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Abstract.  As class diagrams constitute a key artifact in the development of object-oriented 

information systems (OOIS), their quality is crucial because it has a great impact on the 

quality of the OOIS which is ultimately implemented. For that reason, we have defined  a 

set of measures for evaluating the structural complexity (an internal quality attribute) of 

class diagrams made using the unified Modeling Languages (UML). These measures could 

be useful to predict class diagram external quality characteristics, such as maintainability, 

early in the OOIS life-cycle. In order to demonstrate that those metrics serve the purpose 

they were defined for, we have put them under empirical validation by means of a 

controlled experiment. The explanation of the steps followed to do the experiment and the 

construction of the prediction model for the maintainability of class diagrams are the main 

objectives of this paper. 
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1. INTRODUCTION 

A great effort has been made in the field of software measurement in order to achieve better 

quality OOIS (Henderson-Sellers, 1996; Melton, 1996, Zuse, 1998; Fenton and Pflegger, 1997), 

but most of them pursue the goal of evaluating -by means of quantitative measures- the quality of 

the final product, i.e. the code or the advanced design. We believe that in order to get better OOIS 

we should focus on measuring  the quality characteristics of early artifacts, such as class 

diagrams, and based on those measurements thereby obtain early in the life-cycle a prediction 

model for OOIS quality characteristics (ISO, 1999), like for example maintainability.   



 

 

As class diagrams constitute a key artifact in the development of OOIS, their quality is crucial 

because it has a great impact on the quality of the OOIS which is ultimately implemented. 

In response to the great demand for measures for measuring quality characteristics of class 

diagrams, such as  maintainability (ISO, 9126) and after a thorough review of some of the 

existing OO measures that can be applied at a high level design stage (Chidamber and Kemerer, 

1994; Lorenz and Kidd, 1994, Brito e Abreu and Carapaçua, 1994; Marchesi, 1998) we have 

proposed a set of measures for UML class diagram structural complexity in Genero et al. (2000). 

As maintainability is an external quality characteristic that can be evaluated once a product is 

finished or nearly finished, we center our work on measuring an internal quality characteristic, 

the structural complexity of class diagrams. Our idea is to use those measures to predict class 

diagram maintainability early in the OOIS development.  

We have defined those measures in a methodological way (Calero et al., 2001) including three 

main tasks: metric definition, theoretical validation and empirical validation.  Although the three 

steps are equally relevant in order to define correct metrics, we focus  this paper on the empirical 

validation of the proposed metrics. Empirical validation is critical for the success of any 

measurement activity (Kitchenham et al., 1995; Fenton and Pflegeer, 1997; Schneidewind, 1992; 

Basili et al., 1999).Through empirical validation we can demonstrate with real evidence that the 

measures we proposed serve the purpose they were defined for and that they are fruitful in 

practice.  
 

The objective of this paper is threefold: 

1) To present metrics for UML class diagram structural complexity (see section 2) 

2) To show a controlled experiment we have carried out in order to evaluate if there is 

empirical evidence that UML class diagram structural complexity metrics are correlated 

with maintainability sub-characteristics: such as understandability, analysability and 

modifiability (ISO, 1999) (see section 3). 

3) To use the empirical data for building prototypes, that characterise UML class diagram 

maintainability (see section 4),  and based on those prototypes topredict UML class 

diagram maintainability early in the OOIS development life-cycle (see section 5). 
  

Finally in section 6, we present some concluding remarks and future trends in metrics for object-

oriented conceptual modelling using UML. 



 

 

 

2. DEFINITION OF METRICS FOR UML CLASS DIAGRAM STRUCTURAL 

COMPLEXITY  

We only present here those metrics presented in Genero et al. (2000) which can be applied at 

class diagram level as a whole (see table 1). These  metrics measure the structural complexity of 

UML class diagrams due to the use of relationships, such as associations, generalisations, 

aggregations and dependencies. We also consider traditional metrics such as, the number of 

classes, the number of attributes, etc.   

 
Metric name Metric definition 

NUMBER OF CLASSES (NC)  The total number of classes.  
NUMBER OF ATTRIBUTES (NA) The total number of attributes. 
NUMBER OF METHODS (NM)  The total number of methods  
NUMBER OF ASSOCIATIONS (NAssoc)  The total number of associations  
NUMBER OF AGGREGATION (NAgg)  The total number of aggregation relationships within a class 

diagram (each whole-part pair in an aggregation relationship) 
NUMBER OF DEPENDENCIES (NDep)  The total number of dependency relationships 
NUMBER OF GENERALISATIONS (NGen)  is defined as the total number of generalisation relationships 

within a class diagram (each parent-child pair in a 
generalisation relationship) 

NUMBER OF GENERALISATIONS HIERARCHIES 
(NgenH) 

The total number of generalisations hierarchies in a class 
diagram 

MAXIMUM DIT  It is the maximum between the DIT value obtained for each 
class of the class diagram. The DIT value for a class within a 
generalisation hierarchy is the longest path from the class to 
the root of the hierarchy. 

MAXIMUM HAGG It is the maximum between the HAgg value obtained for each 
class of the class diagram. The HAgg value for a class within 
an aggregation hierarchy is the longest path from the class to 
the leaves. 

Table 1.  Metrics for UML class diagram structural complexity 
 

These metrics allow OO designers:   

1. a quantitative comparison of design alternatives, and therefore an objective selection among  

several class diagram alternatives with equivalent semantic content. 

2. a prediction of external quality characteristics, like maintainability in the initial phases of the 

OOIS life cycle and a better resource allocation based on these predictions. 

 



 

 

3. EMPIRICAL VALIDATION OF THE PROPOSED METRICS 

 
In this section we describe an experiment we have carried out for empirically validating the 

proposed metrics (see section 2). As Wholin et al. (2000) stated, we should be able to draw 

conclusions about the relationship between the cause and the effect for which we stated a 

hypothesis (which we want to corroborate by means of experiments), only if the experiment is 

properly set up. Therefore, we have followed some suggestions provided by Wholin et al. (2000),  

Perry et al. ( 2000) and Briand et al. (1999) about how to perform controlled experiments. 

To perform an experiment, several steps have to be taken and they have to be in a certain order. 

The experiment process can be divided into the following main activities (Wohlin et al., 2000): 

1) Definition, where we define the experiment in terms of problem, objective and goals. 

2) Planning, where the design of the experiment is determined, the instrumentation is 

considered and the threats to the experiment are evaluated 

3) Operation, in this phase measurements are collected. 

4) Analysis and Interpretation, where collected data are analysed and evaluated. 

5) Presentation and Package, where results are presented and packaged. 

 
In the remainder of this section we explain how we have performed each of the activities 

described above. 

 
3.1 Definition 
As Wholin et al. (2000) suggested, we follow the GQM template (Basili and Weiss, 1984; Basili 

and Rombach , 1988; Van Solingen and Berghout, 1999) for goal definition. This results in the 

following goal: 

 
Analyse    UML class diagrams complexity metrics 
For the purpose of   Evaluating 
With respect to   the correlation with maintainability sub-characteristics 
From the point of view of  researchers  
In the context of   M.Sc. students and professors of the Engineering Software Area in 

the Department of Computer Science in the University of Castilla-
La Mancha. 

 
 
 
 
 



 

 

3.2 Planning 
After the definition of the experiment, the planning took place. The definition determines the 

foundation of the experiment -why the experiment is conducted- while the planning prepares for 

how the experiment is conducted. 
 
3.2.1 Context selection  

The context of the experiment is a group related to the area of Software Engineering. at the 

university, and hence the experiment is run-off line (not industrial software development), it is 

conducted  by 7 professors and 10 students enrolled in the final-year of Computer Science in  the 

Department of Computer Science at the University of Castilla-La Mancha in Spain. All of the 

professors belong to the Software Engineering area.  

The experiment is specific since it is focused on UML class diagram structural complexity 

metrics. The ability to generalise from this specific context is further elaborated below when 

discussing threats to the experiment. The experiment addresses a real problem the correlation 

between metrics and maintainability sub-characteristics. 

 

3.2.2 Hypothesis formulation 

An important aspect of experiments is to know and to state in a clear sand formal fashion what 

we intend to evaluate in the experiment. This lead us to the formulation of a hypothesis (or 

several hypothesis). We wish  to test the hypothesis that there is a significant correlation between 

the current metric data set (NC, NA, NM, NAssoc, NAgg, NDep, NGen, NAggH, NGenH, 

MaxHAgg, MaxDIT) and the subject´s rating of three maintainability sub-characteristics, such as 

understandability, analysability and modifiability. 

 

3.2.3 Variables selection  

The independent variable is the UML class diagram structural complexity 

The dependent variables are three maintainability sub-characteristics: understandability, 

analysability and modifiability. 

  

3.2.4 Selection of subjects 

The subjects are chosen for convenience, i.e. the subjects are students and professors that have 

experience in the design and development of OOIS.  



 

 

 

3.2.5 Experiment design 

We selected a within-subject design experiment, i.e. all the tests were solved by the same group 

of subjects. The tests were put in a different order for each subject. 

 

3.2.6 Instrumentation 

The objects were class diagrams done using UML. 

The independent variable was measured through the metrics,  presented in section 2. 

The dependent variables were measured according to subject’s rating.  

 

3.2.7 Validity evaluation  

We will discuss the empirical study’s various threats to validity and the way we attempted to 

alleviate them: 

− THREATS TO CONSTRUCT VALIDITY. We propose subjective metrics for measuring each of the 

dependent variables (maintainability sub-characteristics) based on the judgement of the 

subjects (see section 3.2). As the subjects involved in this experiment have medium 

experience in UML class diagram design we think their ratings can be considered significant. 

The independent variables (each of the metrics proposed in section 2) that measure the 

structural complexity of class diagrams can also be considered constructively valid, because 

from a system theory point of view, a system is called complex if it is composed of many 

(different types of elements), with many (different types of) (dynamically changing) 

relationships between them (Poels and Dedene, 2000a).  

− THREATS TO INTERNAL VALIDITY. Seeing the results of the experiment we can conclude that 

empirical evidence of the existing  relationship between the independent and the dependent 

variables exists. We have tackled different aspects that could threaten the internal validity of 

the study, such as: differences among subjects, knowledge of the universe of discourse among 

class diagrams, accuracy of subject responses, learning effects, fatigue effects, persistence 

effects and subject motivation. 

− THREATS TO EXTERNAL VALIDITY. Two threats to external validity have been identified which 

limit the ability to apply any such generalisation, and we have tried to alleviate them:  

materials and tasks, and subject selection. In general in order to extract a final conclusion that 



 

 

can be generalised, we need to replicate this experiment with a greater number of subjects, 

including practitioners. After doing replication we will have a cumulative body of 

knowledge; which will lead us to confirm if the presented metrics could really be used as 

early quality indicators, and could be used to predict class diagram maintainability. 

 
3.3 Operation 
 
3.3.1 Preparation 
 
By the time the experiment was done all of the students had had two courses on Software 

Engineering, in which they learnt in depth how to build OO software using UML. All the selected 

professors had enough experience in the design and development of OOIS. Moreover, subjects 

were given an intensive training session before the experiment took place.The subjects were not 

aware of what aspects we intended to study. Neither they were aware of the actual hypothesis 

stated. 

We prepared the material we had to give to the subjects, consisting of 28 class diagrams of the 

same universe of discourse, related to Bank Information Systems.  Each diagram has a test 

enclosed which includes the description of maintainability sub-characteristics, such as: 

understandability, analysability, modifiability. Each subject has to rate each sub-characteristic 

using a scale consisting of seven linguistic labels. For example for understandability we proposed 

the following linguistic labels: 

 
Extremely 

difficult to 

understand 

Very 

difficult to 

understand 

 

A bit 

difficult to 

understand 

Neither 

difficult nor 

easy to 

understand 

Quite easy 

to 

understand 

Very easy 

to 

understand 

Extremely 

easy to 

understand 

 

We also prepared  a debriefing questionnaire. This questionnaire included (i) personal details and 

experience, (ii) opinions on the influence of different components of UML class diagrams, such 

as: classes, attributes, associations, generalisations, etc... on their maintainability. 

 
 

 
 
 
 



 

 

3.3.5 Execution 
The subjects were given all the material described in the prveous section. We explained tothem 

how to carry out the experiment. We allowed one week to do the experiment, i.e., each subject 

had carry out the test alone, and could use unlimited time to solve it. 

We collected all the data, including subjects´rating obtained from the responses of the experiment 

and  the metrics values automatically calculated by means of  a metric tool we had designed.  

 
3.3.6 Data Validation 
All tests were considered valid because all of the subjects have at least medium experience in 

building UML class diagrams and developing OOIS. 

 
3.4 Analysis and Interpretation 
As we have said before, our goal is to ascertain if any correlation exists between each of the 

proposed metrics (see section 2) and three of the maintainability sub-characteristics: 

understandability, analisabilisty and modifiability. 

Spearman´s correlation was used to determine the correlation of the data collected in the 

experiment, shown in  Appendix A. The correlation coefficient is a measure of the ability of one 

variable to predict the value of another variable. Using Spearman´s correlation coefficient, each 

of the metrics was correlated separately to the different subject´s rates of understandability, 

analysability and modifiability (see table 2). 
 

 NC NA NM NAssoc NAgg NDep NGen NAggH NGenH MaxHagg MaxDIT 

Understandability 0.961 0.941 0.929 0.753 0.813 0.518 0.876 0.714 0.902 0.728 0.749 
Analysability 0.966 0.940 0.916 0.733 0.822 0.534 0.868 0.720 0.921 0.722 0.738 
Modifiability 0.950 0.924 0.908 0.733 0.818 0.522 0.865 0.719 0.888 0.725 0.751 

Table 2. Spearman´s correlation between UML class diagrams structural complexity metrics 
and understandability, analysability and modifiability 

 
Analysing the Spearman´s correlation coefficients shown in table 4, we can conclude that there 

exists a high correlation between most of the UML class diagram structural complexity metrics 

and the subject´s rating of understandability, analysability and modifiability. We can deduce this 

due to the fact that almost all the metrics have a correlation greater than 0.7.  NDep is the only 

one that has a lesser correlation. This fact should be studied in detail by carrying out further 

experimentation. 



 

 

 
3.5 Presentation and package 
The last activity is concerned with presenting and packaging of the findings. The diffusion of the 

experimental results and the way they are presented are relevant so that they are really put into 

use. Therefore we published our findings in this paper, and we are also planning to publish a lab 

package on the web for replication purposes. 
 

4. A PREDICTION MODEL FOR UML CLASS DIAGRAM MAINTAINABILITY 

In this section we explain the steps involved in the Fuzzy Prototypical Knowledge Discovery 

(FPKD) process (Olivas and Romero, 2000; Olivas, 2000), which lead us to the construction of 

fuzzy prototypes (Zadeh, 1982) that characterise the maintainability of UML class diagrams. The 

FPKD is a fuzzy extension of the traditional Knowledge Discovery in Databases (KDD) (Fayyad, 

1996). 

The prototypes obtained from the FPKD form  the foundation of the prediction model that allows 

us to predict class diagram maintainability. This approach is more representative than standard 

approaches, because the use of an isolated algorithm or method  over- simplifies the complexity 

of the problem. Statistical methods or decision trees (ID3, C4.5, CART) are only classification 

processes, and it is very important to include a clustering model for finding some kinds of 

patterns in the initial chaos of data. The use of fuzzy schemas allows us to achieve  better and 

more understandable results, concerning patterns and prediction results. 

 

4.1 The FPKD process  
 
The FPKD process consist of different steps: 

− SELECTION OF THE TARGET DATA.  We have taken as a start set a relational database that 

contains 476 records (with 14 fields, 11 represent metric values, 3 represent maintainability 

sub-characteristics, understandability, analysability and modifiability respectively) obtained 

from the calculation of the metric values (for each class diagram) and the responses of the 

experiment given by the subjects. 

− PREPROCESSING. The Data-Cleaning was not necessary because we did not find any errors. 

− TRANSFORMATION. This step was performed doing different tasks: 

 SUMMARISING  SUBJECT RESPONSES. We built a table with 28 records (one record for each 

class diagram) and 14 fields (see Appendix A). The metric values were calculated 



 

 

measuring each diagram, and the values for each maintainability sub-characteristics were 

obtained aggregating subjects´s ratings using their mean. 

 CLUSTERING BY REPERTORY GRIDS. In order to detect the relationships between the class 

diagrams, to  obtaining those which are easy, medium or difficult to maintain (based on 

subject rates of each maintainability sub-characteristics), we have carried out a hierarchical 

clustering process by Repertory Grids, based on subject´s rating for each diagram. The set 

of elements is composed of the 28 class diagrams, the constructions are the intervals of 

values of the subjects´rating. The application of Repertory Grids Analysis Algorithm 

returns a graphic which reflects each prototype (easy, medium and difficult to maintain), 

and the class diagrams which pertain to them (see figure1).  
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 88% 
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E M D 

 
Figure 1. Clustering results (E: Easy to maintain, M: Medium to maintain, D: Difficult to 

maintain) 
 (*) We have grouped some class diagrams assigning them one letter because they have  100% 
similarity (see appendix A) 

 

- DATA MINING. The selected algorithm for the data mining process was summarise functions. 

Table 3 shows the parametric definition of the prototypes.  

 Understandability Analisability Modifiability 
Difficult       
Average 6 6 6 
Maximum 6 6 7 
Minimum 6 5 6 
Medium 
Average 5 5 5 

Diagram  
number (*) 

Similarity  



 

 

Maximum 5 6 5 
Minimum 4 4 4 
Easy 
Average 2 2 3 
Maximum 3 3 3 
Minimum 2 2 2 

Table 3. Prototypes “Easy, Medium and Difficult to maintain“ 
 

− FORMAL REPRESENTATION OF CONCEPTUAL PROTOTYPES. The prototypes have been 

represented as fuzzy numbers, which are going to allow us to obtain a degree of membership 

in the concept. In order to construct the prototypes (triangular fuzzy numbers) we only need 

to know their centerpoints (“center of the prototype”), which are obtained by normalising and 

aggregating the metric values corresponding to the class diagrams of each of the prototypes 

(see figure 2). 

 
Figure 2. Representation of the prototypes 

 

5. Example of prediction of UML class diagram maintainability 

Using Fuzzy Deformable Prototypes (Olivas and Romero, 2000; Olivas, 2000), we can deform 

the most similar prototype to a new class diagram, and define the factors for a new situation, 

using a linear combination with the degrees of membership as coefficients. We will  give an 

example of how to deform the fuzzy prototypes found in section 4.1. Given the following metric 

values corresponding to a new class diagram: 



 

 

 
 

NC NA NM NAssoc NAgg NAggH NDep NGenR NGenH MaxDIT MaxHagg
21 30 70 10 6 2 3 20 5 2 3

 
And their normalised values: 
 

NC NA NM NAssoc NAgg NAggH NDep NgenR NGenH MaxDIT MaxHAgg 
0.69 0.48 0.67 0.71 0.67 0.67 0.75 0.83 1 0.40 0.75

 
The final average is 0.69. The affinity with the prototypes is shown in figure 3. 
 

Figure 3. Affinity of the real case with the prototypes 
 

 
The most similar prototype for this new class diagram  is “Difficult to maintain”, with a degree of 

membership of 0.89. Then, the prediction is: 
 

 Understandability Analysability Modifiability 
Average 5 5 6 
Maximum 5 5 6 
Minimum 5 5 6 

 

6. Conclusions and future work 
 
In this paper we have presented Genero et al.´s metrics (Genero et al., 2000), which are defined to 

assess the structural complexity of UML class diagrams obtained at high level design stage. With 

the objective of  corroborating that there exists a great correlation between these metrics values 

Degree 
of 

membership 
of the new 
diagram 

Most 
similar 

prototype 



 

 

and the maintainability of a class diagram, we have carried out a controlled experiment. 

Analysing the data collected using Spearman ´s correlation we have concluded that most of the 

proposed metrics are highly correlated with the maintainability characteristics such as: 

understandability, analysability and modifiability.  

Also we have used a fuzzy extension of the traditional KDD process, the FPKD (Olivas  and 

Romero, 2000; Olivas, 2000) for building the maintainability prototypes which serve as the basis 

of the prediction model for the sub-characteristics that affect class diagram maintainability. 

We want to highlight that this is a first approach to predicting UML class diagram 

maintainability, we need “real data” about UML class diagram maintainability efforts, such as 

time spent in maintenance tasks in order to predict data that can be highly useful to software 

designers and developers.  

The prediction model was built using the FPKD process, which is a fuzzy extension of the 

traditional KDD. The FPKD process was used not only in the software measurement area, but  

was also used for different kinds of real problems, such as forest fire prediction, financial analysis 

or medical diagnosis, obtaining satisfactory results. 

Nevertheless, despite the promising nature of the obtained results, towards of seeking correct OO 

metrics applied at a high level design stage, we are aware that we need to do more metric 

validation, both empirical and theoretical in order to obtain conclusive evidence of the usefulness 

of the proposed metrics.  

Pending is the theoretical validation of the proposed metrics using the DISTANCE framework 

proposed by Poels and Dedene (1999; 2000b), which is in our knowledge the most appropriate 

for OO measurements. 

Regarding empirical validation we are refining this experiment in order to replicate it. For 

example we have found out that it is not necessary to include 28 diagrams, but it would be 

possible to take only the most representative. We  are also designing a new experiment, in which 

we will give the subjects several class diagrams and some new requirements to be added. In this 

case the independent variable will be measured by the time spent in modification tasks, which is 

more objective than subjects´rating. 

We also need “real data” about UML class diagram maintainability efforts, such as time spent in 

maintenance tasks in order to predict data that can be highly fruitful to software designers and 

developers. However the scarcity of such data continues to be a great problem which we must 



 

 

tackle to validate metrics. Brito e Abreu et al. (1999) suggested the necessity of a public 

repository of measurement experiences, which we think could be a good step towards achieving 

success in all the work done related to software measurement.  

Once the proposed metrics are refined (i.e. validated or discarded) we have the plan to embed 

them into an OO CASE tool, for helping OO designers to take better decisions in their design 

tasks, which is the most important goal of any measurement proposal that aims to be useful 

(Fenton and Neil, 2000). 

In future work, we will also tackle the measurement of other quality factors like those proposed 

in the ISO 9126 (1999), which not only addresses class diagrams, but also evaluates other UML 

diagrams, such as use-case diagrams, state diagrams, etc. To our knowledge, little work has been 

done towards measuring dynamic and functional models (Poels and Dedene, 2000a). As is quoted 

in Brito e Abreu et al. (1999) this is an area which lacks in depth investigation.  
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Appendix A 

The following table shows a summary of the data collected in the experiment explained in section 

3. The first column shows the class diagram number, the following eleven columns show the 

metrics values, and the last one shows the mean of the subject´s rating of understandability, 

analysability and modifiability. Attached to some class diagram numbers appears a letter. The 

diagrams which have the same letter mean that they have 100% similarity. 

 
 

Class 
diagram 
number 

NC NA NM NAssoc NAgg NDep NGen NAggH NGenH Max
Hagg

Max
DIT 

Understanda
bility 

Analisa
bility 

Modifia
bility 

D0 2 4 8 1 0 0 0 0 0 0 0 1 1 1 
D1 (A) 3 6 12 1 1 0 0 1 0 1 0 2 2 2 
D2 (A) 4 9 15 1 2 0 0 1 0 2 0 2 2 2 
D3 (A) 3 7 12 3 0 0 0 0 0 0 0 2 2 2 

D4 (A) 5 14 21 1 3 0 0 2 0 2 0 2 2 2 
D5  3 6 12 2 0 0 0 0 0 0 0 2 2 2 
D6 4 8 12 3 0 1 0 0 0 0 0 2 3 3 
D7 (B) 6 10 14 2 2 0 2 1 1 2 1 3 3 3 
D8 (A) 3 9 12 1 0 1 0 0 0 0 0 2 2 2 
D9 (B) 7 14 20 2 3 0 2 1 1 2 1 3 3 3 

D10 (B) 9 18 26 2 3 0 4 1 2 3 1 3 3 3 
D11 (B) 7 18 37 3 3 0 2 1 1 3 1 3 3 3 
D12 (B) 8 22 35 3 2 1 2 1 1 2 1 3 3 3 
D13 (A) 5 9 26 0 0 0 4 0 1 0 2 2 2 2 
D14 8 12 30 0 0 0 10 0 1 0 3 2 3 3 
D15 (C) 11 17 38 0 0 0 18 0 1 0 4 4 4 4 

D16 20 42 76 10 6 2 10 2 3 2 2 6 6 6 
D17 (D) 23 41 88 10 6 2 16 2 3 4 3 6 6 6 
D18 (E) 21 45 94 6 6 1 20 2 2 4 4 6 5 6 
D19 29 56 98 12 7 3 24 3 4 4 4 6 6 7 
D20 (B) 9 28 47 1 5 0 2 2 1 4 1 3 3 3 
D21 (F) 18 30 65 3 5 0 19 1 2 3 4 5 5 5 

D22 (D) 26 44 79 11 6 0 21 2 5 4 3 6 6 6 
D23 (F) 17 32 69 1 5 0 19 1 1 2 5 5 5 5 
D24 23 50 73 9 7 2 11 3 4 4 1 5 6 5 
D25 (E) 22 42 84 14 4 4 16 2 3 2 3 6 5 6 
D26 14 34 77 4 9 0 7 2 2 3 4 4 5 5 
D27(C) 17 34 47 6 6 0 11 3 2 2 2 4 4 4 
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