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Abstract 

We propose to standardize object-oriented metrics definitions using the Object Constraint 
Language (OCL), a part of the Unified Modeling Language (UML) standard, and a meta-model of 
the modeling formalism. OCL allows specifying invariants, preconditions, postconditions and 
other types of constraints. 
To illustrate this approach, we describe the MOOD2 metrics in OCL, based upon the meta-model 
of our object design modeling formalism – the GOODLY language. The outcome is, we believe, an 
elegant, precise and straightforward way to define metrics that may help to overcome several 
current problems. Besides, it is a natural approach since we are using object technology to define 
metrics on object technology itself. 

 

1. Introduction 

1.1 Formalization in object oriented specifications 

The lack of formalization has been long felt in the object-oriented software modeling area [Meyer1985, 
Wand1989]. Although the basic elements of the diagrammatic specifications used in this area are very powerful 
and obvious, and it is easy to understand how they fit together, several modeling details, such as uniqueness and 
referential restraints, limitations and other constraints are expressed ambiguously, or even cannot be conveyed at 
all by those graphical notations. As pointed out in [Cook1994], there is a difference between precision and detail. 
In object-oriented modeling we often leave out the details but, at the same time, we need the precision. Since 
accuracy and unambiguity in specification have been, for many years, the aims of the branch of computer science 
known as “formal methods”, attempts have been made to combine them with object-oriented modeling. These 
attempts have followed four different roads. 
 
One road was that of extending and adapting an existing formal language with object-oriented constructs like in 
Object-Z [Duke1991] and VDM++, an extension of VDM [Jones1990]. This approach is not in line with 
industrial practice trends to use the simple, but powerful, graphical notations in object-oriented analysis and 
design. In fact, most practitioners are not at ease in using traditional formal specification languages, since they 
usually require a strong mathematical background. 
 
A second road was that of complementing diagrammatic notations with some existing formal language constructs, 
like for instance in Syntropy, where a subset of Z [Spivey1992] was combined with OMT [Rumbaugh1991]. Also 
in this road are the ROOA [Moreira1996] and Metamorphosis [Araújo1998] approaches. This is a compromise 
solution, joining the benefits of graphical modeling with those of a formal language. However, two drawbacks 
can be identified here. First, the conceptual gap between the two formalisms. Second, the already mentioned 
difficulty of using a “traditional” formal language does not fade away. Consequently, modeling practitioners 
practice continued to be, during the 90’s, a combination of graphical modeling with natural language descriptions 
to fill-in-the-blanks. 
 
A third road was that proposed in the BON (Business Object Notation) object-oriented method [Waldén1995]. 
There, a constraint language is used to express design by contract modeling issues, as advocated by Bertrand 
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Meyer [Meyer1995]. At the time of its publication BON was, among the popular analysis and design methods, 
perhaps the only one to use a full-fledged assertion mechanism, allowing analysts to specify both the structure of 
a system and its semantics (constraints, invariants, properties of the expected results) [Meyer1997]. Besides 
graphical and tabular notations, BON uses a textual one to express assertions. This notation includes some 
constructs as “delta a” to specify that a feature can change an attribute “a”, “forall” and “exists” to express logic 
formulae of first-order predicate calculus, and set operators such as “member_of”. This notation bridges 
somehow the semantic gap problem previously mentioned, but still has a drawback – no widespread acceptance. 
Perhaps that was due to the fact that BON is somehow tied to the Eiffel language world. Besides, that acceptance 
often comes from standardization and shortly after BON was proposed, the joint initiative that would give birth to 
UML was already full speed ahead. 
 
The last and more promising road to solve the problem in hand is called OCL - Object Constraint Language 
[Warmer1999], a part of the UML standard, version 1.1, published by the OMG (Object Management Group)  
[OMG1997]. This standard includes several types of object-oriented analysis and design model diagrams, with 
their semantic clarified by the use of OCL. The latter is a language to specify invariants, preconditions, 
postconditions, guard conditions, and other types of constraints (restrictions) on parts of object-oriented models 
and, therefore, supports design by contract. OCL is a formal, yet simple notation, to be used jointly with UML 
diagrams and whose syntax has some similarities to those of object-oriented languages such as Smalltalk, C++ or 
Eiffel. It is underpinned by mathematical set theory and logic, like in formal languages, but was designed for 
usability and is easily grasped by anybody familiar with object-oriented modeling concepts in general, and UML 
notation in particular. This last road brings the best of the previous ones: simplicity and powerfulness of the 
graphical notations, with preciseness and unambiguity granted by formality, in a very usable and conceptually 
integrated fashion. Moreover, since it is a part of UML, it has become a de jure standard. 
 

1.2 Formalization in object-oriented metrics 

Theoretical validation of software metrics definitions has received considerable attention. The first well-known 
approach to do this validation was an axiomatic one, where nine properties were proposed [Weyuker1988]. 
Although this approach was criticized by several authors [Cherniavsky1991, Fenton1991, Zuse1993], 
Henderson-Sellers argues that they do provide an initial framework that can be adapted and refined for object-
orientation [Henderson-Sellers1996a, pp.75]. Another approach to metrics definition validation is based on 
measurement theory and is mainly concerned with the measurement scales and corresponding metrics 
interpretation and usefulness [Zuse1989, Fenton1991, Zuse1991]. According to it, the scale type of a metric (e.g. 
ordinal, interval, ratio or absolute) determines the types of statistical tests we can use to analyze the measurement 
values we get. For instance, parametric tests require interval or ratio scale measures. 
 
Along with the validity problem is the one of the metrics definition formalization itself. This has always been an 
Achilles’ heel in the metrics area. Without clear and precise definitions it is impossible to build adequate metrics 
extraction tools, experiments replication is hampered, and results interpretation will be flawed. In the first known 
book on the subject of object-oriented metrication, for instance, all metrics are defined in natural language 
[Lorenz1994]. Nevertheless, most authors have used a combination of set theory and simple algebra to express 
their metrics [Chidamber1994, Abreu1995, Abreu1996a, Henderson-Sellers1996a]. Even when expressed 
mathematically, the metrics may be ill defined, like for instance some of the Chidamber set [Churcher1995]. 
 
This ill definition problem is due, in our opinion, to two reasons: 

i) metrics definitions are usually presented without the corresponding context, that is, without expressing 
which is the corresponding meta-model where the entities of interest and their interrelationships are 
expressed; 

ii) metrics definition is done without an underlying formal specification approach that uses the former meta-
model as contextual input; this formal specification should specify, among other things, under which 
conditions the metrics are applicable. 

 
In this technical report we present an approach to de define adequately context and metrics that solves this 
problem. We use UML and OCL to build that meta-model and then we express the metrics as meta-model 
operations. The metrics applicability limitations are defined with OCL pre-conditions. The metrics result itself is 
formally defined with OCL post-conditions. 
 
This report is organized as follows: in section 2 we briefly introduce the OCL types and language syntax; our 
object design meta-model is then presented using UML and made more precise with OCL invariants. The 
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MOOD2 metrics set is used as an example, in section 3, to show the feasibility and meaningfulness of the 
proposed approach. Some related work is mentioned and compared to our approach in section 4. The last section 
presents some conclusions and identifies further work. 
 

2. Using the Object Constraint Language 

2.1 Introduction 

OCL is the result of an effort to combine formalism soundness with usability and has its roots in the Syntropy 
method [Cook1994]. Their creators1 wanted to produce a «precise, unambiguous language that can be easily read 
and written by all practitioners of object technology and their customers. This means that the language must be 
understood by people who are not mathematicians or computer scientists.» [Warmer1999, p.8]. 
 
As previously mentioned, OCL allows to express three kinds of constraints: invariants, pre-conditions an post-
conditions which are predefined in UML as standard stereotypes: «invariant», «precondition» and 
«postcondition». Constraints convey a number of benefits, namely improved precision and better design 
documentation, resulting in better (unambiguous) communication among the parties involved, such as designers, 
users, programmers, testers or managers. 
 
Invariants are constraints that represent conditions that must be met by all instances of the class, at all times. 
Their context is, therefore, a class, hereafter represented in the first line, underlined, as in: 
 

Sequence 
self.oclIsKindOf( Collection ) 
-- sequence inherits from Collection and therefore its instances can be used where a collection is 
allowed (this is a comment) 
 

The dot notation is used for attribute access. In the above example the oclIsKindof boolean operation is applied 
to the attribute self. This is a special implicit attribute that allows to reference the context object (the class 
instance). 
The dot notation is also used to navigate in the class diagram through associations. If the role name of an 
association is identified in the UML model, then it is used in the navigation. Otherwise, the name of the target 
class is used, in lowercase letters. We will see many examples of these navigations in the following section. 
 
Now let us focus on the assertions whose scope is an operation. 
 
Pre-conditions are constraints that must be true for an operation to be executed. In the design by contract 
paradigm, they traduce the rights of the object that offers the service or, if you want, the client responsibilities. 
 
Post-conditions are constraints that must be true when the operation ends its execution. They traduce the 
obligations to be fulfilled by the object that offers the service. 
 
The context of both pre and post-conditions is, therefore, an operation, as in the following extract from the 
Sequence type definition: 
 

Sequence::prepend(object: T): Sequence(T) 
post: result->size() = self@pre->size() +1 
post: result->at(1) = object 
 

Operations, like prepend above, can have input parameters and must have a return type. The “::” sign is a scope 
indicator. The “->” sign is used for applying an operation to a collection. In the previous case, the prepend 
operation is defined in the scope of the Sequence class. The result keyword represents the object returned by the 
operation, whose type is identified in the operation signature (a generic type T, in this case). The @pre suffix 
allows to use the value of the characteristic to which it is applied at the moment where the operation is called, 

                                                           
1 - From within the IBM Insurance division. 
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that is, its original value before the operation is applied. We can have several pre and post conditions defined 
within the same operation. 
 
All objects in OCL have a type, derived from OclAny, which determines the applicable operations. There is a set 
of predefined types including basic ones (Boolean, Integer, Real, Enumeration and String) and collection types 
(Collection, Set, Bag and Sequence). Figure 1 summarizes the OCL types hierarchy. 
 

OclAny

EnumerationCollectionReal

Integer SequenceBagSet

String Boolean

Percentage

 
Figure 1 – OCL types 

 
The basic types have a number of operations defined on them, as represented in Table 1. 
 
 

Type Operations 
Boolean =, not, and, or, xor, implies, if-then-else 
Real =, +, -, *, /, abs, floor, max, min, <, >, <=, >= 
Integer =, +, -, *, /, abs, div, mod, max, min 
String =, size, toLower, toUpper, concat, substring 

Table 1 – Operations defined in basic OCL types 

 
Sets do not allow duplicates and their elements are not ordered, Bags are similar but allow duplicates and 
Sequences have an order imposed on their elements and allow duplicates. By definition, the result of navigating 
through just one association is a Set2, and through more than one association with multiplicity many is a Bag. The 
Collection class is an abstract class from which the previous three are derived. This can be expressed in OCL in 
the following manner: 
 

Collection 
Collection.allInstances->select(oclType = Collection)->isEmpty() 
-- the allInstances operation returns the set of all objects of the named class and of all its subclasses; 
-- this operation is defined in the OclType meta-class. 

 
OCL types are open to specialization. In the Catalysis approach [D'Souza1998], for instance, the Set and 
Sequence type operations were extended. Here, we derived a new type from the OCL Real type. The Percentage 
type is a constrained Real because its instances can only have values in the interval [0, 1]. Since Percentage is a 
value type [Warmer1999, p.22], its instances are values. Therefore, we can write the following class invariant: 
 

Percentage 
(self >= 0) and (self <=1) 

                                                           
2 - Unless the association is adorned with the {ordered} tag, in which case we get a Sequence. 



 5

-- 0 is 0% and 1 is 100% 
 
OCL is a declarative typed language. Expressions in OCL are free of side effects, which means that the state of 
the objects does not change by the application of an OCL expression. These expressions can range from simple 
comparisons (e.g. an attribute having an upper limit) to complex navigations in a class diagram through their 
associations.  Since it is a typed language, it is possible to check expressions for validity during modeling3. OCL 
does not specify what happens when a constraint is broken. This problem is deferred to the implementation since 
the constraint and exception handling mechanisms are supported differently by available programming languages. 
 
In expressions we can use operations defined in OCL types as well as those belonging to the UML model classes 
upon which we are writing constraints. However, since OCL is side-effect free, only selectors4 are allowed. The 
most frequently used operations when navigating on the class diagrams are those that manipulate collections. 
Figure 2 details the ones in OCL types Collection and Set that we will use often. 
 

 

Collection

size() : Integer
includes(object : OclAny) : Boolean
count(object : OclAny) : Integer
includesAll(c2 : Collection(T)) : Boolean
isEmpty() : Boolean
notEmpty() : Boolean
sum() : Real
exists(expr : OclExpression) : Boolean
forAll(expr : OclExpression) : Boolean
iterate(expr : OclExpression) : OclType

Set

union(set2 : Set(T)) : Set (T)
union(bag1 : Bag(T)) : Bag (T)
=(set2 : Set(T)) : Boolean
intersection(set2 : Set(T)) : Set (T)
intersection(bag1 : Bag(T)) : Bag (T)
-(set2 : Set(T)) : Set (T)
including(object : T) : Set (T)
excluding(object : T) : Set (T)
symmetricDifference(set2 : Set(T)) : Set (T)
select(expr : OclExpression) : Set (T)
reject(expr : OclExpression) : Set (T)
collect(expr : OclExpression) : Set (expr.evaluationType())
count(object : T) : Integer
asSequence() : Sequence (T)
asBag() : Bag (T)

Bag

=(bag2 : Bag(T)) : Boolean
union(bag2 : Bag(T)) : Bag (T)
union(set1 : Set(T)) : Bag (T)
intersection(bag2 : Bag(T)) : Bag (T)
intersection(set1 : Set(T)) : Set (T)
including(object : T) : Bag (T)
excluding(object : T) : Bag (T)
select(expr : OclExpression) : Bag (T)
reject(expr : OclExpression) : Bag (T)
collect(expr : OclExpression) : Bag (expr.evaluationType[))
count(object : T) : Integer
asSequence() : Sequence (T)
asSet() : Set (T)

 
Figure 2 - OCL Collection, Set and Bag types 

 
We will introduce more details of the OCL syntax in the next section where our object-oriented meta-model will 
be presented. 
 
 

                                                           
3 - For this purpose a free OCL parser can be found in http://www.software.ibm.com/ad/ocl 
4 -  query operations which return a value but do not change the object state; in UML their isQuery boolean label is true. 
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2.2 GOODLY meta-model 

The GOODLY5 language allows the textual representation of object-oriented design information such as 
modules, classes and its inheritance hierarchies and parameterization, attributes, operations and their parameters 
or message exchanges [Abreu1999]. It also allows the expression of visibility rules as well as the inclusion of 
trace information of external design parts such as classes and modules, an important feature for large systems. It 
addresses reusability at the design level at two levels of abstraction: specification and module. There are no pre-
defined types in GOODLY. All types from specifications converted into GOODLY are considered, namely the 
ones defined for the original formalism. As in pure object-oriented languages, such as Smalltalk or Eiffel, the 
only typing mechanism is the class. All imported types are considered to be classes in GOODLY even if, in 
hybrid languages, its internal memory (state) and allowed operations on its instances are not formally encapsu-
lated (e.g. atomic types, such as double, in C++). 
Since it is a design language, GOODLY is not computationally complete: neither algorithmic capabilities, nor 
control flow structures, are present. We have used this language mainly as a common intermediate formalism 
allowing the extraction of quantitative data (structural software metrics) [Abreu1998b] and also to obtain class 
coupling information that we have been using for object-oriented modularity assessment and reengineering 
[Abreu2000, Abreu2001a]. We generate GOODLY from the underlying design of systems originally described 
using other formalisms, either upstream (analysis and design models supported in CASE tools), or downstream 
(object-oriented program source code). A code extract in this language is included in appendix B. 
 
In this report we will use the GOODLY meta-model to put the metrics definitions in context. We will now 
introduce this meta-model incrementally along with a series of identified OCL constraints. 
 
The structural unit at the highest abstraction level is the specification (Figure 3). A specification is an identified 
package formed by a set of interrelated design parts. A specification is produced by a named person, team or 
company, and is made available as a whole and not only partially. A specification may “use” other specifications. 
By this, we mean that in order to provide the services for which they were conceived, the components in a 
specification (the “using” one) may depend on the collaboration of components in others (the “used” ones). For 
instance, an executable system (e.g. an application) is usually built upon the parts made available by several 
specifications. 
 

Specif ication
spec_id : String
spec_type : enum  {BUILT _IN, APPLICAT ION, LIBRARY, ENVIRONMENT }
version : Real
description : String
owner : String

0..*
uses

0..*

 
Figure 3 –The Specification type in the GOODLY meta-model 

 
Specification identifiers are strings and should always be unique. This type check and uniqueness constraint can 
be expressed as follows: 
 

Specification 
spec_id.oclIsKindOf(String) 
Specification.allInstances->forAll(s1, s2: Specification | s1 <> s2 implies s1.spec_id <> s2.spec_id) 

 
 
Notice that the “<>” operator is used above in two distinct situations. In the first (s1<>s2) we are comparing 
objects and thus this operator is the one defined in the OclAny type, the supertype of all OCL types. In the second 
(s1.spec_id <> s2.spec_id) we are comparing strings. The semantic of string comparison is defined in the OCL 
String type. 
 

                                                           
5 - a Generic Object Oriented Design Language? Yes! 
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Each specification mentions which others it must use directly, so that the origin of all used symbols is known. By 
other words, if the specification A uses symbols of specifications B1 and B2, and B1 uses symbols defined in 
specification C11 and C12, then this “indirect” use in A of symbols defined in C11 and C12 is not enlisted in A. 
 
It does not make sense to explicit that a specification uses itself, since that is implicit. This invariant can be 
expressed in OCL like this: 
 

Specification 
not (uses->includes(self)) 

 
There are several specifications types: 
• BUILT_IN - set of standard types (classes) embedded in a given formalism (language); their interface is 

supposed to be independent across several platforms (environments) that support the same formalism; 
• ENVIRONMENT - set of types (classes) that are included in the development environment being used that 

generally extends the built-in types in a proprietary unconstrained way; an environment specification always 
uses a given built-in specification; 

• LIBRARY - set of types (classes) that are packaged together to facilitate a given set of semantically cohesive 
building blocks (reusable components), not available in the adopted environment; they are often produced by 
a third party; a library specification always uses a given built-in specification and may optionally be tailored 
to be used in one or more environments, if it relies on the services they provide; 

• APPLICATION - set of collaborating classes that perform a specified set of functionalities; an application 
specification always uses a given built-in specification, is usually tailored to be used in one or more 
environments, and may also rely upon the services of one or more libraries. 

 
To model this, the spec_type attribute is of the enumeration type. Possible values of such attributes are 
represented in OCL expressions with the # prefix. For instance, the next invariant states that an APPLICATION 
type specification must have a non-empty main specification: 
 

Specification 
spec_type = #APPLICATION implies (main_spec->notEmpty()) 

 
To say that a library specification always uses a given built-in specification we write: 
 

Specification 
spec_type = #LIBRARY implies (uses->exists(spec_type = #BUILT_IN)) 

 
A specification is organized as a set of modules (Figure 4). A module is a set of classes (types) grouped by a 
given aggregation criterion. The specification and module abstraction levels correspond, in the UML meta-
model, to two nested packaging levels. We have not yet come across systems where these two levels were not 
enough for system decomposition. 
 

Timestamp

>=(other : Timestamp) : Boolean

Main

Module
module_id : String
authors : String-produced

-converted

Specification

0..*

-uses

0..*

0..1

-main_spec

0..1

1..*
-module_list

1..*

0..1-original_formalism_spec 0..1

 
Figure 4 – Modules in the GOODLY meta-model 

 
Within the same specification, module identifiers should always be unique. We can express this in OCL as: 
 

Specification 
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module_list->forAll(m1, m2: Module | m1 <> m2 implies m1.module_id <> m2.module_id) 
 
Either the module belongs to a specification of BUILT_IN type, or it must refer which was the original formalism 
used in its production. This can be expressed in OCL in the following fashion: 
 

Module 
specification.spec_type = #BUILT_IN   xor   original_formalism_spec->notEmpty() 

 
When referred, the original formalism specification is always of #BUILT_IN type. The same in OCL is: 
 

Module 
original_formalism_spec->notEmpty() implies original_formalism_spec.spec_type = #BUILT_IN 

 
A module cannot be converted into GOODLY before being produced. In most situations the original formalism is 
other than GOODLY itself. Otherwise, the conversion date will be the same as the production one. This can be 
easily expressed by 
 

Module 
if original_formalism_spec.spec_id = (“GOODLY”) then  
    converted = (produced) 
else 
    converted > (produced) 
endif  

 
The utility Timestamp class6 has, among others, the relational operators defined in it, with the following interface: 

 
Timestamp::=(other: Timestamp): Boolean 
Timestamp::<>(other: Timestamp): Boolean 
Timestamp::>(other: Timestamp): Boolean 
Timestamp::>=(other: Timestamp): Boolean 
Timestamp::<(other: Timestamp): Boolean 
Timestamp::<=(other: Timestamp): Boolean 

 
The basic component of a module is the class. Each class must have a unique identifier within each module: 
 

Module 
class_list->forAll(c1, c2: Class | c1 <> c2 implies c1.class_id <> c2.class_id) 

 
The GOODLY language supports the specification of both single and multiple inheritance. However, inheritance 
cannot be circular: 
 

Class 
not (self.Ascendants()->includes(self)) 

 
Where Ascendants() is a function that returns the set of classes from which the current class derives directly or 
indirectly. 
Each class has both a set of attributes (comprising both instance variables and class variables), that characterize 
the object or class state7 and a set of operations8 that characterize the object behavior. 
 

                                                           
6 - Utility classes are drawn with a shadow. 
7 - In GOODLY we do not distinguish (for now) between instance variables and class variables (static attributes). 
8 - In other formalisms these are often designated by methods or function members. 
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ClassParameter
formal_name : String

A ttribute

Operation
operation_id : String

UnscopedAttribute
attribute_id : String

0..*

-parameter_list

Class
class_id : String

0..*
-parameters

0..*

0..*
-inherits_from

0..*

0..*

-attribute_list

0..*

0..*

-operation_list

0..*

-return_type

-attribute_type

Module
module_id : String
authors : String

1..*
class_list

1..*

0..*

 
Figure 5 – Classes and its features in the GOODLY meta-model 

 
Each attribute9 has an identifier, a type (class) and a scope. Within the same class, attribute identifiers should 
always be unique: 
 

Class 
attribute_list->forAll(a1, a2: Attribute |  
           a1 <> a2 implies (a1.attribute_id <> a2.attribute_id ) ) 

 
Each operation has an interface and a body or implementation. The interface includes its identifier, the formal 
parameter list and corresponding type(s), the returning type, its scope and traceability information. Within the 
same class, operations’ signature (identifier plus the parameter list) should always be unique: 
 

Class 
operation_list->forAll(o1, o2: Operation |  
o1 <>o2 implies (o1.operation_id <>o2.operation_id  or (o1.parameter_list <>o2.parameter_list))) 

 
The scope or range of an attribute or operation can be defined in a very detailed fashion in GOODLY (Figure 6). 
The scope is characterized by the visibility that components (classes) have on the attribute or operation. 
Invisibility implies inability to use. The following scope options can be used: 
 
• PRIVATE scope – only the class where the attribute or operation is defined can “see” it; this scope is not 

cumulative with any other; 
• PROTECTED scope – the class where the attribute or operation is defined, and its descendants, can “see” it; 
• DISCRIMINATED class scope – the identified class can “see” the attribute or operation; that class must be 

defined in the same specification, although it can be declared in another module; 
• Discriminated class hierarchy scope (CLASS_TREE) – the identified class and its descendants can “see” the 

attribute or operation; that class is supposed to be defined in the same specification, although it can be 
declared in another module. 

• MODULE scope – all classes in the module that contains the class where the attribute or operation is defined 
can “see” it; 

• Specification (SPEC) scope – all classes in the specification that contains the class where the attribute or 
operation is defined can “see” it; 

• PUBLIC scope – all classes can “see” the attribute or operation, regardless of being defined in the same or 
other specification. 

 
Only the DISCRIMINATED and CLASS_TREE scope types lead to the indication of scope classes. In all other 
the classes within range are implicit. The explicitation requirement can be stated as an OCL invariant: 

                                                           
9  - in other formalisms these are designated by instance variables or data members; 
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Scope 
(scope_type = #DISCRIMINATED or scope_type = #CLASS_TREE)  xor (scoped_class->isEmpty()) 

 
The scope of an attribute or operation always includes the own class where it is defined. Therefore it is useless to 
include it explicitly in the scope clause. Formally we have the following invariant: 
 

Operation 
not(scope_list.scoped_class->includes(class)) 

 
Attribute 
not(scope_list.scoped_class->includes(class)) 

Attribute
Operation

operation_id : String

Scope
scope_type : enum {PRIVATE, PROTECTED, DISCRIMINATED, CLASS_TREE, MODULE, SPEC, PUBLIC}

-scope_list-scope_list

Class

0..*
-attribute_list

0..*
0..*

-operation_list

0..*

0..1

-scoped_class

0..1

 
Figure 6 – Scope of attributes and operations in the GOODLY meta-model 

 
Both the main section of a specification and each and every operation have an implementation body. The latter 
may have local attributes defined on it, may employ attributes from named classes and can issue requests (send 
messages) to instances of the same or of other classes (Figure 7). 
 

Specification

Message

Attribute

UnscopedAttribute

Main0..1

-main_spec

0..1

ImplementationBody

0..*
-messages_spec

0..*

0..*

-employs_spec

0..*

-locals_spec

0..*

-main_body

Operation
0..*1 0..*-invocation_of1

-parameter_list

-operation_body

 
Figure 7 – The operations implementation body in the GOODLY meta-model 
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During the trace process (static binding) that occurs during linking, the classes used are marked if their 
declaration was, or not, found. The identified ones are those whose specification and module we know: 
 

TracedClass 
if self.identified then  
    the_class.module.specification = origin_spec and (the_class.module = origin_module) 
else 
    origin_spec->isEmpty() and origin_module->isEmpty() and the_class->isEmpty() 
endif  

 
The meta-model extract corresponding to the trace information is represented in Figure 8. 
 

0..1

-origin_module

0..1

Module

1..*
-module_list

Specification

0..10..1

-origin_spec

TracedClass
identified : Boolean

 
Figure 8 - Trace information in the GOODLY meta-model 

 
Now it is time to wrap-up. The whole GOODLY meta-model is represented in Figure 9. 
 

Main
Specification

0..*
-uses

0..*

0..1-main_spec 0..1

Message

ImplementationBody

0..*
-messages_spec

0..*

-main_body

Attribute

0..*

-employs_spec

0..*

Scope

-scope_list

UnscopedAttribute
-locals_spec

Trace

0..1
-trace_info

0..1

Operation 0..*1 0..*-invocation_of1

-scope_list

-parameter_list
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Figure 9 - The full version of the GOODLY meta-model 
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3. MOOD2 set 

3.1 Introduction 

The MOOD metrics set (Metrics for Object Oriented Design) was first introduced in [Abreu1994] and its use and 
validation was presented in several occasions such as in [Abreu1995, Abreu1996a, Abreu1996b, Harrison1998]. 
From the experience gathered during the corresponding experiments, it became evident that some important 
aspects of the design were not being measured in the initial set, namely the existence of different types of 
polymorphism and the amount of reuse. The initial MOOD set only considered metrics calculated within a given 
specification. However, actual executable systems (applications) are usually composed upon several 
specifications. This lead to a split in the MOOD2 set between intra-specification metrics, most of which inherited 
from the original set (Table 2) and inter-specification metrics (Table 3) [Abreu1998a]. Some metrics (inheritance 
and coupling ones) were split in two to reflect the internal (within the specification) design aspects and the 
external (among distinct specifications) ones. The new metrics are marked with a star. A few of the original 
MOOD metrics were renamed for naming consistency. 
 
 
 

Acronym Name   
AIF Attribute Inheritance Factor  
OIF Operations Inheritance Factor 10  
IIF Internal Inheritance Factor * 

AHF Attribute Hiding Factor  
OHF Operations Hiding Factor 11  

AHEF Attributes Hiding Effectiveness Factor * 
OHEF Operations Hiding Effectiveness Factor * 
BPF Behavioral Polymorphism Factor12  
PPF Parametric Polymorphism Factor * 
CCF Class Coupling Factor 13  
ICF Internal Coupling Factor   

Table 2 - MOOD2 Intra-Specification Level Metrics 

 
Acronym Name  
EIF (S)  External Inheritance Factor * 
ECF (S)  External Coupling Factor * 
PRF(S)  Potential Reuse Factor * 
ARF(S)  Actual Reuse Factor * 
REF(S)  Reuse Efficiency Factor * 

Table 3 - MOOD2 Inter-Specification Level Metrics 

The MOOD2 metrics retain the main characteristics of the original set. All of them are defined as quotients where 
the numerator represents the actual value of the design characteristic being measured, while the denominator 
represents its theoretical maximum value. As a result, they take values in a percentual scale (real numbers in the 
interval [0,1]). 
 

                                                           
10 - originally called MIF - Methods Inheritance Factor 
11 - originally called MHF - Methods Hiding Factor 
12 - originally called POF – POlymorphism Factor (by then we did not consider parametric polymorphism) 
13 - originally called COF – COupling Factor 
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3.2 Some auxiliary functions 

Another improvement in the MOOD2 set was that their definition was made on a compositional way, based upon 
a set of auxiliary functions, at different levels of abstraction: attribute, operation, class and specification (Table 4 
through Table 9). These functions were added as operations to the corresponding entities of the GOODLY meta-
model. Their formal description using OCL is included in the appendix A. 
 

Acronym Name Type 
ACV(c) Attribute to Class Visibility Boolean 
ASV(s) Attribute to Specification Visibility Percentage 
AUN(s) Attribute Use Number Integer 
AVN(s) Attribute Visibility Number Integer 

Table 4 – Attribute-level functions 

 
Acronym Name Type 
OCV(c) Operation to Class Visibility Boolean 
OSV(s) Operation to Specification Visibility Percentage 
OUN(s) Operation Use Number Integer 
OVN(s) Operation Visibility Number Integer 

Table 5 – Operation-level functions 

 
Acronym Name Type 
IsInternal(s) Internal class predicate Boolean 
IsRoot Root class predicate  Boolean 
IsLeaf Leaf class predicate  Boolean 

Table 6 – Class-level predicate functions 

 
 

Acronym Name Type 
Children( ) Set of children classes Set(Class) 
Descendants( ) Set of descendant classes Set(Class) 
Parents( ) Set of parent classes Set(Class) 
Ascendants( ) Set of ascendant classes Set(Class) 
CoupledClasses Set of coupled classes Set(Class) 
NewOperations( ) Set of class’s new operations Set(Operation) 
InheritedOperations( ) Set of class’s inherited operations Set(Operation) 
OverriddenOperations( ) Set of class’s overriden operations Set(Operation) 
DefinedOperations( ) Set of class’s defined operations Set(Operation) 
AvailableOperations( ) Set of class’s available operations Set(Operation) 
NewAttributes( ) Set of class’s new attributes Set(Attribute) 
InheritedAttributes( ) Set of class’s inherited attributes Set(Attribute) 
OverriddenAttributes( ) Set of class’s overriden attributes Set(Attribute) 
DefinedAttributes( ) Set of class’s defined attributes Set(Attribute) 
AvailableAttributes( ) Set of class’s available attributes Set(Attribute) 

Table 7 – Class-level set functions 

 
 

Acronym Name Type 
CC Children Count Integer 
DC Descendants Count Integer 
PC Parents Count Integer 
AC Ascendants Count Integer 
ON Operations New Integer 
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OI Operations Inherited Integer 
OO Operations Overridden Integer 
OD Operations Defined Integer 
OA Operations Available Integer 
AN Attributes New Integer 
AI Attributes Inherited Integer 
AO Attributes Overridden Integer 
AD Attributes Defined Integer 
AA Attributes Available Integer 

Table 8 – Class-level counting functions 

 
 

Acronym Name Type 
AllClasses Set of all classes Set(Class) 

BaseClasses(s) Set of base classes Set(Class) 
SupplierClasses(s) Set of supplier classes Set(Class) 
RelatedClasses(s) Set of related classes Set(Class) 

Table 9 – Specification-level set functions 

 
Acronym Name Type 

TC Total number of Classes Integer 
TON Total Operations New Integer 
TOO Total Operations Overridden Integer 
TOD Total Operations Defined Integer 
TOI Total Operations Inherited Integer 
TOA Total Operations Available Integer 
TAN Total Attributes New Integer 
TAO Total Attributes Overridden Integer 
TAD Total Attributes Defined Integer 
TAI Total Attributes Inherited Integer 
TAA Total Attributes Available Integer 
IL(s) Inheritance Links Integer 
TIL Total Inheritance Links Integer 

CL(s) Coupling Links Integer 
TCL Total Coupling Links Integer 

Table 10 – Specification-level counting functions 

 
 

3.3 Metrics definition using OCL 

The MOOD2 set is divided in two subsets: intra-specification and inter-specification metrics. Intra-specification 
metrics are those that refer to the context specification only and whose definition relies upon information 
contained solely on it. Therefore, they are parameterless. 
Inter-specification metrics are those that whose definition relates to the relationship between the context 
specification and the one that is passed as an argument. 
 

3.3.1 Intra-Specification Level Metrics 
 
Name AIF – Attributes Inheritance Factor 
Informal 
definition 

Quotient between the number of inherited attributes in all classes of the specification and the 
number of available attributes (locally defined plus inherited) for all classes of the current 
specification. 
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Formal 
definition Specification::AIF(): Percentage

pre: self.TAA() > 0

-- the specification must have some attribute available …

post: result = self.TAI() / self.TAA()

Comments AIF()=0 means that there is no effective attribute inheritance (either there are no inheritance 
hierarchies or all inherited attributes are redefined). 

 
 
Name OIF – Operations Inheritance Factor 
Informal 
definition 

Quotient between the number of inherited operations in all classes of the specification and the 
number of available operations (locally defined plus inherited) for all classes of the current 
specification. 
 

Formal 
definition Specification::OIF(): Percentage

pre: self.TOA() > 0

-- the specification must have some operation available …

post: result = self.TOI() / self.TOA()

Comments This metric was called MIF (Methods Inheritance Factor) in the original MOOD set. 
OIF()=0 means that there is no effective operation inheritance (either there are no inheritance 
hierarchies or all inherited operations are redefined). 

 
 
Name IIF – Internal Inheritance Factor 
Informal 
definition 

Quotient between the number of inheritance links where both the base and derived classes belong to 
the current specification and the total number of inheritance links originating in the current 
specification. 
 

Formal 
definition Specification::IIF(): Percentage

pre: self.TIL() > 0

-- the specification must have some coupling defined on it …

post: result = self.IL(self) / self.TIL()

Comments Inheritance links originating in the current specification are those where the derived class belongs 
to it. The inheritance link is directed from the derived class to the base one. 

 
 
Name AHF – Attributes Hiding Factor 
Informal 
definition 

Quotient between the sum of the invisibilities of all attributes defined in all classes in the current 
specification and the total number of attributes defined in the specification 
 

Formal 
definition Specification::AHF(): Percentage

pre: self.TC() > 1

-- the specification must have some attribute defined on it …

pre: self.TAD() > 0

post: result = AllClasses().attribute_list->

iterate(elem:Attribute; acc:Real=0 | acc + 1 - elem.ASV(self)) / self.TAD()

Comments The invisibility of an attribute is the percentage of the total classes in the specification from which 
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this attributes is not visible and is given by 1-OSV(self), where self is the current specification. 
If all attributes are private the numerator is 0 and, as such AHF()=0. 
The pre-condition regarding the number of classes is a requirement for calculating the attributes 
visibility. 

 
 
Name OHF – Operations Hiding Factor 
Informal 
definition 

Quotient between the sum of the invisibilities of all operations defined in all classes in the current 
specification and the total number of operations defined in the specification 
 

Formal 
definition Specification::OHF(): Percentage

pre: self.TC() > 1

pre: self.TOD() > 0

post: result = (AllClasses().operation_list->

iterate(elem: Operation; acc: Real=0 | acc + 1 - elem.OSV(self))/ self.TOD()

Comments This metric replaces the MHF (Methods Hiding Factor) of the original MOOD set. 
The invisibility of an operation is the percentage of the total classes in the specification from which 
this operation is not visible and is given by 1-OSV(self), where self is the current specification. 
If all operations are public the numerator equals the denominator and then OHF()=1. 
The pre-condition regarding the number of classes is a requirement for calculating the operations 
visibility. 

 
 
Name AHEF – Attributes Hiding Effectiveness Factor 
Informal 
definition 

Quotient between the cumulative number of the specification classes that do access the 
specification attributes and the cumulative number of the specification classes that can access the 
specification attributes. 
 

Formal 
definition Specification::AHEF(): Percentage

pre: AllClasses().attribute_list->

iterate(elem: Attribute; acc: Integer=0 | acc + elem.AVN(self)) > 0

post: result = AllClasses().attribute_list->

iterate(elem: Attribute; acc: Integer=0 | acc + elem.AUN(self))

/ AllClasses().attribute_list->

iterate(elem: Attribute; acc: Integer=0 | acc + elem.AVN(self))

 
Comments  
 
 
Name OHEF – Operations Hiding Effectiveness Factor 
Informal 
definition 

Quotient between the cumulative number of the specification classes that do access the 
specification operations and the cumulative number of the specification classes that can access the 
specification operations. 
 

Formal 
definition Specification::OHEF(): Percentage

pre: AllClasses().operation_list->

iterate(elem: Operation; acc: Integer=0 | acc + elem.OVN(self) ) > 0

post: result =

AllClasses().operation_list->

iterate(elem: Operation; acc: Integer=0 | acc + elem.OUN(self) )
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/ AllClasses().operation_list->

iterate(elem: Operation; acc: Integer=0 | acc + elem.OVN(self) )

Comments  
 
 
Name BPF – Behavioral Polymorphism Factor 
Informal 
definition 

Quotient between the actual number of possible different polymorphic situations and the maximum 
number of possible distinct polymorphic situations (due to inheritance) 
 

Formal 
definition Specification::BPF(): Percentage

pre: TOA() > 0

post: result = TOO() / TOA()

 
Comments This metric was called POF (POlymorphism Factor) in the original MOOD set. 

A given message sent to class Ci can be bound, statically or dynamically, to a named operation 
implementation. The latter can have as many shapes (“morphos” in ancient Greek) as the number of 
times this same operation is overridden (in Ci descendants). This is what we call the actual number 
of possible different polymorphic situations for that class. We only consider the overriding of 
operations defined in the current specification. 
The maximum number of possible distinct polymorphic situations for class CI occurs if all new 
operations defined in it are overridden in all of their derived classes. 

 
 
Name PPF – Parametric Polymorphism Factor 
Informal 
definition 

Percentage of the specification classes that are parameterized 
 

Formal 
definition Specification::PPF(): Percentage

pre: self.TC() > 0

post: result = AllClasses()->select(formal_parameters->notEmpty())->size()/TC()

Comments  
 
 
Name CCF – Class Coupling Factor 
Informal 
definition 

Quotient between the actual number of coupled class-pairs within the specification and the 
maximum possible number of class-pair couplings in the specification. This coupling is the one not 
imputable to inheritance. 
 

Formal 
definition Specification::CCF(): Percentage

pre: self.TC() > 1

-- with only one class there are no couplings within the specification …

post: result = sqrt ( self.CL(self) / ( sqr ( self.TC() ) – self.TC() ) )

 
Comments In a coupled class-pair one class is the client and the other is the supplier. These client-supplier 

relations can have several shapes; see the function Class::CoupledClasses for details. 
This metric is the square-root of COF (COupling Factor) from the original MOOD set. The square-
root counteracts for the fact that the couplings grow quadratically with the number of classes. The 
square and square-root functions sqr() and sqrt() were added to the OCL Real type. 

 
 
Name ICF – Internal Coupling Factor 
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Informal 
definition 

Quotient between the number of coupling links where both the client and supplier classes belong to 
the current specification and the total number of coupling links originating in the current 
specification. 
 

Formal 
definition Specification::ICF(): Percentage

pre: self.TCL() > 0

post: result = self.CL(self) / self.TCL()

Comments Coupling links originating in the current specification are those where the client class belongs to it. 
The coupling link is directed from the client class to the supplier one. 

 
 

3.3.2 Inter-Specification Level Metrics 
 
Name EIF – External Inheritance Factor 
Informal 
definition 

Quotient between the number of external inheritance links to specification “s” and the total number 
of inheritance links originating in the current specification. 
 

Formal 
definition 

 
Specification::EIF(s: Specification): Percentage

pre: self.uses->includes(s)

pre: self.TIL() > 0

post: result = self.IL(s) / self.TIL()

Comments External inheritance links are those originating in the current specification, but where the base class 
lies outside of it. By other words, they correspond to local derivations of external classes (defined 
in external specification “s”). 

 
 
Name ECF – External Coupling Factor 
Informal 
definition 

Quotient between the number of external coupling links to specification “s” and the total number of 
coupling links originating in the current specification. 
 

Formal 
definition Specification::ECF(s: Specification): Percentage

pre: self.uses->includes(s)

pre: self.TCL() > 0

post: result = self.CL(s) / self.TCL()

Comments External coupling links are those originating in the current specification, but where the supplier 
class is defined outside of it (in external specification “s”). 

 
 
Name PRF – Potential Reuse Factor 
Informal 
definition 

Percentage of the available operations in the current specification that were imported from the “s” 
specification. 
 

Formal 
definition Specification::PRF(s: Specification): Percentage

pre: self.uses->includes(s)

pre: (AllClasses().AvailableOperations() union

RelatedClasses(s).AvailableOperations())->

iterate(elem: Operation; acc: Real = 0 | acc + elem.OSV(self) ) > 0
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post: result = RelatedClasses(s).AvailableOperations()->

iterate(elem: Operation; acc: Real = 0 | acc + elem.OSV(self) )

/ (AllClasses().AvailableOperations() union

RelatedClasses(s).AvailableOperations())->

iterate(elem: Operation; acc: Real = 0 | acc + elem.OSV(self) )

Comments The operations imported from the external specification ‘s’ correspond to those inherited from the 
classes from which current specification classes derive, plus the ones from ‘s’ which are coupled to 
internal classes. 

 
 
Name ARF – Actual Reuse Factor 
Informal 
definition 

Percentage of the available operations in the current specification that corresponds to effectively 
used operations imported from the “s” specification 
 

Formal 
definition Specification::ARF(s: Specification): Percentage

pre: self.uses->includes(s)

pre: ( AllClasses().AvailableOperations() union

RelatedClasses(s).AvailableOperations())->

iterate(elem: Operation; acc: Real=0 | acc + elem.OSV(self)) > 0

post: result = RelatedClasses(s).AvailableOperations()->select(OUN(self)>0)->

iterate(elem: Operation; acc: Real=0 | acc + elem.OSV(self))

/ ( AllClasses().AvailableOperations() union

RelatedClasses(s).AvailableOperations())->

iterate(elem: Operation; acc: Real=0 | acc + elem.OSV(self))

Comments The elem variable is called the iterator, here of type Class since we are going to iterate over the 
collection returned by SupplierClasses(s), which is a Set{Class}. The acc variable is called the 
accumulator variable, here of type Integer, which is initiated with zero. In each iteration the 
accumulator gets assigned the value after the “|” character. 
Attention: In the numerator we have the number of external supplier class operations that are used 
internally. It is still missing the inherited external operations that are effectively used. 

 
 
Name REF – Reuse Efficiency Factor 
Informal 
definition 

Percentage of the imported operations (from the “s” specification) that are effectively used 
 

Formal 
definition Specification::REF(s: Specification): Percentage

pre: self.uses->includes(s)

pre: self.PRF() > 0

post: result =self.ARF(s) / self.PRF(s)

Comments  
 

4. Related work 
Our work is similar in aim to the one of Scott Whitmire where he proposes a formal object model based on 
category theory, upon which he puts, as we do, the metrics on context [Whitmire1996, Whitmire1997]. Category 
theory is a major tool in the conception and study of programming languages [Pierce1991, Mac Lane1994, 
Barr1995]. A category is a structure that generalizes and unifies algebraic structures of discrete mathematics. 
Whitmire uses three categories (Class, DesignState and Design) to represent the static aspects of object-oriented 
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designs and two additional categories (Message and Method) for their dynamic aspects. He uses simple relational 
algebra for describing the operations that alter the design structure. In dynamic modeling he adapted Object-Z 
predicate calculus [Duke1991, Stepney1992] for describing states and operation outcomes. He also borrowed 
from OPUS [Mens1994b, Mens1994a] an object calculus originally developed to support the design of object-
oriented programming languages, to represent the mechanisms of operation selection and binding. We remark the 
applicability potential of his approach for supporting the development of tools such as theory-based static 
analyzers for obtaining static measures, as well as for dynamic analysis where the impact of design changes and 
the results of stimuli (event sequences), applied at the design level, could be observed. 
 
Also similar in aim is the dissertation research of Geert Poels where he proposes a measurement theory-based 
approach to software measure construction, using a combination of set theory and process algebra as the 
modeling language [Poels1999]. He makes a clear distinction between attribute definition and measure definition.  
Using his distance-based measurement approach each software artifact attribute is defined in terms of a 
segmentally additive proximity structure, i.e. a formal representation of the concept of 'distance' that allows 
defining a unit of distance and preparing the path to a ratio measurement scale. Analogously, each software 
measure is defined in terms of a metric space with additive segments, i.e. a measurement theoretic interpretation 
of the mathematical function that is called a 'metric'. The distance-based approach links both types of definition 
by using proximity structure representation and uniqueness theorems that can be found in advanced textbooks on 
measurement theory, such as [Suppes1989]. According to his author, all software metrics that are constructed 
using this approach have a proven construct validity and are defined precisely and unambiguously. 
 
Both of the previous proposals are mathematically elegant and sound. However, from our experience of more 
than 15 years in the software field, the vast majority of software designers lack the appropriate background (or 
have lost it) to understand the intricacies of measurement theory, category theory or of proximity structures. 
Therefore, we suspect that we will more likely find followers of Whitmire’s and Poels’s approaches within the 
metrics researchers community rather than among design practitioners. 
 

5. Conclusions and further work 
We have shown that the Object Constraint Language, a part of the UML standard, can be used to define object-
oriented design metrics in a very natural and understandable way. The precision granted by the formality of OCL 
comes at a much lower cost, for both practitioners and tool builders, than when using other formal specification 
constructs. Since UML has also become a de facto standard both in academia and industry, more and more 
people are expected to master OCL and use it currently it their designs. In a simple search in the WWW we have 
found that several OCL supporting tools (or add-ins to existing design tools) have started to emerge. 
 
We are now working on the application of the same approach, but using the UML meta-model that is part of the 
standard [OMG1997] instead of the GOODLY one used in this report [Abreu2001b]. We also plan to apply our 
approach to the OML (OPEN Modeling Language) meta-model. OML emerged from the OPEN (Object-
oriented Process, Environment and Notation) consortium [Firesmith1996, Henderson-Sellers1996b, Henderson-
Sellers1996c, Henderson-Sellers1998]. The latter is supported by a large group of well-known methodologists 
such as Brian Henderson-Sellers (author of the MOSES method [Henderson-Sellers1991, Henderson-
Sellers1994]), Ian Graham (author of SOMA – Semantic Object Modelling Approach [Graham]), Donald 
Firesmith or Jim Odell. 
We also have provisions to further show the applicability of our approach by trying to model other object-
oriented metric sets published in the literature.  
 
We believe the time has come for object-oriented metrics research community to standardize the way we define 
the metrics, as it happened with the object-oriented analysis and design notations. Although we are strong 
believers that diversity and innovation should not be constrained, we owe that standardization effort to those that, 
after all, are our final users – the design practitioners and those that support and train them, such as tool 
manufacturers, consultants, professional trainers or academic teachers. We think that such a standardization effort 
will not reach widespread acceptance if it is not integrated with the current state-of-the-practice object-oriented 
design technology. We hope to have shown here that that is possible. We will be happy if this document will 
generate discussion and feedback around this topic. 
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Appendix A – Auxiliary meta-model OCL functions 
5.1 Attribute-level functions 

 
Name ACV – Attribute to Class Visibility 
Informal 
definition 

Predicate that indicates if a given class can access the attribute 
 

Formal 
definition Attribute::ACV(c: Class): Boolean

post: result = scope_list->exists(

(class = c) or

(scope_type = #PUBLIC) or

(scope_type=#SPEC) and (class.module.specification=c.module.specification) or

(scope_type = #MODULE) and (class.module = c.module) or

(scope_type = #CLASS_TREE) and scoped_class.Descendants()->includes(c) or

(scope_type = #PROTECTED) and class.Descendants()->includes(c) or

(scope_type = #DISCRIMINATED) and (scoped_class = c) )

Comments  
 
 
Name AVN – Attribute Visibility Number 
Informal 
definition 

Number of classes in the considered specification where the attribute can be accessed 
 

Formal 
definition Attribute::AVN(s: Specification): Integer

post: result = s.AllClasses()->iterate( elem: Class; acc: Integer = 0 |

if self.ACV(elem) then

acc + 1

else

acc

endif)

 
Comments  
 
 
Name ASV – Attribute to Specification Visibility 
Informal 
definition 

Percentage of classes in the considered specification where the attribute can be accessed (excludes 
the class where the attribute is declared) 
 

Formal 
definition Attribute::ASV(s: Specification): Percentage

pre: s.TC() > 1

post: result = (AVN(s) -1) / (s.TC() -1)

Comments The pre-condition states that at least another class besides the one where the attribute is defined 
must exist. This would hardly be a true restriction. 

 
 
Name AUN – Attribute Use Number 
Informal 
definition 

Number of classes in the considered specification where the attribute is used (excludes the class 
where the attribute is declared) 
 

Formal 
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definition Attribute::AUN(s: Specification): Integer

post: result = s.AllClasses()->

select(operation_list.operation_body.employs_spec->includes(self))

->asSet() ->size()

Comments The asSet() operation is required because the select returns a Bag 
 
 

5.2 Operation-level functions 

 
Name OCV – Operation to Class Visibility 
Informal 
definition 

Predicate that indicates if a given class can access the operation 
 

Formal 
definition Operation::OCV(c: Class): Boolean

post: result = scope_list->exists(

(class = c) or

(scope_type = #PUBLIC) or

(scope_type = #SPEC) and (class.module.specification=c.module.specification)or

(scope_type = #MODULE) and (class.module = c.module) or

(scope_type = #CLASS_TREE) and scoped_class.Descendants()->includes(c) or

(scope_type = #PROTECTED) and class.Descendants()->includes(c) or

(scope_type = #DISCRIMINATED) and (scoped_class = c) )

Comments  
 
 
Name OVN – Operation Visibility Number 
Informal 
definition 

Number of classes in the considered specification where the operation can be accessed 
 

Formal 
definition Operation::OVN(s: Specification): Integer

post: result = s.AllClasses()->iterate( elem: Class; acc: Integer = 0 |

if self.OCV(elem) then

acc + 1

else

acc

endif)

Comments  
 
 
Name OSV – Operation to Specification Visibility 
Informal 
definition 

Percentage of classes in the considered specification where the operation can be accessed (excludes 
the class where the operation is declared) 
 

Formal 
definition Operation::OSV(s: Specification): Percentage

pre: s.TC() > 1

post: result = (OVN(s) –1) / (s.TC() -1)

Comments The pre-condition states that at least another class besides the one where the attribute is defined 
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must exist. This would hardly be a true restriction. 
 
 
Name OUN – Operation Use Number 
Informal 
definition 

Number of classes in the considered specification where the operation is used 
 

Formal 
definition Operation::OUN(s: Specification): Integer

post: result = s.AllClasses()->

select(operation_list.operation_body.messages_spec.operation->

includes(self))->asSet()->size()

 
Comments The asSet() operation is required because the select returns a Bag 
 
 

5.3 Class-level predicate functions 

 
Name IsInternal 
Informal 
definition 

Internal class predicate – indicates if the class belongs to the named specification “s” 
 

Formal 
definition Class::IsInternal(s: Specification): Boolean

post: result = self.module.specification = s

Comments  
 
 
Name IsRoot 
Informal 
definition 

Root class predicate – indicates that it has no ascendants 
 

Formal 
definition Class::IsRoot(): Boolean

post: result = Parents()->isEmpty()

Comments  
 
 
Name IsLeaf 
Informal 
definition 

Leaf class predicate – indicates that it has no descendants 
 

Formal 
definition 

 
Class::IsLeaf(): Boolean

post: result = Children()->isEmpty()

Comments  
 
 

5.4 Class-level set functions 

 
Name Children  
Informal 
definition 

Set of directly derived classes 
 

Formal 
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definition Class::Children(): Set(Class)

post: result = Class.allInstances->select(inherits_from->includes(self))

Comments  
 
 
Name Descendants 
Informal 
definition 

Set of all derived classes (either directly or indirectly) 
 

Formal 
definition Class::Descendants(): Set(Class)

post: result = Children()-> iterate( elem: Class;

acc: Set(Class)=Children() | acc-> union (elem.Descendants())

Comments This operation is recursive. Notice that even with multiple inheritance the result is a set (no 
repeated classes) 

 
 
Name Parents 
Informal 
definition 

Set of classes from which the current class derives directly 
 

Formal 
definition Class::Parents(): Set(Class)

post: result = inherits_from

Comments  
 
 
Name Ascendants 
Informal 
definition 

Set of classes from which the current class derives directly or indirectly 
 

Formal 
definition Class::Ascendants(): Set(Class)

post: result = Parents()-> iterate( elem: Class;

acc: Set(Class)=Parents() | acc-> union(elem.Ascendants())

Comments This operation is recursive. Notice that even with common ancestors due to multiple inheritance the 
result is a set (no repeated classes) 

 
 
Name CoupledClasses 
Informal 
definition 

Set of classes to which the current class is coupled (excluding inheritance) 
 

Formal 
definition Class::CoupledClasses(): Set(Class)

post: result = formal_parameters.instanced_as union(

attribute_list.attribute_type union(

operation_list.parameter_list.attribute_type union(

operation_list.return_type union(

operation_list.operation_body.locals_spec.attribute_type union(

operation_list.operation_body.employs_spec.attribute_type union(

operation_list.operation_body.messages_spec.invocation_of.class ))))))
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Comments This function includes the coupled classes corresponding to: 
- instantiation of class parameters 
- class attributes 
- parameters of class operations 
- return type of class operations 
- local attributes of class operations 
- attributes of other classes employed by class operations 
- recipients of messages sent in the class operations implementation body 

 
 
Name NewOperations 
Informal 
definition 

Operations defined in the class that are not overriding inherited ones 
 

Formal 
definition Class::NewOperations(): Set(Operation)

post: result = DefinedOperations() – InheritedOperations()

Comments  
 
 
Name InheritedOperations 
Informal 
definition 

Number of inherited operations that are not overridden by locally defined ones 
 

Formal 
definition Class::InheritedOperations(): Set(Operation)

post: result = Ascendants()-> iterate( elem: Class;

acc: Set(Operation)=Set{} | acc->union(elem.operation_list) )

Comments  
 
 
Name OverriddenOperations 
Informal 
definition 

Number of operations defined in the class that override inherited ones = number of inherited 
operations that are overridden by locally defined ones 
 

Formal 
definition Class::OverriddenOperations(): Set(Operation)

post:result = DefinedOperations()->intersection(InheritedOperations())

Comments  
 
 
Name DefinedOperations 
Informal 
definition 

Number of operations defined in the class 
 

Formal 
definition Class::DefinedOperations(): Set(Operation)

post: result = operation_list

Comments  
 
 
Name AvailableOperations 
Informal 
definition 

Number of operations that may be applied to instances of the class 
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Formal 
definition Class::AvailableOperations(): Set(Operation)

post: result = NewOperations()-> union (InheritedOperations())

Comments The following invariant could be stated in alternative: 
post: result = DefinedOperations()-> union (InheritedOperations()) 

 
 
Name NewAttributes 
Informal 
definition 

Attributes defined in the class that are not overriding inherited ones 
 

Formal 
definition Class::NewAttributes(): Set(Attribute)

post: result = DefinedAttributes() – InheritedAttributes()

Comments  
 
 
Name InheritedAttributes 
Informal 
definition 

Number of inherited attributes that are not overridden by locally defined ones 
 

Formal 
definition Class::InheritedAttributes(): Set(Attribute)

post: result = Ascendants()->iterate(elem: Class;

acc: Set(Attribute)= Set{} | acc-> union (elem.attribute_list) )

Comments  
 
 
Name OverriddenAttributes 
Informal 
definition 

Number of attributes defined in the class that override inherited ones = number of inherited 
attributes that are overridden by locally defined ones 
 

Formal 
definition Class::OverriddenAttributes(): Set(Attribute)

post: result = DefinedAttributes()->intersection(InheritedAttributes())

Comments  
 
 
Name DefinedAttributes 
Informal 
definition 

Number of attributes defined in the class 
 

Formal 
definition Class::DefinedAttributes(): Set(Attribute)

post: result = attribute_list

Comments  
 
 
Name AvailableAttributes 
Informal 
definition 

Number of attributes that may be applied to instances of the class 
 

Formal 
definition 
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Class::AvailableAttributes(): Set(Attribute)

post: result = NewAttributes()-> union (InheritedAttributes())

Comments The following invariant could be stated in alternative: 
post: result = DefinedAttributes()-> union (InheritedAttributes()) 

 
 

5.5 Class-level counting functions 

 
Name CC – Children Count 
Informal 
definition 

Number of directly derived classes 
 

Formal 
definition Class::CC(): Integer

post: result = Children()->size()

Comments If CC() = 0 then the class is a leaf class 
 

 
 
Name DC – Descendants Count 
Informal 
definition 

Number of all derived classes (either directly or indirectly) 
 

Formal 
definition Class::DC(): Integer

post: result = Descendants()->size()

Comments  
 
 
Name PC – Parents Count 
Informal 
definition 

Number of classes from which the current class derives directly 
 

Formal 
definition Class::PC(): Integer

post: result = Parents()->size()

Comments If PC() = 0 then the class is a base class; if PC() > 1 we have multiple inheritance 
 

 
 
Name AC – Ascendants Count 
Informal 
definition 

Number of classes from which the current class derives directly or indirectly 
 

Formal 
definition Class::AC(): Integer

post: result = Ascendants()->size()

Comments  
 
 
Name ON – Operations New 
Informal Number of operations defined in the class that are not overriding inherited ones 
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definition  
Formal 
definition Class::ON(): Integer

post: result = NewOperations()->size()

Comments  
 
 
Name OI – Operations Inherited 
Informal 
definition 

Number of inherited operations that are not overridden by locally defined ones 
 

Formal 
definition Class::OI(): Integer

post: result = InheritedOperations()->size()

 
Comments  
 
 
Name OO – Operations Overridden 
Informal 
definition 

Number of inherited operations that are overridden by locally defined ones = Number of operations 
defined in the class that override inherited ones 
 

Formal 
definition Class::OO(): Integer

post: result = OverriddenOperations()->size()

Comments  
 
 
Name OD – Operations Defined 
Informal 
definition 

Number of operations defined in the class 
 

Formal 
definition Class::OD(): Integer

post: result = DefinedOperations()->size()

Comments  
 
 
Name OA – Operations Available 
Informal 
definition 

Number of operations that may be applied to instances of the class 
 

Formal 
definition Class::OA(): Integer

post: result = AvailableOperations()->size()

Comments  
 
 
Name AN – Attributes New 
Informal 
definition 

Number of attributes defined in the class that are not overriding inherited ones 
 

Formal 
definition Class::AN(): Integer
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post: result = NewAttributes()->size()

Comments  
 
 
Name AI – Attributes Inherited 
Informal 
definition 

Number of inherited attributes that are not overridden by locally defined ones 
 

Formal 
definition Class::AI(): Integer

post: result = InheritedAttributes()->size()

Comments  
 
 
Name AO – Attributes Overridden 
Informal 
definition 

Number of attributes defined in the class that override inherited ones = number of inherited 
attributes that are overridden by locally defined ones 
 

Formal 
definition Class::AO(): Integer

post: result = OverriddenAttributes()->size()

Comments  
 
 
Name AD – Attributes Defined 
Informal 
definition 

Number of attributes defined in the class 
 

Formal 
definition Class::AD(): Integer

post: result = DefinedAttributes()->size()

Comments  
 
 
Name AA – Attributes Available 
Informal 
definition 

Number of attributes that may be associated to instances of the class. 
 

Formal 
definition Class::AA(): Integer

post: result = AvailableAttributes()->size()

Comments  
 
 

5.6 Specification-level set functions 

 
Name AllClasses 
Informal 
definition 

Set of all classes belonging to the current specification 
 

Formal 
definition Specification::AllClasses(): Set(Class)
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post: result= module_list.class_list

Comments  
 
 
Name BaseClasses 
Informal 
definition 

Set of base classes of classes from the current specification that belong to the given “s” 
specification 
 

Formal 
definition Specification::BaseClasses(s: Specification): Set(Class)

post: result= AllClasses().inherits_from->select(IsInternal(s))->asSet()

Comments The asSet() operation is required because the select returns a Bag 
 
 
Name SupplierClasses 
Informal 
definition 

Set of supplier classes of classes from the current specification that belong to the given “s” 
specification (excludes inheritance) 
 

Formal 
definition Specification::SupplierClasses(s: Specification): Set(Class)

post: result = AllClasses()->iterate(elem:Class; acc: Set(Class)=Set{} |

acc union (elem.CoupledClasses()-> select( IsInternal(s))))

Comments  
 
 
Name RelatedClasses 
Informal 
definition 

Set of classes from the “s” specification that are either base or supplier classes from the ones of the 
current specification 
 

Formal 
definition Specification::RelatedClasses(s: Specification): Set(Class)

post: result = BaseClasses(s) union SupplierClasses(s)

Comments  
 
 

5.7 Specification-level counting functions 

 
Name TC – Total Classes 
Informal 
definition 

Total number of classes in the specification  
 

Formal 
definition Specification::TC(): Integer

post: result = AllClasses()->size()

Comments Although, in the general case, the result of navigating two associations is a Bag, here we can 
guarantee that the result is like a Set since the same class cannot belong to distinct modules. 

 
 
Name TON – Total Operations New 
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Informal 
definition 

Total number of new operations in the specification  
 

Formal 
definition Specification::TON(): Integer

post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |

acc + elem.ON())

 
Comments  
 
 
Name TOO – Total Operations Overridden 
Informal 
definition 

Total number of overridden operations in the specification  
 

Formal 
definition Specification::TOO(): Integer

post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |

acc + elem.OO())

Comments  
 
 
Name TOD - Total Operations Defined 
Informal 
definition 

Total number of defined operations in the specification  
 

Formal 
definition Specification::TOD(): Integer

post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |

acc + elem.OD())

Comments  
 
 
Name TOI – Total Operations Inherited 
Informal 
definition 

Total number of inherited operations in the specification  
 

Formal 
definition Specification::TOI(): Integer

post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |

acc + elem.OI())

Comments  
 
 
Name TOA – Total Operations Available 
Informal 
definition 

Total number of available operations in the specification  
 

Formal 
definition Specification::TOA(): Integer

post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |

acc + elem.OA())

Comments  
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Name TAN – Total Attributes New 
Informal 
definition 

Total number of new attributes in the specification  
 

Formal 
definition Specification::TAN(): Integer

post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |

acc + elem.AN())

Comments  
 
 
Name TAO – Total Attributes Overridden 
Informal 
definition 

Total number of overridden attributes in the specification  
 

Formal 
definition Specification::TAO(): Integer

post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |

acc + elem.AO())

Comments  
 
 
Name TAD – Total Attributes Defined 
Informal 
definition 

Total number of defined attributes in the specification  
 

Formal 
definition Specification::TAD(): Integer

post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |

acc + elem.AD())

Comments  
 
 
Name TAI – Total Attributes Inherited 
Informal 
definition 

Total number of attributes inherited in the specification  
 

Formal 
definition Specification::TAI(): Integer

post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |

acc + elem.AI())

Comments  
 
 
Name TAA – Total Attributes Available 
Informal 
definition 

Total number of available attributes in the specification  
 

Formal 
definition Specification::TAA(): Integer

post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |

acc + elem.AA())

Comments  
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Name IL – Inheritance Links 
Informal 
definition 

Total number of inheritance relations where the derived classes belongs to the current specification 
and the base one belongs to the given “s” specification 
 

Formal 
definition Specification::IL(s:Specification): Integer

post: result= AllClasses().Parents()-> select( IsInternal(s) )->size()

Comments Notice that IL(s) <= TIL() 
 
 
Name TIL – Total Inheritance Links 
Informal 
definition 

Total number of inheritance relations where the derived classes belongs to the current specification 
 

Formal 
definition Specification::TIL(): Integer

post: result = AllClasses()->iterate(elem: Class; acc: Integer = 0 |

acc + elem.PC())

Comments Alternative post-condition:   result = AllClasses().inherits_from->size() 
 
 
Name CL – Coupling Links 
Informal 
definition 

Total number of coupling relations where the client class belongs to the current specification and 
the supplier class belongs to the given “s” specification (excludes inheritance) 
 

Formal 
definition Specification::CL(s: Specification): Integer

post: result =self.SupplierClasses(s)->size()

Comments  
 
 
Name TCL – Total Coupling Links 
Informal 
definition 

Total number of distinct coupling relations where the client class belongs to the current 
specification (excludes inheritance) 
 

Formal 
definition Specification::TCL(): Integer

post: result = AllClasses()-> iterate(elem: Class; acc: Integer = 0 |

acc + elem.CoupledClasses()->size())

Comments  
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Appendix B – GOODLY code extract 
 
 
SPECIFICATION  An_example 
 TYPE APPLICATION 
 VERSION “2.1” 
 DESCRIPTION “A rally competition” 
 OWNER “MOOD Project” 
 USES 
  xpto 
 END_USES 
 MODULES 
  Race 
 END_MODULES 
  
 MAIN 
  LOCALS 
   mikkola: Pilot; 
   chuck: Mechanic; 
  END_LOCALS 
 
  MESSAGES 
   Pilot.creates; 
   Mechanic.creates; 
   Pilot.qualification; 
   Pilot.talks_to {Mechanic}; 
   Mechanic.repairs; 
   Pilot.qualification; 
   Pilot.talks_to {Mechanic}; 
   Mechanic.repairs; 
   Pilot.qualification; 
   Pilot.destroys; 
   Mechanic.destroys 
  END_MESSAGES 
 
  CALLS ... END_CALLS 
 END_MAIN 
END_ SPECIFICATION 
 
 
MODULE Race 
 DESCRIPTION “Example of a module of an application in the race car world” 
 AUTHORS “Fernando Brito e Abreu et al.” 
 PRODUCED “18/7/98_12:00:03” 
 CONVERTED “20/8/98_15:34:45” 
 FORMALISM xpto 
  
 CLASS Document[Objective] END_CLASS 
 
 CLASS Sport END_CLASS 
 
 CLASS Bank END_CLASS 
 
 CLASS Person 
  STATE 
   name: String SCOPE PUBLIC; 
   birth_date: Date SCOPE PRIVATE; 
   weight: Integer SCOPE PRIVATE; 
   address: String SCOPE PRIVATE; 
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   bankcard: Document[Myers] SCOPE PRIVATE 
  END_STATE 
  
  BEHAVIOR 
   OPERATION creates( ) SCOPE PUBLIC END_OPERATION 
   OPERATION destroys( ) SCOPE PUBLIC END_OPERATION 
  END_BEHAVIOR 
 END_CLASS { Person } 
 
 CLASS Pilot ISA Person 
  STATE 
   driving_permit: Document[Sport] SCOPE PRIVATE; 
   helmet: Protection SCOPE PROTECTED 
  END_STATE 
 
  BEHAVIOR 
   OPERATION qualification(start: Time; from: String; to: String) SCOPE PUBLIC 
    MESSAGES 
     Protection.creates; 
     Protection.put_on; 
     Document[Sport].shows; 
     RaceCar.close_window; 
     RaceCar.starts; 
     drives; 
     RaceCar.stops; 
     RaceCar.open_window; 
     Document[Sport].shows; 
     Protection.take_off; 
     Protection.destroys 
    END_MESSAGES 
   END_OPERATION 
 
   OPERATION drives(vehicle : RaceCar): Boolean SCOPE PUBLIC 
    MESSAGES 
     Co-pilot.read_notes; 
     RaceCar.accelerates; 
     Co-pilot.read_notes; 
     RaceCar.breaks; 
     RaceCar.turns 
    END_MESSAGES 
   END_OPERATION 
 
   OPERATION talks_to(whom: Person): Boolean SCOPE Co-pilot, Mechanic 
    END_OPERATION 
  END_BEHAVIOR 
 END_CLASS {Pilot} 
 
 CLASS Co-pilot ISA Person  
  BEHAVIOR 
   OPERATION read_notes( ) SCOPE PUBLIC END_OPERATION 
  END_BEHAVIOR 
 END_CLASS { Co-pilot } 
 
 CLASS Mechanic ISA Person  
  BEHAVIOR 
   OPERATION repairs (vehicle : RaceCar) SCOPE PUBLIC END_OPERATION 
  END_BEHAVIOR 
 END_CLASS { Mechanic } 
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 CLASS Artifact 
  STATE 
   brand: String SCOPE PUBLIC; 
   model: String SCOPE PROTECTED; 
   production_date: Date SCOPE PRIVATE 
  END_STATE 
 
  BEHAVIOR 
   OPERATION creates( ) SCOPE PUBLIC END_OPERATION; 
   OPERATION destroys( ) SCOPE PUBLIC END_OPERATION 
  END_BEHAVIOR 
 END_CLASS { Artifact } 
 
 CLASS Protection ISA Artifact 
  BEHAVIOR 
   OPERATION put_on( ): Boolean SCOPE PUBLIC END_OPERATION 
   OPERATION take_off( ): Boolean SCOPE PUBLIC END_OPERATION 
  END_BEHAVIOR 
 END_CLASS { Protection } 
  
 CLASS RaceCar ISA Artifact 
  STATE 
   zero_to_hundred: Time SCOPE PUBLIC; 
   horse_power: Integer SCOPE PUBLIC; 
   oil_level: Real SCOPE Mechanic.*, Pilot, Co-Pilot; 
   actual_speed: Integer SCOPE PROTECTED, Pilot, Co-Pilot 
  END_STATE 
  BEHAVIOR 
   OPERATION starts( ): Boolean SCOPE PUBLIC END_OPERATION 
   OPERATION accelerates(duration:Time; acceleration:Integer) SCOPE PUBLIC 

  END_OPERATION 
   OPERATION breaks(duration: Time; desacceleration: Integer) SCOPE PUBLIC
   END_OPERATION 
   OPERATION turns(angle: Integer ) SCOPE PUBLIC END_OPERATION 
   OPERATION stops( distance: Integer ): Boolean SCOPE PUBLIC   
   END_OPERATION 
   OPERATION open_window( ): Boolean SCOPE PUBLIC END_OPERATION 
   OPERATION close_window( ): Boolean SCOPE PUBLIC END_OPERATION 
  END_BEHAVIOR 
 END_CLASS { RaceCar } 
 
END_MODULE { Race } 

 


