Towards a multiparadigm complexity measure

Zoltan Porkolab and Adam Sillye

Department of Programming Languages and Compilers, E6tvés Lorand University
Pazmany Péter sétany 1/C H-1117 Budapest, Hungary,
phone: +36 1 381-2319, fax: +36 1 381-2185
{gsd, madic}@elte.hu

Abstract. Structural complexity metrics play important role in mod-
ern software engineering. The cost of software maintenance is mostly
depends on the structural complexity of the code. A good complexity
measurement tool can trigger critical parts of the software even in de-
velopment phase, measure the quality of the code, predict the cost of
testing efforts and later modifications. With the raise of object-oriented
paradigm, research efforts at both the academic world and the IT indus-
try has focused metrics based on special object-oriented features. How-
ever object-orientation is not the only programming style used in software
construction. In modern programming languages multiparadigm design
is frequently used. An adequate measure therefore should not be based
on special features of one paradigm, but on basic language elements and
construction rules applied to different paradigms. In this article we pro-
pose such a multiparadigm metrics and evaluate it.

Area M (General Aspects of Measurement), Metrics for multiparadigm programs

1 Introduction

Structural complexity metrics play an important role in modern software en-
gineering. Testing, bug fixing cover more and more percentage of the software
lifecycle. The most significant part of the cost we spent on software connected
to the maintenance of the software. The cost of software maintenance is mostly
depends on the structural complexity of the code. A good complexity measure-
ment tool can trigger critical parts of the software even in development phase.
It can help to write good quality code, and can make assumptions on the pre-
dicted costs. With the raise of the object oriented paradigm research efforts at
both the academic world and the IT industry has have focused metrics based
on special object oriented features, like number of classes, depth of inheritance
tree or number of children classes. Several implementations of such metrics are
available for the most popular languages (like Java, C#, C++) and platforms
(like Eclipse).

However, object orientation is not the only programming style used in soft-
ware construction. We still have a large amount of legacy code written in pro-
cedural or even in unstructured way. Also in modern programming languages

135 Z. Porkoléb and A. Sillye

(most importantly in C++) template metaprograms are often used [Cza00]. In
Java generics just have been introduced [Jav04], but Aspect Oriented Program-
ming [Kic96] is already highly popular. For these code object oriented metrics
are not suitable. More interestingly programs frequently constructed with the
mixture of paradigms above. Such multiparadigm programs [Cop98| can appear
in C++ and Java specially on the .NET platform.

An adequate measure therefore should not be based on special features of
one paradigm, but on basic language elements and construction rules applied
to different paradigms. A paradigm-independent software metrics are applicable
for programs written in different paradigms or in mixed-paradigm environment.
Such metrics should be based on general programming language features, which
are paradigm- and language independent. The paradigm-dependent attributes
are derived from these features.

Our proposal is, that when counting the complexity of a program, we should
take the complexity of the data used and the complexity of data handling into
consideration; we should see the decreasing of complexity through hiding tech-
niques. Accordingly, the complexity of a program is a sum of three components

1. Control structure of program: most of the programs have the same control
statements irrespectively of paradigm used.

. Complexity of data types: reflects the complexity of data used (like classes)

3. Complexity of data access: connection between control structure and data

gives the direction of the data flow and nesting depth of the data handing.

[\

In the following sections we define our measure called AV-garph. Then we
define the complexity of class. Class is defined as a set of data (attributes) and
control structures (member functions, methods) working on the attributes. We
define the complexity of class as a sum of the complexity of attributes and the
complexity of member functions. The definition reflects the common experience
that good object-oriented programs have very strong bindings between the at-
tributes and the methods inside the class and have week connections between
different classes. The measure is also examined on special cases such as mem-
ber functions calling other member functions, and classes with no attributes
(old-style libraries), etc.

Afterwards we examine the complexity issues of the connection of classes.
Inheritance and aggregate relationships between classes can increase global com-
plexity of the program. However, every time we use the same class we can see
the benefit of these constructions. We show on some classical example, how
complexity depends on binding between classes.

2 The proposed metrics

The well-known measure of McCabe (cyclomatic complexity) is based only on
the number of predicates in a program: V(G) = p + 1. The inadequacy of the
measure becomes clear, if we realize that the complexity depends basically on
the nesting level of the predicate nodes. The measures proposed by Harrison and

Towards a multiparadigm complexity measure 136

Magel [Har81] and Piwowarski [Piw82] proven to be equivalent in principle by
Howatt and Baker [How89] take this lack into account.

The complexity of the control structure of a program is defined with the help
of the nesting depth. It is important to carefully define the complexity, not to
exclude non-structural programs. Programming languages, like C#, C++, Java
reintroduced non-structured control facilities with the exception handling.

Definition Given control garph G = (N, E,s,t) and p € N predicate node.
The scope of p is: Scope(p).

Definition Given control graph G = (N, E,s,t), and £ € N node. For a
node z the predicate set was defined as:

Pred(x) ={p| « € Scope(p)}

Definition Given control graph G = (N, E,s,t) and * € N the nesting
depth of node x is:
nd(x) =| Pred(z) |

Definition Given control graph G = (N, E, s,t) the total nesting depth of
the graph is:

ND(G) = Z nd(n)

nenN’

Definition Given control graph G = (N, E, s,t) the scope number of the
graph is defined as:

SN(G)= > (| Scope(n)| +1)=| N' | +ND(G)

neN’

There is a clear analogy with the McCabe metrics. Here however we summa-
rize the nesting depth of nodes rather than summarize the number of predicate
nodes.

2.1 The role of data handling

An important feature of our software metrics is that it doesn’t count the com-
plexity of data handling based on the place of the declaration. The metrics
encounter that value exactly at the point of data handling. This of course also
measure the place of declaration in an implicite way: local variables are used
only in the local code context (in the subprogram).

Definition Given an AV graph G = (V,&,s,t), N = N U D, where N is
the set of the control nodes, D the set of data nodes, p € N (not neccessery)
predicate node. The data-scope (D-scope) of node p is DScope(p) = {d € D |

IneN A née Scope(p)U{p} A ((n,d) €EV(dn)ef)

137 Z.Porkolab and A. Sillye

Definition Given an AV graph G = (N, &, s,t) N = NUD, the set of control
nodes is IV, the set of data nodes is D, node p € N predicate. The data and
control scope of node p

AV Scope(p) = Scope(p) U DScope(p)

Given AV graph G = (N, &, s,t), and node z € N. The set of nodes that
predicate a node x is

AV Pred(z) = {p| © € AV Scope(p)}

Definition. Given AV graph G = (N,&,s,t) the nesting depth of node
x € Nis:
nd(x) =| AV Pred(x) |

Definition Given Av graph G = (N, &, s,t) the total nesting depth is:

ND(G) = > nd(n)

neN’

Definition Given AV graph G = (N, &, s,t) the complexity of the graph is

CG) =1 N | + ND(9)

The complexity of th AV graph depends on the control structure and the
data handling. The control structure — with the help of predicate nodes — defines
the nesting depth of control nodes and the depth of data handling. The total
complexity is exprssed by the nesting level of both data and control.

There is an another possible way to get these results. Let suppose we have no
data nodes and data edges in our graph but we replace them whit special control
nodes: ,reader” and/or ,writer” which do only receiving and sending information.
These nodes will be inserted just before and after the real control nodes which
read and/or write data. The nesting depth and complexity value we get with
this model is the same we count based on AV graphs.

3 The complexity of class

We can naturally extend our model to object-oriented programs. In the centre of
the object-oriented paradigm there is the class. Therefore we should first describe
how we measure the complexity of a class. In the base of the previous sections
we can see the class definition as a set of (local) data and a set of methods.

Definition A class-graph O = {G | G AVgraph} is a finite set of AV
graphs (the member graphs). The set of nodes N' = N |J D, where N represents

Towards a multiparadigm complexity measure 138

the nodes belonging the control structure of one of the member graphs and D
represents the data nodes used by the member graphs. We can call D also as
the set of attributes of the class. The set of edges £ = E|J R represents the
FE edges belonging the control structure of one of the member graphs and R as
the data reference edges of the attributes. As the control nodes (nodes belonging
to the control structure of one of the member graphs) were unique, there is no
path from one member graph to another one. However, there could be attributes
(data nodes) which are used by more than one member graph. These attributes
have data reference edges to different member graphs.

This is a natural model of the class. It reflects the fact that a class is a
coherent set of attributes (data) and the methods working on the attributes.
Here the methods (member functions) are procedures represented by individual
data-flowgraphs (the member graphs). Every member graph has his own start
node and terminal node, as they are individually callable functions. What makes
this set of procedures more than an ordinary library is the common set of
attributes used by the member procedures. Here the attributes are not local to
one procedure but local to the object, and can be accessed by several procedures.

Definition The complezity of a class can be computed in a very similar way
to the complexity of the program:

C(O)=|N"| + 3 ND(G)

GeO

It is important to stress that the complexity of the class is inherited from
both the complexity of the control flow and the complexity of data structure.

Lemma The complexity of the class can be computed as the sum of the
attributes and the sum of the complexity of disjunct memberfunctions.

C(O) =[A+ Y (NDG)+|Lc)
Geo
In the following example we represent a class with an AV graph. Let consider

the year data node, as one of the nodes witch used by more than one method.

ND(set_next_month) — 14

|N"|= 4

ND(set_next_year) = 9

IN'"|=3

The number of the attributes in this graph:
[A= 3

Total complexity:
C(date) =18 +12+3 =33

139 Z. Porkol4b and A. Sillye

day

Fig. 1. example class

4 Evaluation of the metrics

Let consider that h definition of AV graph permits the emty set of control nodes.
In that case we get a classical data structure. The complexity of a classical data
structure is the sum of the data nodes.

The opposite situation is also possible. When a ,class” contains disjunct meth-
ods, so there is no common data shared between them — there are no attributes
— we compute the complexity of the class as the sum of the complexity of the
disjunct functions. We can identify this construct as an ordinay function library.

These examples also point to the fact,that we use paradigm-independent
notions, so we can apply our measure onto procedural, object-oriented or even
mixed style programs. This was our goal.

Let suppose we have two identical classes. The only difference between the
two code is that one of them using private declarations to hide those variables
not to belong to interface. Can an ordinary C+-+ programmer see the differences
in complexity between the two definitions? We can hardly say yes. However, there
could be differences in the complexity of the client code, which uses the class. If
the client accesses the attributes of the class via the set_next month function,
we can replace its subgraph in the client code in the known way. This decreases
the complexity of the client code.

A data member of a class is marked with a single data node regardless of its
internal complexity. If it represents a complex data type, its definition should be
included in the program and its complexity is counted there. Up to the point,
where we handle this data as an atomic entity, its effect to the complexity of the
handler code doesn’t differ from the effect of the most simple (built-in) types.
From the viewpoint of the code using class date, the internal implementation of
date makes no difference.

Towards a multiparadigm complexity measure 140

If T is a user-defined class, then the complexity of the whole system (con-
taining the standard libraries, functions and the other user-defined classes earlier
defined is increasing. The complexiy of 7" has been added to the system. This is
however a good trade-of, because the constant effort we did here, will result a
code decrease in linear, when we use that more intelligent class.

Here we use the member functions of date, the calls of which have constant
complexity regardless of its implementation. Hovewer, if we break the encapsu-
lation of class date (ie. we directly access its components), the data reference
edges connect the handler code to the internal representation and increment its
complexity. Once again, we stress this fact has to do with the private or public
members only in an indirect way: as far as we use the methods to handle data,
it doesn’t matter whether the components are public or private. Of course, the
compiler supports this strategy only when we made our components private.

Inheritance is handled in a similar way. Code of the derived class in most
cases (but not neccessery) refers to the methods and/or data members of the base
class(es). These references (method calls or data accesses) are described in the
very same way as we did in the case of procedural programs. The motivation here
is again to derive complexity from the basic, paradigm—independent program
elements.

5 Weyuker axioms

Elaine J, Weyuker in 1988 proposed logical statements over complexity metrics
based on syntactical features of program [Wey88]. The statements — often called
Weyuker axioms, however they are not axioms in the mathematical sense — define
the "expected behaviour" of software metrics. Here we show the results of the
evaluation of some famous metrics and ours against the Weyuker axioms. (The
+ sign means that the appropriate metrics fulfills the certain "axiom".)

#| # statements| McCabe| Halstead| dataflow| AV graph
1 + + + + +
2 + - + - with mod.
3 + + + + +
4 + + + + +
5 + + - - +
6a - - + + +
6b - - + + -
7 - - - + +
8 - + + + +
9a - - + + -
9b - - + + +

141 Z. Porkolab and A. Sillye
6 Empirical results

There is a software implementation of our metrics working on Java sources,
computing the AV-graph complexity. The implementation was written itself in
Java, using an open source parser: CUP [Cup02]. The software is also able to
measure some other complexity numbers, like

1. Size metrics: eLOC, Number of Statements.

2. Structured complexity: McCabe cyclomatic number, Howatt-Baker’s nested
complexity measure.

3. Object-oriented measures: Inner Class Depth, Inheritance level, Number of
Children, Number of Methods, Number of Fields, Lack of Cohesion, normal-
ized Lack of Cohesion (Henderson-Sellers), Fan-out

Our test data for the comparison process was a selection of large Java modules
and libraries. The overall size of the test input was more than 1.5 million effective
lines of code that contain more than 17.000 classes.

The following table shows the test modules and their physical sizes:

. Java Standard Library 1.4.2 367.000 lines
. jBOSS 3.2.3 300.000 lines

. Omg.org. CORBA 5.000 lines

. The measure tool itself 7.000 lines

. Eclipse 3.0M6 900.000 lines

U W N =

Our measurements produced several interesting results about the software
metrics. Comparing AV-graph metrics with the McCabe cyclomatic complexity
number produced strong correlation for most of the test datas. Howatt-Baker’s
nested complexity measure produced similar values. However there were test
samples were the correlation was under 0.8.

Comparing object-oriented metrics with each other resulted that there are
no relationship between them in the sense of correlation. Most of the values were
under 0.2 and all of them were under 0.5. (It is interesting that there are higher
correlation values between LCOM and the Number of Fields, understanding
this experience may need further research.) It is clear that the object-oriented
metrics have very different meanings, so the low correlation between them is
reasonable. There is no statistical correlation between the object oriented and
multiparadigm metrics. All correlation values were low.

References

[Che9l] Cherniavsky J.C., Smith C.H. On Weyuker’s Azioms For Software Complezity
Measures, IEEE Trans. Software Engineering, vol.17, pp.1357-1365 (1991).

[Chi94] Chidamber S.R., Kemerer, C.F. A metrics suit for object oriented design,
IEEE Trans. Software Engeneering, vol.20, pp.476-498, (1994).

[Cop98] Coplien J.O. Multi- Paradigm Design for C++, Addison-Wesley, (1998).

Towards a multiparadigm complexity measure 142

[Cur79] Curtis, B., Sheppard, S. B., Milliman, P., Borst, M. A.; Love, T. Measuring
the Psychological Complexity of Software Maintenance Tasks with the Halstead and
McCabe Metrics, IEEE Trans. Software Engineering, vol.5 no.2, pp.96-107, (1979).

[Cza00] Czarnecki K., Eisenecker U.W. Generative Programming, Addison-Wesley,
(2000).

[Dun79] Dunsmore, H. E., Gannon, J. D. An Empirical Investigation, Computer,
12(12), pp.50-59 (1979).

[Dav88] Davis J.S., LeBlanc R.J. A Study of the Applicability of Complexity Measures,
IEEE Trans. Software Engineering, vol.14, pp.1366-1372 (1988).

[Hal72] Halstead, M. H. Natural laws controlling algorithm structure, SIGPLAN No-
tices, vol.7. pp.19-26 (1972).

[Har81] Harrison,W.A. and Magel, K.I. A Complezity Measure Based on Nesting Level,
ACM Sigplan Notices,16(3), pp.63-74 (1981).

[Mag81] Harrison,W.A. and Magel,K.I. A Topological Analysis of the Complezity of
Computer Programs with Less Than Three Binary Branches, ACM Sigplan No-
tices,16(4), pp.51-63 (1981).

[Hen96] Henderson-Sellers, B., Object-oriented metrics: measures of complewity,
Prentice-Hall, pp.142-147, (1996).

[Kaf81] Henry S., Kafura D. Software Sructure Metrics Based of Information Flow,
IEEE Trans. Software Engineering, vol.7, pp.510-518 (1981).

[How89] Howatt,J.W. and Baker,A.L. Rigorous Definition and Analysis of Program
Complezity Measures: An Ezample Using Nesting, The Journal of Systems and
Sofware 10, pp.139-150 (1989).

[Kic96] Kiczales G. Apect Oriented Programming, AOP Computing surveys 28(es),
154-p (1996)

[Lak91] Lakshmanan K.B., Jayaprakash S., Sinha P.K. Properties of Control-Flow
Complexity Measures, IEEE Trans. Software Engineering, vol.17, pp.1289-1295
(1991).

[McC76] McCabe, T.J. A Complexity Measure, IEEE Trans. Software Engineering,
SE-2(4), pp.308-320 (1976).

[Piw82] Piwowarski,P. A Nesting Level Complezity Measure, ACM Sigplan Notices,
17(9), pp.44-50 (1982).

[Pra84] Prather, R. E. An aziomatic theory of software complezity, Comput. J., vol.
27. no. 4. pp.340-346, (1984).

[Str97] Stroustrup B. The C++ Programming Language, Addison-Wesley, (1997).

[Wey88] Weyuker, E.J. Evaluating software complezity measures, IEEE Trans. Soft-
ware Engineering, vol.14, pp.1357-1365 (1988).

[Cup02] CUP Parser Generator for Java,
http://www.cs.princeton.edu/~appel/modern/java/CUP

[Ecl01] Eclipse.org formation,
http://www.eclipse.org/org/index.html

[Jav04] Java 1.5,
http://java.sun.com/developer/technicalArticles/releases/j2selb

[Fot02] Fothi A., Nyéky-Gaizler J., Porkolab Z. The Structured Complezity of Object-
Oriented Programs, Computers and Mathematics with Applications accepted for
publication (2002).

[Fot99] Fothi, A., Nyéky-Gaizler, J., Porkolab, Z. On the Complezity of Class, Proc.
of the FUSST’99, Tallin, Estonia, pp.221-231 (1999).

