
 1

Extending Software Quality Predictive Models Using Domain Knowledge

Houari Sahraoui, Mohamed Adel Serhani
University of Montreal

{sahraouh, serhanim}@iro.umontreal.ca

Mounir Boukadoum
University of Quebec at Montreal

boukadoum.mounir@uqam.ca

Abstract
Current methods to build software quality estimation models suffer from two problems: The use of
precise threshold values and their interpretation in the absence of formal models, and the crudeness
of the derived rules which can only serve to build naïve models. In this position paper, we describe
a novel approach to alleviate both problems. We propose to build fuzzy decision processes that
combine both software metrics and heuristic knowledge from the field. As a result, quality
estimation models are obtained that are both efficient and that provide a more comprehensive
explanation of the relationship that exists between the observed data and the predicted software
quality characteristic.

1 Position

Building efficient and usable software quality estimation models is an important challenge for both
research and industry communities. The work done so far can be classified into two families. The
first one deals with the use of historical measurement data to build quality estimation models (see

for example [6]). The quality of these models depends heavily on the quality of the used samples.

Most of them capture the trends but fail in the definition of widely applicable threshold values for

the rules that are generated [3]. Moreover, as stated by Fenton & Neil in [2], the majority of the

produced models are naïve; they cannot provide a decision support during the software development
process. The cognitive distance between the internal measures and the quality characteristic to
predict is too far.

The second family of techniques to build software quality estimation models uses knowledge
extracted from domain-specific heuristics. The obtained predictive models involve judgments from
experts to establish a causal relationship between internal software attributes and quality

characteristics (see for example [5]). Although they are adapted to the sought decision-making

process, these models are hard to generalize because of a lack of widely acceptable common
knowledge in the field of software quality.

This position paper claims that we can get the best from both worlds by using a hybrid approach for
building predictive models. This approach would allows to:

­ Circumvent the problem of specific threshold values in rules by using fuzzy ones
­ Benefit from the historical data to establish statistically significant relationships
­ Integrate the domain knowledge to make the models more useful

 2

Section 2 presents our approach; it explains the rationale behind it and describes its main steps. A
brief discussion then follows in section 3.

2 Deriving causal models from naïve ones

2.1 Rationale
As said in the previous section, naïve models, whether built using statistical or artificial intelligence
techniques, efficiently capture the relationship (trends) between software internal attributes and
quality characteristics. However, they present two major problems. Firstly, the threshold values that
define boundaries for the obtained classes are too specific to the data samples used to derive them.
As it is hard to perform a rigorous sampling due to the lack of reliable data, the obtained models are

hard to generalize. In a previous work [3], we showed that the generalization problem comes more
from the thresholds values than from the derived trends. The second problem is related to the fact
that the models cannot be used to make comprehensive decisions during the software lifecycle. To
illustrate these two problems, consider the following examples: The rule below is part of a
maintainability predictive model obtained by applying a machine-learning algorithm to a set of
classes (sample).

If the number of methods in a class c is greater than 20, then c is hard to maintain

This rules establishes a relationship between the number of methods and the maintainability of a
class. However, the proposed threshold value (20) is obtained from empirical data. This brings the
problem of its precision and interpretation. For instance, why 20 in this example and not 19 or 21?
Why is a class with 20 methods easy to maintain and one with 21 not?

As a second example, consider the family of models effort=f(size) obtained using linear regression.
A manager cannot use these models for risk assessment because they do not explain the relationship

between the two variables [2]. We cannot answer questions such as “Why do large systems need

more development effort?” or “What can I do if the number of available resources is less than the
number predicted by the model?”

 The approach we propose aims at solving these two problems. It consists in the transformation of a
naïve model by:

• Mapping precise threshold values into fuzzy ones.
• Including domain knowledge to explain the relationship between independent and depend

variables.

In a first stage, we are only applying our approach to machine learning-based models. The
procedure includes two main steps: 1) fuzzification of the naïve model’s rules, starting with the
internal attributes metrics used as input for the prediction, and 2) combination of the obtained fuzzy
rules with domain heuristics and creation of new rules. The inputs and outputs of these two steps are
shown in
Figure 1.

 3

Input fuzzification

 Fuzzy rule derivation

 Causal model Naïve model

Sample data

Domain-specific heuristics

Figure 1. Naïve to causal model transformation

The following sections describe the two steps of the transformation.

2.2 Input fuzzification

Many fuzzification techniques have been proposed in the literature to fuzzify quantitative attributes.

Some of them are simple to use, others are more sophisticated [4]. In our approach, we use a simple

technique that is based on the distribution of the measurement data. We calculate for each input
(metric) value its frequency and we derive homogeneous clusters from the resulting curve. The
clusters represent the fuzzy labels of the input me tric. In some cases, we must first apply an
additional processing to the curve in order to reveal the clusters.

To illustrate this technique consider the following table containing the values of some metrics for a
set of classes.

 DIT NOC NPA NAA …….. OCAIC OCAEC
Classe 1 1 1 3 5 2 1
Classe 2 2 3 4 10 1 0
…..
Classe n 1 2 3 8 1 1

 Figure 2 shows the distribution of the values of NPA (Number of Public Attributes) metric.

 4

NPA

NPA

65,00

51,00

41,00

34,00

31,00

29,00

24,00

22,00

20,00

18,00

16,00

14,00

12,00

10,00

8,00

6,00

4,00

2,00

,00

F
re

qu
en

cy

3000

2000

1000

0

Figure 2. Table of metric value and their relative histogram

By looking at the obtained result, it is hard to derive homogenous clusters. As most of the classes
have no public attributes; this makes the bars for the other values difficult to see. To solve this
problem, we apply a logarithmic transformation to the frequency values to boost the smaller values
and to flatten the larger ones. The result is shown in Figure 3.

Figure 3. Frequency logarithm curve

In Figure 3, three homogeneous clusters of values can now be seen. Starting from these clusters, we
can define three fuzzy labels for the NPA metric and associate a membership function with each of
them. The next step is to define and assign a membership function to each one of them as shown in
Figure 4. Standard membership function shapes (trapeze or triangle) may be used.

Any value of the metric NPA can then be mapped into the three labels with different membership
values (between 0 and 1).

It is easy to associate the threshold values with the rules using the obtained membership function.
The principle is to choose the labels that best match the condition in the rule. For the example given

 5

in section 2.1, the condition if number of methods greater than 20 becomes if number of methods is

large. The obtained rule is then

if number of methods of a class c is large, then c is hard to maintain

Figure 4. Membership functions

2.3 Rules derivation

Unfortunately, although the previous rule shows a reasonable relationship, it is hard to use as a
decision support. It is not clear why large classes are hard to maintain. The key point at this point is
to add the missing parts that would enable us to explain the causality between the internal software
attributes and the predicted quality characteristic. To do this, we break a rule into a set of intuitive
and easier to validate sub rules by including domain knowledge. To illustrate the domain knowledge
integration, let’s take the particular case of the following rule.

If DAM(c) <= 0,7, then c can become unstable during the evolution of the system

DAM(Data Access Metric) is the percentage of private and protected attributes in a class.

The condition If DAM(c) <= 0,7 can be mapped to the fuzzy condition if DAM is small or medium
because <= 0,7 matches the membership functions of the labels small and medium. The new rule
can be viewed as in Figure 5 where a dotted arrow means that the relation between the two variables
is to be refined. This is accomplished by searching the domain knowledge for heuristics
(relationships) that can connect the facts DAM medium and/or DAM small to an intermediate
conclusion, which can possibly lead to the final conclusion (class unstable).

Small Medium Large

 6

Figure 5. Naive rule with fuzzy threshold values

As illustrated in Figure 6, different intermediate relations can be found. One of them is that if DAM
is medium or small, then most of the attributes are visible to the other component of the system.
This would lead to the conclusion that the potential coupling between the studied class and the rest
of the system is high and we represent this relation with a solid arrow to mean that it is intuitive and
verifiable.

Figure 6. Introduction of a first level of intermediate conclusions

Following the same principle, we must refine all the relations represented by dotted arrows. In our
example, the relation between potential coupling high and class unstable can be decomposed using
the domain heuristic that state that a potential high coupling can lead to a high risk of change side
effect (see Figure 7). Indeed, any change in the system can generate errors in the studied class. The
relation between High risk of change side effect and Class unstable is considered as intuitive and is
then represented by a solid arrow. The process of refinement continues until all the relations are
intuitive and verifiable. The obtained partial causal model is better at showing the reasoning process
and can then be used a decision support during the software development process.

DAM

Medium

Class
unstable

DAM
Small

DAM
Medium

DAM
Small

Class
unstable

Potential
coupling high

 7

Figure 7. Final refinement of the rule of Figure 5

The fuzzy rule derivation step can be summarized in the following constraint programming
algorithm.

Ri : Rule
NR : Set of naïves rule
CR : Set of causal rules
ICR : Set of initial rules
FCR : Set of final rules

FOR EACH rule Ri in NR DO

Derive a set of rules CRi using domain specific heuristics such that:
a - There exists a subset of rules ICRi where the conditions are fuzzy conditions of type”M1 labelj”
b - There exists a subset of rules FCRi where the conclusions are the estimation of the quality
characteristic.
c - The condition of each rule in CRi-ICRi are conclusion of rules in CRi
d - Each rule in CRi represents a verifiable causal relationship

END DO

3 Discussion and conclusion

In this position paper, we propose a hybrid approach to bridge the gap between two families of
work for building and using software quality predictive models. The two families offer
complementary advantages. Historical measurement data-based approaches derive statistically-
correct relationships between software internal attributes metrics and quality characteristics. In the
same time, domain knowledge-based approaches are easy to use for their explanatory capabilities.
Rather building the latter from scratch, we propose to extend the former using domain heuristics. In
addition to this extension, we transform the precise threshold values using fuzzy logic.

We are currently conducting experiments to compare our models with measurement data-based
ones. In these experiment, we extend existing predictive models by adding domain knowledge. This
comparison will be made on two aspects: (1) the accuracy of the models on a set of unseen cases,
and (2) the usability of the models and their explanatory capabilities.

DAM
Medium

DAM
Small

Class
unstable

Potential
coupling

high

high risk of change
sideeffect

DAM
Medium

DAM
Medium

DAM
Small
DAM
Small

Class
unstable

Class
unstable

Potential
coupling

high

Potential
coupling

high

high risk of change
sideeffect

high risk of change
sideeffect

 8

The next stage of this work is to automate the two main steps. The automation of the fuzzification
process can be easily done except for defining the label boundaries. Different fuzzification
techniques can be used and most of them can be automated (see, for example, the technique

proposed by Marsala and Meunier in [1] which uses mathematical morphology concepts - dilatation

and erosion). The second step is hard to automate. One solution can be the creation of a repository
containing a large set of intuitive relationships between the different attributes of the software, as an
alternative to the dynamic involvement of the expert during the creation of the model. The
refinement can be then automated by searching in this repository the appropriate relationships.

References

[1] “Fuzzy Partitioning Using Mathematical Morphology in a Learning Scheme” Christophe
Marsala, Bernadette Bouchon-Meunier.

[2] Norman E Fenton, Mar tin Neil, Software Metrics : Roadmap ICSE - Future of SE Track

2000: 357-370

[3] Houari A. Sahraoui, Mounir Boukadoum, Hakim Lounis, Frédéric Ethève, Predicting Class
Libraries Interface Evolution: an investigation into machine learning approaches, In Proc.
of 7th Asia-Pacific Software Engineering Conference, 2000.

[4] Bart Kosko, Fuzzy Engineering, Prentice Hall, 1996.

[5] N. E. FENTON N. OHLSSON, “Quantitative Analysis of Faults and Failures in a Complex

Software System”, In IEEE Transactions on Software engineering, 26(8), 797-814, 2000.

[6] M.A. DE ALMEIDA , H. LOUNIS & W. MELO. “An Investigation on the Use of Machine
Learned Models for Estimating Software Correctability”. In the International Journal of
Software Engineering and Knowledge Engineering, p. 565–593, vol. 9, number 5, October
1999.

