
Assessing Aspect-Oriented Artifacts:

Towards a Tool-Supported Quantitative Method

Eduardo Figueiredo1, Alessandro Garcia2, Cláudio Sant’Anna1,

Uirá Kulesza1, Carlos Lucena1

1PUC-Rio, Computer Science Department, LES

Rio de Janeiro - Brazil

{emagno, claudio, uira, lucena}@les.inf.puc-rio.br

2Lancaster University, Computing Department, InfoLab 21

Lancaster - United Kingdom

garciaa@comp.lancs.ac.uk

Abstract. Aspect-oriented (AO) software development is an emerging paradigm that

provides new abstractions and mechanisms to support the modularization of

crosscutting concerns through the software development. However, the achievement

of high-quality AO software is not trivial. The inappropriate use of aspect-oriented

abstractions and mechanisms potentially leads to the violation of important design

principles, such as low coupling, high cohesion, incomplete modularization of

crosscutting concerns into aspects, and so forth. These problems are not easily

detectable and an ad hoc analysis of large designs and implementations is often

expensive and time-consuming. Hence there is a need for an assessment method that

assists software engineers in the analysis of their AO designs and implementations.

This paper reports our efforts in the ongoing development of a systematic approach to

support the quantitative assessment of aspect-oriented artifacts generated through the

system design and implementation. The approach is organized in a stepwise fashion

and is founded on a metrics suite and a comprehensive set of complementary rules.

Our proposal is supported by a prototype measurement tool and has been applied to

four medium-sized software systems in different domains and with distinct degrees of

complexity.

1 Introduction

Several concerns in software development cannot be represented in a modular fashion

using existing software engineering abstractions. They inherently crosscut system modules

and their crosscutting structure can manifest not only at the implementation level but also at

earlier development stages. A concern is crosscutting if it is tangled to other concerns in a

single module or it is scattered over multiple system modules. Aspect-oriented software

development (AOSD) is an emerging paradigm that provides new abstractions and

mechanisms to support the modularization of crosscutting concerns through the software

development. An aspect is a new modular unit to capture both scattered and tangled

concerns. The expected benefits of AOSD are superior separation of concerns, minimized

code replication, improved module cohesion, reduced systemic coupling, and, as a

consequence, increased potential for reuse and ease of evolution in the development of

complex software systems.

However, the aspects themselves may be easily the locus of further complexity and also

reduce the quality of the classes affected by them [7, 8]. In fact, the achievement of high-

quality AO artifacts is challenging for five main overlapping reasons. First, software

developers are empowered with additional decomposition means, which can easily lead to

the misuse of this new paradigm [19]. Second, the separation of concerns achieved with

AO techniques does not come always for free – sometimes it impacts negatively other

important software attributes [7]. The inappropriate application of aspect-oriented

abstractions potentially leads to the violation of important design principles, like low

coupling, high cohesion, and lack of information hiding. Third, the early identification of

domain-specific aspects requires some systematic reasoning about the design elements.

Fourth, even when all aspects are successfully identified, the complete modularization of

crosscutting structures is not always straightforward as it is not trivial to capture all the

pieces of crosscutting behaviors. Finally, the internal design of the aspects themselves can

also entail crosscutting-related problems [15].

While AOSD has become an increasingly important research topic in recent years,

insufficient attention has been paid to methods for evaluation of AO designs and

implementations. In general, the literature only includes some isolate case studies that

assess the quality of AspectJ implementations, which are mainly focused on issues related

to separation of concerns. The main reason for this problem is that it is very difficult to

assess multiple factors without a systematic analysis approach and supporting tools. As a

result, software engineers have assumed that the most impacted property of an aspect-

oriented system is separation of concerns. However, some recent studies (e.g. [7, 8]) have

shown that other fundamental software engineering principles, such as low coupling and

high cohesion, need to be assessed in conjunction with separation of concerns issues.

This paper addresses these shortcomings by proposing a quantitative assessment method

for aspect-oriented software development. We conjecture that properly assessing the

relevant attributes of aspect-oriented design and implementation is a prerequisite for

achieving high-quality AO software, and that exploiting those attributes will open up a

broader design evaluation, which is essential to allow the AO software engineers reason

about and make a proper trade-off analysis between different solution alternatives. The

proposed method is structured in a stepwise fashion, and is supplemented by: (i) a set of

design and implementation rules, and (ii) a metrics suite for separation of concerns,

coupling, cohesion, and size [19]. The metrics introduce quantitative flavors to our method,

while the rules complement it with some qualitative rationale. A prototype supporting tool

is also presented to facilitate the analysis of complex designs. We also report our

experience in applying the proposed method to four different case studies.

The remainder of this paper is organized as follows. Section 2 presents basic concepts

on AOSD. Section 3 presents our assessment approach. Section 4 introduces the current

state of the architecture and implementation of our tool. Section 5 illustrates the use of our

approach using an example, and discusses the evaluation of our method in the context of

four case studies. Section 6 briefly describes comparisons with related work. Section 7

includes some concluding remarks and description of ongoing work.

2 Background on AOSD

Aspect-oriented software development [14, 22] has been proposed as a technique for

improving separation of concerns (SoC) in software construction and support improved

reusability and maintainability. The central idea is that while pure abstractions of the object

paradigm are extremely useful, they are inherently unable to modularize tangled and

59 E. Figueiredo, A. Garcia, C. Sant’Anna, U. Kulesza, and C. Lucena

scattered concerns. Aspects are modular units of crosscutting concerns that are associated

with a set of classes or objects. Central to the process of composing aspects and classes is

the concept of join points, the elements that specify how classes and aspects are related.

Join points are well-defined points in the structure and dynamic execution of a system.

Examples of join points are method calls, method executions, and field sets and reads.

Advice is a special method-like construct attached to join points. An aspect may also define

attributes and methods to be introduced into the classes to which the aspect is attached.

Weaver is the mechanism responsible for composing the classes and aspects. AspectJ [1] is

a practical aspect-oriented extension to the Java programming language. AspectJ supports

the definition of aspects, advices, join points, and introduction of structures by inter-type

declarations [1].

3 The Assessment Method

This section presents our method for supporting the assessment of aspect-oriented artifacts.

The method is structured according to two major phases: design and implementation. At

the design phase, the method encompasses four main steps, which are organized in four

internal activities. The method is grounded on design metrics and rules that are governed

by more generic issues because they consider the higher-level information available at the

design level; they are applied to aspect-oriented design artifacts, including both structural

and behavioural UML-based diagrams. These steps and resources are programming

language agnostic.

The implementation phase consists of metrics and rules that are tailored to specific

features of the AspectJ programming language [1]; most of the design metrics and rules are

redefined to cope with specific AspectJ constructs (e.g. inter-type declarations) [1]. The

design metrics and rules are also reapplied to the code since the design artifacts are refined

and some desirable properties may have been violated. Due to space limitations, this paper

will focus on the description of the implementation phase.

Multiple

Alternatives

Aspect-Oriented

Rules

Single

Artifact
or Intra-Module

Evaluation

Inter-Module

Evaluation

Aspect-Oriented

Metrics

SoC

Evaluation

Final Implementation

Overall

Analysis

artifacts

activity

resource

assessment steps

Application of

Rules
Analysis

Data

Collection
Refactoring

Figure 1. The proposed assessment method.

Assessing Aspect-Oriented Artifacts 60

Our assessment method is based on the principle that not only separation of concerns

should be the driving factor of analysis, but also other essential software engineering

attributes, such as coupling, cohesion, and size. In this context, the implementation is first

assessed in terms of to what extent the concerns of interest in an application are

modularized through the implementation units (Figure 1), such as classes, aspects,

methods, and advices. Afterwards, one or more alternative design solutions are assessed in

terms of the internal complexity of the modules, and then they are assessed from a systemic

perspective, i.e. with respect of the module relationships. Finally, the system is assessed in

terms of more general attributes, such as size.

The evaluation of separation of concerns and the subsequent phases are composed of

four activities: (i) data collection – application of the metrics to collect data with respect to

a specific software attribute, (ii) application of rules – evaluation of the measures in the

light of well-defined design and implementation rules, (iii) analysis – reasoning and

judgment of the outcomes generated by the rules application, and (iv) refactoring – a set of

changes may be required to be undertaken as a result of the analysis activity.

3.1 Metrics Overview

Our method relies on a suite of aspect-oriented metrics for separation of concerns,

coupling, cohesion and size. These metrics have already been used in three different studies

[7, 8, 19]. This metrics suite was defined based on the reuse and refinement of some

classical and OO metrics [3, 4]. The metrics suite also encompasses new metrics for

measuring separation of concerns. Table 1 presents a brief definition of some metrics of the

suite, and associates them with the attributes measured by each one. Refer to [19] for

further details about the metrics.

Table 1. The Metrics Suite

Attributes Metrics Definitions

Concern Diffusion over

Components (CDC)

Counts the number of classes and aspects whose main purpose is to

contribute to the implementation of a concern and the number of other

classes and aspects that access them.

Concern Diffusion over

Operations (CDO)

Counts the number of methods and advices whose main purpose is to

contribute to the implementation of a concern and the number of other

methods and advices that access them.

Separation of

Concerns

Concern Diffusions over

LOC (CDLOC)

Counts the number of transition points for each concern through the

lines of code. Transition points are points in the code where there is a

“concern switch”.

Coupling Between

Components (CBC)

Counts the number of other classes and aspects to which a class or an

aspect is coupled.
Coupling

Depth Inheritance Tree

(DIT)

Counts how far down in the inheritance hierarchy a class or aspect is

declared.

Cohesion
Lack of Cohesion in

Operations (LCOO)

Measures the lack of cohesion of a class or an aspect in terms of the

amount of method and advice pairs that do not access the same instance

variable.

3.2 Assessment Steps

This subsection presents the four steps of our assessment method: (i) SoC evaluation, (ii)

intra-module evaluation, (iii) inter-module evaluation, and (iv) overall analysis. Due to

space limitation and simplicity purposes, we will describe the SoC evaluation step in more

61 E. Figueiredo, A. Garcia, C. Sant’Anna, U. Kulesza, and C. Lucena

detail since the other ones follow similar inner activities. We will only emphasize the main

issues that distinguish the other ones from the SoC evaluation step.

Step 1. Evaluation of Separation of Concerns. Evaluation of separation of concerns is

the first step of our method since the main goal of using aspects is to improve the

separation of crosscutting concerns. This step aims at helping the designer to determine

which aspect-oriented design decisions effectively contribute to improve the

modularization of concerns tangled and scattered in the components of the software system

being developed or maintained. The first activity in this step, data collection, consists of the

application of the metrics of separation of concerns (Table 1). In order to apply these

metrics, the designer must define the concerns of interest and identify which

implementation elements are affected by each of concern. These elements can be classes,

methods, attributes, aspects, inter-type declarations, and pieces of code. The identification

and annotation of these elements are supported by measurement tool described in Section

4. Besides, the definition of the concerns of interest can be based on predefined concern

models [21].

The second activity involves the application of rules for assessing the design in terms of

separation of concerns; the rules (Fig. 2) are applied over the results gathered from the

measures of separation of concerns. The application of them will result in a classification of

the concerns into scattered concerns and tangled concerns. A tangled concern is a concern

which is interleaved with other concerns within a single component (i.e. a class or an

aspect). A scattered concern is a concern spread over the implementation of multiple

components. If a concern is scattered, it is also tangled as a consequence. The goal of this

classification is to highlight potential design problems related to crosscutting concerns that

are not trivial to detect, such as, (i) crosscutting concerns that are not easily identified as

such, (ii) parts of a crosscutting concern which remains not modularized by aspects in

which they should be localized, or (iii) crosscutting concerns spread over the aspect

structure, e.g. methods replicated in subaspects of the same aspect or the repetition of the

use of inter-type declarations which could be avoided by using the Container Introduction

idiom [9].

RSoC1:

IF CONCERN is spread across several components (CDC metric)

THEN CONCERN is a SCATTERED CONCERN

RSoC2:

IF CONCERN is spread across several operations (CDO metric)

THEN CONCERN is a SCATTERED CONCERN

RSoC3:

IF the lines of code of a CONCERN is tangled with the lines of
code of other concerns (CDLOC metric)

THEN CONCERN is a TANGLED CONCERN

Figure 2. Examples of SoC Rules

A number of rules for SoC evaluation are shown in Figure 2. Figure 2 also presents the

relationship between the rules and the aspect-oriented metrics (Section 3.1) they use in

their computation. The rules RSoC1 and RSoC2 provide evidence of existing scattered

concerns by using respectively the Concern Diffusion over Components metric (CBC) and

the Concern Diffusion over Operation metric (CDO). In addition, the rule RSoC3 uses the

Concern Diffusion over LOC (CDLOC) for advising the designer of the probable existence

of tangled concerns.

The application of the

rules warns the designer of

potential problems caused

by crosscutting concerns.

However, it does not

guarantee that the problems

really exist, and the

implementation should be

changed. Therefore, if the

application of the rules

Assessing Aspect-Oriented Artifacts 62

produces warnings, the designer should analyse the design and code in order to find out

what are the reasons for the warnings. This task is represented by the analysis activity of

the method (Figure 1). Actually, the warnings encompass information that helps the

designer to concentrate on certain parts of the design and code which are possibly

problematic. After the analysis, if the designers detected that there are real problems caused

by crosscutting concerns, they should re-engineer the design and/or code in order to well

localize the crosscutting concerns using an appropriate aspect-oriented refactoring, such as

Extract Feature into Aspect [16]. Finally, the designer should re-apply the metrics to the re-

engineering components and compare the results to the data gathered before the changes in

the design. This comparison aims at detecting design improvements or degenerations.

Step 2. Evaluation of Intra-Module Issues. Since the SoC evaluation has been concluded,

an internal evaluation of each component’ complexity needs to be followed. The evaluation

process encompasses all the components, i.e. not only the aspects, but also the classes. One

or more implementation alternatives may have to be analyzed. New implementation

solutions may have also been generated as a result of the refactoring activities undertaken

in the SoC evaluation process (Step 1). The complexity of each module is assessed

according to three dimensions: (i) cohesion, (ii) operation complexity, and (iii) number of

attributes. A number of rules and metrics are associated with each of these dimensions in

order to categorize each system module similarly to the SoC evaluation step.

For example, the components are classified according to their internal cohesion into five

categories: highly cohesive component, cohesive component, average, non-cohesive

component, and highly non-cohesive component. The cohesion analysis is important

because the separation of concerns previously achieved in each implementation alternative

can affect positively or negatively the cohesivity of the system modules [7, 8]. When a

given modular decomposition is leading to several non-cohesive and highly non-cohesive

components, the developers probably will decide for discarding that specific AO

implementation alternative.

RCohesion4:

IF internal ATTRIBUTES and OPERATIONS are
loosely coupled to each other (LCOO metric)

THEN COMPONENT is a NON-COHESIVE
COMPONENT

RCoupling5:

IF COMPONENT is dependent on several other
components (CBC metric)

THEN COMPONENT is a HIGHLY COUPLED
COMPONENT

RInheritance6:

IF COMPONENT is very far down in an inheritance
tree (DIT metric)

THEN COMPONENT is a DEEP COMPONENT

Figure 3. Examples of Cohesion, Coupling, and

Inheritance Rules

Additional cohesion-related problems can be identified here such as the lack of

cohesivity in one or more aspects, and different refatoring-based decisions may need to be

taken. For instance, the internal implementation of a given aspect may be aggregating non-

related chunks of information and behavior and, as consequence, such an aspect needs to

be decomposed into two or more separate

aspects, each dealing with a specific

chunk. This problem may also be the

motivation for decomposing a single

aspect into an abstract generic aspect and

one or more concrete specialized aspects.

The result of applying the intra-module

rules over the measurement data and

classify the system modules also serve as

signs or warnings of problems to the

software engineers.

Figure 3 illustrates one of the cohesion

rules, called RCohesion4, used to identify

the non-cohesive components. A

“component” in this rule means a class or

63 E. Figueiredo, A. Garcia, C. Sant’Anna, U. Kulesza, and C. Lucena

an aspect, while an “operation” is a method, an advice, or a method defined as part of an

inter-type declaration (Section 2). This rule is applied to the data gathered with the LCOO

metric (see Section 3.1 – Table 1), which is the mechanism to quantify the cohesion of a

given component. It is worth to highlight that these rules need to be specialized in our tool

implementation (Section 4) by associating multiple ranges and threshold values with them.

As the tool implementation progresses, these thresholds values are going to be abstracted

from our experimental experience and from the long-term application of our method to new

empirical studies. The tool will also allow the application engineers to set up these values

according to their specialized knowledge and preferences.

Step 3. Evaluation of Inter-Module Issues. The third step guides the programmers of the

AO system in analyzing the inter-module complexity of their AspectJ code. The current

version of our method includes the analysis of two inter-module issues: coupling and

inheritance. These attributes are measured on the basis of the CBC and DIT metrics (Table

1). As in the previous steps, multiple solution alternatives may have to be analyzed,

including the original ones and those ones generated as a result of refactorings realized in

the two previous steps.

Rules are also used here to classify each component with respect to its coupling to the

rest of the system and its level in the inheritance tree. For example, with regard to coupling,

the modules are categorized into five distinct types: totally non-coupled component, highly

coupled component, coupled component, average, low coupled component. A similar

classification is defined for the inheritance attribute. Figure 3 presents examples of

coupling and inheritance rules. Again, the application of the metrics and rules can identify

some symptoms (or bad smells [16]) that signalize potential problems in the aspect-oriented

solutions. For example, an aspect can be identified as highly coupled to the classes that it is

affecting. If in the previous step, this aspect and those classes were ranked as non-cohesive

components, it probably consists in an evidence that this specific aspect-oriented solution

should be discarded by the software developers.

Step 4. Overall Analysis. In this phase, the software developers analyze general software

attributes, such as the tally of components in each implementation alternative, and LOC-

related measures. The latter can help to identify for example some remaining replicated

code over the implementation of different advices, methods, classes, and aspects. They can

also apply more sophisticated rules that combine different software attributes. At the end,

they decide for the solution that seems to mostly satisfy the performed evaluations and their

specific quality requirements.

4 A Measurement Tool

This section presents the architecture and implementation of the tool that supports the

measurement activities of our assessment method. The goals of the tool are: (i) to compute

all the metrics presented in Section 3.1; and (ii) to support the rules application step. The

current tool implementation just provides support to the metric collection in systems

implemented using Java and AspectJ. Figure 4 shows the tool architecture focusing on the

modules required to compute the measures according to our metrics suite. The tool defines

four main modules, as follows, AspectJ Model Extractor, Concern Manager, Metric

Collector and Rule Analyzer. Figure 4 also illustrates the steps when using the tool.

Assessing Aspect-Oriented Artifacts 64

Source Code

Parser

AspectJ Model Extractor

Reference

Analyzer

source codesource code

Concern Manager

AspectJ ModelAspectJ Model

Concern Map (XML)

Metric Collector

Size

Coupling Cohesion

SoC

Metric Collector

Size

Coupling Cohesion

SoC

Rule Analyzer

Rules (XML)Rules (XML)

Collected Data

Warnings of

Design Problems

2
1

3
4

6

7

8

5

Figure 4. Metric tool architecture.

The AspectJ Model Extractor module takes as input all the source files (classes,

interfaces and aspects) and detects the structure of the analyzed files, in terms of their

components, attributes, pointcuts, operations and statements (steps 1 and 2). The Extractor

module is composed of two sub-modules: (i) Source Code Parser (SCP); and (ii)

References Analyzer. The SCP parsers the AspectJ code and partially build a representative

model of the system, called AspectJ Model. This model is a suitable representation of the

source code which makes the metrics-based data collection easier. The SCP sub-module

uses MetaJ environment [17] to manipulate source code. MetaJ is a meta-programming

environment build as a Java extension which works with code written in different

programming languages. The Reference Analyzer sub-module is responsible to capture

information related to reference types that exist between code elements. Examples of

reference types are: import, inheritance and association. After collect the reference types,

the Reference Analyzer updates the initial model generated by the SCP using this

information.

Figure 5. Tool interface with a CDC warning.

The application of the SoC metrics requires a mapping from the abstract crosscutting

concern to program elements in the code that implements that specific concern. Therefore,

after the AspectJ Model Extractor module has captured information about the program

syntactic elements, it is necessary to map them to specific concerns which the developer

would like to analyze.

The Concern Manager

module implements the

mapping from syntactic

elements in AspectJ

model to concerns

defined by the developer

(steps 3 and 4).

The Metric Collector

module is responsible for

computing the metrics

(step 6). It takes as input

the AspectJ model (step

5). Finally, the purpose of

Rule Analyzer module is

to use the collected metric

65 E. Figueiredo, A. Garcia, C. Sant’Anna, U. Kulesza, and C. Lucena

data and design/implementation rules (step 7) to generate specific warnings of design

problems (step 8). As mentioned before, this module is still under development.

The current user interface of the tool presents two main views (as shown in figure 5):

tree view and data view. The tree view (left side of the Figure 5) presents the system model

as a tree. The data view (right side) shows information about the selected node on the tree.

The tool also allows the configuration of metrics and rules to be applied to analyze a

multiple implementation alternatives.

5 Evaluation

5.1 Case Studies

The empirical evaluation of our assessment method is very important to understand the

usefulness and effectiveness of the set of steps, rules, and metrics. Our approach has been

used in the context of four different empirical studies with different characteristics, diverse

domains, varying control levels and different complexity degrees. The chosen studies are

medium-sized software systems that have been designed and implemented by AOSD

experts, which argue that the resulting systems are reusable and maintainable AO solutions.

The first study encompassed the investigation of the reusability and the maintainability

of OO and AO designs and implementations of a multi-agent system to manage and

automate the reviewing process of research conferences [8]. The second study [7] involved

the application of our approach to compare Java and AspectJ implementations [10] of the

23 GoF design patterns [6]. The third study [20] was a comparison of the AO and OO

versions of a web-based information system in which aspects were used to improve the

modularization of distribution and persistence concerns. Finally, our method was also used

to analyze different AO design and implementation alternatives to isolate exception

handling concerns in a software system called Telestrada [5].

The specific results obtained as well as the respective discussions for each of the studies

mentioned above can be found in the cited references. As a general conclusion, we have

noticed that the achievement of high-quality AO design is very difficult even for AOSD

experts. Several problems happen because there are various concerns of interest to be

modularized in a software development and, at the same time, many fundamental

engineering principles need to be observed and satisfied in the system modules. The next

subsection illustrates the application of the SoC evaluation step of our approach to

implementations of the Prototype pattern as part of one of our performed studies [7].

5.2 An Example: the Prototype Pattern

We have decided to use the aspectization of the Prototype pattern [10] as an example

because it is included in one of our case studies [7] mentioned above. The intent of the

Prototype pattern is to specify the kinds of objects to create using a prototypical instance,

and create new objects by copying this prototype [6]. The Prototype pattern defines a single

concern called “Prototype”. This concern involves the definition of the behavior for

cloning objects. This Prototype’s instance is used to create a less limited String object

that can be cloned, as described in [10]. System classes interested to be cloned need to

implement a Prototype interface.

The left side of Figure 6 depicts the class diagram of the OO implementation of the

Prototype pattern. It shows the Cloneable interface which is part of the Java standard

Assessing Aspect-Oriented Artifacts 66

platform. This interface indicates to the Object.clone() method that it is legal for that

method to make a field-for-field copy of instances of classes that implement it. The

StringPrototypeA and StringPrototypeB classes implement the Cloneable

interface. Each of these classes defines a String object capable to be cloned.

The application of the SoC evaluation steps, as defined in our approach, suggests that

there is a problem in the OO version while addressing the Prototype concern. Figure 6

illustrates how the OO implementation of the Prototype pattern is scattered over the code of

the application classes. The shadowed attributes and methods represent code necessary to

implement the Prototype concern in the application context. The application of the SoC

metrics and rules using our tool generate a warning, as presented in the screen of Figure 5.

...

<<interface>>

Cloneable

String text;

void setText(String);

String toString ();

Object clone();

StringPrototypeA

String text;

void setText(String);

String toString ();

Object clone();

StringPrototypeB

String text;

void setText(String);

String toString ();

StringPrototypeA

String text;

void setText(String);

String toString ();

StringPrototypeB

Object createCloneFor(..);

Object cloneObject ();

Object createCloneFor(..);

PrototypeProtocol

StringPrototypes

crosscuts

Legend:

class

aspect

Intertype declaration

declare parents:
StringPrototypeA, StringPrototypeB
implements {Prototype, Cloneable}

Before Refactorings After Refactorings

Figure 6. The application of SoC Evaluation steps to Prototype implementations

As a result, the system developers can decide to use an aspect-oriented design to isolate

the Prototype concern, as defined in [10]. In this AspectJ solution of the Prototype pattern,

the code for implementing the pattern is textually localized in two categories of aspects

(right side of Figure 6): (i) the PrototypeProtocol abstract aspect that encapsulates the

common part to all potential instantiations of the pattern; and (ii) concrete extensions of the

abstract aspect that instantiate the pattern for specific contexts. The two aspects in Figure 6

are entirely shadowed since all the code within them is related to the Prototype pattern. The

Prototype concern is realized as a protected inner interface named Prototype. The

concrete StringPrototype extension of the PrototypeProtocol aspect assign the

Prototype concern to the application classes. Besides, it also defines a different

implementation of the createCloneFor() method to allow the clone of string prototypes

objects in case of failure during the execution of the clone() method.

The AspectJ implementation of the Prototype pattern, as prescribed in [10], separates

almost all the code pertaining to the Prototype concern into aspects. However, when the

SoC evaluation step is re-applied for this new implementation alternative (as defined in our

method – Figure 1) a new problem is detected in the AO version defined by [10]. The

StringPrototypeA and StringPrototypeB classes still implement the Cloneable

interface. Thus, the software developers can also transfer this interface implementation to

the concrete aspects using inter-type declaration (see the right side of Figure 6) in order to

achieve a complete modularization of the Prototype concern. In fact, sometimes it is

difficult to detect all the pieces of behavior that should be modularized into a specific

aspect. Our approach was very useful to detect this problem in the AspectJ implementation

67 E. Figueiredo, A. Garcia, C. Sant’Anna, U. Kulesza, and C. Lucena

of the Prototype pattern and in other pattern implementations as provided by [10]. The

paper [7] summarizes our findings using our assessment approach.

6 Related Work

Tekinerdogan [23] propose an aspect-oriented analysis method, but it is targeted at the

evaluation of software architectures in terms of aspect identifications. In addition, it

analyses the architectural design with respect to the scenario coverage [23], but it does not

assess the architectural design in terms of important software attributes. Our approach, on

the other hand, propose a quantitative assessment method for aspect-oriented design and

implementation based on fundamental software engineering principles, such as coupling,

cohesion, size and separation of concerns.

Aspect-oriented refactorings [12, 16] is already defined in the literature but they are not

connected with metrics values for cohesion, coupling, size, and SoC. In [16], a few aspect-

oriented bad smells are used to identify refactoring opportunities and [12] presents an

analysis of many Fowlers’ refactorings and conclude that a few of them can be used in

aspect-oriented software without modifications. In [11] is introduced a role-based

refactoring, but this approach is not related on software metrics. Catalogue of refactorings

can be considered complementary to our method and used in a step of the proposed

method.

A number of tools [18, 13] have been developed to specifically address the problem of

finding concerns in source code. These approaches can help alleviate the problem of

capturing segments of program code related to a concern. Text-based and type-based

analyses are used to mining aspects in these approaches. These tools are viewed as

complementary to our tool (Section 4) since they can help the designers to find the

concerns of interest to be assessed using our method and tool. An aspect-oriented metric

tool [2] is proposed to automate the measure process. His work are to a large degree in

common with our tool (Section 4), however, [2] does not presents a method for assessment

aspect-oriented design and implementation. In addition, our tool supports separation of

concerns metrics as well as coupling, cohesion and size.

7 Conclusion and Ongoing Work

AOSD is a topic of growing interest within both the academic and industrial communities.

Despite the popularity of this topic, little attention focuses on methods for analyzing

software designs and implementations to show that it satisfies certain desirable properties.

AOSD is primarily motivated by stringent quality factors, such as maintainability,

evolvability, and reusability. This paper has presented method of analysis with respect to

fundamental software engineering attributes, such as separation of concerns, coupling,

cohesion, and size. This method was derived from our extensive experience on performing

systematic assessments of AOSD approaches [5, 7, 8, 20]. Our approach was demonstrated

in this paper by means of a case study involving aspect-oriented implementations of design

patterns (Section 5). We have also performed some case studies to support our arguments

in favor of the usefulness of our assessment method. Up to now, our proposed tool (Section

4) only supports the measurement activities. We are now working on the implementation of

additional modules that support the other steps of our method.

Assessing Aspect-Oriented Artifacts 68

Acknowledgements. This work has been partially supported by European Commission for

Alessandro as part of the grant IST-2-004349: European Network of Excellence on Aspect-

Oriented Software Development (AOSD-Europe), 2004-2008. This work has been also

partially supported by CNPq-Brazil under grant No. 381724/04-2 for Alessandro, grant No.

140214/04-6 for Cláudio, and under grant No. 140252/03-7 for Uirá. The authors are also

supported by the ESSMA Project under grant 552068/02-0.

References

1. AspectJ Team: The AspectJ Programming Guide. http://eclipse.org/aspectj/.

2. Ceccato, M., Tonella P.: Measuring the Effects of Software Aspectization. In Proc. of the 1st Workshop

on Aspect Reverse Engineering (CD-ROM), The Netherlands, (2004).

3. Chidamber, S., Kemerer, C.: A Metrics Suite for Object Oriented Design. IEEE Transactions on

Software Engineering, (1994), pp. 476-493.

4. Fenton, N., Pfleeger, S.: Software Metrics: A Rigorous Practical Approach. London: PWS, (1997).

5. Filho, F., Rubira, C., Garcia, A.: Assessing Aspect-Oriented Programming for Modularizing Exception

Handling. Submitted to ECOOP Work. on Exception Handling in OO Systems, (2005).

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, (1995).

7. Garcia, A. et al.: Modularizing Design Patterns with Aspects: A Quantitative Study. In Proc. of the

AOSD’05, Chicago, USA, (2005), pp. 3-14.

8. Garcia, A. et al.: Separation of Concerns in Multi-Agent Systems: An Empirical Study. In Software

Engineering for Multi-Agent Systems II, Springer, LNCS 2940, (2004).

9. Hanenberg, S., Schmidmeier, A.: AspectJ Idioms for Aspect-Oriented Software Con-struction, Proc. of

EuroPLoP’03, Germany, (2003).

10. Hannemann, J., Kiczales, G.: Design Pattern Implementation in Java and AspectJ. In Proc. of the

OOPSLA’02, (2002), pp. 161-173.

11. Hannemann, J., Murphy, G., Kiczales, G.: Role-Based Refactoring of Crosscutting Concerns. In Proc.

of the AOSD’05, Chicago, USA, (2005), pp. 135-146.

12. Iwamoto, M., Zhao, J.: Refactoring Aspect-Oriented Programs. In Proc. of the 4th AOSD Modeling

With UML Workshop, UML’2003, San Francisco, USA, (2003).

13. Janzen, D., Volder, K.: Navigating and querying code without getting lost. In Proc. of the AOSD’03,

Boston, Massachusetts, (2003), pp. 178 - 187.

14. Kiczales, G. et al.: Aspect-Oriented Programming. In Proc. of ECOOP’97, LNCS 1241, Springer,

Finland, (1997), pp. 220-242.

15. Mezini, M., Ostermann, K.: Conquering aspects with Caesar. In Proc. of the AOSD’05, Chicago, USA,

(2005), pp. 90-99.

16. Monteiro, M., Fernandes, J.: Towards a Catalog of Aspect-Oriented Refactorings. In Proc. of the

AOSD’05, Chicago, USA, (2005), pp. 111-122.

17. Oliveira, A. et al: MetaJ: An Extensible Environment for Metaprogramming in Java. Journal of

Universal Computer Science, vol. 10, no. 7, (2004), p. 872-891.

18. Robillard, M., Murphy, G.: Concern Graphs: Finding and Describing Concerns Using Structural

Program Dependencies. In Proc. of the ICSE'02, USA, (2002), pp. 406-416.

19. Sant’Anna, C. et al. On the Reuse and Maintenance of Aspect-Oriented Software: An Assessment

Framework. Proc. of Brazilian Symposium on Software Engineering, Brazil, (2003), pp. 19-34.

20. Soares, S.: An Aspect-Oriented Implementation Method. Doctoral Thesis, Federal Univ. of

Pernambuco, (2004).

21. Sutton Jr, S., Rouvellou, I.: Concern Modeling for Aspect-Oriented Software Development, In Aspect

Oriented Software Development, Addison-Wesley, (2004), pp 479-505.

22. Tarr, P. et al.: N Degrees of Separation: Multi-Dimensional Separation of Concerns. In Proc. of the

ICSE’99, Los Angeles, USA, (1999), pp. 107-119.

23. Tekinerdogan, B.: ASAAM: Aspectual Software Architecture Analysis Method. In Proc. of the

IEEE/IFIP Conference on Software Architecture, Norway, (2004), pp. 5-14.

69 E. Figueiredo, A. Garcia, C. Sant’Anna, U. Kulesza, and C. Lucena

