
Usability Indicators for Software Components 

Manuel F. Bertoa and Antonio Vallecillo

Dpto. Lenguajes y Ciencias de la Computación. Universidad de Málaga. 

{bertoa,av}@lcc.uma.es

Abstract. One of the most critical processes of Component-based Software

Development (CBSD) is the selection of the set of components (either from in-

house or from external repositories) that fulfil the appropriate architectural and 

user-defined requirements. This process opens the need to count with objective 

methods that help developers evaluate the components. This paper presents a 

set of measures and indicators to assess one quality characteristic, the Usability,

of great importance to any software product, and describes the method followed 

to obtain and validate them.

Introduction

Component-based software development (CBSD) has become an important

alternative for building software applications, and in particular for distributed

systems. CBSD tries to improve the flexibility, re-usability and maintainability of

applications, helping develop complex and distributed applications deployed on a 

wide range of platforms, by plugging commercial off the-shelf (COTS) components,

rather than building these applications from scratch. The goal is to reduce the

development costs and efforts, while improving the quality of the final product due to 

the (re)use of software components already tested and validated.

Initially, there was a complete absence of metrics that could help evaluate software

component quality attributes objectively. The international standards in charge of 

defining the quality aspects of software products (e.g. ISO/IEC 14598 [1] and 

ISO/IEC 9126 [2] series) are currently under revision. The SQuaRE project [3] has

been created specifically to make them converge, trying to eliminate the gaps,

conflicts, and ambiguities that they currently present. A drawback of the existing

international standards is that they provide very general quality models and

guidelines, but are very difficult to apply to specific domains such as CBSD and

COTS. In this sense, emergent proposals in this area try to define quality models for

COTS components and for component-based systems [4,5,6,7,8,9].

In recent works, we tried to adapt the general ISO/IEC 9126 Quality Model to the 

realm of software components, for which a set of measures was proposed [4]. Then,

we looked at the information provided by software component vendors, analyzing the

information they currently provide about the components they sell or license, with the

purpose of determining how many of these measures were in fact computable. We

found out that the information provided by vendors is normally scarce and mostly

insufficient for any quality analysis [10].

— 1 — 



The assessment of the quality of a software component is in general a very broad 

and ambitious goal. For instance, ISO/IEC 9126 Quality Model defines the quality of 

a software product in terms of six major characteristics (Functionality, Reliability, 

Usability, Efficiency, Maintainability and Portability), which are further refined into

27 sub-characteristics. Here we will just concentrate on one of these quality

characteristic, the Usability, because of its importance for CBSD. Usability is inherent 

to software quality because it expresses the relationship between the software and its 

application domain.

In this paper we thus present a set of measures to assess the Usability of software

components. Furthermore, we describe the process followed to obtain and validate

them. Such a process can be (re-)used for defining and validating measures for other

quality characteristics. This paper extends our previous work [12] by proposing a set 

of indicators, based on the base and derived measures defined there.

The paper is organized as follows. After this introduction, Section 2 identifies the

factors that influence component Usability and defines a set of measures. The process 

followed for validating the proposed measures is described in Section 3. Then, 

Section 4 describes a set of indicators, based on the derived and base measures. The

paper finishes by drawing some conclusions and outlining some future research

activities.

Defining Usability Measures 

When we surveyed the literature looking for software component measures, we 

discovered that the relationship between the measures and the quality characteristics

they tried to assess was ill-defined. This was a common problem of most of the

proposals and International Standards that defined software component measures.

Our aim here is to solve that problem, trying to properly define a set of measures

based on the attributes they evaluate, and determine how these measures assess the 

quality characteristics of a software component, according to a given quality model.

We will also impose some requirements on the defined measures to make them

feasible and practical in industrial environments: first, they need to be objective and 

reproducible; second, they need to be easy to compute--and even better if they are 

amenable to automatization; and finally, they should allow us to identify a minimum

set of measures that provide the maximum amount of information about the

measurable concepts we are trying to evaluate (i.e., optimize the number of

representative measures).

To define the Usability measures we need to define in the first place an information
need, which in this case is “to evaluate the Usability of a set of software components

that are candidates to be integrated in a software system, in order to select the best 

among them”.

At least three measurable concepts are closely related to software component

Usability: the Quality of the Documentation, the Complexity of the Problem and the

Complexity of the Solution (or Design). As we are comparing software components

that provide similar functionality to resolve the same kind of problem, we will assume

that all of them share the same Complexity of the Problem and, accordingly, there is 

— 2 — 

49 M.F. Bertoa and A. Vallecillo



no need to propose measures to evaluate this measurable concept. Hence, we will 

focus on the other two. These measurable concepts and their related attributes are 

presented in Table 1. The way in which these measurable concepts influence the 

Usability of a component and its related quality sub-characteristics will be addressed 

later in sections 3 and 4. 

Entity
Information

Need
Measurable Concept Attribute

Contents of manuals 

Size of Manuals 
Quality of Manuals 

Effectiveness of 
Manuals

Quality of Demos Contents of Demos 

Quality of 
Documentation

Quality of Marketing 
Info

Contents of Marketing 
Info

Design Legibility

Interfaces
Understandability

Learning facility

API complexity

Software
Component

Evaluate
the Usability

Complexity of the Design 

Customisability

Table 1. Measurable Concepts and Attributes for Usability

Since each attribute may have one or more measures (base, derived, or indicators) 

that evaluate it, we need to define these measures. The following tables show the 

measures proposed to measure the measurable concepts defined in Table 1. A 

summary of the measures defined for the Quality of the Documentation attributes and 

for those related to the Complexity of Design are shown in Table 2. We use the term

“functional element” to refer interfaces, operations and configurable parameters as a 

whole.

There should also be a last column with the base measures on which derived

measures are defined, but this column has been omitted for space restrictions. The 

majority of these base measures are evident (for instance, to measure the ratio of 

figures per pages two base measures are required: the number of figures and the

number of pages in the manual). Also, note that many ratio measures repeat their 

denominator, which produces an unnecessary repetition of rows (this is for instance

the case of the number of functional elements that is used in many derived measures).

Other cases are not so evident, like “COMPLETENESS OF MANUALS”, which measures the 

number of functional elements of the component that do not appear in the manual.

— 3 — 

Usability Indicators for Software Components 50



ATTRIBUTE INDICATOR DERIVED MEASURES

% OF FUNCTIONAL ELEMENTS DESCRIBED IN 

MANUALS

% OF INTERFACES DESCRIBED IN MANUALS

% OF METHODS DESCRIBED IN MANUALS

MANUALS COVERAGE

% OF CONFIG. PARAM. DESCRIBED IN MANUALS

PROPORTION OF FUNCTIONAL ELEMENTS

INCORRECTLY DESCRIBED IN THE MANUALMANUALS

CONSISTENCY DIFFERENCE BETWEEN  THE COMPONENT

VERSION AND THE MANUAL VERSION

RATIO OF HTML FILES OF MANUALS PER FE

CONTENTS OF 

MANUALS

MANUALS LEGIBILITY
RATIO OF FIGURES PER KILO-WORD

RATIO OF WORDS PER FE

RATIO OF WORDS PER INTERFACE

RATIO OF WORDS PER METHODSIZE OF MANUALS MANUALS SUITABILITY

RATIO OF WORDS PER CONFIGURABLE

PARAMETER

EFFECTIVENESS OF 

MANUALS
EFFECTIVENESS RATIO

PERCENTAGE OF FUNCTIONAL ELEMENTS

CORRECTLY USED AFTER READING THE MANUAL

DEMOS COVERAGE
PERCENTAGE OF FUNCTIONAL ELEMENTS

INCLUDED IN DEMOS
CONTENTS OF DEMOS

DEMOS CONSISTENCY
DIFFERENCE BETWEEN DEMO VERSION AND 

COMPONENT VERSION

MARKETING INFO

COVERAGE

NUMBER OF MARKETING INFO ELEMENTS

DESCRIBEDCONTENTS OF 

MARKETING INFO MARKETING INFO

CONSISTENCY

DIFFERENCE BETWEEN THE COMPONENT

VERSION AND THE MARKETING INFO VERSION

PERCENTAGE OF FE WITH LONG NAMES
DESIGN LEGIBILITY MEANINGFUL NAMES

AVERAGE  LENGTH OF FE NAMES

INTERFACES

UNDERSTANDABILITY

FUNCTIONAL

ELEMENTS

UNDERSTANDABILITY

PERCENTAGE OF FE USED WITHOUT ERRORS

TIME TO USE
AVERAGE TIME TO USE CORRECTLY THE 

COMPONENT
LEARNING FACILITY

TIME TO EXPERTISE
AVERAGE TIME TO MASTER THE COMPONENT 

FUNCTIONALITY

RATIO OF INTERFACES PER REQUIRED

INTERFACE

RATIO OF RETURN VALUES PER METHOD

RATIO OF METHOD ARGUMENTS PER METHOD

PERCENTAGE OF METHODS WITHOUT

ARGUMENTS

RATIO OF METHODS PER INTERFACE

RATIO OF CONSTRUCTORS PER CLASS

API COMPLEXITY
DENSITY OF 

INTERFACES

RATIO OF CONSTRUCTORS PER METHOD

RATIO OF CONFIG. PARAM. PER INTERFACE
CUSTOMISABILITY

CUSTOMISABILITY

RATIO RATIO OF CONFIG. PARAM. PER METHOD

Table 2. Usability Derived Measures for COTS components 

— 4 — 

51 M.F. Bertoa and A. Vallecillo



Validating Usability Measures 

The goal of the validation is to prove that a measure really provides useful

information to assess a quality characteristic. In order to empirically validate our

measures we conducted a set of experiments. They tried to provide us with some

figures (i.e., numerical values) about the Understandability, Learnability and 

Operability of a set of software components:

DERIVED MEASURE D_US

AB

I_USA

B

O_US

AB

O_UN

D

O_LE

AR

O_OP

ER

% of FE described in manuals 0.04 0.29 0.61 0.47 0.63 0.57

% of Interfaces described in
manuals

0.30 0.18 0.32 0.28 0.00 0.05

% of Methods described in manuals -0.21 -0.06 0.35 0.41 0.38 0.28

% of Config. Param. described in
manuals

-0.03 0.37 0.20 -0.25 0.21 0.20

Component Version difference 0.44 0.50 0.42 0.58 0.69 0.67

Ratio of Manual HTML files per FE 0.43 0.69 0.93 0.78 0.83 0.78

Ratio of figures per word -0.08 0.45 0.22 -029 0.18 0.19

Ratio of words per FE 0.32 0.59 0.85 0.68 0.91 0.90

Ratio of words per Interface 0.13 0.22 0.46 0.42 0.68 0.73

Ratio of words per Method 0.35 0.61 0.88 0.73 0.91 0.90

Ratio of words per Config. Param. -0.05 0.46 0.56 0.10 0.63 0.63

Percentage of FE with long names 0.17 0.27 -0.10 -0.10 -0.05 -0.10

Ratio of Interfaces per Req Interface -0.44 -0.03 -0.23 -0.68 -0.21 -0.20

Ratio of Return Values per Method -0.71 -0.44 -0.44 -0.82 -0.53 -0.53

Ratio of Arguments per Method -0.35 -0.64 -0.59 -0.50 -0.78 -0.78

Percentage of Methods without
Arguments

-0.46 0.16 0.15 -0.38 0.20 0.22

Ratio of Config. Param.per Interface -0.15 -0.32 -0.03 0.22 0.09 0.13

Ratio of Config. Param. per Method -0.03 -0.14 0.14 0.43 0.15 0.12

Ratio of Methods per Interface -0.06 -0.14 -0.02 0.00 0.16 0.27

Ratio of Constructors per Class 0.44 0.72 0.49 0.23 0.63 0.67

Ratio of Constructors per Method 0.11 0.22 0.10 0.01 0.02 -0.08

Table 3.  Correlation Values (R) for derived Measures

Five experiments were conducted between June and December 2004. The idea was

to simulate the selection process of a software component from a set of potential

candidates. We selected 12 software components from one application domain, Print

and Preview, because it was neither too simple nor too complex, and because there 

were enough candidate components to constitute a representative sample. All 

candidate components were COTS products available from commercial vendors, 

advertised in component repositories such as ComponentSource. They used different

component models and technologies, namely Java, ActiveX and .NET. 

From all these experiments we obtained six variables for the sampled components:

Direct Perceived Usability (D_Usab), Indirect Perceived Usability (I_Usab),

Objective Understandability (O_Und), Objective Learnability (O_Learn), Objective

Operability (O_Oper) and Objective Usability (O_Usab). The first ones correspond to 

the perceived Usability, measured directly and indirectly. The next three were

— 5 — 

Usability Indicators for Software Components 52



obtained from the results of the experiment's questionnaire. Finally, the Objective

Usability is the average of the other three objective values.

BASE MEASURE
D_US

AB

I_USA

B

O_US

AB

O_UN

D

O_LE

AR

O_OP

ER

Number of words in manuals -0.05 -0.08 0.08 0.12 0.38 0.44

Number of Manual (HTML) files 0.10  0.17 0.39  0.37  0.64 0.68

Number of Interfaces 0.12 -0.18  -0.39  -0.13 -0.08  -0.08 

Number of Methods  -0.01  -0.15  -0.12 0.01 0.23  0.29 

Number of Config. Parameters -0.12 -0.29  -0.13  0.11  0.21 0.26

Number of Constructors 0.21  -0.04  -0.28  -0.07 0.03 0.05

Number of Method Arguments -0.03  -0.22  -0.19  -0.02  -0.15  0.22 

Number of Return Values -0.09  -0.18  -0.14 -0.06 0.20 0.27

Number of Functional Elements  -0.03  -0.19  -0.13 0.03 0.22 0.28

Number of Interfaces in manuals 0.44 0.01 0.07 0.29 0.06 0.13

Number of Methods in manuals  -0.10 -0.22  -0.11 0.03 0.24 0.29

Number of Config. Param. in 
manuals 0.03 -0.06  0.03 0.12  0.35  0.41 

Number of FE in manuals  -0.06 -0.18  -0.08 0.05  0.27  0.33 

Number of figures in manuals 0.00 0.50 0.34 -0.01 0.34 0.35

Average length of FE names 0.29 0.10 -0.28 -0.07 -0.27 -0.30

Number of FE with long names 0.22 0.01 -0.30 -0.04  0.02  0.04 

Number of Methods without Return 
Value 0.05 -0.13 -0.10 -0.03 0.25 0.32

Number of Methods without
Arguments  -0.07 -0.14  -0.10  -0.03 0.25 0.32

Table 4.  Correlation values (R) for Base Measures

A total of 68 users participated in the experiments evaluating the Usability of the

sampled components. The number of users ranged between 9 and 18 depending on the

experiment. They were Computer Science last-year students, researchers, and

lecturers, all with enough programming skills and knowledge to build a system using 

simple commercial components. They were mostly from the University of Malaga,

although one experiment was replicated in the University of Castilla-La Mancha. 

Once we had quantified the information about the Usability of the sampled

components and measured them using our defined measures, the next step was to

check if the measures values really explained the (sub)characteristic values, which is 

given by the square of the linear correlation coefficient (R2) between the measures

and the corresponding quality characteristic. A strong correlation (IEEE [11] proposes

R2 > 0.7, but we looked for R2 > 0,95) warrants using the measure as a substitute for

the (sub)characteristic. Table 3 and Table 4 show, respectively, the correlations

matrixes obtained for our base and derived measures.

One of the most interesting conclusions that can be drawn from the correlation

tables is that no individual measure provides a really good explanation (i.e., with R2

close to 1) of the Understandability, Learnability, or Operability of a component, or of 

its Usability as a whole. More precisely, only one measure on its own explained more

than 82% of a quality characteristic (the ratio of words per FE, with R = 0.92, R2 = 

0.83). The rest of the measures explained even less than that. This is what moved us

to look for new measures (indicators) defined as a combination of two or more base or

derived measures.  This is explained in the next section.

— 6 — 

53 M.F. Bertoa and A. Vallecillo



Defining Usability Indicators 

At this point, we need to recall what we identified: the measures are usually assigned 

to just one quality subcharacteristic, although in theory they may evaluate more than

one quality characteristic. In fact, we do not believe that there is a unique direct

relationship between a measure and a quality sub-characteristic, but that there are

different degrees of relation between every measure and every sub-characteristic. 

Then, using the data obtained from the experiments and from our measures, we

used linear regression analysis to look for combinations of measures that provided

better explanations of the three quality sub-characteristics. Our findings were

astonishing: all the Usability sub-characteristics could be accurately explained by 

linear combinations of two measures, obtaining values for R2 around .97.0
These combinations are shown in Table 5 and, among other things, provide very

interesting information about the existing links between the component attributes and 

the Quality Model, i.e., the connection between the Quality of Documentation and 

Complexity of Design, and the Understandability, Learnability and Operability of a

software component:

The Understandability strongly depends on both the ratio of HTML files per FE, 

and on the ratio of return values per method.

The Learnability strongly depends on both the ratio of words per method and on 

the ratio of arguments per method.

Finally, the Operability strongly depends on both the ratio of words per 

configurable parameter (or word per fields, in the case of Java components) and 

the ratio of return values per method.

Subcharacteristic Depends on Measures R
2

Relationship

Understandability
(O_Und)

Ratio of HTML 
files of manuals 
per FE (Fil) 

Ratio of 
Return Values 
per Method 
(RVpM)

0.970
O_Und= 0.200·Fil – 
1,423·RVpM + 1.598 

Learnability
(O_Learn)

Ratio of Kilo-
Words per 
Method (WpI) 

Ratio of 
Arguments per 
Method (ApM) 

0.973
O_Learn= 1.789·WpI – 
2.090·ApM + 1.712 

Operability
(O_Oper)

Ratio of Kilo-
Words per 
Configurable
Parameter
(WpCP)

Ratio of 
Return Values 
per Method 
(RVpM)

0.980
O_Oper= 0.804·WpCP 
–8.265·RVpM + 3.486 

Table 5.  Indicators for Usability subcharacteristics 

Please notice that some of the equations in Table 5 do not include measures that

were very influential on their own. This means that a combination of less 

representative measures may become more representative than the individual measure

themselves, and than any other individual measure.

Now we have a new set of derived measures which properly explain the Usability

sub-characteristics, we also need to define some criteria for knowing whether the

component is acceptable or not with regard to each of these sub-characteristics. IEEE 

— 7 — 

Usability Indicators for Software Components 54



[11] defines three categories for classifying software: (A)cceptable, (M)arginal, or 

(U)nacceptable.

We are not going to define a global Usability indicator for a software component,

because the weight of each individual sub-characteristic heavily depends on the user 

and on the context of use. Instead, we propose a ternary tuple (U,L,O) for measuring

the Usability of a component, where U, L, and O are the Understandability, 

Learnability, and Operability indicators described below. Thus, possible values of the

tuple are (A,M,A) for a component with acceptable Understandability and 

Operability, and marginal Learnability; or (M, U, U) for a component with marginal

Understandability, and unacceptable Learnability and Operability.

To define such indicators we have identified some critical values (thresholds) with

discriminative power, i.e., that can determine whether a value of O_Und, O_Learn or 

O_Oper corresponds to a component with acceptable, marginal, or unacceptable 

Understandability, Learnability or Operability, respectively. Ideally, the values

obtained for the sampled components should gather in two major groups (acceptable 

and unacceptable). Components outside these two groups will be considered as 

marginal.

Quoting IEEE [11], indicators should have discriminative power. “An indicator

shall be able to discriminate between high-quality software components and low-

quality software components. The set of indicator values associated with the former

should be significantly higher (or lower) than those associated with the latter. This

criterion assesses whether an indicator is capable of separating a set of high-quality

software components from a set of low-quality components. This capability identifies 

critical values for indicators that shall be used to identify software components that

have unacceptable quality. To perform this test, put the subcharacteristic and indicator 

data in the form of a contingency table and compute the chi-square statistic. This

value shall exceed the chi-square statistic corresponding to a confidence level .”

Acceptable Marginal Unacceptable

Understandability (O_Und) 1,0 0,9 0,7

Learnability (O_Learn) 1,0 0,6 0,2

Operability (O_Oper) 0,9 0,6 0,3

Table 6. Critical values for the three Usability sub-characteristics

Table 6 shows the critical values we have obtained for the aggregated functions that

explain the Understandability, Learnability and Operability.

For instance, this means that we will say that a software component has an 

(A)cceptable Understandability if the value it obtains for O_Und is greater than 1.0. 

Its Understandability will be considered as (U)nacceptable if O_Und evaluates to a 

value which is less than 0.7. Finally, it will have a (M)arginal Understandability if the

value it obtains for O_Und is between 0.7 and 1.0. 

Figure 1 graphically shows these critical values in the case of the Learnability,

whose thresholds are 0.2 and 1.0. Equating the aggregated function O_Learn to 1.0 

and to 0.2 we obtain the two lines showed in the graphic. These lines divide the plane

into three areas, each one corresponding to one classification (Acceptable, 

Unacceptable, and Marginal). The sampled components can therefore be classified 

— 8 — 

55 M.F. Bertoa and A. Vallecillo



according to the values they obtain in the two aggregated measures (WpM and ApM)

of O_Learn.

— 9 — 

Learnability

0,60

0,70

0,80

0,90

1,00

1,10

1,20

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

Kilo-WpM

A
p

M

Unacceptable
L<0.2

Acceptable
L>1.0

Figure 1. Measure Values of WpM and ApM used in Learnability Indicator 

Discussion

This paper has presented a set of base and derived measures that can be used to

evaluate the Usability of software components, and some indicators for classifying 

them according to IEEE categories.

One interesting result is that we have seen how the appropriate combinations of (base

and derived) measures can evaluate better the Usability of a component than any 

individual measure. Basically, this is because quality characteristics do not depend on 

particular measurable concepts, but on combination of those.

In summary, we have shown that: (a) the Understandability seems to depend on the

structure and organization of the manual, and on the simplicity of the methods'

signature; (b) the Learnability depends on both the quality of the manuals and the

complexity of the component's design, in particular on the ratio of words used to

describe each interface or class, and on the percentage of methods with no return 

values; and (c) the Operability depends on the Complexity of the Design, in particular

on a combination of the configurable parameters per method and the percentage of

methods with no return values.

Our plans are now to carry out further experiments with more components (e.g., 

from other application domains) in order to gather more data that can help us further

corroborate our results and findings, and refine our equations. Finally, we are 

packaging the tools we have developed for automating the measures (i.e., the

Usability Indicators for Software Components 56



— 10 — 

programs that analyze the component manuals, and those that  “interrogate” the 

components using reflection) so we can provide soon an evaluation service to our 

local software industry for helping them select the components that best suit their 

applications with less effort and more precision. 

References

[1] ISO/IEC 14598:2001. Software Engineering -- Product Evaluation. International Standards 

Organization, Geneva, Switzerland, June 2001. 

[2] ISO/IEC 9126-1:2001. Software Engineering -- Product Quality -- Part 1: Quality model. 

International Standards Organization, Geneva, Switzerland, June 2001. 

[3] ISO/IEC FDIS 25000:2005. Software Engineering -- Software Product Quality Requirements and 

Evaluation (SQuaRE) -- Guide to SQuaRE. International Standards Organization, Geneva, 

Switzerland, January 2005. 

[4] Manuel F. Bertoa and Antonio Vallecillo. Quality attributes for COTS components. I+D 

Computacion, 1(2):128{144, November 2002. 

[5] Pere Botella, Xavi Burgues, Jose Carvallo, Xavi Franch, and Carme Quer. Using quality models for 

assessing COTS selection. In Proc. of WER'02, pages 263{277, Valencia, Spain, November 2002. 

[6] Allan W. Brown and KurtWallnau. The current state of CBSE. IEEE Software, 15(5):37--46, Sep-Oct 

1999. 

[7] S. Sedigh Ali, A. Ghafoor, and R.A. Paul. Software engineering metrics for COTS based systems. 

IEEE Computer, 34(5):44{50, May 2001. 

[8] R. Simao and A. Belchior. Quality characteristics for software components: Hierarchy and quality 

guides. In Piattini, Cechich and Vallecillo, editors, Component-Based Software Quality: Methods and 

Techniques, number 2693 in Lecture Notes in Computer Science, pages 188{211, Heildelberg, 2003. 

Springer-Verlag. 

[9] Hironori Washizaki, Hirokazu Yamamoto, and Yoshiaki Fukazawa. A metrics suite for measuring 

reusability of software components. In Proc. 9th Int'l Software Metrics Symposium (METRICS'03), 

pages 221{225, Sydney, Australia, September 2003. IEEE Computer Society Press. 

[10] Manuel F. Bertoa, Jose M. Troya, and Antonio Vallecillo. A survey on the quality information 

provided by software component vendors. In Proc. of the 7th ECOOP Workshop on Quantitative 

Approaches in Object-Oriented Software Engineering (QAOOSE 2003), pages 25{30, Darmstadt, 

Germany, 21 July 2003. 

[11]  IEEE Std 1061-1998, IEEE Standard for a Software Quality Metrics Methodology.  IEEE Computer 

Society, 1998.  

[12] Manuel F. Bertoa, Jose M. Troya, and Antonio Vallecillo. Measuring the Usability of Software 

Components. Submitted for publication, 2005. 

57 M.F. Bertoa and A. Vallecillo




