

Empirical validation of measures for class diagram structural complexity
through controlled experiments

Marcela Genero, Mario Piattini

Department of Computer Science
University of Castilla-La Mancha

Ronda de Calatrava, 5
13071, Ciudad Real (Spain)

{mgenero, mpiattin}@inf-cr.uclm.es

Abstract. As class diagrams constitute a key artifact in the development of object-oriented

information systems (OOIS), their quality is crucial because it has a great impact on the

quality of the OOIS which is ultimately implemented. For that reason, we have defined a

set of measures for evaluating the structural complexity (an internal quality attribute) of

class diagrams made using the unified Modeling Languages (UML). These measures could

be useful to predict class diagram external quality characteristics, such as maintainability,

early in the OOIS life-cycle. In order to demonstrate that those metrics serve the purpose

they were defined for, we have put them under empirical validation by means of a

controlled experiment. The explanation of the steps followed to do the experiment and the

construction of the prediction model for the maintainability of class diagrams are the main

objectives of this paper.

Keywords. empirical validation, object oriented measures, class diagram structural

complexity, class diagram maintainability, prediction models

1. INTRODUCTION

A great effort has been made in the field of software measurement in order to achieve better

quality OOIS (Henderson-Sellers, 1996; Melton, 1996, Zuse, 1998; Fenton and Pflegger, 1997),

but most of them pursue the goal of evaluating -by means of quantitative measures- the quality of

the final product, i.e. the code or the advanced design. We believe that in order to get better OOIS

we should focus on measuring the quality characteristics of early artifacts, such as class

diagrams, and based on those measurements thereby obtain early in the life-cycle a prediction

model for OOIS quality characteristics (ISO, 1999), like for example maintainability.

As class diagrams constitute a key artifact in the development of OOIS, their quality is crucial

because it has a great impact on the quality of the OOIS which is ultimately implemented.

In response to the great demand for measures for measuring quality characteristics of class

diagrams, such as maintainability (ISO, 9126) and after a thorough review of some of the

existing OO measures that can be applied at a high level design stage (Chidamber and Kemerer,

1994; Lorenz and Kidd, 1994, Brito e Abreu and Carapaçua, 1994; Marchesi, 1998) we have

proposed a set of measures for UML class diagram structural complexity in Genero et al. (2000).

As maintainability is an external quality characteristic that can be evaluated once a product is

finished or nearly finished, we center our work on measuring an internal quality characteristic,

the structural complexity of class diagrams. Our idea is to use those measures to predict class

diagram maintainability early in the OOIS development.

We have defined those measures in a methodological way (Calero et al., 2001) including three

main tasks: metric definition, theoretical validation and empirical validation. Although the three

steps are equally relevant in order to define correct metrics, we focus this paper on the empirical

validation of the proposed metrics. Empirical validation is critical for the success of any

measurement activity (Kitchenham et al., 1995; Fenton and Pflegeer, 1997; Schneidewind, 1992;

Basili et al., 1999).Through empirical validation we can demonstrate with real evidence that the

measures we proposed serve the purpose they were defined for and that they are fruitful in

practice.

The objective of this paper is threefold:

1) To present metrics for UML class diagram structural complexity (see section 2)

2) To show a controlled experiment we have carried out in order to evaluate if there is

empirical evidence that UML class diagram structural complexity metrics are correlated

with maintainability sub-characteristics: such as understandability, analysability and

modifiability (ISO, 1999) (see section 3).

3) To use the empirical data for building prototypes, that characterise UML class diagram

maintainability (see section 4), and based on those prototypes topredict UML class

diagram maintainability early in the OOIS development life-cycle (see section 5).

Finally in section 6, we present some concluding remarks and future trends in metrics for object-

oriented conceptual modelling using UML.

2. DEFINITION OF METRICS FOR UML CLASS DIAGRAM STRUCTURAL

COMPLEXITY

We only present here those metrics presented in Genero et al. (2000) which can be applied at

class diagram level as a whole (see table 1). These metrics measure the structural complexity of

UML class diagrams due to the use of relationships, such as associations, generalisations,

aggregations and dependencies. We also consider traditional metrics such as, the number of

classes, the number of attributes, etc.

Metric name Metric definition

NUMBER OF CLASSES (NC) The total number of classes.
NUMBER OF ATTRIBUTES (NA) The total number of attributes.
NUMBER OF METHODS (NM) The total number of methods
NUMBER OF ASSOCIATIONS (NAssoc) The total number of associations
NUMBER OF AGGREGATION (NAgg) The total number of aggregation relationships within a class

diagram (each whole-part pair in an aggregation relationship)
NUMBER OF DEPENDENCIES (NDep) The total number of dependency relationships
NUMBER OF GENERALISATIONS (NGen) is defined as the total number of generalisation relationships

within a class diagram (each parent-child pair in a
generalisation relationship)

NUMBER OF GENERALISATIONS HIERARCHIES
(NgenH)

The total number of generalisations hierarchies in a class
diagram

MAXIMUM DIT It is the maximum between the DIT value obtained for each
class of the class diagram. The DIT value for a class within a
generalisation hierarchy is the longest path from the class to
the root of the hierarchy.

MAXIMUM HAGG It is the maximum between the HAgg value obtained for each
class of the class diagram. The HAgg value for a class within
an aggregation hierarchy is the longest path from the class to
the leaves.

Table 1. Metrics for UML class diagram structural complexity

These metrics allow OO designers:

1. a quantitative comparison of design alternatives, and therefore an objective selection among

several class diagram alternatives with equivalent semantic content.

2. a prediction of external quality characteristics, like maintainability in the initial phases of the

OOIS life cycle and a better resource allocation based on these predictions.

3. EMPIRICAL VALIDATION OF THE PROPOSED METRICS

In this section we describe an experiment we have carried out for empirically validating the

proposed metrics (see section 2). As Wholin et al. (2000) stated, we should be able to draw

conclusions about the relationship between the cause and the effect for which we stated a

hypothesis (which we want to corroborate by means of experiments), only if the experiment is

properly set up. Therefore, we have followed some suggestions provided by Wholin et al. (2000),

Perry et al. (2000) and Briand et al. (1999) about how to perform controlled experiments.

To perform an experiment, several steps have to be taken and they have to be in a certain order.

The experiment process can be divided into the following main activities (Wohlin et al., 2000):

1) Definition, where we define the experiment in terms of problem, objective and goals.

2) Planning, where the design of the experiment is determined, the instrumentation is

considered and the threats to the experiment are evaluated

3) Operation, in this phase measurements are collected.

4) Analysis and Interpretation, where collected data are analysed and evaluated.

5) Presentation and Package, where results are presented and packaged.

In the remainder of this section we explain how we have performed each of the activities

described above.

3.1 Definition
As Wholin et al. (2000) suggested, we follow the GQM template (Basili and Weiss, 1984; Basili

and Rombach , 1988; Van Solingen and Berghout, 1999) for goal definition. This results in the

following goal:

Analyse UML class diagrams complexity metrics
For the purpose of Evaluating
With respect to the correlation with maintainability sub-characteristics
From the point of view of researchers
In the context of M.Sc. students and professors of the Engineering Software Area in

the Department of Computer Science in the University of Castilla-
La Mancha.

3.2 Planning
After the definition of the experiment, the planning took place. The definition determines the

foundation of the experiment -why the experiment is conducted- while the planning prepares for

how the experiment is conducted.

3.2.1 Context selection

The context of the experiment is a group related to the area of Software Engineering. at the

university, and hence the experiment is run-off line (not industrial software development), it is

conducted by 7 professors and 10 students enrolled in the final-year of Computer Science in the

Department of Computer Science at the University of Castilla-La Mancha in Spain. All of the

professors belong to the Software Engineering area.

The experiment is specific since it is focused on UML class diagram structural complexity

metrics. The ability to generalise from this specific context is further elaborated below when

discussing threats to the experiment. The experiment addresses a real problem the correlation

between metrics and maintainability sub-characteristics.

3.2.2 Hypothesis formulation

An important aspect of experiments is to know and to state in a clear sand formal fashion what

we intend to evaluate in the experiment. This lead us to the formulation of a hypothesis (or

several hypothesis). We wish to test the hypothesis that there is a significant correlation between

the current metric data set (NC, NA, NM, NAssoc, NAgg, NDep, NGen, NAggH, NGenH,

MaxHAgg, MaxDIT) and the subject´s rating of three maintainability sub-characteristics, such as

understandability, analysability and modifiability.

3.2.3 Variables selection

The independent variable is the UML class diagram structural complexity

The dependent variables are three maintainability sub-characteristics: understandability,

analysability and modifiability.

3.2.4 Selection of subjects

The subjects are chosen for convenience, i.e. the subjects are students and professors that have

experience in the design and development of OOIS.

3.2.5 Experiment design

We selected a within-subject design experiment, i.e. all the tests were solved by the same group

of subjects. The tests were put in a different order for each subject.

3.2.6 Instrumentation

The objects were class diagrams done using UML.

The independent variable was measured through the metrics, presented in section 2.

The dependent variables were measured according to subject’s rating.

3.2.7 Validity evaluation

We will discuss the empirical study’s various threats to validity and the way we attempted to

alleviate them:

− THREATS TO CONSTRUCT VALIDITY. We propose subjective metrics for measuring each of the

dependent variables (maintainability sub-characteristics) based on the judgement of the

subjects (see section 3.2). As the subjects involved in this experiment have medium

experience in UML class diagram design we think their ratings can be considered significant.

The independent variables (each of the metrics proposed in section 2) that measure the

structural complexity of class diagrams can also be considered constructively valid, because

from a system theory point of view, a system is called complex if it is composed of many

(different types of elements), with many (different types of) (dynamically changing)

relationships between them (Poels and Dedene, 2000a).

− THREATS TO INTERNAL VALIDITY. Seeing the results of the experiment we can conclude that

empirical evidence of the existing relationship between the independent and the dependent

variables exists. We have tackled different aspects that could threaten the internal validity of

the study, such as: differences among subjects, knowledge of the universe of discourse among

class diagrams, accuracy of subject responses, learning effects, fatigue effects, persistence

effects and subject motivation.

− THREATS TO EXTERNAL VALIDITY. Two threats to external validity have been identified which

limit the ability to apply any such generalisation, and we have tried to alleviate them:

materials and tasks, and subject selection. In general in order to extract a final conclusion that

can be generalised, we need to replicate this experiment with a greater number of subjects,

including practitioners. After doing replication we will have a cumulative body of

knowledge; which will lead us to confirm if the presented metrics could really be used as

early quality indicators, and could be used to predict class diagram maintainability.

3.3 Operation

3.3.1 Preparation

By the time the experiment was done all of the students had had two courses on Software

Engineering, in which they learnt in depth how to build OO software using UML. All the selected

professors had enough experience in the design and development of OOIS. Moreover, subjects

were given an intensive training session before the experiment took place.The subjects were not

aware of what aspects we intended to study. Neither they were aware of the actual hypothesis

stated.

We prepared the material we had to give to the subjects, consisting of 28 class diagrams of the

same universe of discourse, related to Bank Information Systems. Each diagram has a test

enclosed which includes the description of maintainability sub-characteristics, such as:

understandability, analysability, modifiability. Each subject has to rate each sub-characteristic

using a scale consisting of seven linguistic labels. For example for understandability we proposed

the following linguistic labels:

Extremely

difficult to

understand

Very

difficult to

understand

A bit

difficult to

understand

Neither

difficult nor

easy to

understand

Quite easy

to

understand

Very easy

to

understand

Extremely

easy to

understand

We also prepared a debriefing questionnaire. This questionnaire included (i) personal details and

experience, (ii) opinions on the influence of different components of UML class diagrams, such

as: classes, attributes, associations, generalisations, etc... on their maintainability.

3.3.5 Execution
The subjects were given all the material described in the prveous section. We explained tothem

how to carry out the experiment. We allowed one week to do the experiment, i.e., each subject

had carry out the test alone, and could use unlimited time to solve it.

We collected all the data, including subjects´rating obtained from the responses of the experiment

and the metrics values automatically calculated by means of a metric tool we had designed.

3.3.6 Data Validation
All tests were considered valid because all of the subjects have at least medium experience in

building UML class diagrams and developing OOIS.

3.4 Analysis and Interpretation
As we have said before, our goal is to ascertain if any correlation exists between each of the

proposed metrics (see section 2) and three of the maintainability sub-characteristics:

understandability, analisabilisty and modifiability.

Spearman´s correlation was used to determine the correlation of the data collected in the

experiment, shown in Appendix A. The correlation coefficient is a measure of the ability of one

variable to predict the value of another variable. Using Spearman´s correlation coefficient, each

of the metrics was correlated separately to the different subject´s rates of understandability,

analysability and modifiability (see table 2).

 NC NA NM NAssoc NAgg NDep NGen NAggH NGenH MaxHagg MaxDIT

Understandability 0.961 0.941 0.929 0.753 0.813 0.518 0.876 0.714 0.902 0.728 0.749
Analysability 0.966 0.940 0.916 0.733 0.822 0.534 0.868 0.720 0.921 0.722 0.738
Modifiability 0.950 0.924 0.908 0.733 0.818 0.522 0.865 0.719 0.888 0.725 0.751

Table 2. Spearman´s correlation between UML class diagrams structural complexity metrics
and understandability, analysability and modifiability

Analysing the Spearman´s correlation coefficients shown in table 4, we can conclude that there

exists a high correlation between most of the UML class diagram structural complexity metrics

and the subject´s rating of understandability, analysability and modifiability. We can deduce this

due to the fact that almost all the metrics have a correlation greater than 0.7. NDep is the only

one that has a lesser correlation. This fact should be studied in detail by carrying out further

experimentation.

3.5 Presentation and package
The last activity is concerned with presenting and packaging of the findings. The diffusion of the

experimental results and the way they are presented are relevant so that they are really put into

use. Therefore we published our findings in this paper, and we are also planning to publish a lab

package on the web for replication purposes.

4. A PREDICTION MODEL FOR UML CLASS DIAGRAM MAINTAINABILITY

In this section we explain the steps involved in the Fuzzy Prototypical Knowledge Discovery

(FPKD) process (Olivas and Romero, 2000; Olivas, 2000), which lead us to the construction of

fuzzy prototypes (Zadeh, 1982) that characterise the maintainability of UML class diagrams. The

FPKD is a fuzzy extension of the traditional Knowledge Discovery in Databases (KDD) (Fayyad,

1996).

The prototypes obtained from the FPKD form the foundation of the prediction model that allows

us to predict class diagram maintainability. This approach is more representative than standard

approaches, because the use of an isolated algorithm or method over- simplifies the complexity

of the problem. Statistical methods or decision trees (ID3, C4.5, CART) are only classification

processes, and it is very important to include a clustering model for finding some kinds of

patterns in the initial chaos of data. The use of fuzzy schemas allows us to achieve better and

more understandable results, concerning patterns and prediction results.

4.1 The FPKD process

The FPKD process consist of different steps:

− SELECTION OF THE TARGET DATA. We have taken as a start set a relational database that

contains 476 records (with 14 fields, 11 represent metric values, 3 represent maintainability

sub-characteristics, understandability, analysability and modifiability respectively) obtained

from the calculation of the metric values (for each class diagram) and the responses of the

experiment given by the subjects.

− PREPROCESSING. The Data-Cleaning was not necessary because we did not find any errors.

− TRANSFORMATION. This step was performed doing different tasks:

 SUMMARISING SUBJECT RESPONSES. We built a table with 28 records (one record for each

class diagram) and 14 fields (see Appendix A). The metric values were calculated

measuring each diagram, and the values for each maintainability sub-characteristics were

obtained aggregating subjects´s ratings using their mean.

 CLUSTERING BY REPERTORY GRIDS. In order to detect the relationships between the class

diagrams, to obtaining those which are easy, medium or difficult to maintain (based on

subject rates of each maintainability sub-characteristics), we have carried out a hierarchical

clustering process by Repertory Grids, based on subject´s rating for each diagram. The set

of elements is composed of the 28 class diagrams, the constructions are the intervals of

values of the subjects´rating. The application of Repertory Grids Analysis Algorithm

returns a graphic which reflects each prototype (easy, medium and difficult to maintain),

and the class diagrams which pertain to them (see figure1).

 0%

 94%

 100%
0 A 5 6 14 B C F 24 26 16 D E 19

 88%

82%

75%

57%

25%

E M D

Figure 1. Clustering results (E: Easy to maintain, M: Medium to maintain, D: Difficult to

maintain)
 (*) We have grouped some class diagrams assigning them one letter because they have 100%
similarity (see appendix A)

- DATA MINING. The selected algorithm for the data mining process was summarise functions.

Table 3 shows the parametric definition of the prototypes.

 Understandability Analisability Modifiability
Difficult
Average 6 6 6
Maximum 6 6 7
Minimum 6 5 6
Medium
Average 5 5 5

Diagram
number (*)

Similarity

Maximum 5 6 5
Minimum 4 4 4
Easy
Average 2 2 3
Maximum 3 3 3
Minimum 2 2 2

Table 3. Prototypes “Easy, Medium and Difficult to maintain“

− FORMAL REPRESENTATION OF CONCEPTUAL PROTOTYPES. The prototypes have been

represented as fuzzy numbers, which are going to allow us to obtain a degree of membership

in the concept. In order to construct the prototypes (triangular fuzzy numbers) we only need

to know their centerpoints (“center of the prototype”), which are obtained by normalising and

aggregating the metric values corresponding to the class diagrams of each of the prototypes

(see figure 2).

Figure 2. Representation of the prototypes

5. Example of prediction of UML class diagram maintainability

Using Fuzzy Deformable Prototypes (Olivas and Romero, 2000; Olivas, 2000), we can deform

the most similar prototype to a new class diagram, and define the factors for a new situation,

using a linear combination with the degrees of membership as coefficients. We will give an

example of how to deform the fuzzy prototypes found in section 4.1. Given the following metric

values corresponding to a new class diagram:

NC NA NM NAssoc NAgg NAggH NDep NGenR NGenH MaxDIT MaxHagg
21 30 70 10 6 2 3 20 5 2 3

And their normalised values:

NC NA NM NAssoc NAgg NAggH NDep NgenR NGenH MaxDIT MaxHAgg
0.69 0.48 0.67 0.71 0.67 0.67 0.75 0.83 1 0.40 0.75

The final average is 0.69. The affinity with the prototypes is shown in figure 3.

Figure 3. Affinity of the real case with the prototypes

The most similar prototype for this new class diagram is “Difficult to maintain”, with a degree of

membership of 0.89. Then, the prediction is:

 Understandability Analysability Modifiability
Average 5 5 6
Maximum 5 5 6
Minimum 5 5 6

6. Conclusions and future work

In this paper we have presented Genero et al.´s metrics (Genero et al., 2000), which are defined to

assess the structural complexity of UML class diagrams obtained at high level design stage. With

the objective of corroborating that there exists a great correlation between these metrics values

Degree
of

membership
of the new
diagram

Most
similar

prototype

and the maintainability of a class diagram, we have carried out a controlled experiment.

Analysing the data collected using Spearman ´s correlation we have concluded that most of the

proposed metrics are highly correlated with the maintainability characteristics such as:

understandability, analysability and modifiability.

Also we have used a fuzzy extension of the traditional KDD process, the FPKD (Olivas and

Romero, 2000; Olivas, 2000) for building the maintainability prototypes which serve as the basis

of the prediction model for the sub-characteristics that affect class diagram maintainability.

We want to highlight that this is a first approach to predicting UML class diagram

maintainability, we need “real data” about UML class diagram maintainability efforts, such as

time spent in maintenance tasks in order to predict data that can be highly useful to software

designers and developers.

The prediction model was built using the FPKD process, which is a fuzzy extension of the

traditional KDD. The FPKD process was used not only in the software measurement area, but

was also used for different kinds of real problems, such as forest fire prediction, financial analysis

or medical diagnosis, obtaining satisfactory results.

Nevertheless, despite the promising nature of the obtained results, towards of seeking correct OO

metrics applied at a high level design stage, we are aware that we need to do more metric

validation, both empirical and theoretical in order to obtain conclusive evidence of the usefulness

of the proposed metrics.

Pending is the theoretical validation of the proposed metrics using the DISTANCE framework

proposed by Poels and Dedene (1999; 2000b), which is in our knowledge the most appropriate

for OO measurements.

Regarding empirical validation we are refining this experiment in order to replicate it. For

example we have found out that it is not necessary to include 28 diagrams, but it would be

possible to take only the most representative. We are also designing a new experiment, in which

we will give the subjects several class diagrams and some new requirements to be added. In this

case the independent variable will be measured by the time spent in modification tasks, which is

more objective than subjects´rating.

We also need “real data” about UML class diagram maintainability efforts, such as time spent in

maintenance tasks in order to predict data that can be highly fruitful to software designers and

developers. However the scarcity of such data continues to be a great problem which we must

tackle to validate metrics. Brito e Abreu et al. (1999) suggested the necessity of a public

repository of measurement experiences, which we think could be a good step towards achieving

success in all the work done related to software measurement.

Once the proposed metrics are refined (i.e. validated or discarded) we have the plan to embed

them into an OO CASE tool, for helping OO designers to take better decisions in their design

tasks, which is the most important goal of any measurement proposal that aims to be useful

(Fenton and Neil, 2000).

In future work, we will also tackle the measurement of other quality factors like those proposed

in the ISO 9126 (1999), which not only addresses class diagrams, but also evaluates other UML

diagrams, such as use-case diagrams, state diagrams, etc. To our knowledge, little work has been

done towards measuring dynamic and functional models (Poels and Dedene, 2000a). As is quoted

in Brito e Abreu et al. (1999) this is an area which lacks in depth investigation.

Acknowledgements

This research is part of the DOLMEN project supported by CICYT (TIC 2000-1673-C06-06).

References

− Basili V. and Weiss D. (1984). A Methodology for Collecting Valid Software Engineering
Data, IEEE Transactions on Software Engineering, 10, 728-738.

− Basili V. and Rombach H. (1988). The TAME Project: Towards Improvement-Oriented
Software Environments. IEEE Transactions on Software Engineering 14, 758-773.

− Basili V., Shull F. and Lanubile F. (1999). Building knowledge through families of
experiments. IEEE Transactions on Software Engineering, 25(4), 435-437.

− Briand L., Bunse C. and Daly J. A Controlled Experiment for evaluating Quality Guidelines
on the Maintainability of Object-Oriented Designs. Technical Report IESE 002.99/E,
Fraunhofer Institute for Experimental Software Engineering, Kaiserslautern, Germany,
(1999).

− Brito e Abreu F. and Carapaçua R. (1994). Object-Oriented Software Engineering: Measuring
and controlling the development process. 4th Int Conference on Software Quality, Mc Lean,
Va, USA.

− Brito e Abreu F., Zuse H., Sahraoui H. and Melo W. (1999). Quantitative Approaches in
Object-Oriented Software Engineering. Object-Oriented technology: ECOOP´99 Workshop
Reader, Lecture Notes in Computer Science 1743, Springer-Verlag, 326-337.

− Calero C., Piattini M. and Genero M. (2001). Metrics for controlling database complexity. In
Developing Quality Complex Databases. Shirley Becker Ed. Idea Group Publishing

− Chidamber S. and Kemerer C. (1994). A Metrics Suite for Object Oriented Design. IEEE
Transactions on Software Engineering. 20(6), 476-493.

− Fayyad U., Piatetsky-Shapiro G. and Smyth P. (1996). The KDD Process for Extracting
Useful Knowledge from Volumes of Data. Communications of the ACM, 39(11), 27 – 34.

− Fenton N. and Neil, M. (2000). Software Metrics: a Roadmap. Future of Software
Engineering. Ed:Anthony Finkelstein, ACM, 359-370.

− Fenton N. and Pfleeger S. (1997). Software Metrics: A Rigorous Approach. 2nd. edition.
London, Chapman & Hall.

− Genero, M., Piattini, M. and Calero, C. (2000). Early Measures For UML class diagrams.
L´Objet. 6(4), Hermes Science Publications, 489-515.

− ISO/IEC 9126-1.2. (1999). Information technology- Software product quality – Part 1:
Quality model.

− Henderson-Sellers B. (1996). Object-Oriented Metrics - Measures of complexity. Prentice-Hall,
Upper Saddle River, New Jersey.

− Kitchenham, B., Pflegger, S. and Fenton, N. Towards a Framework for Software
Measurement Validation. IEEE Transactions of Software Engineering, 21(12), (1995) 929-
943.

− Lorenz M. and Kidd J. (1994). Object-Oriented Software Metrics: A Practical Guide.
Prentice Hall, Englewood Cliffs, New Jersey.

− Marchesi M. (1998). OOA Metrics for the Unified Modeling Language. Proceedings of the
2nd Euromicro Conference on Software Maintenance and Reengineering, 67-73.

− Melton, A. (ed.) (1996). Software Measurement. London. International Thomson Computer
Press.

− Object Management Group. (1999). UML Revision Task Force. OMG Unified Modeling
Language Specification, v. 1.3. document ad/99-06-08.

− Olivas J. A. and Romero F. P. (2000). FPKD. Fuzzy Prototypical Knowledge Discovery.
Application to Forest Fire Prediction. Proceedings of the SEKE’2000, Knowledge Systems
Institute, Chicago, Ill. USA, 47 – 54.

− Olivas J. A. (2000). Contribution to the Experimental Study of the Prediction based on Fuzzy
Deformable Categories, PhD Thesis, University of Castilla-La Mancha, Spain.

− Perry D., Porte A. and Votta L. (2000). Empirical Studies of Software Engineering: A
Roadmap. Future of Software Engineering. Ed. Anthony Finkelstein, ACM, 345-355.

− Poels G. and Dedene G. (1999). DISTANCE: A Framework for Software Measure
Construction, research report DTEW9937, Dept. Applied Economics, Katholieke
Universiteit Leuven, Belgium, 46 p.

− Poels G. and Dedene G. Measures for Assessing Dynamic Complexity Aspects of
Object-Oriented Conceptual Schemes. In: Proceedings of the 19th
International Conference on Conceptual Modeling (ER 2000), Salt Lake City,
(2000a), 499-512.

− Poels G. and Dedene G. (2000b). Distance-based software measurement: necessary and
sufficient properties for software measures. Information and Software Technology, 42(1), 35-
46.

− Schneidewind N. (1992). Methodology For Validating Software Metrics. IEEE Transactions
of Software Engineering, 18(5), 410-422.

− Van Solingen R. and Berghout E. (1999). The Goal/Question/Metric Method: A practical
guide for quality improvement of software development. McGraw-Hill.

− Wohlin C., Runeson P., Höst M., Ohlson M., Regnell B. and Wesslén A. (2000)
Experimentation in Software Engineering: An Introduction. Kluwer Academic Publishers.

− Zadeh L. (1982). A note on prototype set theory and fuzzy sets. Cognition 12, 291 – 297.
− Zuse H. (1998). A Framework of Software Measurement. Berlin, Walter de Gruyter.

Appendix A

The following table shows a summary of the data collected in the experiment explained in section

3. The first column shows the class diagram number, the following eleven columns show the

metrics values, and the last one shows the mean of the subject´s rating of understandability,

analysability and modifiability. Attached to some class diagram numbers appears a letter. The

diagrams which have the same letter mean that they have 100% similarity.

Class
diagram
number

NC NA NM NAssoc NAgg NDep NGen NAggH NGenH Max
Hagg

Max
DIT

Understanda
bility

Analisa
bility

Modifia
bility

D0 2 4 8 1 0 0 0 0 0 0 0 1 1 1
D1 (A) 3 6 12 1 1 0 0 1 0 1 0 2 2 2
D2 (A) 4 9 15 1 2 0 0 1 0 2 0 2 2 2
D3 (A) 3 7 12 3 0 0 0 0 0 0 0 2 2 2

D4 (A) 5 14 21 1 3 0 0 2 0 2 0 2 2 2
D5 3 6 12 2 0 0 0 0 0 0 0 2 2 2
D6 4 8 12 3 0 1 0 0 0 0 0 2 3 3
D7 (B) 6 10 14 2 2 0 2 1 1 2 1 3 3 3
D8 (A) 3 9 12 1 0 1 0 0 0 0 0 2 2 2
D9 (B) 7 14 20 2 3 0 2 1 1 2 1 3 3 3

D10 (B) 9 18 26 2 3 0 4 1 2 3 1 3 3 3
D11 (B) 7 18 37 3 3 0 2 1 1 3 1 3 3 3
D12 (B) 8 22 35 3 2 1 2 1 1 2 1 3 3 3
D13 (A) 5 9 26 0 0 0 4 0 1 0 2 2 2 2
D14 8 12 30 0 0 0 10 0 1 0 3 2 3 3
D15 (C) 11 17 38 0 0 0 18 0 1 0 4 4 4 4

D16 20 42 76 10 6 2 10 2 3 2 2 6 6 6
D17 (D) 23 41 88 10 6 2 16 2 3 4 3 6 6 6
D18 (E) 21 45 94 6 6 1 20 2 2 4 4 6 5 6
D19 29 56 98 12 7 3 24 3 4 4 4 6 6 7
D20 (B) 9 28 47 1 5 0 2 2 1 4 1 3 3 3
D21 (F) 18 30 65 3 5 0 19 1 2 3 4 5 5 5

D22 (D) 26 44 79 11 6 0 21 2 5 4 3 6 6 6
D23 (F) 17 32 69 1 5 0 19 1 1 2 5 5 5 5
D24 23 50 73 9 7 2 11 3 4 4 1 5 6 5
D25 (E) 22 42 84 14 4 4 16 2 3 2 3 6 5 6
D26 14 34 77 4 9 0 7 2 2 3 4 4 5 5
D27(C) 17 34 47 6 6 0 11 3 2 2 2 4 4 4

	3.2.2 Hypothesis formulation
	3.2.4 Selection of subjects

