
Quantitative Techniques for the Assessment of
Correspondence between UML Designs and

Implementations

Dennis J.A. van Opzeeland, Christian F.J. Lange, Michel R.V. Chaudron

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, P.O. Box 513

5600 MB Eindhoven, The Netherlands
{c.f.j.lange,m.r.v.chaudron}@tue.nl

Abstract. In this paper we discuss approaches to assess the correspon-
dence between a software design and its implementation. We consider
object oriented software systems which are designed using the UML no-
tation. Correspondence is important for understanding the system since
designs are easier to comprehend than large pieces of source code. To
assess the correspondence of a system, we match entities from the de-
sign to pieces of source code. We define a matching based on classifiers.
Several approaches are discussed to establish such a matching. These
approaches are matching based on classifier names, matching based on
metric profiles and matching based on structural properties of classifiers.
Once this matching is defined, it is possible to detect and visualize the
actual differences between design entities and parts of source code. The
approaches have been validated through an industrial case study.

1 Introduction

The Unified Modeling Language (UML) is the de facto standard modeling lan-
guage in software development. Software projects develop UML models in the ar-
chitecture and design phase to document and communicate design decisions, and
for the purpose of analysis. The models can be analyzed using e.g. metrics [17] to
predict quality attributes of the system that is going to be implemented. UML
models describe the system on a higher abstraction level than source code does,
which enables the reader to understand the architecture without taking the bur-
den of reading through all the details of the source code. Hence, UML models
are not only used in the early phases of software development but also during
maintenance when it is important to understand how the system works. For a
better understanding of legacy systems that are not described by an UML model
sometimes even the effort of reverse engineering an UML model is taken.

Model-based analysis results are only reliable predictors for the implemen-
tation if the source code corresponds to the model. For understanding a system
correctly using a model, it is a necessity that the model corresponds to the actual
implementation.

Several factors can cause a lack of correspondence between UML model and
source code. We present the most prominent causes for non-correspondence in
the following:

– Implementation mismatch. In the implementation phase the programmers
write source code that is not according to the UML model. This can be by
purpose (“I know it better” or implementation convenience) or by mistake.

– Evolutionary mismatch. Software needs to be changed because of changing
requirements, bugs that must be removed, or other necessary improvements.
If only the design or only the implementation is changed, the correspondence
between model and source code will be lost. In most cases only the source
code is changed.

These risks are common in practice and hence, software engineering has to
deal with degradation in correspondence. When models are used for analysis
or understanding the engineer must be aware of the degree of correspondence
to judge whether analysis results are reliable predictors and whether the model
allows for correct understanding of the implemented system.

The purpose of this study is to develop a method to make a match between
model and implementation and to assess the degree of correspondence.

2 State of the art

2.1 Correspondence checking and reverse

engineering

In order to compare a software design with its implementation, one has to ab-
stract from implementation details. This is exactly what is done in reverse engi-
neering. A lot of research has been performed on the re-engineering of (legacy)
software systems. This resulted in many toolsets for reverse engineering. RIGI
[19] is a well known and widely used example. There are also other approaches
such as the Dali Workbench [9], CPPX [3] and SNiFF+ [7].

Correspondence checking is related to reverse engineering. There is an impor-
tant difference however. In reverse engineering no design is available. This design
is reconstructed from the source code. For correspondence checking a design is

available which has to be compared with the implementation. The available de-
sign is sometimes called the actual design. The source code is used to generate
a so called as is design of a software system [6].

Before it is possible to identify the differences between the intended and as
is design, it should be determined which parts of the different designs are meant
to be equal. A mapping has to be created that maps elements from the intended
design to the as is design.

2.2 Defining the matching

In [6], Fiutem and Antoniol propose to trace implementation entities from design
entities by looking at properties of the entities in a software system. Similarity

2

Quantitative Techniques for the Assessment 2

between a design classifier and an implementation classifier is expressed in terms
of the properties they have in common. Typical examples of structural properties
are:

– the name of the class
– the attributes of a class
– the operations of a class
– operation signatures
– attribute datatypes
– relations to other classes

The matching between design and implementation is defined by a maximal
match algorithm [1].

Many differences may occur between design and implementation with respect
to these so called structural properties of a class. It is for instance quite common
that extra private or protected methods are introduced in the implementation.
It is more reliable to base the matching on more information than just structural
properties of classifiers.

Another approach for matching is the use of software metrics [10, 8]. This
approach resembles our metric profile approach as discussed in section 4.1. How-
ever we use metrics to compare a design with an implementation instead of
comparing two versions of an implementation as is done in this literature.

The comparison between design and implementation causes some difficulties
with respect to metric matching. This is because of the fact that the set of
available metrics in the design differs from the metrics available in the imple-
mentation. Even if a metric is available in both design and implementation, the
method of measurement can be different. Therefore the value ranges can be com-
pletely different, thereby making direct comparison impossible. Take for instance
a complexity metric. In the design it is possible to measure the complexity of
a class in terms of the number of states in a related state machine [16]. In the
implementation complexity can be measured by the lines of code metric for a
class. This gives two metrics that measure the same thing but in a completely
different way.

2.3 Listing the differences

Software reflexion models [14, 15] are a way to visualize differences between de-
sign and implementation. The method focusses specifically on differences in rela-
tions between classifiers. Differences between the matched classifiers themselves
are not considered.

A high level model consisting of components and component dependencies
must be provided as well as the source code. This method assumes that the map-
ping between design and implementation entities already exists. This mapping
thus has to be provided by another tool or manual definition.

Based on this input, a software reflexion model is generated. First the rela-
tions between classifiers in the source code are determined. The relations found

3

3 D.J.A. van Opzeeland, C.F.J. Lange, and M.R.V. Chaudron

in the sources are matched against the relations in the design. This results in
three classes of relationships between components. If the relation occurs in both
the design and the implementation, it is called a convergence. If the relation
occurs in the design but is absent in the implementation it is an absence. If
the relation occurs in the implementation but not in the design it is called a
divergence.

Then the results are visualized by depicting all components from the design.
The absences, divergences and convergences are shown using different types of
arrows.

3 What is Correspondence?

3.1 Definition

An implementation is said to conform to its design if “everything that was de-
signed is implemented as it was designed and nothing more”. Correspondence
of a software system is expressed in terms of the model elements appearing in
the UML model and related parts of source code. That is, the implementation
conforms to the design if the implementation model elements correspond to the
related design model elements. Design model elements can be anything that oc-
curs in a UML model such as a class, an operation or a state in a state machine.
An implementation model element is a piece of source code representing, for
example, the implementation of a method or the declaration of an attribute.

Fig. 1. The correspondence measure metamodel

For the assessment of correspondence, we use a metamodel which is inspired
upon the UML meta model. For both design and implementation we instan-

4

Quantitative Techniques for the Assessment 4

tiate such a metamodel. This is depicted in figure 1. The instantiation of the
design meta model is a subset of the UML model for which we want to check
the correspondence. We currently do not consider all parts of the UML. State
machines are for instance not considered. The same holds for the implementation
meta model. It is a subset of the actual implementation where we left out all
implementation details. This is shown in figure 1.

Correspondence between a design class and an implementation class can be
expressed in terms of a similarity value. This value expresses the similarity be-
tween the two entities. There are various ways to calculate these similarity values.
It is possible to express the similarity of the entities based on their names. This
is done in section 4.1 but there are also other approaches.

Correspondence between a design entity d and an implementation entity i

can then be defined as a weighted sum of – different – similarity values.

conf(d, i) =
∑

k

wk · simk(d, i) (1)

Since correspondence is expressed in terms of model elements, a mapping ex-
ists between design model elements and implementation model elements. Indeed
the programmer of a software system always has such a mapping in mind. For
large software systems it is a lot of work to make this mapping explicit however.
Defining the mapping should thus be automated as much as possible.

Finding the matching automatically Automatic matching algorithms com-
pare design elements with implementation elements and relate elements if they
are similar for some aspect. An automatic mapping approach is difficult however.
This is because of the differences between design and implementation.

Many different kinds of deviations from the design are possible. Introducing
an extra operation or attribute in a class is already a deviation. Instantiating a
class in the implementation of some operation could introduce a new dependency
if it was not designed.

Not all of these deviations have the same impact on the correspondence.
Clearly each deviation degrades correspondence but inserting an extra private
operation has less impact than inserting a public operation. This is because
private operations are only accessible for other members of the class. Private
operations are typically there for implementation convenience. Public operations,
on the other hand, are accessible for other classes as well. Public attributes are
thus accessible to completely other parts of the system. If such a public operation
is used by another part of the system, this may result in extra dependencies
between different components in the system. Dependencies between parts of the
system are usually very important for system understanding.

Sometimes new classes are introduced in the implementation. In languages
like C++ it is possible to declare a class in the context of another class or even
local in a function body [20]. Such a class is only accessible within the limited
scope in which it was defined. Local or nested classes are typical examples of

5

5 D.J.A. van Opzeeland, C.F.J. Lange, and M.R.V. Chaudron

implementation convenience. These kinds of classes might be absent in the design
but this is not as bad as the absence of a regular class.

These examples illustrate that changes that have local effects are less in-
fluential on the correspondence than changes that (could) cause system wide
effects.

3.2 Finding the differences

As soon as the matching between classifiers is defined, it is relatively easy to
discover the actual deviations. One simply compares all properties of the design
classifiers with the properties of its matching implementation classifier and lists
the differences.

These aspects could be structural but it is also possible to consider behavioral
aspects. This is a little tricky however. The behavior of a software system is
almost never completely specified in terms of UML. Parts of the behavior can
be specified by using state machines or activity diagrams [18]. These diagrams
are typically high level and therefore difficult to relate with the sources of the
software system.

For collaboration diagrams and sequence diagrams it is possible to perform
some kind of checking. It should be possible to find a code path that mimics the
behavior described in the diagram.

4 Our Approach(es)

4.1 Description of Approaches

Our goal is to find a method to match implementation classes to design classes.
As stated before a distinctive property or a set of distinctive properties of clas-
sifiers is needed for this. There are various distinctive properties that can serve
as a basis for matching approaches. In this section, we present some approaches
that can be useful for defining the matching.

Subsequently, we will consider matching based on classifier names, matching
based on metric profiles and matching using package information. Finally we will
propose a combination of these strategies to get a best possible matching.

Matching based on names The names of classifiers are often quite a reliable
information source for matching. It is quite common that a design entity and
the corresponding implementation entity have resembling names. Coding con-
ventions might introduce slight differences. The edit distance for strings [12] can
be used for handling small differences.

A small edit distance value is not enough however. The strings a and b have
an edit distance of 1 as well as the strings UpdateManager and CUpdateManager.
The latter pair is more trustworthy for matching however. A small edit distance
is more trustworthy if the compared strings are larger.

6

Quantitative Techniques for the Assessment 6

These observations lead to an expression for similarity based on class names.
This expression is presented in equation 2.

sim(ND, NI) =
|ND| ↑ |NI | − dedit(ND, NI)

|ND| ↑ |NI |
(2)

The metric profile For each classifier in a design or implementation a number
of metrics can be calculated. A combination (m1,m2, . . . ,mn) of metrics defines
a characteristic pattern or profile of the classifier.

Metric profiles can be defined in both design and implementation. Further-
more, metrics from the design can be compared with metrics from the imple-
mentation. This need not be an equality comparison. It suffices if a metric in
the design correlates with a metric in the implementation. The question now is
which metrics correlate.

The level of correlation is expressed by the correlation coefficient ρ. The
correlation coefficient is a real value in the range [−1, 1]. If |ρ| is close to 1, the
correlation is said to be strong. If |ρ| is close to 0, there is no correlation at all.

There are different ways to calculate correlation coefficients. The straightfor-
ward way is Pearson’s method [13]. This method does not work if the data set
does not have a normal distribution [4]. In those cases, rank correlation coeffi-
cients like Spearman’s Rho or Kendall’s Tau [2] are more reliable.

Pairs of correlating metrics can be found by empirical analysis of case studies.
First, the matching between design and implementation is created manually.
Possibly other (automatic) approaches for matching can be used to simplify the
process of making a matching.

The second step is to calculate metrics for both design and implementation.
Many tools are currently available in the field to calculate metrics. For the ex-
periment we used SDMetrics [22] for design metrics and Columbus/CAN [5] for
implementation metrics. SDMetrics calculates 43 different metrics –after manual
insertion of three custom metrics– and Columbus/CAN calculates 67 different
metrics. This results in two datasets with metric data, one for the design and
one for the implementation.

Using the metric datasets we can try to find correlations between design
metrics and implementation metrics. Since there are many metrics and many
classes available in the test case, we prefer to use a tool for this.

This empirical analysis results in a list of metric pairs that have strong cor-
relation. The metrics in these pairs form the metric profiles for design and im-
plementation classes. For each metric pair a regression line can be determined.
Given a regression line it is possible to predict the value of the implementation
metric given a design metric value. An implementation class fits to a design
class if the predicted implementation values are closest to the real values. Since
a high correlation between design and implementation metric indicates better
predictability, it is a good idea to use the correlation coefficients as weights.

Let D be the set of design classes, I the set of implementation classes and
M the set of metric pairs. For all m ∈ M , the correlation coefficient ρm and the

7

7 D.J.A. van Opzeeland, C.F.J. Lange, and M.R.V. Chaudron

regression coefficients (β0,m and β1,m) are known. Then the metric profiles of
d ∈ D and i ∈ I can be compared as follows:

sim(d, i) =
∑

m∈M

ρm|β0,m + β1,mdm − im| (3)

If sim(d, i) is close to 0, the match is good. If sim(d, i) grows larger, the
match becomes worse. The best matching design class for some implementation
class is the one that minimizes sim(d, i).

d ≃ i ≡ sim(d, i) =↓d′∈D sim(d′, i) (4)

Package information In UML designs, the classes of larger systems are often
organized in packages. This information is stored in the development view of
the 4+1 View Model [11]. The source code of these systems is modularized in
different files which in turn are ordered in a directory structure.

If a relation is found between a design package and a source directory, then it
is likely that all implementation classes in that directory match to design classes
in the related package.

Unlike the other approaches, package information can not establish a match-
ing of individual classes from design and implementation. It can cluster classes
in groups however thereby narrowing the search for other approaches.

A combination of strategies As will be discussed in section 6, none of the
approaches can establish a matching alone. A combination of the methods might
improve the results. One combination is shown in figure 2.

From the case studies we analyzed, it became clear that the class names
approach is already very reliable. This will also be the case for the case study
presented in section 5. For this case, over 87 % of the design classes is correctly
matched by just considering classifier names. As this approach is quite stable
for other cases as well, it is a good idea to derive an initial –partial– matching
using this approach.

This partial relation can be used to link design packages to source directories
and files. Thereby, the search space for other methods can be limited since a
design class and an implementation class are only likely to be related if they are
part of related packages.

Finally, the other approaches can be used on the unmatched classes in the
package clusters to improve the matching further. If still some classes remain
unmatched there is no alternative but to require human intervention for the
matching.

For the matching based on the metric profile, one needs correlating metrics.
Of course it is possible to define a generic metric profile that holds for any
project. The correlations between metrics are likely to be significantly different
from project to project. It is a better idea to make the metric profile project
specific. In that case, the partial matching that is already available can be used

8

Quantitative Techniques for the Assessment 8

Fig. 2. An approach for matching

to calculate correlations. The selection of metrics for the metric profiles of classes
thereby also becomes project specific. The custom made metric profiles can then
be used for matching other classes in the system.

For this project specific selection of metric profiles to work, the calculated
correlations should be significant. The significance of correlations depends on
the size of the underlying dataset. In this case, the dataset is consists of pairs of
classes that are already matched. If the dataset is small, sufficient significance
of the correlation coefficients might be a problem.

Anything that can’t be matched by hand, can be regarded as a difference
between design and implementation.

4.2 Tooling

This section describes the tools that are used for the correspondencechecking
approach.

MetricView The matching algorithms will be implemented as a component in
MetricView [21]. MetricView originally was a tool for visualizing metric data in
a UML model. An impression of the tool is shown in figure 3.

The main window shows one or more UML diagrams. For correspondence
checking purposes it is convenient to show a design model behind an implemen-

9

9 D.J.A. van Opzeeland, C.F.J. Lange, and M.R.V. Chaudron

Fig. 3. The MetricView tool highlights differences between design and implementation

tation model. An implementation class is drawn on top of the matching design
class. Classes that do not match are highlighted.

Recently some new features were added. Correspondence checking is one of
them. For correspondence checking the following changes have been made to the
original version of MetricView:

– It is possible to load both a design and an implementation model at the same
time. This induces the introduction of some kind of project management.

– It is possible to load metrics in different formats than SAAT [16] output
(Columbus/CAN [5], SDMetrics [22]).

– GUI support for matching properties was introduced.

10

Quantitative Techniques for the Assessment 10

5 Case Study

In this section we describe the results of our approach that resulted from an
industrial case study.

5.1 Description

Using the matching criteria described in section 4, we analyzed a software system
created in an industrial environment. This system is the firmware for a DVD
recorder. Both UML designs and an implementation were provided. The design
consists of 346 classes and the implementation has 777 classes.

5.2 Results

Matching based on names The matching based on classifier names works
pretty fine for the design. Over 87 % of the classifiers is matched based just on
the name of the classifier. The metric profile approach was used to find suspicious
cases in this matching. It is for instance suspicious if the number of operations in
the implementation is much larger than the number of operations in the design.
15 couples of a design metric and an implementation metric were compared. This
resulted in 39 distinct suspicious cases which were validated manually. No false
positives were found.

Matching based on metric profiles The statistical analysis of the metrics
resulted in a list of metric pairs that showed a high correlation in the case study.
Since it is unclear which calculation of the correlation coefficient gives the most
reliable results, we calculated the Pearson, Spearman and Kendall correlation
coefficients for this case. The highest correlations are discussed in this section.

Table 1 shows the metric pairs that have the highest Pearson correlation
coefficients. The meanings of the metric names are listed in appendix A.

The high Spearman correlation coefficients are listed in table 2. Table 3 lists
the high correlation coefficients for Kendall’s Tau correlation coefficient. The
significance values are below 0.001 for all correlations in the table.

What stands out immediately is that only a few different metrics from design
and implementation have high correlations. There are 43 different design metrics
but only 7 of them correlate strongly with implementation metrics. The same
holds for the implementation metrics. Only 7 of the 67 metrics correlate strong
enough to some design metrics.

One would expect that metrics that are available in both design and imple-
mentation correlate strongly. This is indeed the case for OpsInh vs. NMI (which
both count the number of inherited methods). A very high correlation coefficient
of 0,9242 is found. But the number of ancestors design metric seems to correlate
better with the Depth of inheritance tree metric (ρ = 0, 7851) in the implemen-
tation than with the corresponding number of ancestors metric (ρ = 0, 6759).

11

11 D.J.A. van Opzeeland, C.F.J. Lange, and M.R.V. Chaudron

Design metric Impl. metric ρ

OpsInh NMI 0,924

OpsInh NM 0,903

OpsInh NAM 0,902

OpsInh ProM 0,889

NumAssEl ssc DAC1 0,866

NumAssEl sb DAC1 0,864

Fan-out DAC1 0,857

CBO1 DAC1 0,853

OpsInh PubA 0,851

Fan-in DAC1 0,846

OpsInh NAI 0,842

DIT DIT 0,833

OpsInh DIT 0,829

NumAssEl ssc OCAIC 0,829

NumAssEl sb OCAIC 0,827

CBO1 OCAIC 0,821

Fan-out OCAIC 0,821

OpsInh ProA 0,819

Fan-in OCAIC 0,817

Fan-out DAC 0,817

CBO1 DAC 0,816

NumAssEl ssc DAC 0,813

NumAssEl sb DAC 0,812

Fan-in DAC 0,803

Table 1. The table of correlating metrics using Pearson’s method for correlation

Most of these metric pairs that express the same measure seem not to correlate
very well.

Some strange and unexpected couples do show high correlation. Take for
instance the pair (OpsInh, PubA) in table 1. OpsInh counts the number of
inherited operations and PubA counts the number of public attributes. These
couples are not likely to be very reliable even though the correlation coefficient
is high. If we filter out the really nonsense metric pairs only 5 pairs remain with
high correlation.

Using Spearman’s correlation coefficient instead of Pearson’s correlation coef-
ficient does not really help. It brings some other metric pairs, but again only few
distinct metrics take part in highly correlated pairs and most of the correlations
are unexpected.

When we examine the Kendall correlation coefficients, the list of relatively
high correlation coefficients shrinks a lot. The highest correlation coefficient
is 0,754 which is pretty bad. The metrics for which this value is found, were
not expected to correlate. NumAnc counts the number of ancestors whereas
NAI counts the number of inherited attributes. Most of the pairs found using

12

Quantitative Techniques for the Assessment 12

Design metric Impl. metric ρ

NumAnc NAI 0,861

DIT NAI 0,856

OpsInh NMI 0,830

NumInhFrom NMI 0,829

OpsInh NAI 0,827

NumInhFrom NAM 0,822

NumInhFrom DIT 0,814

DIT NMI 0,811

NumAnc NMI 0,810

NumInhFrom NM 0,806

NumInhFrom ProA 0,805

OpsInh NM 0,803

OpsInh NAM 0,794

NumInhFrom NAI 0,792

DIT DIT 0,790

NumAnc DIT 0,789

DIT NM 0,787

NumAnc NM 0,786

NumAnc NAM 0,784

OpsInh DIT 0,783

OpsInh ProM 0,782

Table 2. The table of correlating metrics using Spearman’s method for correlation

Kendall’s method are also found using Spearman’s method. But Spearman’s
method misses two interesting matches that Kendall’s method does find: NOC
vs. NOC and CLD vs. CLD.

Only metric pairs that have strong correlation are good predictors for a class
matching. The relatively small metric profiles suggest that the matching will
not be very reliable. Indeed this is the case. The resulting matching consists of
completely unrelated classes. The method only succeeds in relating a few classes
that should have been matched.

Matching based on package information For the matching based on pack-
age information to be helpful, the results should consist of small clusters. Small
clusters limit the search space of other approaches a lot. If the packaging in the
design resembles the directory structure of the implementation, other approaches
for matching can generate better results.

5.3 Differences found in the case study

Once the matching is determined, it is easy to check for differences. The metric
profiles seem to be very convenient for this purpose. Metric pairs that deviate
much from the regression line in a scatter plot can be considered suspicious.

13

13 D.J.A. van Opzeeland, C.F.J. Lange, and M.R.V. Chaudron

Design metric Impl. metric τ

NumAnc NAI 0,754

DIT NAI 0,751

OpsInh NAI 0,719

NumInhFrom DIT 0,709

NOC NOC 0,707

OpsInh NMI 0,706

CLD CLD 0,703

NumDesc NOD 0,703

NumDesc NOC 0,703

Table 3. The table of correlating metrics using Kendall’s method for correlation

Changes in the Inheritance tree Quite surprising is the fact that the inheritance
tree is changed from design to implementation. By tracing back a special case
the following comment was found:

Class Component is the abstract base class of all components in the
datapath.

Apparently all other classes in the application inherit from class Component
in the implementation. That looks very much like a design decision. Unfortu-
nately this design decision is not reflected in the detailed design. This is a typical
deviation from the design.

Specialization of classes It also occurs that in the implementation new classes
are introduced that inherit from matched classes.

Introduction of attributes In the source code many attributes are declared in
classes that were not designed. The introduction of attributes may cause the
introduction of association relations between classifiers. If such relations exist
anyway, especially the introduction of private attributes can considered to be
implementation convenience. Protected attributes have a little more impact since
these attributes are accessible to specializing classes as well.

Introduction of methods For quite a number of classes, extra methods are intro-
duced in the implementation. A special case of this is the introduction of get- or
set-methods. In the analysis, a class was found that has no setters in the design
but has a public setter for each getter in the implementation. Public setters can
be used by other parts of the system which may cause the introduction of new
dependencies. In the case study this actually happened.

Unused dependencies Not all of the differences are caused by introductions in
the implementation. A design class A depends on some other class. The source
code of A does not show any reason for this dependency to be in the design.
This gives rise to the question whether something has been forgotten in the
implementation.

14

Quantitative Techniques for the Assessment 14

6 Conclusions and Future Work

In this paper we proposed a method for comparing the implementation of a soft-
ware system with its design described in UML. The purpose of this comparison
is to judge on the correspondence between this design and its implementation
and to find possible deviations.

Design and implementation are compared via mapping onto a common meta-
model. Design elements are entities like classes or interfaces and implementation
elements are pieces of source code representing a class. Therefore, the compari-
son requires a mapping between design elements and implementation elements.
We chose to define a mapping based on the classifiers in the software system.

There are various ways to compare classifiers. We proposed different ap-
proaches for matching. For our case study none of the approaches succeeded
in defining a complete matching. Name matching performed best (with 87% of
the design classes matched). This is because most classes that were meant to
correspond had almost equal names.

The use of only the metric profile approach for matching gave a random
result. The reason for this was that the number of metrics in the metric profiles
was small. For the case study there were only 5 sensible strongly correlating
metric pairs. Due to this, the metric profiles were not distinctive enough. The
way to improve this, is to limit the search space of the metric profile approach.
The package information approach can be used for this.

Even though the metric profile approach is not capable of matching large
sets of entities, it is useful for the discovery of suspicious deviations. Data points
in a scatter plot that are far from the regression line, are outliers. These outliers
can be considered suspicious.

6.1 Future Work

The question now is what degree of correspondence is necessary. This depends
on the way the design is used within the project. One purpose of a design after
implementation may be to help understand the software. If differences between
design and implementation do not complicate this, they are not really problem-
atic. Inserting some private operations in the implementation is generally not a
big deal. However, deviating from the inheritance tree is likely to cause problems.

If critical differences are found, they have to be resolved. There are two ways
to do this. The implementation can be adapted such that it reflects the design
or the other way around. Which of these alternatives is best depends on the
situation.

In this situation, a challenge is to automatically update the UML model such
that the design reflects the implementation. This is not difficult for differences
like introduction of an operation. If new classes with relations to existing classes
are introduced, drawing these classes in an existing diagram is challenging. The
layout of an existing diagram should be changed such that the new classes neatly
fit in it but original diagram is not changed more than necessary. In literature
there exist algorithms for automatic layout a model from scratch. There are no

15

15 D.J.A. van Opzeeland, C.F.J. Lange, and M.R.V. Chaudron

algorithms that modify an existing diagram into an updated version with the
new elements inserted.

References

1. Giuliano Antoniol, Bruno Caprile, Alessandra Potrich, and Paolo Tonella. Design-
code traceability recovery: selecting the basic linkage properties. Science of Com-
puter Programming, 40(2-3):213–234, 2001.

2. W. J. Conover. Practical nonparametric statistics. Wiley and Sons, New York, 2nd
edition, 1980.

3. T.R. Dean, A.J. Malton, and R. Holt. Union schemas as a basis for a C++
extractor. In Eighth working Conference on Reverse Engineering, 2001.

4. Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics, A Rigorous &
Practical Approach. PWS Publishing Company, 2nd edition, 1997.

5. R. Ferenc, F. Magyar, Á. Beszédes, Á. Kiss, and M. Tarkiainen. Columbus - tool
for reverse engineering large object oriented software systems. In Proceedings of
the 7th Symposium on Programming Languages and Software Tools (SPLST 2001),
pages 16–27. University of Szeged, June 2001.

6. R. Fiutem and G. Antoniol. Identifying design-code inconsistencies in object-
oriented software: a case study. In ICSM ’98: Proceedings of the International
Conference on Software Maintenance, page 94. IEEE Computer Society, 1998.

7. TakeFive Software GmbH. Sniff+ user’s guide and reference.
http://www.takefive.com, 1996.

8. Michael W. Godfrey and Lijie Zou. Using origin analysis to detect merging and
splitting of source code entities. IEEE Trans. Softw. Eng., 31(2):166–181, 2005.

9. Rick Kazman and S. Jeromy Carrière. Playing detective: Reconstructing software
architecture from available evidence. Automated Software Engineering, 6(2):107–
138, 1999.

10. K. Kontogiannis. Evaluation experiments on the detection of programming pat-
terns using software metrics. In WCRE ’97: Proceedings of the Fourth Working
Conference on Reverse Engineering (WCRE ’97), page 44, Washington, DC, USA,
1997. IEEE Computer Society.

11. Philippe Kruchten. The 4+1 view model of architecture. IEEE Software, 12(6):42–
50, 1995.

12. William J. Masek and Michael S. Paterson. A faster algorithm computing string
edit distances. Journal of Computer and System Sciences, 20(1):18 – 31, February
1980.

13. Douglas C. Montgomery and George C. Runger. Engineering Statistics. John
Wiley and Sons, New York, 3rd edition, 2003.

14. Gail C. Murphy, David Notkin, and Kevin Sullivan. Software reflexion models:
bridging the gap between source and high-level models. SIGSOFT Softw. Eng.
Notes, 20(4):18–28, 1995.

15. Gail C. Murphy, David Notkin, and Kevin J. Sullivan. Software reflexion models:
Bridging the gap between design and implementation. IEEE Trans. Softw. Eng.,
27(4):364–380, 2001.

16. Johan Muskens. Software architecture analysis tool. Master’s thesis, Technische
Universiteit Eindhoven, 2002.

17. Johan Muskens, Christian F. J. Lange, and Michel R. V. Chaudron. Experiences
in applying architecture and design models in multiview models. In Proceedings of
30th EUROMICRO, August 2004.

16

Quantitative Techniques for the Assessment 16

18. James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Lan-
guage Reference Manual. Addison Wesley, 1999.

19. Margaret-Anne D. Storey, Kenny Wong, and Hausi A. Müller. Rigi: a visualization
environment for reverse engineering. IEEE Computer Society, May 1997.

20. Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 2nd edi-
tion, 1991.

21. Maurice Termeer. Metricview, visualization of software metrics on uml architec-
tures. http://www.win.tue.nl/metricview, January 2005.

22. Jürgen Wüst. Sdmetrics user manual. http://www.sdmetrics.com, December 2004.

A Metric names

Design metrics

Metric Description

CLD Class to leaf depth
DIT Depth of inheritance tree
NOC Number of children
NumAnc Number of ancestors
NumDesc Number of descendants
NumInhFrom Sum of number of parents and

number of implemented inter-
faces

NumProOps Number of protected operations
OpsInh Number of inherited operations

Implementation metrics

Metric Description

AID Average inheritance depth of a
class

CLD Class to leaf depth
DIT Depth of inheritance tree
NA Total number of attributes
NAM Number of attributes and opera-

tions
NIA Number of inherited attributes
NIM Number of inherited methods
NM Total number of operations
NOA Number of ancestors
NOC Number of children
NOP Number of parents
ProA Number of protected attributes
ProM Number of protected operations
PubA Number of public attributes
PubM Number of public operations

17

17 D.J.A. van Opzeeland, C.F.J. Lange, and M.R.V. Chaudron

