
Technical Report ES007/2001
(version 1.0 – June 2001)

Using OCL to formalize object oriented metrics definitions

Fernando Brito e Abreu
FCT/UNL and INESC

Portugal
fba@inesc.pt

Abstract

We propose to standardize object-oriented metrics definitions using the Object Constraint
Language (OCL), a part of the Unified Modeling Language (UML) standard, and a meta-model of
the modeling formalism. OCL allows specifying invariants, preconditions, postconditions and
other types of constraints.
To illustrate this approach, we describe the MOOD2 metrics in OCL, based upon the meta-model
of our object design modeling formalism – the GOODLY language. The outcome is, we believe, an
elegant, precise and straightforward way to define metrics that may help to overcome several
current problems. Besides, it is a natural approach since we are using object technology to define
metrics on object technology itself.

1. Introduction

1.1 Formalization in object oriented specifications

The lack of formalization has been long felt in the object-oriented software modeling area [Meyer1985,
Wand1989]. Although the basic elements of the diagrammatic specifications used in this area are very powerful
and obvious, and it is easy to understand how they fit together, several modeling details, such as uniqueness and
referential restraints, limitations and other constraints are expressed ambiguously, or even cannot be conveyed at
all by those graphical notations. As pointed out in [Cook1994], there is a difference between precision and detail.
In object-oriented modeling we often leave out the details but, at the same time, we need the precision. Since
accuracy and unambiguity in specification have been, for many years, the aims of the branch of computer science
known as “formal methods”, attempts have been made to combine them with object-oriented modeling. These
attempts have followed four different roads.

One road was that of extending and adapting an existing formal language with object-oriented constructs like in
Object-Z [Duke1991] and VDM++, an extension of VDM [Jones1990]. This approach is not in line with
industrial practice trends to use the simple, but powerful, graphical notations in object-oriented analysis and
design. In fact, most practitioners are not at ease in using traditional formal specification languages, since they
usually require a strong mathematical background.

A second road was that of complementing diagrammatic notations with some existing formal language constructs,
like for instance in Syntropy, where a subset of Z [Spivey1992] was combined with OMT [Rumbaugh1991]. Also
in this road are the ROOA [Moreira1996] and Metamorphosis [Araújo1998] approaches. This is a compromise
solution, joining the benefits of graphical modeling with those of a formal language. However, two drawbacks
can be identified here. First, the conceptual gap between the two formalisms. Second, the already mentioned
difficulty of using a “traditional” formal language does not fade away. Consequently, modeling practitioners
practice continued to be, during the 90’s, a combination of graphical modeling with natural language descriptions
to fill-in-the-blanks.

A third road was that proposed in the BON (Business Object Notation) object-oriented method [Waldén1995].
There, a constraint language is used to express design by contract modeling issues, as advocated by Bertrand

 2

Meyer [Meyer1995]. At the time of its publication BON was, among the popular analysis and design methods,
perhaps the only one to use a full-fledged assertion mechanism, allowing analysts to specify both the structure of
a system and its semantics (constraints, invariants, properties of the expected results) [Meyer1997]. Besides
graphical and tabular notations, BON uses a textual one to express assertions. This notation includes some
constructs as “delta a” to specify that a feature can change an attribute “a”, “forall” and “exists” to express logic
formulae of first-order predicate calculus, and set operators such as “member_of”. This notation bridges
somehow the semantic gap problem previously mentioned, but still has a drawback – no widespread acceptance.
Perhaps that was due to the fact that BON is somehow tied to the Eiffel language world. Besides, that acceptance
often comes from standardization and shortly after BON was proposed, the joint initiative that would give birth to
UML was already full speed ahead.

The last and more promising road to solve the problem in hand is called OCL - Object Constraint Language
[Warmer1999], a part of the UML standard, version 1.1, published by the OMG (Object Management Group)
[OMG1997]. This standard includes several types of object-oriented analysis and design model diagrams, with
their semantic clarified by the use of OCL. The latter is a language to specify invariants, preconditions,
postconditions, guard conditions, and other types of constraints (restrictions) on parts of object-oriented models
and, therefore, supports design by contract. OCL is a formal, yet simple notation, to be used jointly with UML
diagrams and whose syntax has some similarities to those of object-oriented languages such as Smalltalk, C++ or
Eiffel. It is underpinned by mathematical set theory and logic, like in formal languages, but was designed for
usability and is easily grasped by anybody familiar with object-oriented modeling concepts in general, and UML
notation in particular. This last road brings the best of the previous ones: simplicity and powerfulness of the
graphical notations, with preciseness and unambiguity granted by formality, in a very usable and conceptually
integrated fashion. Moreover, since it is a part of UML, it has become a de jure standard.

1.2 Formalization in object-oriented metrics

Theoretical validation of software metrics definitions has received considerable attention. The first well-known
approach to do this validation was an axiomatic one, where nine properties were proposed [Weyuker1988].
Although this approach was criticized by several authors [Cherniavsky1991, Fenton1991, Zuse1993],
Henderson-Sellers argues that they do provide an initial framework that can be adapted and refined for object-
orientation [Henderson-Sellers1996a, pp.75]. Another approach to metrics definition validation is based on
measurement theory and is mainly concerned with the measurement scales and corresponding metrics
interpretation and usefulness [Zuse1989, Fenton1991, Zuse1991]. According to it, the scale type of a metric (e.g.
ordinal, interval, ratio or absolute) determines the types of statistical tests we can use to analyze the measurement
values we get. For instance, parametric tests require interval or ratio scale measures.

Along with the validity problem is the one of the metrics definition formalization itself. This has always been an
Achilles’ heel in the metrics area. Without clear and precise definitions it is impossible to build adequate metrics
extraction tools, experiments replication is hampered, and results interpretation will be flawed. In the first known
book on the subject of object-oriented metrication, for instance, all metrics are defined in natural language
[Lorenz1994]. Nevertheless, most authors have used a combination of set theory and simple algebra to express
their metrics [Chidamber1994, Abreu1995, Abreu1996a, Henderson-Sellers1996a]. Even when expressed
mathematically, the metrics may be ill defined, like for instance some of the Chidamber set [Churcher1995].

This ill definition problem is due, in our opinion, to two reasons:

i) metrics definitions are usually presented without the corresponding context, that is, without expressing
which is the corresponding meta-model where the entities of interest and their interrelationships are
expressed;

ii) metrics definition is done without an underlying formal specification approach that uses the former meta-
model as contextual input; this formal specification should specify, among other things, under which
conditions the metrics are applicable.

In this technical report we present an approach to de define adequately context and metrics that solves this
problem. We use UML and OCL to build that meta-model and then we express the metrics as meta-model
operations. The metrics applicability limitations are defined with OCL pre-conditions. The metrics result itself is
formally defined with OCL post-conditions.

This report is organized as follows: in section 2 we briefly introduce the OCL types and language syntax; our
object design meta-model is then presented using UML and made more precise with OCL invariants. The

 3

MOOD2 metrics set is used as an example, in section 3, to show the feasibility and meaningfulness of the
proposed approach. Some related work is mentioned and compared to our approach in section 4. The last section
presents some conclusions and identifies further work.

2. Using the Object Constraint Language

2.1 Introduction

OCL is the result of an effort to combine formalism soundness with usability and has its roots in the Syntropy
method [Cook1994]. Their creators1 wanted to produce a «precise, unambiguous language that can be easily read
and written by all practitioners of object technology and their customers. This means that the language must be
understood by people who are not mathematicians or computer scientists.» [Warmer1999, p.8].

As previously mentioned, OCL allows to express three kinds of constraints: invariants, pre-conditions an post-
conditions which are predefined in UML as standard stereotypes: «invariant», «precondition» and
«postcondition». Constraints convey a number of benefits, namely improved precision and better design
documentation, resulting in better (unambiguous) communication among the parties involved, such as designers,
users, programmers, testers or managers.

Invariants are constraints that represent conditions that must be met by all instances of the class, at all times.
Their context is, therefore, a class, hereafter represented in the first line, underlined, as in:

Sequence
self.oclIsKindOf(Collection)
-- sequence inherits from Collection and therefore its instances can be used where a collection is
allowed (this is a comment)

The dot notation is used for attribute access. In the above example the oclIsKindof boolean operation is applied
to the attribute self. This is a special implicit attribute that allows to reference the context object (the class
instance).
The dot notation is also used to navigate in the class diagram through associations. If the role name of an
association is identified in the UML model, then it is used in the navigation. Otherwise, the name of the target
class is used, in lowercase letters. We will see many examples of these navigations in the following section.

Now let us focus on the assertions whose scope is an operation.

Pre-conditions are constraints that must be true for an operation to be executed. In the design by contract
paradigm, they traduce the rights of the object that offers the service or, if you want, the client responsibilities.

Post-conditions are constraints that must be true when the operation ends its execution. They traduce the
obligations to be fulfilled by the object that offers the service.

The context of both pre and post-conditions is, therefore, an operation, as in the following extract from the
Sequence type definition:

Sequence::prepend(object: T): Sequence(T)
post: result->size() = self@pre->size() +1
post: result->at(1) = object

Operations, like prepend above, can have input parameters and must have a return type. The “::” sign is a scope
indicator. The “->” sign is used for applying an operation to a collection. In the previous case, the prepend
operation is defined in the scope of the Sequence class. The result keyword represents the object returned by the
operation, whose type is identified in the operation signature (a generic type T, in this case). The @pre suffix
allows to use the value of the characteristic to which it is applied at the moment where the operation is called,

1 - From within the IBM Insurance division.

 4

that is, its original value before the operation is applied. We can have several pre and post conditions defined
within the same operation.

All objects in OCL have a type, derived from OclAny, which determines the applicable operations. There is a set
of predefined types including basic ones (Boolean, Integer, Real, Enumeration and String) and collection types
(Collection, Set, Bag and Sequence). Figure 1 summarizes the OCL types hierarchy.

OclAny

EnumerationCollectionReal

Integer SequenceBagSet

String Boolean

Percentage

Figure 1 – OCL types

The basic types have a number of operations defined on them, as represented in Table 1.

Type Operations
Boolean =, not, and, or, xor, implies, if-then-else
Real =, +, -, *, /, abs, floor, max, min, <, >, <=, >=
Integer =, +, -, *, /, abs, div, mod, max, min
String =, size, toLower, toUpper, concat, substring

Table 1 – Operations defined in basic OCL types

Sets do not allow duplicates and their elements are not ordered, Bags are similar but allow duplicates and
Sequences have an order imposed on their elements and allow duplicates. By definition, the result of navigating
through just one association is a Set2, and through more than one association with multiplicity many is a Bag. The
Collection class is an abstract class from which the previous three are derived. This can be expressed in OCL in
the following manner:

Collection
Collection.allInstances->select(oclType = Collection)->isEmpty()
-- the allInstances operation returns the set of all objects of the named class and of all its subclasses;
-- this operation is defined in the OclType meta-class.

OCL types are open to specialization. In the Catalysis approach [D'Souza1998], for instance, the Set and
Sequence type operations were extended. Here, we derived a new type from the OCL Real type. The Percentage
type is a constrained Real because its instances can only have values in the interval [0, 1]. Since Percentage is a
value type [Warmer1999, p.22], its instances are values. Therefore, we can write the following class invariant:

Percentage
(self >= 0) and (self <=1)

2 - Unless the association is adorned with the {ordered} tag, in which case we get a Sequence.

 5

-- 0 is 0% and 1 is 100%

OCL is a declarative typed language. Expressions in OCL are free of side effects, which means that the state of
the objects does not change by the application of an OCL expression. These expressions can range from simple
comparisons (e.g. an attribute having an upper limit) to complex navigations in a class diagram through their
associations. Since it is a typed language, it is possible to check expressions for validity during modeling3. OCL
does not specify what happens when a constraint is broken. This problem is deferred to the implementation since
the constraint and exception handling mechanisms are supported differently by available programming languages.

In expressions we can use operations defined in OCL types as well as those belonging to the UML model classes
upon which we are writing constraints. However, since OCL is side-effect free, only selectors4 are allowed. The
most frequently used operations when navigating on the class diagrams are those that manipulate collections.
Figure 2 details the ones in OCL types Collection and Set that we will use often.

Collection

size() : Integer
includes(object : OclAny) : Boolean
count(object : OclAny) : Integer
includesAll(c2 : Collection(T)) : Boolean
isEmpty() : Boolean
notEmpty() : Boolean
sum() : Real
exists(expr : OclExpression) : Boolean
forAll(expr : OclExpression) : Boolean
iterate(expr : OclExpression) : OclType

Set

union(set2 : Set(T)) : Set (T)
union(bag1 : Bag(T)) : Bag (T)
=(set2 : Set(T)) : Boolean
intersection(set2 : Set(T)) : Set (T)
intersection(bag1 : Bag(T)) : Bag (T)
-(set2 : Set(T)) : Set (T)
including(object : T) : Set (T)
excluding(object : T) : Set (T)
symmetricDifference(set2 : Set(T)) : Set (T)
select(expr : OclExpression) : Set (T)
reject(expr : OclExpression) : Set (T)
collect(expr : OclExpression) : Set (expr.evaluationType())
count(object : T) : Integer
asSequence() : Sequence (T)
asBag() : Bag (T)

Bag

=(bag2 : Bag(T)) : Boolean
union(bag2 : Bag(T)) : Bag (T)
union(set1 : Set(T)) : Bag (T)
intersection(bag2 : Bag(T)) : Bag (T)
intersection(set1 : Set(T)) : Set (T)
including(object : T) : Bag (T)
excluding(object : T) : Bag (T)
select(expr : OclExpression) : Bag (T)
reject(expr : OclExpression) : Bag (T)
collect(expr : OclExpression) : Bag (expr.evaluationType[))
count(object : T) : Integer
asSequence() : Sequence (T)
asSet() : Set (T)

Figure 2 - OCL Collection, Set and Bag types

We will introduce more details of the OCL syntax in the next section where our object-oriented meta-model will
be presented.

3 - For this purpose a free OCL parser can be found in http://www.software.ibm.com/ad/ocl
4 - query operations which return a value but do not change the object state; in UML their isQuery boolean label is true.

 6

2.2 GOODLY meta-model

The GOODLY5 language allows the textual representation of object-oriented design information such as
modules, classes and its inheritance hierarchies and parameterization, attributes, operations and their parameters
or message exchanges [Abreu1999]. It also allows the expression of visibility rules as well as the inclusion of
trace information of external design parts such as classes and modules, an important feature for large systems. It
addresses reusability at the design level at two levels of abstraction: specification and module. There are no pre-
defined types in GOODLY. All types from specifications converted into GOODLY are considered, namely the
ones defined for the original formalism. As in pure object-oriented languages, such as Smalltalk or Eiffel, the
only typing mechanism is the class. All imported types are considered to be classes in GOODLY even if, in
hybrid languages, its internal memory (state) and allowed operations on its instances are not formally encapsu-
lated (e.g. atomic types, such as double, in C++).
Since it is a design language, GOODLY is not computationally complete: neither algorithmic capabilities, nor
control flow structures, are present. We have used this language mainly as a common intermediate formalism
allowing the extraction of quantitative data (structural software metrics) [Abreu1998b] and also to obtain class
coupling information that we have been using for object-oriented modularity assessment and reengineering
[Abreu2000, Abreu2001a]. We generate GOODLY from the underlying design of systems originally described
using other formalisms, either upstream (analysis and design models supported in CASE tools), or downstream
(object-oriented program source code). A code extract in this language is included in appendix B.

In this report we will use the GOODLY meta-model to put the metrics definitions in context. We will now
introduce this meta-model incrementally along with a series of identified OCL constraints.

The structural unit at the highest abstraction level is the specification (Figure 3). A specification is an identified
package formed by a set of interrelated design parts. A specification is produced by a named person, team or
company, and is made available as a whole and not only partially. A specification may “use” other specifications.
By this, we mean that in order to provide the services for which they were conceived, the components in a
specification (the “using” one) may depend on the collaboration of components in others (the “used” ones). For
instance, an executable system (e.g. an application) is usually built upon the parts made available by several
specifications.

Specif ication
spec_id : String
spec_type : enum {BUILT _IN, APPLICAT ION, LIBRARY, ENVIRONMENT }
version : Real
description : String
owner : String

0..*
uses

0..*

Figure 3 –The Specification type in the GOODLY meta-model

Specification identifiers are strings and should always be unique. This type check and uniqueness constraint can
be expressed as follows:

Specification
spec_id.oclIsKindOf(String)
Specification.allInstances->forAll(s1, s2: Specification | s1 <> s2 implies s1.spec_id <> s2.spec_id)

Notice that the “<>” operator is used above in two distinct situations. In the first (s1<>s2) we are comparing
objects and thus this operator is the one defined in the OclAny type, the supertype of all OCL types. In the second
(s1.spec_id <> s2.spec_id) we are comparing strings. The semantic of string comparison is defined in the OCL
String type.

5 - a Generic Object Oriented Design Language? Yes!

 7

Each specification mentions which others it must use directly, so that the origin of all used symbols is known. By
other words, if the specification A uses symbols of specifications B1 and B2, and B1 uses symbols defined in
specification C11 and C12, then this “indirect” use in A of symbols defined in C11 and C12 is not enlisted in A.

It does not make sense to explicit that a specification uses itself, since that is implicit. This invariant can be
expressed in OCL like this:

Specification
not (uses->includes(self))

There are several specifications types:
• BUILT_IN - set of standard types (classes) embedded in a given formalism (language); their interface is

supposed to be independent across several platforms (environments) that support the same formalism;
• ENVIRONMENT - set of types (classes) that are included in the development environment being used that

generally extends the built-in types in a proprietary unconstrained way; an environment specification always
uses a given built-in specification;

• LIBRARY - set of types (classes) that are packaged together to facilitate a given set of semantically cohesive
building blocks (reusable components), not available in the adopted environment; they are often produced by
a third party; a library specification always uses a given built-in specification and may optionally be tailored
to be used in one or more environments, if it relies on the services they provide;

• APPLICATION - set of collaborating classes that perform a specified set of functionalities; an application
specification always uses a given built-in specification, is usually tailored to be used in one or more
environments, and may also rely upon the services of one or more libraries.

To model this, the spec_type attribute is of the enumeration type. Possible values of such attributes are
represented in OCL expressions with the # prefix. For instance, the next invariant states that an APPLICATION
type specification must have a non-empty main specification:

Specification
spec_type = #APPLICATION implies (main_spec->notEmpty())

To say that a library specification always uses a given built-in specification we write:

Specification
spec_type = #LIBRARY implies (uses->exists(spec_type = #BUILT_IN))

A specification is organized as a set of modules (Figure 4). A module is a set of classes (types) grouped by a
given aggregation criterion. The specification and module abstraction levels correspond, in the UML meta-
model, to two nested packaging levels. We have not yet come across systems where these two levels were not
enough for system decomposition.

Timestamp

>=(other : Timestamp) : Boolean

Main

Module
module_id : String
authors : String-produced

-converted

Specification

0..*

-uses

0..*

0..1

-main_spec

0..1

1..*
-module_list

1..*

0..1-original_formalism_spec 0..1

Figure 4 – Modules in the GOODLY meta-model

Within the same specification, module identifiers should always be unique. We can express this in OCL as:

Specification

 8

module_list->forAll(m1, m2: Module | m1 <> m2 implies m1.module_id <> m2.module_id)

Either the module belongs to a specification of BUILT_IN type, or it must refer which was the original formalism
used in its production. This can be expressed in OCL in the following fashion:

Module
specification.spec_type = #BUILT_IN xor original_formalism_spec->notEmpty()

When referred, the original formalism specification is always of #BUILT_IN type. The same in OCL is:

Module
original_formalism_spec->notEmpty() implies original_formalism_spec.spec_type = #BUILT_IN

A module cannot be converted into GOODLY before being produced. In most situations the original formalism is
other than GOODLY itself. Otherwise, the conversion date will be the same as the production one. This can be
easily expressed by

Module
if original_formalism_spec.spec_id = (“GOODLY”) then
 converted = (produced)
else
 converted > (produced)
endif

The utility Timestamp class6 has, among others, the relational operators defined in it, with the following interface:

Timestamp::=(other: Timestamp): Boolean
Timestamp::<>(other: Timestamp): Boolean
Timestamp::>(other: Timestamp): Boolean
Timestamp::>=(other: Timestamp): Boolean
Timestamp::<(other: Timestamp): Boolean
Timestamp::<=(other: Timestamp): Boolean

The basic component of a module is the class. Each class must have a unique identifier within each module:

Module
class_list->forAll(c1, c2: Class | c1 <> c2 implies c1.class_id <> c2.class_id)

The GOODLY language supports the specification of both single and multiple inheritance. However, inheritance
cannot be circular:

Class
not (self.Ascendants()->includes(self))

Where Ascendants() is a function that returns the set of classes from which the current class derives directly or
indirectly.
Each class has both a set of attributes (comprising both instance variables and class variables), that characterize
the object or class state7 and a set of operations8 that characterize the object behavior.

6 - Utility classes are drawn with a shadow.
7 - In GOODLY we do not distinguish (for now) between instance variables and class variables (static attributes).
8 - In other formalisms these are often designated by methods or function members.

 9

ClassParameter
formal_name : String

A ttribute

Operation
operation_id : String

UnscopedAttribute
attribute_id : String

0..*

-parameter_list

Class
class_id : String

0..*
-parameters

0..*

0..*
-inherits_from

0..*

0..*

-attribute_list

0..*

0..*

-operation_list

0..*

-return_type

-attribute_type

Module
module_id : String
authors : String

1..*
class_list

1..*

0..*

Figure 5 – Classes and its features in the GOODLY meta-model

Each attribute9 has an identifier, a type (class) and a scope. Within the same class, attribute identifiers should
always be unique:

Class
attribute_list->forAll(a1, a2: Attribute |
 a1 <> a2 implies (a1.attribute_id <> a2.attribute_id))

Each operation has an interface and a body or implementation. The interface includes its identifier, the formal
parameter list and corresponding type(s), the returning type, its scope and traceability information. Within the
same class, operations’ signature (identifier plus the parameter list) should always be unique:

Class
operation_list->forAll(o1, o2: Operation |
o1 <>o2 implies (o1.operation_id <>o2.operation_id or (o1.parameter_list <>o2.parameter_list)))

The scope or range of an attribute or operation can be defined in a very detailed fashion in GOODLY (Figure 6).
The scope is characterized by the visibility that components (classes) have on the attribute or operation.
Invisibility implies inability to use. The following scope options can be used:

• PRIVATE scope – only the class where the attribute or operation is defined can “see” it; this scope is not

cumulative with any other;
• PROTECTED scope – the class where the attribute or operation is defined, and its descendants, can “see” it;
• DISCRIMINATED class scope – the identified class can “see” the attribute or operation; that class must be

defined in the same specification, although it can be declared in another module;
• Discriminated class hierarchy scope (CLASS_TREE) – the identified class and its descendants can “see” the

attribute or operation; that class is supposed to be defined in the same specification, although it can be
declared in another module.

• MODULE scope – all classes in the module that contains the class where the attribute or operation is defined
can “see” it;

• Specification (SPEC) scope – all classes in the specification that contains the class where the attribute or
operation is defined can “see” it;

• PUBLIC scope – all classes can “see” the attribute or operation, regardless of being defined in the same or
other specification.

Only the DISCRIMINATED and CLASS_TREE scope types lead to the indication of scope classes. In all other
the classes within range are implicit. The explicitation requirement can be stated as an OCL invariant:

9 - in other formalisms these are designated by instance variables or data members;

 10

Scope
(scope_type = #DISCRIMINATED or scope_type = #CLASS_TREE) xor (scoped_class->isEmpty())

The scope of an attribute or operation always includes the own class where it is defined. Therefore it is useless to
include it explicitly in the scope clause. Formally we have the following invariant:

Operation
not(scope_list.scoped_class->includes(class))

Attribute
not(scope_list.scoped_class->includes(class))

Attribute
Operation

operation_id : String

Scope
scope_type : enum {PRIVATE, PROTECTED, DISCRIMINATED, CLASS_TREE, MODULE, SPEC, PUBLIC}

-scope_list-scope_list

Class

0..*
-attribute_list

0..*
0..*

-operation_list

0..*

0..1

-scoped_class

0..1

Figure 6 – Scope of attributes and operations in the GOODLY meta-model

Both the main section of a specification and each and every operation have an implementation body. The latter
may have local attributes defined on it, may employ attributes from named classes and can issue requests (send
messages) to instances of the same or of other classes (Figure 7).

Specification

Message

Attribute

UnscopedAttribute

Main0..1

-main_spec

0..1

ImplementationBody

0..*
-messages_spec

0..*

0..*

-employs_spec

0..*

-locals_spec

0..*

-main_body

Operation
0..*1 0..*-invocation_of1

-parameter_list

-operation_body

Figure 7 – The operations implementation body in the GOODLY meta-model

 11

During the trace process (static binding) that occurs during linking, the classes used are marked if their
declaration was, or not, found. The identified ones are those whose specification and module we know:

TracedClass
if self.identified then
 the_class.module.specification = origin_spec and (the_class.module = origin_module)
else
 origin_spec->isEmpty() and origin_module->isEmpty() and the_class->isEmpty()
endif

The meta-model extract corresponding to the trace information is represented in Figure 8.

0..1

-origin_module

0..1

Module

1..*
-module_list

Specification

0..10..1

-origin_spec

TracedClass
identified : Boolean

Figure 8 - Trace information in the GOODLY meta-model

Now it is time to wrap-up. The whole GOODLY meta-model is represented in Figure 9.

Main
Specification

0..*
-uses

0..*

0..1-main_spec 0..1

Message

ImplementationBody

0..*
-messages_spec

0..*

-main_body

Attribute

0..*

-employs_spec

0..*

Scope

-scope_list

UnscopedAttribute
-locals_spec

Trace

0..1
-trace_info

0..1

Operation 0..*1 0..*-invocation_of1

-scope_list

-parameter_list

-operation_body

Class

-inherits_from

0..*

-attribute_list

0..*

0..1

-scoped_class

0..1

-attribute_type

0..1
+trace_info

0..1

0..*

-operation_list

0..*

-return_type

ClassParameter

0..*
-form al_parameters

0..*

0..*-instanciated_as 0..*

TracedClass

0..1

-origin_spec

0..1

0..1

-the_class

0..1

Module

1..*
-module_list

1..*

0..1-original_formalism_spec 0..1

1..*

-class_list

1..*

-origin_module

Figure 9 - The full version of the GOODLY meta-model

 12

3. MOOD2 set

3.1 Introduction

The MOOD metrics set (Metrics for Object Oriented Design) was first introduced in [Abreu1994] and its use and
validation was presented in several occasions such as in [Abreu1995, Abreu1996a, Abreu1996b, Harrison1998].
From the experience gathered during the corresponding experiments, it became evident that some important
aspects of the design were not being measured in the initial set, namely the existence of different types of
polymorphism and the amount of reuse. The initial MOOD set only considered metrics calculated within a given
specification. However, actual executable systems (applications) are usually composed upon several
specifications. This lead to a split in the MOOD2 set between intra-specification metrics, most of which inherited
from the original set (Table 2) and inter-specification metrics (Table 3) [Abreu1998a]. Some metrics (inheritance
and coupling ones) were split in two to reflect the internal (within the specification) design aspects and the
external (among distinct specifications) ones. The new metrics are marked with a star. A few of the original
MOOD metrics were renamed for naming consistency.

Acronym Name
AIF Attribute Inheritance Factor
OIF Operations Inheritance Factor 10
IIF Internal Inheritance Factor *

AHF Attribute Hiding Factor
OHF Operations Hiding Factor 11

AHEF Attributes Hiding Effectiveness Factor *
OHEF Operations Hiding Effectiveness Factor *
BPF Behavioral Polymorphism Factor12
PPF Parametric Polymorphism Factor *
CCF Class Coupling Factor 13
ICF Internal Coupling Factor

Table 2 - MOOD2 Intra-Specification Level Metrics

Acronym Name
EIF (S) External Inheritance Factor *
ECF (S) External Coupling Factor *
PRF(S) Potential Reuse Factor *
ARF(S) Actual Reuse Factor *
REF(S) Reuse Efficiency Factor *

Table 3 - MOOD2 Inter-Specification Level Metrics

The MOOD2 metrics retain the main characteristics of the original set. All of them are defined as quotients where
the numerator represents the actual value of the design characteristic being measured, while the denominator
represents its theoretical maximum value. As a result, they take values in a percentual scale (real numbers in the
interval [0,1]).

10 - originally called MIF - Methods Inheritance Factor
11 - originally called MHF - Methods Hiding Factor
12 - originally called POF – POlymorphism Factor (by then we did not consider parametric polymorphism)
13 - originally called COF – COupling Factor

 13

3.2 Some auxiliary functions

Another improvement in the MOOD2 set was that their definition was made on a compositional way, based upon
a set of auxiliary functions, at different levels of abstraction: attribute, operation, class and specification (Table 4
through Table 9). These functions were added as operations to the corresponding entities of the GOODLY meta-
model. Their formal description using OCL is included in the appendix A.

Acronym Name Type
ACV(c) Attribute to Class Visibility Boolean
ASV(s) Attribute to Specification Visibility Percentage
AUN(s) Attribute Use Number Integer
AVN(s) Attribute Visibility Number Integer

Table 4 – Attribute-level functions

Acronym Name Type
OCV(c) Operation to Class Visibility Boolean
OSV(s) Operation to Specification Visibility Percentage
OUN(s) Operation Use Number Integer
OVN(s) Operation Visibility Number Integer

Table 5 – Operation-level functions

Acronym Name Type
IsInternal(s) Internal class predicate Boolean
IsRoot Root class predicate Boolean
IsLeaf Leaf class predicate Boolean

Table 6 – Class-level predicate functions

Acronym Name Type
Children() Set of children classes Set(Class)
Descendants() Set of descendant classes Set(Class)
Parents() Set of parent classes Set(Class)
Ascendants() Set of ascendant classes Set(Class)
CoupledClasses Set of coupled classes Set(Class)
NewOperations() Set of class’s new operations Set(Operation)
InheritedOperations() Set of class’s inherited operations Set(Operation)
OverriddenOperations() Set of class’s overriden operations Set(Operation)
DefinedOperations() Set of class’s defined operations Set(Operation)
AvailableOperations() Set of class’s available operations Set(Operation)
NewAttributes() Set of class’s new attributes Set(Attribute)
InheritedAttributes() Set of class’s inherited attributes Set(Attribute)
OverriddenAttributes() Set of class’s overriden attributes Set(Attribute)
DefinedAttributes() Set of class’s defined attributes Set(Attribute)
AvailableAttributes() Set of class’s available attributes Set(Attribute)

Table 7 – Class-level set functions

Acronym Name Type
CC Children Count Integer
DC Descendants Count Integer
PC Parents Count Integer
AC Ascendants Count Integer
ON Operations New Integer

 14

OI Operations Inherited Integer
OO Operations Overridden Integer
OD Operations Defined Integer
OA Operations Available Integer
AN Attributes New Integer
AI Attributes Inherited Integer
AO Attributes Overridden Integer
AD Attributes Defined Integer
AA Attributes Available Integer

Table 8 – Class-level counting functions

Acronym Name Type
AllClasses Set of all classes Set(Class)

BaseClasses(s) Set of base classes Set(Class)
SupplierClasses(s) Set of supplier classes Set(Class)
RelatedClasses(s) Set of related classes Set(Class)

Table 9 – Specification-level set functions

Acronym Name Type

TC Total number of Classes Integer
TON Total Operations New Integer
TOO Total Operations Overridden Integer
TOD Total Operations Defined Integer
TOI Total Operations Inherited Integer
TOA Total Operations Available Integer
TAN Total Attributes New Integer
TAO Total Attributes Overridden Integer
TAD Total Attributes Defined Integer
TAI Total Attributes Inherited Integer
TAA Total Attributes Available Integer
IL(s) Inheritance Links Integer
TIL Total Inheritance Links Integer

CL(s) Coupling Links Integer
TCL Total Coupling Links Integer

Table 10 – Specification-level counting functions

3.3 Metrics definition using OCL

The MOOD2 set is divided in two subsets: intra-specification and inter-specification metrics. Intra-specification
metrics are those that refer to the context specification only and whose definition relies upon information
contained solely on it. Therefore, they are parameterless.
Inter-specification metrics are those that whose definition relates to the relationship between the context
specification and the one that is passed as an argument.

3.3.1 Intra-Specification Level Metrics

Name AIF – Attributes Inheritance Factor
Informal
definition

Quotient between the number of inherited attributes in all classes of the specification and the
number of available attributes (locally defined plus inherited) for all classes of the current
specification.

 15

Formal
definition Specification::AIF(): Percentage

pre: self.TAA() > 0

-- the specification must have some attribute available …

post: result = self.TAI() / self.TAA()

Comments AIF()=0 means that there is no effective attribute inheritance (either there are no inheritance
hierarchies or all inherited attributes are redefined).

Name OIF – Operations Inheritance Factor
Informal
definition

Quotient between the number of inherited operations in all classes of the specification and the
number of available operations (locally defined plus inherited) for all classes of the current
specification.

Formal
definition Specification::OIF(): Percentage

pre: self.TOA() > 0

-- the specification must have some operation available …

post: result = self.TOI() / self.TOA()

Comments This metric was called MIF (Methods Inheritance Factor) in the original MOOD set.
OIF()=0 means that there is no effective operation inheritance (either there are no inheritance
hierarchies or all inherited operations are redefined).

Name IIF – Internal Inheritance Factor
Informal
definition

Quotient between the number of inheritance links where both the base and derived classes belong to
the current specification and the total number of inheritance links originating in the current
specification.

Formal
definition Specification::IIF(): Percentage

pre: self.TIL() > 0

-- the specification must have some coupling defined on it …

post: result = self.IL(self) / self.TIL()

Comments Inheritance links originating in the current specification are those where the derived class belongs
to it. The inheritance link is directed from the derived class to the base one.

Name AHF – Attributes Hiding Factor
Informal
definition

Quotient between the sum of the invisibilities of all attributes defined in all classes in the current
specification and the total number of attributes defined in the specification

Formal
definition Specification::AHF(): Percentage

pre: self.TC() > 1

-- the specification must have some attribute defined on it …

pre: self.TAD() > 0

post: result = AllClasses().attribute_list->

iterate(elem:Attribute; acc:Real=0 | acc + 1 - elem.ASV(self)) / self.TAD()

Comments The invisibility of an attribute is the percentage of the total classes in the specification from which

 16

this attributes is not visible and is given by 1-OSV(self), where self is the current specification.
If all attributes are private the numerator is 0 and, as such AHF()=0.
The pre-condition regarding the number of classes is a requirement for calculating the attributes
visibility.

Name OHF – Operations Hiding Factor
Informal
definition

Quotient between the sum of the invisibilities of all operations defined in all classes in the current
specification and the total number of operations defined in the specification

Formal
definition Specification::OHF(): Percentage

pre: self.TC() > 1

pre: self.TOD() > 0

post: result = (AllClasses().operation_list->

iterate(elem: Operation; acc: Real=0 | acc + 1 - elem.OSV(self))/ self.TOD()

Comments This metric replaces the MHF (Methods Hiding Factor) of the original MOOD set.
The invisibility of an operation is the percentage of the total classes in the specification from which
this operation is not visible and is given by 1-OSV(self), where self is the current specification.
If all operations are public the numerator equals the denominator and then OHF()=1.
The pre-condition regarding the number of classes is a requirement for calculating the operations
visibility.

Name AHEF – Attributes Hiding Effectiveness Factor
Informal
definition

Quotient between the cumulative number of the specification classes that do access the
specification attributes and the cumulative number of the specification classes that can access the
specification attributes.

Formal
definition Specification::AHEF(): Percentage

pre: AllClasses().attribute_list->

iterate(elem: Attribute; acc: Integer=0 | acc + elem.AVN(self)) > 0

post: result = AllClasses().attribute_list->

iterate(elem: Attribute; acc: Integer=0 | acc + elem.AUN(self))

/ AllClasses().attribute_list->

iterate(elem: Attribute; acc: Integer=0 | acc + elem.AVN(self))

Comments

Name OHEF – Operations Hiding Effectiveness Factor
Informal
definition

Quotient between the cumulative number of the specification classes that do access the
specification operations and the cumulative number of the specification classes that can access the
specification operations.

Formal
definition Specification::OHEF(): Percentage

pre: AllClasses().operation_list->

iterate(elem: Operation; acc: Integer=0 | acc + elem.OVN(self)) > 0

post: result =

AllClasses().operation_list->

iterate(elem: Operation; acc: Integer=0 | acc + elem.OUN(self))

 17

/ AllClasses().operation_list->

iterate(elem: Operation; acc: Integer=0 | acc + elem.OVN(self))

Comments

Name BPF – Behavioral Polymorphism Factor
Informal
definition

Quotient between the actual number of possible different polymorphic situations and the maximum
number of possible distinct polymorphic situations (due to inheritance)

Formal
definition Specification::BPF(): Percentage

pre: TOA() > 0

post: result = TOO() / TOA()

Comments This metric was called POF (POlymorphism Factor) in the original MOOD set.

A given message sent to class Ci can be bound, statically or dynamically, to a named operation
implementation. The latter can have as many shapes (“morphos” in ancient Greek) as the number of
times this same operation is overridden (in Ci descendants). This is what we call the actual number
of possible different polymorphic situations for that class. We only consider the overriding of
operations defined in the current specification.
The maximum number of possible distinct polymorphic situations for class CI occurs if all new
operations defined in it are overridden in all of their derived classes.

Name PPF – Parametric Polymorphism Factor
Informal
definition

Percentage of the specification classes that are parameterized

Formal
definition Specification::PPF(): Percentage

pre: self.TC() > 0

post: result = AllClasses()->select(formal_parameters->notEmpty())->size()/TC()

Comments

Name CCF – Class Coupling Factor
Informal
definition

Quotient between the actual number of coupled class-pairs within the specification and the
maximum possible number of class-pair couplings in the specification. This coupling is the one not
imputable to inheritance.

Formal
definition Specification::CCF(): Percentage

pre: self.TC() > 1

-- with only one class there are no couplings within the specification …

post: result = sqrt (self.CL(self) / (sqr (self.TC()) – self.TC()))

Comments In a coupled class-pair one class is the client and the other is the supplier. These client-supplier

relations can have several shapes; see the function Class::CoupledClasses for details.
This metric is the square-root of COF (COupling Factor) from the original MOOD set. The square-
root counteracts for the fact that the couplings grow quadratically with the number of classes. The
square and square-root functions sqr() and sqrt() were added to the OCL Real type.

Name ICF – Internal Coupling Factor

 18

Informal
definition

Quotient between the number of coupling links where both the client and supplier classes belong to
the current specification and the total number of coupling links originating in the current
specification.

Formal
definition Specification::ICF(): Percentage

pre: self.TCL() > 0

post: result = self.CL(self) / self.TCL()

Comments Coupling links originating in the current specification are those where the client class belongs to it.
The coupling link is directed from the client class to the supplier one.

3.3.2 Inter-Specification Level Metrics

Name EIF – External Inheritance Factor
Informal
definition

Quotient between the number of external inheritance links to specification “s” and the total number
of inheritance links originating in the current specification.

Formal
definition

Specification::EIF(s: Specification): Percentage

pre: self.uses->includes(s)

pre: self.TIL() > 0

post: result = self.IL(s) / self.TIL()

Comments External inheritance links are those originating in the current specification, but where the base class
lies outside of it. By other words, they correspond to local derivations of external classes (defined
in external specification “s”).

Name ECF – External Coupling Factor
Informal
definition

Quotient between the number of external coupling links to specification “s” and the total number of
coupling links originating in the current specification.

Formal
definition Specification::ECF(s: Specification): Percentage

pre: self.uses->includes(s)

pre: self.TCL() > 0

post: result = self.CL(s) / self.TCL()

Comments External coupling links are those originating in the current specification, but where the supplier
class is defined outside of it (in external specification “s”).

Name PRF – Potential Reuse Factor
Informal
definition

Percentage of the available operations in the current specification that were imported from the “s”
specification.

Formal
definition Specification::PRF(s: Specification): Percentage

pre: self.uses->includes(s)

pre: (AllClasses().AvailableOperations() union

RelatedClasses(s).AvailableOperations())->

iterate(elem: Operation; acc: Real = 0 | acc + elem.OSV(self)) > 0

 19

post: result = RelatedClasses(s).AvailableOperations()->

iterate(elem: Operation; acc: Real = 0 | acc + elem.OSV(self))

/ (AllClasses().AvailableOperations() union

RelatedClasses(s).AvailableOperations())->

iterate(elem: Operation; acc: Real = 0 | acc + elem.OSV(self))

Comments The operations imported from the external specification ‘s’ correspond to those inherited from the
classes from which current specification classes derive, plus the ones from ‘s’ which are coupled to
internal classes.

Name ARF – Actual Reuse Factor
Informal
definition

Percentage of the available operations in the current specification that corresponds to effectively
used operations imported from the “s” specification

Formal
definition Specification::ARF(s: Specification): Percentage

pre: self.uses->includes(s)

pre: (AllClasses().AvailableOperations() union

RelatedClasses(s).AvailableOperations())->

iterate(elem: Operation; acc: Real=0 | acc + elem.OSV(self)) > 0

post: result = RelatedClasses(s).AvailableOperations()->select(OUN(self)>0)->

iterate(elem: Operation; acc: Real=0 | acc + elem.OSV(self))

/ (AllClasses().AvailableOperations() union

RelatedClasses(s).AvailableOperations())->

iterate(elem: Operation; acc: Real=0 | acc + elem.OSV(self))

Comments The elem variable is called the iterator, here of type Class since we are going to iterate over the
collection returned by SupplierClasses(s), which is a Set{Class}. The acc variable is called the
accumulator variable, here of type Integer, which is initiated with zero. In each iteration the
accumulator gets assigned the value after the “|” character.
Attention: In the numerator we have the number of external supplier class operations that are used
internally. It is still missing the inherited external operations that are effectively used.

Name REF – Reuse Efficiency Factor
Informal
definition

Percentage of the imported operations (from the “s” specification) that are effectively used

Formal
definition Specification::REF(s: Specification): Percentage

pre: self.uses->includes(s)

pre: self.PRF() > 0

post: result =self.ARF(s) / self.PRF(s)

Comments

4. Related work
Our work is similar in aim to the one of Scott Whitmire where he proposes a formal object model based on
category theory, upon which he puts, as we do, the metrics on context [Whitmire1996, Whitmire1997]. Category
theory is a major tool in the conception and study of programming languages [Pierce1991, Mac Lane1994,
Barr1995]. A category is a structure that generalizes and unifies algebraic structures of discrete mathematics.
Whitmire uses three categories (Class, DesignState and Design) to represent the static aspects of object-oriented

 20

designs and two additional categories (Message and Method) for their dynamic aspects. He uses simple relational
algebra for describing the operations that alter the design structure. In dynamic modeling he adapted Object-Z
predicate calculus [Duke1991, Stepney1992] for describing states and operation outcomes. He also borrowed
from OPUS [Mens1994b, Mens1994a] an object calculus originally developed to support the design of object-
oriented programming languages, to represent the mechanisms of operation selection and binding. We remark the
applicability potential of his approach for supporting the development of tools such as theory-based static
analyzers for obtaining static measures, as well as for dynamic analysis where the impact of design changes and
the results of stimuli (event sequences), applied at the design level, could be observed.

Also similar in aim is the dissertation research of Geert Poels where he proposes a measurement theory-based
approach to software measure construction, using a combination of set theory and process algebra as the
modeling language [Poels1999]. He makes a clear distinction between attribute definition and measure definition.
Using his distance-based measurement approach each software artifact attribute is defined in terms of a
segmentally additive proximity structure, i.e. a formal representation of the concept of 'distance' that allows
defining a unit of distance and preparing the path to a ratio measurement scale. Analogously, each software
measure is defined in terms of a metric space with additive segments, i.e. a measurement theoretic interpretation
of the mathematical function that is called a 'metric'. The distance-based approach links both types of definition
by using proximity structure representation and uniqueness theorems that can be found in advanced textbooks on
measurement theory, such as [Suppes1989]. According to his author, all software metrics that are constructed
using this approach have a proven construct validity and are defined precisely and unambiguously.

Both of the previous proposals are mathematically elegant and sound. However, from our experience of more
than 15 years in the software field, the vast majority of software designers lack the appropriate background (or
have lost it) to understand the intricacies of measurement theory, category theory or of proximity structures.
Therefore, we suspect that we will more likely find followers of Whitmire’s and Poels’s approaches within the
metrics researchers community rather than among design practitioners.

5. Conclusions and further work
We have shown that the Object Constraint Language, a part of the UML standard, can be used to define object-
oriented design metrics in a very natural and understandable way. The precision granted by the formality of OCL
comes at a much lower cost, for both practitioners and tool builders, than when using other formal specification
constructs. Since UML has also become a de facto standard both in academia and industry, more and more
people are expected to master OCL and use it currently it their designs. In a simple search in the WWW we have
found that several OCL supporting tools (or add-ins to existing design tools) have started to emerge.

We are now working on the application of the same approach, but using the UML meta-model that is part of the
standard [OMG1997] instead of the GOODLY one used in this report [Abreu2001b]. We also plan to apply our
approach to the OML (OPEN Modeling Language) meta-model. OML emerged from the OPEN (Object-
oriented Process, Environment and Notation) consortium [Firesmith1996, Henderson-Sellers1996b, Henderson-
Sellers1996c, Henderson-Sellers1998]. The latter is supported by a large group of well-known methodologists
such as Brian Henderson-Sellers (author of the MOSES method [Henderson-Sellers1991, Henderson-
Sellers1994]), Ian Graham (author of SOMA – Semantic Object Modelling Approach [Graham]), Donald
Firesmith or Jim Odell.
We also have provisions to further show the applicability of our approach by trying to model other object-
oriented metric sets published in the literature.

We believe the time has come for object-oriented metrics research community to standardize the way we define
the metrics, as it happened with the object-oriented analysis and design notations. Although we are strong
believers that diversity and innovation should not be constrained, we owe that standardization effort to those that,
after all, are our final users – the design practitioners and those that support and train them, such as tool
manufacturers, consultants, professional trainers or academic teachers. We think that such a standardization effort
will not reach widespread acceptance if it is not integrated with the current state-of-the-practice object-oriented
design technology. We hope to have shown here that that is possible. We will be happy if this document will
generate discussion and feedback around this topic.

 21

Bibliography
[Abreu1998a] Fernando Brito Abreu : “The MOOD2 Metrics Set (in Portuguese)", Grupo de Engenharia de

Software, INESC, relatório R7/98, Abril, 1998a.

[Abreu1994] Fernando Brito Abreu & Rogério Carapuça : “Object-Oriented Software Engineering:
Measuring and Controlling the Development Process”, actas de 4th International Conference
on Software Quality, McLean, Virginia, EUA, Outubro 3-5, 1994.

[Abreu1996a] Fernando Brito Abreu, Rita Esteves & Miguel Afonso Goulão : “The Design of Eiffel
Programs: Quantitative Evaluation Using the MOOD Metrics”, actas de TOOLS'96
(Technology of Object Oriented Languages and Systems), Santa Barbara, CA, EUA, Julho,
1996a.

[Abreu2001a] Fernando Brito Abreu & Miguel Goulão : “Coupling and Cohesion as Modularization Drivers:
Are we being over-persuaded?”, actas de 5th European Conference on Software Maintenance
and Reengineering (CSMR'2001), Lisboa, Portugal, Março de 2001, 2001a.

[Abreu1995] Fernando Brito Abreu, Miguel Afonso Goulão & Rita Esteves : “Toward the Design Quality
Evaluation of Object-Oriented Software Systems”, actas de 5th International Conference on
Software Quality, pp.44-57, Austin, Texas, EUA, Outubro, 1995.

[Abreu1998b] Fernando Brito Abreu & Jean Sebastien Cuche (École de Mines de Nantes) : “Collecting and
Analyzing the MOOD2 Metrics”, actas de ECOOP'98 Workshop - Object-Oriented Product
Metrics for Software Quality Assessment, pp.258-260, Bruxelas, Bélgica, 21 Julho, 1998b.

[Abreu1999] Fernando Brito Abreu, Luís Miguel Ochoa & Miguel Afonso Goulão : “The GOODLY Design
Language for MOOD2 Metrics Collection”, actas de ECOOP Workshop on Quantitative
Approaches in Object-Oriented Software Engineering, Lisboa, Portugal, 15 Junho, 1999.

[Abreu2000] Fernando Brito Abreu, Gonçalo Pereira & Pedro Sousa : “A Coupling-Guided Cluster Analysis
Approach to Reengineer the Modularity of Object-Oriented Systems”, actas de 4th European
Conference on Software Maintenance and Reengineering (CSMR'2000), pp.13-22, Zurich,
Switzerland, 29 February to 3 March 2000, 2000.

[Abreu2001b] Fernando Brito e Abreu : “Metrics definition for UML designed systems: adding precision with
OCL”, (under review), 2001b.

[Abreu1996b] Fernando Brito e Abreu & Walcelio Melo (University of Maryland) : “Evaluating the Impact of
Object-Oriented Design on Software Quality”, actas de 3rd International Software Metrics
Symposium (Metrics'96), Berlim, Alemanha, Março, 1996b.

[Araújo1998] João Araújo & P. Sawyer : “Integrating Object-Oriented Analysis and Formal Specification”,
Journal of Brazilian Computer Society, July, 1998.

[Barr1995] M. Barr & C. Wells : Category Theory for Computing Science, Prentice-Hall, Englewood
Cliffs, NJ, EUA, 1995.

[Cherniavsky1991] John C. Cherniavsky & Carl H. Smith : “On Weyuker's Axioms For Software
Complexity Measures”, IEEE Transactions on Software Engineering, vol.17, nº6, pp.636-638,
IEEE Computer Society Press, Junho, 1991.

[Chidamber1994] Shyam R. Chidamber & Chris F. Kemerer : “A Metrics Suite for Object Oriented Design”,
IEEE Transactions on Software Engineering, vol.20, nº6, pp.476-493, IEEE, Junho, 1994,
publicado também em: Center of Information Systems Research, MIT, EUA, WP No. 249, July
1993.

[Churcher1995] Neville I. Churcher & Martin J. Shepperd : “Comments on a Metrics Suite for Object Oriented
Design”, IEEE Transactions on Software Engineering, vol.21, nº3, pp.263-265, IEEE, Março,
1995.

[Cook1994] Steve Cook & John Daniels : Designing Object Systems: Object Oriented Modeling with
Syntropy, Prentice Hall, Hemel Hempstead (U.K.), 1994.

[D'Souza1998] Desmond Francis D'Souza & Alan Cameron Wills : Objects, Components and Frameworks
with UML: The Catalysis Approach, Addison Wesley Longman, Reading, Massachussets,
ISBN 0-201-31012-0, 1998.

[Duke1991] D. Duke, P. King, G. A. Rose & G. Smith : “The Object-Z Specification Language",

 22

Department of Computing Science, University of Queensland, Australia, relatório 91-1, 1991.

[Fenton1991] Norman E. Fenton (ed.) : Software Metrics: A Rigorous Approach, Chapman & Hall (UK) /
Van Nostrand Reinhold (EUA), ISBN 0-412-40440-0, 1991.

[Firesmith1996] Donald Firesmith, Brian Henderson-Sellers & Ian Graham : “OPEN Modeling Language
(OML) - Core Notation Specification", OPEN Consortium, relatório Version 0.1, Julho, 1996.

[Graham1995] I. M. Graham : “A Non-Procedural Process Model for Object-Oriented Software
Development”, Report on Object Oriented Analyses and Design, vol.5, nº1, 1995.

[Harrison1998] Rachel Harrison, Steve J. Counsell & Reuben V. Nithi : “An Evaluation of the MOOD Set of
Object-Oriented Software Metrics”, IEEE Transactions on Software Engineering, vol.24, nº6,
pp.491-496, IEEE Computer Society, Junho, 1998.

[Henderson-Sellers1991] Brian Henderson-Sellers : A BOOK of Object-Oriented Knowledge, Prentice Hall
PTR, Sydney, Australia, 1991.

[Henderson-Sellers1996a] Brian Henderson-Sellers : Object-Oriented Metrics - Measures of Complexity, série:
The Object-Oriented Series, Prentice Hall PTR, Upper Saddle River, NJ, EUA, ISBN 0-13-
239872, 1996a.

[Henderson-Sellers1996b] Brian Henderson-Sellers : “The OPEN Methodology”, Object Magazine, vol.6, nº9,
pp.56-59, Novembro, 1996b.

[Henderson-Sellers1994] Brian Henderson-Sellers & Julian M. Edwards : BOOK TWO of Object-Oriented
Knowledge: the Working Object, Prentice Hall, Sydney, Australia, 1994.

[Henderson-Sellers1996c] Brian Henderson-Sellers & Ian Graham : “OPEN: Towards Method Convergence?”,
IEEE Computer, vol.29, nº4, pp.86-89, IEEE / Object Technology Department, Abril, 1996c.

[Henderson-Sellers1998] Brian Henderson-Sellers, Tony Simons & Houman Younessi : The OPEN Toolbox of
Techniques, Addison-Wesley Publishing Company, ISBN 0-201-33134-9, 1998.

[Jones1990] Cliff B. Jones : Systematic Software Development Using VDM, 2ª edição, Prentice-Hall
International, Hemel Hempstead (U.K.), 1990.

[Lorenz1994] Mark Lorenz & Jeff Kidd : Object-Oriented Software Metrics: A Practical Guide, Prentice
Hall, Englewood Cliffs, NJ, EUA, ISBN 0-13-179292-X, 1994.

[Mac Lane1994] S. Mac Lane : Categories for the Working Mathematician, 2ª (1ª: 1971) edição, Springer-
Verlag, New York, EUS, 1994.

[Mens1994a] T. Mens, K. Mens & P. Steyaert : “OPUS: A Calculus for Modeling Object-Oriented
Concepts", Department of Mathematics and Computer Sciences, Brussel Free University
(VUB), relatório vub-tinf-tr-94-04, 1994a.

[Mens1994b] T. Mens, K. Mens & P. Steyaert : “OPUS: A Formal Approach to Object Orientation",
Department of Mathematics and Computer Sciences, Brussel Free University (VUB), relatório
vub-tinf-tr-94-02, 1994b.

[Meyer1985] Bertrand Meyer : “On Formalism in Specifications”, IEEE Software, vol.2, nº1, pp.6-26,
Janeiro, 1985, publicado também em: T. Colburn, J. Fetzer, and T. Rankin (eds.), Program
Verification: Fundamental Problems in Computer Science, Kluwer Academic Publishers,
Dordrecht (The Netherlands), 1993.

[Meyer1995] Bertrand Meyer : “Beyond Design by Contract: Putting More Formality into Object-Oriented
Development”, actas de TOOLS EUROPE, Versailles, France, 1995.

[Meyer1997] Bertrand Meyer : Object-Oriented Software Construction, 2ª edição, Prentice Hall PTR, Upper
Saddle River, NJ, EUA, ISBN 0-13-629155-4, 1997.

[Moreira1996] Ana Moreira & R. Clark : “Adding Rigour to Object-Oriented Analysis”, Software Engineering
Journal, vol.11, nº5, pp.270-280, July, 1996.

[Myers1997] Andrew C. Myers, Joseph A. Bank & Barbara Liskov : “Parametrized types for Java”, actas de
Symposium on Principles of Programming Languages, pp.132-145, 1997.

[OMG1997] OMG : Object Constraint Language Specification (version 1.1), Rational et al. (ed.), ad97-08-
08, Object Management Group, 1997.

 23

[Pierce1991] B. Pierce : Basic Category Theory for Computer Scientists, MIT Press, Cambridge, MA, EUA,
1991.

[Poels1999] Geert Poels : On the Formal Aspects of the Measurement of Object-Oriented Software
Specifications, dissertação de Ph.D., Faculty of Economic and Applied Economic Sciences,
Katholieke Universiteit Leuven, Leuven, Bélgica, 1999.

[Rumbaugh1991] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy & William Lorensen :
Object-Oriented Modelling and Design, Prentice Hall, Englewood Cliffs, NJ, EUA, 1991.

[Spivey1992] J. Michael Spivey : The Z Notation: A Reference Manual, 2ª edição, Prentice Hall, Hemel
Hempstead, Reino Unido, 1992.

[Stepney1992] S. Stepney, R. Barden & D. Cooper (eds.) : Object-Orientation in Z, Springer-Verlag, London,
U.K., 1992.

[Suppes1989] Patrick Suppes, David H. Krantz, R. Duncan Luce & Amos Tversky : Foundations of
Measurement: Geometrical, Threshold and Probabilistic Representations, vol.2, Academic
Press, San Diego, CA, EUA, 1989.

[Waldén1995] Kim Waldén & Jean-Marc Nerson : Seamless Object-Oriented Software Architecture: Analysis
and Design of Reliable Systems, Prentice Hall, Hemel Hempstead, Reino Unido, 1995.

[Wand1989] Yair Wand : “A Proposal for a Formal Model of Objects”, em Kim WoneFrederick H.
Lochovsky (eds.): Object-Oriented Concepts, Databases, and Applications, Addison-Wesley,
Reading, MA, EUA, 1989.

[Warmer1999] Jos Warmer & Anneke Kleppe : The Object Constraint Language: Precise Modeling with
UML, Addison-Wesley Publishing Company, ISBN 0-201-37940-6, 1999.

[Weyuker1988] Elaine J. Weyuker : “Evaluating Software Complexity Measures”, IEEE Transactions on
Software Engineering, vol.14, nº9, pp.1357-1365, IEEE, Setembro, 1988.

[Whitmire1996] Scott A. Whitmire : “A Theory of Objects”, actas de Object-Oriented Product Metrics
Workshop (OOPSLA'96), San José, California, EUA, 1996.

[Whitmire1997] Scott A. Whitmire : Object-Oriented Design Measurement, John Wiley & Sons, Inc., New
York, EUA, ISBN 0-471-13417-1, 1997.

[Zuse1991] Horst Zuse : Software Complexity: Measures and Methods, Walter DeGruyter Publisher,
Berlim / Nova Iorque, 1991.

[Zuse1993] Horst Zuse : “Discussion of the Weyuker Properties from a Measurement Theoretic View”,
IEEE Transactions on Software Engineering, IEEE, Zuse93a, 1993.

[Zuse1989] Horst Zuse & Peter Bollmann-Sdorra : “Using Measurement Theory to Describe the Properties
and Scales of Static Software Complexity Metrics”, SIGPLAN Notices, vol.24, nº8, pp.22-33,
Agosto, 1989.

 24

Appendix A – Auxiliary meta-model OCL functions
5.1 Attribute-level functions

Name ACV – Attribute to Class Visibility
Informal
definition

Predicate that indicates if a given class can access the attribute

Formal
definition Attribute::ACV(c: Class): Boolean

post: result = scope_list->exists(

(class = c) or

(scope_type = #PUBLIC) or

(scope_type=#SPEC) and (class.module.specification=c.module.specification) or

(scope_type = #MODULE) and (class.module = c.module) or

(scope_type = #CLASS_TREE) and scoped_class.Descendants()->includes(c) or

(scope_type = #PROTECTED) and class.Descendants()->includes(c) or

(scope_type = #DISCRIMINATED) and (scoped_class = c))

Comments

Name AVN – Attribute Visibility Number
Informal
definition

Number of classes in the considered specification where the attribute can be accessed

Formal
definition Attribute::AVN(s: Specification): Integer

post: result = s.AllClasses()->iterate(elem: Class; acc: Integer = 0 |

if self.ACV(elem) then

acc + 1

else

acc

endif)

Comments

Name ASV – Attribute to Specification Visibility
Informal
definition

Percentage of classes in the considered specification where the attribute can be accessed (excludes
the class where the attribute is declared)

Formal
definition Attribute::ASV(s: Specification): Percentage

pre: s.TC() > 1

post: result = (AVN(s) -1) / (s.TC() -1)

Comments The pre-condition states that at least another class besides the one where the attribute is defined
must exist. This would hardly be a true restriction.

Name AUN – Attribute Use Number
Informal
definition

Number of classes in the considered specification where the attribute is used (excludes the class
where the attribute is declared)

Formal

 25

definition Attribute::AUN(s: Specification): Integer

post: result = s.AllClasses()->

select(operation_list.operation_body.employs_spec->includes(self))

->asSet() ->size()

Comments The asSet() operation is required because the select returns a Bag

5.2 Operation-level functions

Name OCV – Operation to Class Visibility
Informal
definition

Predicate that indicates if a given class can access the operation

Formal
definition Operation::OCV(c: Class): Boolean

post: result = scope_list->exists(

(class = c) or

(scope_type = #PUBLIC) or

(scope_type = #SPEC) and (class.module.specification=c.module.specification)or

(scope_type = #MODULE) and (class.module = c.module) or

(scope_type = #CLASS_TREE) and scoped_class.Descendants()->includes(c) or

(scope_type = #PROTECTED) and class.Descendants()->includes(c) or

(scope_type = #DISCRIMINATED) and (scoped_class = c))

Comments

Name OVN – Operation Visibility Number
Informal
definition

Number of classes in the considered specification where the operation can be accessed

Formal
definition Operation::OVN(s: Specification): Integer

post: result = s.AllClasses()->iterate(elem: Class; acc: Integer = 0 |

if self.OCV(elem) then

acc + 1

else

acc

endif)

Comments

Name OSV – Operation to Specification Visibility
Informal
definition

Percentage of classes in the considered specification where the operation can be accessed (excludes
the class where the operation is declared)

Formal
definition Operation::OSV(s: Specification): Percentage

pre: s.TC() > 1

post: result = (OVN(s) –1) / (s.TC() -1)

Comments The pre-condition states that at least another class besides the one where the attribute is defined

 26

must exist. This would hardly be a true restriction.

Name OUN – Operation Use Number
Informal
definition

Number of classes in the considered specification where the operation is used

Formal
definition Operation::OUN(s: Specification): Integer

post: result = s.AllClasses()->

select(operation_list.operation_body.messages_spec.operation->

includes(self))->asSet()->size()

Comments The asSet() operation is required because the select returns a Bag

5.3 Class-level predicate functions

Name IsInternal
Informal
definition

Internal class predicate – indicates if the class belongs to the named specification “s”

Formal
definition Class::IsInternal(s: Specification): Boolean

post: result = self.module.specification = s

Comments

Name IsRoot
Informal
definition

Root class predicate – indicates that it has no ascendants

Formal
definition Class::IsRoot(): Boolean

post: result = Parents()->isEmpty()

Comments

Name IsLeaf
Informal
definition

Leaf class predicate – indicates that it has no descendants

Formal
definition

Class::IsLeaf(): Boolean

post: result = Children()->isEmpty()

Comments

5.4 Class-level set functions

Name Children
Informal
definition

Set of directly derived classes

Formal

 27

definition Class::Children(): Set(Class)

post: result = Class.allInstances->select(inherits_from->includes(self))

Comments

Name Descendants
Informal
definition

Set of all derived classes (either directly or indirectly)

Formal
definition Class::Descendants(): Set(Class)

post: result = Children()-> iterate(elem: Class;

acc: Set(Class)=Children() | acc-> union (elem.Descendants())

Comments This operation is recursive. Notice that even with multiple inheritance the result is a set (no
repeated classes)

Name Parents
Informal
definition

Set of classes from which the current class derives directly

Formal
definition Class::Parents(): Set(Class)

post: result = inherits_from

Comments

Name Ascendants
Informal
definition

Set of classes from which the current class derives directly or indirectly

Formal
definition Class::Ascendants(): Set(Class)

post: result = Parents()-> iterate(elem: Class;

acc: Set(Class)=Parents() | acc-> union(elem.Ascendants())

Comments This operation is recursive. Notice that even with common ancestors due to multiple inheritance the
result is a set (no repeated classes)

Name CoupledClasses
Informal
definition

Set of classes to which the current class is coupled (excluding inheritance)

Formal
definition Class::CoupledClasses(): Set(Class)

post: result = formal_parameters.instanced_as union(

attribute_list.attribute_type union(

operation_list.parameter_list.attribute_type union(

operation_list.return_type union(

operation_list.operation_body.locals_spec.attribute_type union(

operation_list.operation_body.employs_spec.attribute_type union(

operation_list.operation_body.messages_spec.invocation_of.class))))))

 28

Comments This function includes the coupled classes corresponding to:
- instantiation of class parameters
- class attributes
- parameters of class operations
- return type of class operations
- local attributes of class operations
- attributes of other classes employed by class operations
- recipients of messages sent in the class operations implementation body

Name NewOperations
Informal
definition

Operations defined in the class that are not overriding inherited ones

Formal
definition Class::NewOperations(): Set(Operation)

post: result = DefinedOperations() – InheritedOperations()

Comments

Name InheritedOperations
Informal
definition

Number of inherited operations that are not overridden by locally defined ones

Formal
definition Class::InheritedOperations(): Set(Operation)

post: result = Ascendants()-> iterate(elem: Class;

acc: Set(Operation)=Set{} | acc->union(elem.operation_list))

Comments

Name OverriddenOperations
Informal
definition

Number of operations defined in the class that override inherited ones = number of inherited
operations that are overridden by locally defined ones

Formal
definition Class::OverriddenOperations(): Set(Operation)

post:result = DefinedOperations()->intersection(InheritedOperations())

Comments

Name DefinedOperations
Informal
definition

Number of operations defined in the class

Formal
definition Class::DefinedOperations(): Set(Operation)

post: result = operation_list

Comments

Name AvailableOperations
Informal
definition

Number of operations that may be applied to instances of the class

 29

Formal
definition Class::AvailableOperations(): Set(Operation)

post: result = NewOperations()-> union (InheritedOperations())

Comments The following invariant could be stated in alternative:
post: result = DefinedOperations()-> union (InheritedOperations())

Name NewAttributes
Informal
definition

Attributes defined in the class that are not overriding inherited ones

Formal
definition Class::NewAttributes(): Set(Attribute)

post: result = DefinedAttributes() – InheritedAttributes()

Comments

Name InheritedAttributes
Informal
definition

Number of inherited attributes that are not overridden by locally defined ones

Formal
definition Class::InheritedAttributes(): Set(Attribute)

post: result = Ascendants()->iterate(elem: Class;

acc: Set(Attribute)= Set{} | acc-> union (elem.attribute_list))

Comments

Name OverriddenAttributes
Informal
definition

Number of attributes defined in the class that override inherited ones = number of inherited
attributes that are overridden by locally defined ones

Formal
definition Class::OverriddenAttributes(): Set(Attribute)

post: result = DefinedAttributes()->intersection(InheritedAttributes())

Comments

Name DefinedAttributes
Informal
definition

Number of attributes defined in the class

Formal
definition Class::DefinedAttributes(): Set(Attribute)

post: result = attribute_list

Comments

Name AvailableAttributes
Informal
definition

Number of attributes that may be applied to instances of the class

Formal
definition

 30

Class::AvailableAttributes(): Set(Attribute)

post: result = NewAttributes()-> union (InheritedAttributes())

Comments The following invariant could be stated in alternative:
post: result = DefinedAttributes()-> union (InheritedAttributes())

5.5 Class-level counting functions

Name CC – Children Count
Informal
definition

Number of directly derived classes

Formal
definition Class::CC(): Integer

post: result = Children()->size()

Comments If CC() = 0 then the class is a leaf class

Name DC – Descendants Count
Informal
definition

Number of all derived classes (either directly or indirectly)

Formal
definition Class::DC(): Integer

post: result = Descendants()->size()

Comments

Name PC – Parents Count
Informal
definition

Number of classes from which the current class derives directly

Formal
definition Class::PC(): Integer

post: result = Parents()->size()

Comments If PC() = 0 then the class is a base class; if PC() > 1 we have multiple inheritance

Name AC – Ascendants Count
Informal
definition

Number of classes from which the current class derives directly or indirectly

Formal
definition Class::AC(): Integer

post: result = Ascendants()->size()

Comments

Name ON – Operations New
Informal Number of operations defined in the class that are not overriding inherited ones

 31

definition
Formal
definition Class::ON(): Integer

post: result = NewOperations()->size()

Comments

Name OI – Operations Inherited
Informal
definition

Number of inherited operations that are not overridden by locally defined ones

Formal
definition Class::OI(): Integer

post: result = InheritedOperations()->size()

Comments

Name OO – Operations Overridden
Informal
definition

Number of inherited operations that are overridden by locally defined ones = Number of operations
defined in the class that override inherited ones

Formal
definition Class::OO(): Integer

post: result = OverriddenOperations()->size()

Comments

Name OD – Operations Defined
Informal
definition

Number of operations defined in the class

Formal
definition Class::OD(): Integer

post: result = DefinedOperations()->size()

Comments

Name OA – Operations Available
Informal
definition

Number of operations that may be applied to instances of the class

Formal
definition Class::OA(): Integer

post: result = AvailableOperations()->size()

Comments

Name AN – Attributes New
Informal
definition

Number of attributes defined in the class that are not overriding inherited ones

Formal
definition Class::AN(): Integer

 32

post: result = NewAttributes()->size()

Comments

Name AI – Attributes Inherited
Informal
definition

Number of inherited attributes that are not overridden by locally defined ones

Formal
definition Class::AI(): Integer

post: result = InheritedAttributes()->size()

Comments

Name AO – Attributes Overridden
Informal
definition

Number of attributes defined in the class that override inherited ones = number of inherited
attributes that are overridden by locally defined ones

Formal
definition Class::AO(): Integer

post: result = OverriddenAttributes()->size()

Comments

Name AD – Attributes Defined
Informal
definition

Number of attributes defined in the class

Formal
definition Class::AD(): Integer

post: result = DefinedAttributes()->size()

Comments

Name AA – Attributes Available
Informal
definition

Number of attributes that may be associated to instances of the class.

Formal
definition Class::AA(): Integer

post: result = AvailableAttributes()->size()

Comments

5.6 Specification-level set functions

Name AllClasses
Informal
definition

Set of all classes belonging to the current specification

Formal
definition Specification::AllClasses(): Set(Class)

 33

post: result= module_list.class_list

Comments

Name BaseClasses
Informal
definition

Set of base classes of classes from the current specification that belong to the given “s”
specification

Formal
definition Specification::BaseClasses(s: Specification): Set(Class)

post: result= AllClasses().inherits_from->select(IsInternal(s))->asSet()

Comments The asSet() operation is required because the select returns a Bag

Name SupplierClasses
Informal
definition

Set of supplier classes of classes from the current specification that belong to the given “s”
specification (excludes inheritance)

Formal
definition Specification::SupplierClasses(s: Specification): Set(Class)

post: result = AllClasses()->iterate(elem:Class; acc: Set(Class)=Set{} |

acc union (elem.CoupledClasses()-> select(IsInternal(s))))

Comments

Name RelatedClasses
Informal
definition

Set of classes from the “s” specification that are either base or supplier classes from the ones of the
current specification

Formal
definition Specification::RelatedClasses(s: Specification): Set(Class)

post: result = BaseClasses(s) union SupplierClasses(s)

Comments

5.7 Specification-level counting functions

Name TC – Total Classes
Informal
definition

Total number of classes in the specification

Formal
definition Specification::TC(): Integer

post: result = AllClasses()->size()

Comments Although, in the general case, the result of navigating two associations is a Bag, here we can
guarantee that the result is like a Set since the same class cannot belong to distinct modules.

Name TON – Total Operations New

 34

Informal
definition

Total number of new operations in the specification

Formal
definition Specification::TON(): Integer

post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |

acc + elem.ON())

Comments

Name TOO – Total Operations Overridden
Informal
definition

Total number of overridden operations in the specification

Formal
definition Specification::TOO(): Integer

post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |

acc + elem.OO())

Comments

Name TOD - Total Operations Defined
Informal
definition

Total number of defined operations in the specification

Formal
definition Specification::TOD(): Integer

post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |

acc + elem.OD())

Comments

Name TOI – Total Operations Inherited
Informal
definition

Total number of inherited operations in the specification

Formal
definition Specification::TOI(): Integer

post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |

acc + elem.OI())

Comments

Name TOA – Total Operations Available
Informal
definition

Total number of available operations in the specification

Formal
definition Specification::TOA(): Integer

post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |

acc + elem.OA())

Comments

 35

Name TAN – Total Attributes New
Informal
definition

Total number of new attributes in the specification

Formal
definition Specification::TAN(): Integer

post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |

acc + elem.AN())

Comments

Name TAO – Total Attributes Overridden
Informal
definition

Total number of overridden attributes in the specification

Formal
definition Specification::TAO(): Integer

post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |

acc + elem.AO())

Comments

Name TAD – Total Attributes Defined
Informal
definition

Total number of defined attributes in the specification

Formal
definition Specification::TAD(): Integer

post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |

acc + elem.AD())

Comments

Name TAI – Total Attributes Inherited
Informal
definition

Total number of attributes inherited in the specification

Formal
definition Specification::TAI(): Integer

post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |

acc + elem.AI())

Comments

Name TAA – Total Attributes Available
Informal
definition

Total number of available attributes in the specification

Formal
definition Specification::TAA(): Integer

post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |

acc + elem.AA())

Comments

 36

Name IL – Inheritance Links
Informal
definition

Total number of inheritance relations where the derived classes belongs to the current specification
and the base one belongs to the given “s” specification

Formal
definition Specification::IL(s:Specification): Integer

post: result= AllClasses().Parents()-> select(IsInternal(s))->size()

Comments Notice that IL(s) <= TIL()

Name TIL – Total Inheritance Links
Informal
definition

Total number of inheritance relations where the derived classes belongs to the current specification

Formal
definition Specification::TIL(): Integer

post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |

acc + elem.PC())

Comments Alternative post-condition: result = AllClasses().inherits_from->size()

Name CL – Coupling Links
Informal
definition

Total number of coupling relations where the client class belongs to the current specification and
the supplier class belongs to the given “s” specification (excludes inheritance)

Formal
definition Specification::CL(s: Specification): Integer

post: result =self.SupplierClasses(s)->size()

Comments

Name TCL – Total Coupling Links
Informal
definition

Total number of distinct coupling relations where the client class belongs to the current
specification (excludes inheritance)

Formal
definition Specification::TCL(): Integer

post: result = AllClasses()-> iterate(elem: Class; acc: Integer = 0 |

acc + elem.CoupledClasses()->size())

Comments

 37

Appendix B – GOODLY code extract

SPECIFICATION An_example
 TYPE APPLICATION
 VERSION “2.1”
 DESCRIPTION “A rally competition”
 OWNER “MOOD Project”
 USES
 xpto
 END_USES
 MODULES
 Race
 END_MODULES

 MAIN
 LOCALS
 mikkola: Pilot;
 chuck: Mechanic;
 END_LOCALS

 MESSAGES
 Pilot.creates;
 Mechanic.creates;
 Pilot.qualification;
 Pilot.talks_to {Mechanic};
 Mechanic.repairs;
 Pilot.qualification;
 Pilot.talks_to {Mechanic};
 Mechanic.repairs;
 Pilot.qualification;
 Pilot.destroys;
 Mechanic.destroys
 END_MESSAGES

 CALLS ... END_CALLS
 END_MAIN
END_ SPECIFICATION

MODULE Race
 DESCRIPTION “Example of a module of an application in the race car world”
 AUTHORS “Fernando Brito e Abreu et al.”
 PRODUCED “18/7/98_12:00:03”
 CONVERTED “20/8/98_15:34:45”
 FORMALISM xpto

 CLASS Document[Objective] END_CLASS

 CLASS Sport END_CLASS

 CLASS Bank END_CLASS

 CLASS Person
 STATE
 name: String SCOPE PUBLIC;
 birth_date: Date SCOPE PRIVATE;
 weight: Integer SCOPE PRIVATE;
 address: String SCOPE PRIVATE;

 38

 bankcard: Document[Myers] SCOPE PRIVATE
 END_STATE

 BEHAVIOR
 OPERATION creates() SCOPE PUBLIC END_OPERATION
 OPERATION destroys() SCOPE PUBLIC END_OPERATION
 END_BEHAVIOR
 END_CLASS { Person }

 CLASS Pilot ISA Person
 STATE
 driving_permit: Document[Sport] SCOPE PRIVATE;
 helmet: Protection SCOPE PROTECTED
 END_STATE

 BEHAVIOR
 OPERATION qualification(start: Time; from: String; to: String) SCOPE PUBLIC
 MESSAGES
 Protection.creates;
 Protection.put_on;
 Document[Sport].shows;
 RaceCar.close_window;
 RaceCar.starts;
 drives;
 RaceCar.stops;
 RaceCar.open_window;
 Document[Sport].shows;
 Protection.take_off;
 Protection.destroys
 END_MESSAGES
 END_OPERATION

 OPERATION drives(vehicle : RaceCar): Boolean SCOPE PUBLIC
 MESSAGES
 Co-pilot.read_notes;
 RaceCar.accelerates;
 Co-pilot.read_notes;
 RaceCar.breaks;
 RaceCar.turns
 END_MESSAGES
 END_OPERATION

 OPERATION talks_to(whom: Person): Boolean SCOPE Co-pilot, Mechanic
 END_OPERATION
 END_BEHAVIOR
 END_CLASS {Pilot}

 CLASS Co-pilot ISA Person
 BEHAVIOR
 OPERATION read_notes() SCOPE PUBLIC END_OPERATION
 END_BEHAVIOR
 END_CLASS { Co-pilot }

 CLASS Mechanic ISA Person
 BEHAVIOR
 OPERATION repairs (vehicle : RaceCar) SCOPE PUBLIC END_OPERATION
 END_BEHAVIOR
 END_CLASS { Mechanic }

 39

 CLASS Artifact
 STATE
 brand: String SCOPE PUBLIC;
 model: String SCOPE PROTECTED;
 production_date: Date SCOPE PRIVATE
 END_STATE

 BEHAVIOR
 OPERATION creates() SCOPE PUBLIC END_OPERATION;
 OPERATION destroys() SCOPE PUBLIC END_OPERATION
 END_BEHAVIOR
 END_CLASS { Artifact }

 CLASS Protection ISA Artifact
 BEHAVIOR
 OPERATION put_on(): Boolean SCOPE PUBLIC END_OPERATION
 OPERATION take_off(): Boolean SCOPE PUBLIC END_OPERATION
 END_BEHAVIOR
 END_CLASS { Protection }

 CLASS RaceCar ISA Artifact
 STATE
 zero_to_hundred: Time SCOPE PUBLIC;
 horse_power: Integer SCOPE PUBLIC;
 oil_level: Real SCOPE Mechanic.*, Pilot, Co-Pilot;
 actual_speed: Integer SCOPE PROTECTED, Pilot, Co-Pilot
 END_STATE
 BEHAVIOR
 OPERATION starts(): Boolean SCOPE PUBLIC END_OPERATION
 OPERATION accelerates(duration:Time; acceleration:Integer) SCOPE PUBLIC

 END_OPERATION
 OPERATION breaks(duration: Time; desacceleration: Integer) SCOPE PUBLIC
 END_OPERATION
 OPERATION turns(angle: Integer) SCOPE PUBLIC END_OPERATION
 OPERATION stops(distance: Integer): Boolean SCOPE PUBLIC
 END_OPERATION
 OPERATION open_window(): Boolean SCOPE PUBLIC END_OPERATION
 OPERATION close_window(): Boolean SCOPE PUBLIC END_OPERATION
 END_BEHAVIOR
 END_CLASS { RaceCar }

END_MODULE { Race }

