
Comparing the Results of Relation Analysis and
Coupling Metrics

Initial Case Study

Jonne Itkonen

Department of Mathematical Information Technology,
P.O. Box 35, FIN-40014 University of Jyväskylä, Finland

ji@mit.jyu.fi

Abstract. Relation Analysis, finding simultaneously changing software
modules, is a powerful way to find out unspecified logical couplings dur-
ing software development. Dependency metrics like abstractness and in-
stability of packages calculated from the number of abstract, afferent
and efferent classes in a package are used to qualify the object-oriented
design of software. This study tries to find out can Relation Analysis and
dependency metrics strengthen each other. Some minor but promising
results are achieved, suggesting that detailed research on analysis of the
now calculated metrics in time should be considered.

1 Introduction

Relation Analysis (RA), as part of the QCR-method developed by Gall et al. [1],
identifies parts of software that contain unspecified logical couplings. These logi-
cal couplings might be impossible to notice using traditional dependency analysis
techniques, as they usually do not manifest themselves as code level relations,
but as relations in developers mind. An example might be that if module A is
changed with respect of operation O, module C should be changed too.

The idea of this study is to compare the results of RA to the results obtained
from calculating coupling metrics between the modules. It is not expected that a
strong correspondence is found between RA and coupling metrics, but a positive
result would be, if RA could ensure the results of coupling metrics. Of course,
the coupling metrics ensuring the results of RA would be a nice finding also, but
that might just say that the couplings were specified. Either way, the developers
of the inspected software are interviewed to get their opinion on the results.

2 How things are done

RA is based on finding changes made to software at the same time, i.e. within
a small time period. Changes to a group of modules within this small time
period are considered happened together, and recorded as an event consisting
of a set of module identifiers and a timestamp. The reoccurring of this event

is calculated through the evolution of software. Should modules that have no
planned dependencies change together repeatedly, they are considered having
an unspecified logical coupling.

The recording of changes is done with a widely used source code management
system, the Concurrent Versioning System (CVS). It has a logging ability that
shows what files have changes, when, how, and by whom. CVS does not record
changes atomically, that is, it doesn’t apply the changes of the changed files to the
code repository as one entity, as modern source code management systems do.
Nevertheless, even on modern systems this grouping by time might be necessary,
as time period used can be a couple of minutes long and so contain a few atomic
transactions.

For coupling metrics, those presented by Robert C. Martin in [2] are used.
These metrics count the number of all classes Nc and abstract classes Na, with
the number of afferent Ca and efferent Ce classes in a package. Afferent classes
are those that don’t belong to the current package P, but do depend on the
classes inside the package P. Efferent classes are those that are inside package P
and depend on classes outside package P.

From these metrics we then calculate the instability I = Ce

Ca+Ce
and abstract-

ness A = Na

Nc
of the package, and distance from main sequence D = |A+I−1|√

2
.

Instability has a range of [0, 1], wher I = 0 means maximally stable package and
I = 1 means that the package is maximally instable. Abstractness has also the
same range. Packages that have A = 0 have no abstract classes where packages
with A = 1 have nothing but abstract classes.

The meaning of main sequence is clearly shown if we plot the abstractness
and instability values on a union square like in Figure 1. Martin [2] defines the
area near (0,0) as the zone of pain as these packages are rigid and hard to change,
should the need arise, but many packages are dependant of these. Packages that
RA shows to be under heavy change should not be located here. The area near
(1,1) is the zone of uselessness, as packages here are most abstract and most
instable, but useless, because not many packages depend on these. Packages
should be near the main sequence, the diagonal y = 1 − x. Packages away
from this, as denoted by distance from main sequence D should be investigated
further.

RA is done by self-made software that extracts the data from the log of
CVS. This data is then visualized using self-made script that outputs a graphics
file rendered with GraphViz. As RA-software does currently not collect all the
needed data, CVSAnalysis is used to get the missing data, namely number of
lines, lines added and deleted, and the creation date and last modification date
for a class.

In calculating the dependency metrics Dependency Finder was used. The
data it produced is changed to a GNUPlot-renderable file by a self-made XSLT-
transformation and a Python-script. As can be seen from the number of different
techniques and tools used, some integration and reengineering is needed to clarify
the data acquisition process.

Comparing the Results of Relation Analysis 130

3 Preliminary Results

The software under inspection is a study management system called Korppi de-
veloped at the University of Jyväskylä. More details of Korppi and applying RA
to it is given in [3]. RA was done with 90-second timeframe. One noticeable candi-
date for unspecified logical coupling is between class kiurubeans.SearchFree-
SpaceForm and class kolibribeans.AppointmentForm2 with weight of 17 (that
means these classes have changed 17 times at the same time-period) and another
is one with a weight of 11 between class kiurubeans.SearchFreeSpaceForm and
class kolibribeans.Appointment. These couplings seem to be quite meaning-
less, as couplings with weight over 100 exist. There are total of 768 logical cou-
plings between kiurubeans and kolibribeans the sum of their weights being
1079 giving the average of 1.4. This value should be compared to the strongest
coupling candidate that is between kiurubeans and kotkabeans, that has 5036
couplings with weight sum of 5932 giving the average of 1.8.

Table 1. History data for three classes

Created Modified Revision + - LOC

AppointmentForm2 2004-09-29 2005-05-06 81 7227 4606 783
SearchFreeSpaceForm 2004-09-29 2005-04-22 64 5748 3580 829
Appointment 2004-03-12 2005-05-10 93 2716 597 56

Nevertheless, there seems to be nothing wrong here. Looking at the names of
these classes and their ages it can be assumed that they were developed together.
Interview with the developers confirmed this. Ages and data on changes for
these classes is given in Table 1. Fields are name of the class, creation date,
modification date, number of revisions, lines added, lines deleted and lines of
code including empty and comment lines.

The dependency metrics for the packages of these classes are given in Table 2.
All three packages are located quite near the main sequence, but as the distance
metrics (D′ and D) shows, kolibribeans might be a bit suspicious.

Figure 1 is a graphical representation of the data in Table 2. As the picture
shows that the classes of this project do not locate near and along the main
sequence. Most are instable and concrete. The developers, however, know this.
They are not writing this software as object-oriented as possible. Figure 1 shows
also, that the two zones of problematic packages are quite empty. The few pack-
ages that are located in these zones are kotkabeans and tools. RA shows no
strong logical couplings between these packages.

There is a group of Sync4J-related packages in the software that also lie near
the problematic zones. RA shows a logical couplings with an average weight of
1,4 between kotkabeans and sync. This is a promising finding for which not
enough time has been given yet.

131 J. Itkonen

Table 2. Dependency Metrics for packages Kolibribeans and Kiurubeans

Ca Ce I Nc Na A D
′

D

kolibribeans 28 112 0.8 19 0 0 -0.2 0.14
kiurubeans 19 141 0.88 81 8 0.1 -0.02 0.014
kakibeans 15 68 0.82 31 6 0.19 0.01 0.007
kakibeans.ability 3 27 0.9 8 2 0.25 0.15 0.11
kotkabeans 313 220 0.41 164 8 0.05 -0.54 0.381
tools 162 45 0.22 14 6 0 -0.78 0.553

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

r

r

r

r

r

r

Fig. 1. A − I Graph for packages from Table 2

It is interesting to note that packages marked by RA to contain possible
unspecified logical couplings and being developed strongly are also indicated
such by the distance from main sequence metric D.

4 Conclusion

Based on this very restrictive study it seems like some correspondence between
RA and the selected dependency metrics exist. This has to be assured by exam-
ining the data thoroughly and including the research of how the data changes
over time to.

Comparing the Results of Relation Analysis 132

Also, the presumption that logical couplings do not manifest themselves in
code might be hasty. Static code analysis, namely finding duplicate code in
different modules, might discover some of the unspecified logical couplings. Nev-
ertheless, RA could be used to qualify the existence of these couplings between
code duplicates.

The results should also be compared against the results of qualitative code
estimation methods.

References

1. Gall, H., Jazayeri, M., Krajewski, J.: Cvs release history data for detecting logical
couplings. In: Sixth International Workshop on Principles of Software Evolution
(IWPSE’03). (2003)

2. Martin, R.C.: Agile Software Development: principles, patterns and practices. Pear-
son Education, Inc. (2003)

3. Itkonen, J., Hillebrand, M., Lappalainen, V.: Application of relation analysis to a
small java software. In: Eighth Euromicro Working Conference on Software Main-
tenance and Reengineering (CSMR’04), IEEE Computer Society (2004)

133 J. Itkonen

