Estimating Relative Size When Alternative Designs
Exist

D. Janaki Ram and S.V.G.K. Raju
Distributed & Object Systems Lab
Department of Computer Science & Engineering
Indian Institute of Technology Madras, Chennai
India
Phone: 491 44 4458343
E-mail: {janaki, raju}@lotus.iitm.ernet.in
http://lotus.iitm.ac.in

Abstract

Existence of alternative patterns gives rise to alternative designs. Size can be used as a criterion to select a
suitable design from a set of alternative designs. Size cannot be estimated without including the application
under consideration. Accuracy of the estimate depends on the amount of information known about the
application. But, designing all the alternative designs with complete information and selecting one among
them is not advisable. This is because the effort developers put for the alternative designs will be wasted
except for the suitable one. In this paper, a method is proposed to select a suitable design based on size from
a set of alternative designs that exist in an application. The method is based on the estimation of relative
size of the alternative designs. Relative size estimation suppresses all common patterns and functionality
among the designs. It considers only the alternative patterns that exist in the alternative designs. This
method takes minimum effort to select a suitable design from the set of alternative designs based on size.
Method Points have been proposed for estimating size. points. Also, this method brings out the concept of
relative measure to estimate different characteristics of a software system.

Keywords
Design handbook, Alternative designs, Alternative Patterns, Pattern graph, Relative size, Null functionality,
Method points.

1 Introduction

Design patterns provide solutions for recurring design problems occuring across different domains in a par-
ticular context [1]. They capture the knowledge of experienced designers in the form of a catalog in object
oriented paradigm. The availability of such a catalog of design patterns helps both experienced and novice
designers to recognize situations in which design reuse is possible. In the catalog proposed by Gamma et
al. [1], patterns are classified based on the purpose and scope. Further, purpose is classified as creational,

structural or behavioural and scope as class or object. For a design problem, a developer may refer the
pattern catalog to choose a suitable pattern for solving the problem. Even though, catalogs in their present
form are very useful, an effective usage of design patterns as presented in the catalog depends very much on
the experience and intuition of the designer.

It is very difficult for an inexperienced designer to compare two alternative designs that solve the same
problem in different ways and select one of them. The problem of choosing an appropriate design becomes
more significant with the arrival of new patterns. Specifying patterns along with quantified values of its key
attributes can alleviate this problem. These quantified values help a designer in choosing the most suitable
pattern for an application under consideration.

The design handbook based on design patterns [2] provides four key attributes viz. size, Static Adaptability
(SA), Dynamic Adaptability (DA), and EXtendability (EX) to quantify a pattern. A designer can choose a
suitable design based on the trade-off among these key attributes of the patterns in the alternative designs.
The design handbook based on design patterns is briefly explained in the Section 2.

The key attribute, size in the design handbook [2] is estimated in terms of Lines of Code (LOC). But, size
as a measure of LOC has disadvantages. The main disadvantages of using LOC as a unit of measure for
size are the lack of universally accepted definition and language dependency [3, 4, 5]. Size can be estimated
more accurately by using function point counting procedure [6] than LOC metric. In this paper, a method
is proposed to estimate the size of a pattern when alternative patterns exist.

The rest of the paper is organized as follows. In Section 2, the design handbook based on design patterns is
explained briefly. In Section 3, the relative size is explained. Section 4, presents the method to estimate the
relative size of a design when alternative designs exist. Section 5, concludes the proposed method.

2 Design Handbook Based on Design Patterns

Selecting a suitable design pattern from a catalog depends on the experience and intuition of the designer.
For example, in a printer-server application [7, 2], the problem of printer-server selecting an idle Printer can
be solved in two ways. One way is to select one printer randomly among the idle printers to honour the
request. In the other way, all the printers are connected sequentially one after the other and the request is
submitted to the first printer. The request either accepted by the printer or forwarded to the next printer in
the chain. A designer can use Iterator pattern [1] for the former case and Chain of responsibility [1] for the
later. Here a designer has to choose a suitable pattern. It depends on the application under consideration and
trade-off between these patterns. The patterns Iterator and Chain of responsibility are known as alternative
patterns. Patterns are said to be alternative if they solve the same problem in different ways. The existence
of alternative patterns for a problem provides alternative designs.

The design handbook based on design patterns provides four key attributes viz., size, SA, DA, and EX [2].
A designer can select a suitable pattern from a set of alternative patterns based on the trade-off among these
key attributes. The attribute size, measures the size of a pattern in terms of LOC. SA is the measure of
ease with which a pattern can be adapted to a particular context at the time of coding [7]. DA reflects the
ease with which the behaviour of a pattern can be modified or adapted at runtime [7]. EX is the measure
of ease with which a pattern can be extended at the maintenance phase. These four key attributes are
indirect measures which are estimated from a set of direct measures. The direct measures of a pattern are
obtained from its pattern graph. The pattern graph represents the communication among the classes of a
design pattern. The pattern graph notation is shown in the Figure 1. An OO methodology based on this
design handbook was proposed in [7, 2]. The methodology facilitates the developers to identify alternative
patterns thereby alternative designs. A suitable design can be chosen based on the key attributes proposed
in the design handbook.

T T : Nunber of Tenplate nethods

H : Nunber of Hook nethods

R : Nunmber of Rigid nmethods

C ass
N4 Sinple call link
TN~ Conposite call |ink
dient Gate
d ass

Figure 1: Pattern graph notation

dient Leaf Conposi te

Figure 2: Pattern graph for Composite Pattern

In the pattern graph notation, classes are represented using rounded rectangles. Every class has three
partitions. These partitions correspond to three types of methods in the class viz., template methods, hook
methods and rigid methods. Hook methods are the methods that are declared in a class and defined in its
subclass. Template methods invoke at least one hook method that may belong to any class. Rigid methods
are declared and defined in the same class. Rigid methods do not call any hook or template methods. The
partitions are named as template partition, hook partition and rigid partition as shown in the Figure 1.
Every partition is associated with a number that represents the number of methods corresponding to that
partition. The set of classes that differ only in the definition of hook methods is treated as a single class and
is represented only once in the pattern graph. Any class that uses the services of a pattern is called a client
class. Communication between classes is shown using arrows. The dashed-line arrow indicates one-to-one
association and solid-line arrow indicates multi-valued association. Dashed-line arrow is named as simple
call and solid-line arrow is named as composite call. Gate captures inheritance and polymorphism in a less
formal way. Pattern graph for the Composite pattern [1] is shown in the Figure 2.

The key attributes SA, DA, and EX are out of the scope of this paper. Size estimation is based on the
weighted sums of template, hook and rigid methods. This way of estimating the size is not correct as
explained at the end of this section. So in this paper, we have focussed only on size and proposed a method
to estimate the size of a design when alternative designs exist.

3

Pattern graph provides ten direct measures for a pattern to estimate the four key attributes of a pattern.
The direct measures for estimating the size are given below. The other six direct measures are used to
estimate DA and EX. Since only size is considered in this paper those six direct measures are not presented
here. The procedures and the equations to estimate SA, DA, and EX were presented in [2].

1. NC : Number of Classes in the pattern graph
2. NT : Number of Template methods in the pattern
3. NH : Number of Hook methods in the pattern

4. NR : Number of Rigid methods in the pattern

In [2], size is estimated by using the following equation.

Size = wSZ,NT*NT+U]SZ,NH*NH+wSZ,NR*NR+wSZ,NC*NC (1)

All the code corresponding to an implementation of a design pattern can be broadly put under four heads
namely those corresponding to template methods, hook methods, rigid methods and other aspects of a class.
These are captured by NH, NT, NR, and NC. So, size can be expressed as given in the equation 1. Here,
WSz, NT, WSZ,NH, WSz NR, and wsz nc are weights. For any pattern, the values of these weights are equal
to the average number of LOC for a template method, hook method, rigid method and other aspects of a
class in the pattern. The weights are obtained by studying the code of the existing systems.

This way of estimating the size may not give a correct value because, NH, NR, and NT are fixed irrespec-
tive of the application under consideration. As the patterns can be applied across different domains and
weights in the equation 1 are calculated based on the average LOC of the existing systems, weights may
not converge. By making these four direct measures application specific, and calculating the weights based
on the communication among classes and/or objects, it is possible to estimate the size of a pattern more
accurately. The method is explained in the following sections.

3 Estimating the Relative Size of a Design

At any phase of the software development, accuracy of the estimate depends on the amount of information
known about the final product. So, to estimate the size of a pattern it is necessary to include the details
of the application under consideration. But, designing all the alternative designs with complete information
and selecting only one among them is not advisable. It is because, the effort used for alternative designs
except for the suitable one will be wasted. Hence, it is required to select a suitable pattern with as much less
information as possible. Consider the printer-server example that was explained in the section 2. The paper
[7] has given two alternative designs for this example. These alternative designs are shown in the Figures 3
and 4.

In the Figures 3 and 4 User (U) is requesting the Printer-Server (PS) to print a File (F). PS selects an ideal
Printer (P) among the existing printers. Alternative design one (Figure 3) has Prototype, Singleton, and
Tterator patterns and alternative design two (Figure 4) has Prototype and Chain of responsibility patterns.
In both the designs Prototype pattern is common. So to select a suitable design based on size, Prototype
pattern can be omitted. Also, the functionality of a system should be the same from the end users’ perspective
regardless of the chosen design. The difference is only in terms of how a designer has designed the problem
under consideration. So, to select a suitable design from a set of alternative designs it is sufficient to

4

Singleton

Iterator

Prototype

Figure 3: Alternative Design One

// ~
T T T T T T T T T T s - N
- / N
/ (N
/ v
u , PS/P -
] P
| -
- _______ 0 ____t---" i
I /
/
\ /
\ /
\ F //
\ /
\ 7z
N -
Prototype

Chain of Responsibility

Figure 4: Alternative Design Two

estimate the size of the structure of each alternative pattern in each alternative design. This gives a relative
size measurement among the alternative designs. To estimate the size of the structure of a pattern it is
adequate to consider the communication among the classes and/or objects within that pattern. In other
words the size of the structre of a pattern estimates the number of LOC that is required to implement the
Null Functionality of the pattern. Huang [8] has developed automatic design pattern code generator which
gives null functionality of the Gamma et al. patterns [1].

Object Oriented Function Points (OOFP) [9] and Object Oriented Design Function Points (OODFP) [10]
are based on the logical design and assume complete information that is supposed to be required at the
corresponding phases. Hence, OOFP or OODFP cannot be used to quantify the null functionality. So, a
new procedure called Method Points (MP) is proposed to estimate the null functionality of an alternative
pattern.

4 Method Points

In this section, it is explained how to estimate the relative size of an alternative design. Relative size
of a design is the sum of the number of LOC that are required to implement the null functionality of the
alternative patterns that exist. Relative size is estimated with the help of pattern graphs of the corresponding
patterns.

4.1. Pattern Partition
A pattern is partitioned into two parts.

1. Application Specific Part tells about the number of similar classes, hook methods, template methods
and rigid methods that are required to complete the structure of a pattern based on the application
under consideration. Similar classes are explained in the Section 4.1.1.

2. Fixed Part gives the abstract structure of a pattern i.e. pattern graph.

The methods in a class are broadly categorized into hook methods, template methods and rigid methods.
Hook methods are declared in a class and defined in the derived classes. As the number of children for a
class increases the size corresponding to that hook method also increases. Template method invokes a hook
method and rigid method does not invoke either hook or template method. So, these methods should be
considered independently for estimating the size of the structure of a pattern. Size of the structure of a
pattern also depends on the number of classes in that pattern. The client is not a part of the structure of a
pattern. Even then it tells with how much effort somebody can use the pattern. Therefore, the client should
also be considered while calculating the size of the structure of a pattern. For a pattern, the communication
among the classes and/or objects is fixed. So, the fixed part can be captured as weights for the corresponding
pattern.

The following equation estimates the size S; of the structure of a pattern 4.

NC
Z(wNH]- *NHJ*NC] +
S; = Jj=1 (2)
wNTj *NT] + wNRj *NRJ +
wne; * NCj) + wetient

4.1.1. Application Specific Part

Application specific part captures the values of NH;, NT;, NR; and NC;. NH;, NT; and NR; are the
number of hook, template and rigid methods required for a class j in the pattern graph specific to an

6

Graphic

Draw 8

Add (Graphic)
Remove (Graphic)
GetChild (int)

1

Line Rectangle Text Picture =
Draw O Draw O Draw O

Draw O

Add (Graphic)
Remove (Graphic)
GetChild (int)

Figure 5: Composite Pattern: Drawing-Editor

application. NCj is the number of similar classes that are required for a class j in the pattern graph. It
depends on the application under consideration. If there are no similar classes then NC; equals to one.
Two classes are said to be similar if they belong to the same category. For example, consider the Composite
pattern [1] for the Drawing-Editor application [1]. Its structure and pattern graph are shown in the Figures
5 and 2 respectively. The classes Line, Rectangle and Text belong to the category of Leaf class. The class
Picture belongs to the category of Composite class. So, NC; is three for the Leaf class and NC5 is one for
the Composite class. NHy, NTi, NR;, and NC; for the Leaf class are 1, 0, 0, and 3 respectively. NHs,
NT,, NR,y, and NC, for the Composite class are 4, 0, 0, and 1 respectively.

4.1.2. Fized Part

Pattern graph is derived from class interaction diagram and object interaction diagram of a pattern, which is
fixed irrespective of the application. So, pattern graph captures the fixed part of a pattern. Hence, weights
can be obtained from a pattern graph that are fixed for a pattern independent of the application. wnm;,
WNT;, WNR;, WNc; and wciient are the weights corresponding to NH;, NT;, NR;, NC; and Client.

4.1.3. Calculating Weights

In a pattern graph the communication among classes and/or objects are shown by simple and composite
links. A simple call link from a method or client is considered as ST correspondingly [9, 10]. Also composite
call link from a method or Client is considered as CT correspondingly [9, 10]. Objects in a pattern structure
are not included in its pattern graph. But, they also contribute to the size of a structure of a pattern.
Hence, weight for a method or client that is responsible for creating an object should be given 1 CT. For
example, in an Abstract Factory pattern [1], hook method in the AbstractFactory class is responsible for
creating a concrete products. A class reference is considered as a complex type [9, 10]. So, weight for each
NCj is considered as 1 CT. Hook methods will be overridden in the subclasses so in the Equation 2, WNH,
is multiplied by both NH; and NC;. Based on this method the weights for the design patterns referred in
[1] are given in the Table 1. The weights for Composite pattern are given in the Table 1. The size of the
Composite pattern for Drawing-Editor application (Figure 5) by using the Equation 2 is 8 CT and 2 ST.
But to compare the size of different patterns, ST and CT should be mapped to a single value.

4.1.4. MP Estimation

Application specific data is not considered because common functionality of the alternative designs is sup-
pressed. In this case, OOFP and Function Point (FP) [6] tables cannot be used to map ST and CT to a
single value. They will give high value even for a simple problem.

7

[11, 12] have given threshold values for average number of children per class as six, number of methods
overridden by a subclass as three, and average number of instance methods per call as twelve. Also it is
observed that a pattern consists of maximum number of three pattern classes other than client. According to
the authors observation across different patterns [1, 13] not more than two key classes consists of maximum
threshold values. From the Table 1, the following points are inferred.

e The value of wxg is 1 CT or 2 ST for not more than one pattern class.

e The value of wyT or wyg is 1 CT or 1 ST for not more than one pattern class.
e Maximum value of NCj is 6

e Maximum value of NH; is 3

e Maximum value of NR; + NTj is 12

e Maximum value of woyient is 1 CT or 2 ST

From these observations and Equation 2 maximum value of CT for any pattern is 43 {(6*3)+12+(2*12)+1}.
Similarly maximum value of ST is 50 {((6*3)*2)+12+0+2}.

To convert ST and CT to a single value, different patterns are implemented with null functionality in
C++ with varying values of NHj;, NT;, NR;, and NC;. Also, tools [14, 8] are available to generate
code automatically for a given design pattern with application specific information. Null functionality was
considered because data was not included for estimating the size of the structure of a pattern. Jones [15]
has observed different projects and has given that 1 FP = 30 LOC of C++. The same value of LOC was
considered for 1 MP. For each implemented pattern, ST and CT were calculated by using the corresponding
weights and Equation 2. The values of MP for each implemented pattern were tabulated with CTs as rows
and STs as columns. Right now method points were obtained only from a fixed set of patterns [1]. As this
backfiring is applied on different patterns across different domains it is possible to get more accurate values
of method points. The method points are presented in the Table 2.

Size of an alternative pattern can be estimated in the following manner:

1. Calculate wnH,;, WNT;, WNR;, WNc; and woiient from the pattern graph for each alternative pattern
in a design.

2. Identify NH;, NT;, NR; and NCj; based on the application.

3. Equation 2 calculates the total number of Simple Types (ST) and Composite Types (CT) for the
corresponding pattern.

4. MP can be obtained by using the Tables 2.

5. An organization can use their own conversion value from MP to LOC or Jones [15] values.

To see the trade-off, consider the printer-server problem that was discussed in Section 2. The values of SA,
DA and EX are taken from [2]. Assume that five printers are connected to the print-server. Iterator pattern
has two pattern classes in the pattern graph viz., aggregate and iterator. For aggregate class NHy, NTj,
NR; and NCj are 1, 0, 0 and 5 respectively. The hook methods considered for the iterator class are First
(), Next (), IsDone () and Currentltem (). NHs, NT5, NRy and NC> for iterator class are 4, 0, 0 and 1

8

respectively. Chain of responsibility has one class in the pattern graph viz., Handler. For Handler N Hy,
NTi, NR; and NCy are 1, 0, 0 and 5. From the Table 3 it is observed that alternative design one is better
from the view point of DA, whereas alternative design two has less LOC and more EX and SA. Therefore,
the effort required to implement the alternative design two will be less. A designer can select a suitable
pattern according to the application and the trade-off shown in the Table 3.

4.3. Relative Measure

The method proposed for estimating the size of the structure of a pattern brings out the concept of estimating
the relative measure. Assume that there are different solutions to solve a problem for a software system.
Then it is adequate to estimate relative measures for different characteristics for that system. Hence, relative
measures are placed well to choose a suitable solution when alternative solutions exit to solve a problem.

5 Conclusions

It is not always possible to use tools for code automation, could be because of its cost. [8] tool generates
automating code only for Gamma et al. patterns [1]. So, it would be useful if simple manual procedure
is available to estimate the relative size of alternative designs. A simple and elegant method is proposed
and illustrated to estimate the relative size of a design when alternative designs exist. While calculating
size, the method considers the application under consideration. The proposed method minimizes the effort
involved in choosing a suitable design specific to an application based on size. After selecting a suitable
design OODFP can be used to estimatte the actual size. To estimate the relative size method points is
proposed which estimates the null functionality of alternative designs. The reliability and validity of method
points needs to be tested across different projects. Finally, the method provides a new concept of relative
measure that does not exist in the literature. It is possible to estimate different characteristics of a software
system in terms of relative measures when a developer has alternative solutions.

REFERENCES

[1] Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable of
Object-Oriented Software. California, New York: Addison Wesley, 1995.

[2] Janaki Ram, D., K. N. Anantharaman, K. N. Guruprasad, M. Sreekanth, S. V. G. K.
Raju, and A. A. Rao, (2000), An Approach for Pattern Oriented Software Development Based on a
Design Handbook, Annals of Software Engineering, vol. 10, pp. 329-358.

[3] Levitin, A. V., (1986), How To Measure Software Size, And How Not To, 10** International Computer
Software and Applications Conference, Chicago, pp. 314-318.

[4] Low, G. C. and D. R. Jeffery, (1990), Function Points in the Estimation and Evaluation of the
Software Process, IEEE Transactions on Software Engineering, vol. 16, pp. 64-71.

[5] Matson, J. E., B. E. Barrett, and J. M. Mellichamp, (1994), Software Development Cost Esti-
mation Using Function Points, IEEE Transactions on Software Engineering, vol. 20, pp. 275-287.

[6] IFPUG, Function Point Counting Practices Manual Release 4.1. Westerville, Ohio: International
Function Point Users Group, 1999.

[7] Janaki Ram, D., K. N. Anantharaman, and K. N. Guruprasad, (1997), A Pattern Oriented
Technique for Software Design, ACM Software Engineering Notes, vol. 22, pp. 70-73.

[8] Huang, J. Q., The Designer’s Assistant Interface. Available at
http://csg.uwaterloo.ca/dptool /interfac.htm.

[9] Caldiera, G., G. Antoniol, R. Fiutem, and C. Lokan, (1998), Definition and Experimental
Evaluation of Function Points for Object-Oriented Systems, Proc. of the 5** International Symposium
on Software Metrics, November, pp. 167-178.

[10] Janaki Ram, D. and S. V. G. K. Raju, (2000), Object Oriented Design Function Points, Proceedings
of the Frist Asia-Pacific Conference on Quality Software, Kowloon, Hong Kong, October, pp. 121-126.

[11] Linda, H. R., (1998), Applying and Interpreting Object Oriented Metrics, Software Technology Con-
ference, Utah. Available at http://www.hq.nasa.gov/office/hglibrary /books/nasadoc.htm.

[12] Lorenz, M. and J. Kidd, Object-Oriented Software Metrics. New Jersey: PTR Prentice Hall, 1994.

[13] Lavender, R. G. and D. C. Schmidt, (1995), Active Object : An Object Behavioral Pattern for
Concurrent Programming, Proc. of the 2" Annual Conference on the Pattern Languagues of Programs,
Monticello, Illinois, September, pp. 1-7.

[14] Budinsky, F. J., M. A. Finnie, J. M. Vlissides, and P. S. Yu, (1996), Automatic Code Generation
from Design Patterns, IBM Systems Journal, vol. 35, no. 2, pp. 151-171.

[15] Jones, C., (1995), Backfiring: Converting lines of code to function points, IEEE Computer, vol. 29,
pp. 86-87.

10

Table 1: Weights for Gamma Patterns

Pattern j | Class Name WNH | WNT | WNR | WNC;
Abstract 1 | Abstract 1CT 0 0| 1CT
Factory Factory
Client 1ST
1 | Director 0|1ST 0] 1CT
Builder 2 | Builder 1CT 0 0] 1CT
Client 2 ST
Factory 1 | Creator 1CT [1ST | 0] 1CT
Method Client 1ST
Prototype 1 [Prototype 0] 0| 0] 1CT
Client 1ST
Singleton 1 | Singletor 0] o] ojicT
Client 1ST
Class 1 [Adapter 1ST | 0[1CT[1CT
Adapter Client 1ST
Object 1 | Adapter 1ST 0 0] 1CT
Adapter 2 | Adaptee 0 0 0] 1CT
Client 1ST
1 | Abstraction 0|1ST 01CT
Bridge 2 | Implementor 0 0 0| 1CT
Client 1 ST
1 | Leaf 0 0 0] 1CT
Composite 2 | Composite 1CT 0 01CT
Client 2 ST
1 | Component 0 0 0|1CT
Decorator 2 | Decorator 2 ST 0 01CT
Client 2 ST
1 | Factory 0 0 0| 1CT
Flyweight 2 | Shared 0 0 0] 1CT
3 | Unshared 0 0 0l1CT
Client 25T, 1ICT
1 | Proxy 1ST 0 01CT
Proxy 2 | Real Subject 0 0 01CT
Client 1ST
Chain of 1 | Handler 1ST | 0 | 0 | 1CT
Responsibility Client 1ST
1 | Invoker 0| 1S8ST 0] 1CT
Command 2 | Command 1ST 0 0] 1CT
3 | Receiver 0 0 0] 1CT
1 | Terminal Expression 0 0 0|1CT
Interpreter 2 | Nonterminal Expression | 1 CT 0 0|1CT
Client 1CT, 2ST

11

Table 1: Weights for Gamma Patterns (contd.)
Pattern | j | Class Name wyH | WNT | WNR | WNC;
1 | Aggregate 1CT 0 0| 1CT
Iterator 2 | Iterator 0 0 0] 1CT
Client 2 ST
1 | Mediator 1CT 0 0] 1CT
Mediator | 2 | Colleague 18T 0 0] 1CT
Client 0
1 | Subject 0]1CT 01CT
Observer | 2 | Observer 1ST 0 0] 1CT
Client 2 ST
1 | Context 0| 1ST 0] 1CT
State 2 | State 0 0 0] 1CT
Client 18T
1 | Context 0| 1ST 0] 1CT
Strategy | 2 | Strategy 0 0 0| 1CT
Client 1ST
Template | 1 | Class 0] 18T] 0] 1CT
Method Client 1ST
1 | Object Structure 0]1CT 0|1CT
Visitor 2 | Element 1ST 0 0] 1CT
3 | Visitoir 0 0 0] 1CT
Client 1ST
Table 2: CT & ST Table
1-10 ST | 11-20 ST | 21-30 ST | 31-40 ST | 41-50 ST
1-5 CT MP 2 MP 2 MP 3 MP 4 MP
6-10 CT 2 MP 3 MP 4 MP 4 MP 5 MP
11-15 CT 3 MP 4 MP 4 MP 5 MP 6 MP
16-20 CT 4 MP 5 MP 6 MP 7 MP 8 MP
21-25 CT 6 MP 7 MP 8 MP 9 MP 10 MP
26-30 CT 8 MP 9 MP 10 MP 11 MP 12 MP
31-35 CT 10 MP 11 MP 12 MP 13 MP 14 MP
35-43 CT 12 MP 13 MP 14 MP 15 MP 16 MP
Table 3: Trade-off for the Printer-Server Problem
Pattern | Estimated Relative | Actual Relative | Actual Size | SA | DA | EX
Size (LOC) Size (LOC) (LOC)
Design 1 60 77 202 0.43 5 0
Design 2 30 45 140 1 2 4

12

