our construction
tools.

Acknowledgments Authors would like to thank L. Nenonnen who gave them a first bibli-
ography about metrics.

12

References

[1]
2]

[3]

[4]
[5]

[6]
[7]

[8]
[9]

[10]

H. Dicky, C. Dony, M. Huchard, and T. Libourel. On automatic class insertion with overloading.
Special issue of Sigplan Notice - Proceedings of ACM OOPSLA’96, 31(10):251-267, 1996.

N. Chevalier, M. Dao, C. Dony, M. Huchard, H. Leblanc, and T. Libourel. An environment for
building and maintaining class hierarchies. In I. Borne, editor, ECOOP99: Workshop Object-Oriented
Architectural Evolution, Lisbonne, Portugal, 1999.

M. Huchard and H. Leblanc. Computing Interfaces in Java . In Proc. IEE International conference on
Automated Software Engineering (ASE’2000), pages 317-320, 11-15 September, Grenoble, France,
2000.

Object management Group. OMG Unified Modeling Language Specification, version 1.3. OMG,
http://www.omg.org, March 2000.

R. Godin and H. Mili. Building and Maintaining Analysis-Level Class Hierarchies Using Galois
Lattices. Special issue of Sigplan Notice - Proceedings of ACM OOPSLA’93, 28(10):394-410, 1993.

M. Lorentz and J. Kidd. Object-Oriented Software Metrics, a Practical Guide. Prentice Hall, 1994.

B. K. Miller, P. Hsia, and C. Kung. Object-oriented architecture measures. In 32nd Annual Hawaii
International Conference on Systems Sciences. IEEE Computer Soc., 1999.

F. Brito e Abreu and W. Melo. Evaluating the impact of object-oriented design on software quality.
In Proc. METRICS 96, Berlin, Germany. IEEE Computer Society, 1996.

Shyam R. Chidamber and Chris F. Kemerer. A Metrics Suite for Object Oriented Design. IEE
Transactions on software engineering, 20(6):476-493, 1994.

Lionel C. Briand, Jiirgen Wiist, John W. Daly, and D. Victor Porter. Exploring the relationships
between design measures and software quality in object-oriented systems. Technical Report 07,
ISERN, Kaiserslautern, Germany, 1998.

13

