
On Issues with Software Quality Models

Khashayar Khosravi and Yann-Gaël Guéhéneuc

GEODES - Group of Open and Distributed
Systems, Experimental Software Engineering

Department of Informatics and Operations Research
University of Montreal, Quebec, Canada
{khosravk,guehene}@iro.umontreal.ca

Abstract. Software metrics and quality models play a pivotal role in
measurement of software quality. A number of well-known quality models
and software metrics are used to build quality software both in industry
and in academia. However, during our research on measuring software
quality using design patterns, we faced many issues related to existing
software metrics and quality models. In this position paper, we discuss
some of these issues and present our approach to software quality assess-
ment

1 Introduction

As software becomes more and more pervasive, there has been a growing con-
cern in the academic community and in the public about software quality. This
concern arises from the acknowledgment that the main objective of software in-
dustries in non-military sectors is to balance price and quality to stay ahead of
competitors.

In the past 15 years, the software industry has created many new different
markets, such as open source software and commerce over the Internet. With
these new markets, customers of programs now have very high expectations on
quality and use quality as a major drive in choosing programs.

Some organisations, such as ISO and IEEE, try to standardise software qual-
ity by defining models combining and relating software quality characteristics
and sub-characteristics. Meanwhile, researchers propose software metrics as tools
to measure programs source code, architecture, and performances. However,
there is a not yet clear and consensual relation among software quality mod-
els and between models and metrics. Moreover the process of software quality
assessment remains an open issue with many models.

In this position paper, we state some open issues related to software quality,
and extend the classical view of software quality models and software metrics.
We propose some possible solutions to the mentioned open issues: Modifying
software quality models so that characteristics and sub-characteristics are more
meaningful to their users; Considering the dynamic behaviour of the software
during its execution; Using design patterns as high level building blocks to asses



the software design. All these solutions can bring significant improvements in
the assessment of the quality of programs.

In the first part of this paper, we review software assessment tools, some
problems, and solutions. In the second part, we introduce a practical example
of software quality assessment based on our modified assessment method.

2 Software Quality

“Walter Shewhart was a statistician at AT&T Bell Labratories in 1920s and is re-
garded as the funder of statistical quality improvement, and modern process im-
provement is based on the concept of process control developed by Shewhart”[1].

Since 1920, progress in the field of software quality has been time-consuming
and ambiguous. Software metrics and software quality models are known as
major reference in the field of software quality assessment but there is still no
clear methods for assessing software quality via software metrics.

2.1 Missing Facts on Quality

In a book on software development and reality construction [2], the authors
acknowledge the dichotomy—in traditional science—between observer and ob-
servation and the view of human needs as being outside of the realm of scientific
enquiry. They regret this view and state emphasises theirs:

An important aspect of computer science is that it deals with creating

reality : The technical reality of the programs executed on the computer,
and the condition for the human reality which unfolds around the com-
puter in use. Therefore, the conceptual categories “true” and “false”
[that computer science] relies on are not sufficient in themselves. We
have to go beyond them by finding categories for expressing the felicity

of our choices, for distinguishing “more or less suitable” as we proceed
in making distinctions and decisions in communicative design processes.
This is essential for dealing with quality in software development and
use[2].

For example, one observer could record, over a period of a year, the Sun rises.
Then, she could state a law generalising these events with the following “Every-
day, the Sun rises”. Finally, she could develop a theory of the Earth spinning
and orbiting around the Sun, thus explaining the laws and the observations.

In other fields of science, such as physics, the discovery of relationships among
artifacts follows the scientific method of observations, laws, and theories. [3, 4].
This method consists in recording observations on some facts, then stating laws
generalising the observations, finally developing a theory able to explain the laws
and thus the observations.

The scientific method begins with facts and observations. We believe that the
field of software quality is so far limited by the lack of concrete and consensual

71 K. Khosravi and Y.-G. Guéhéneuc



facts on the quality of software. Facts in software engineering, in particular about
quality, remain too complex because of the many interactions between software
artifacts and of the discreet nature of software.

We must find facts in software engineering pertaining to software quality.
We believe that design patterns, in particular their design motifs (solutions),
could be such facts. Indeed, design motifs are concrete artifacts in programs and
consensual in the quality characteristics they bring.

3 Open Issues

The following is the result of our idea about modification and improvement of
existing tools for software quality assessment.

3.1 Human Estimation

A person can look at source code or software products and judge their perfor-
mance and their quality. Human evaluation is the best source of measurement
of software quality because at the it is a person who will deal with quality of
software.

The Problem:

– Different taste, different value: Often, software evaluation of one person can
not be expanded as acceptable evaluation for other people because different
people have different view on quality. For example, just listen to other people
advising for choosing an operating system or a wordprocessor. . .

– Assessing the quality of software by your own is not practical: It is impossible
that everybody have the knowledge and the ability to evaluating the software
performance and quality. In addition it is a very hard and time consuming
task.

The solution: Birds of a feather flock together: We must categorize the people
who deal with software at different level by considering their need for software
quality, and then we can create tailored models for each group, or range of
values which are acceptable for similar people. For example, end users mostly
have similar ideas about quality of software, but these ideas maybe different
from those of people who deal with the maintenance of the same software.

3.2 Software Metrics

To our best knowledge, instead of using human estimation, software metrics are
the only mechanized tools for assessing the value of internal attributes [5].

Software metrics are defined as “standard of measurement, used to judge
the attributes of something being measured, such as quality or complexity, in an
objective manner” [6], but subjective measurement of quality comes from human
estimation.

Open Issues with Software Quality Models 72



The Problem:

– Evaluation of software code is not enough: We believe that considering a
source code with no regard for its execution is the same as considering the
body without its sprit. Well-known metrics are just computing size, filiation,
cohesion, coupling, and complexity. These internal attributes are related to
code but the quality of a software does not depend on its code only: Accept-
able quality in code evaluation does not guarantee performance and quality
of software in execution with respect to the user’s expectation.

– Acceptable value for metrics evaluation: With different views of quality, it is
hard to find a numerical value for quality which could be acceptable by all the
people. Also, having different views affects software categorization in certain
classification by considering the numerical value as the only parameter on
software evaluation.

The Solution: Code without value of execution is not valuable: The value of
software metrics must be modified by runtime values for better results. Also,
using a good structure and patterns (such as design patterns [7]) in the software
design and resulting architecture could increase the software quality. Thus, we
want to consider the architectural quality of software by considering the use of
design patterns (or lack thereof) in the software architecture.

3.3 Quality Model

a quality model is a schema to better explain of our view of quality. Some existing
quality models can predict fault-proneness with reasonable accuracy in certain
contexts. Other quality models attempt at evaluating several quality character-
istics but fail at providing reasonable accuracy, from lack of data mainly.

We believe that quality models must evaluate high-level quality character-
istics with great accuracy in terms well-known to software engineers to help
maintainers in assessing programs and thus in predicting maintenance effort.

Such quality models can also help developers in building better quality pro-
grams by exposing the relationships between internal attributes and external
quality characteristics clearly.

We take a less “quantitative” approach than quality models counting, for
example, numbers of errors per classes and linking these numbers with internal
attributes. We favour a more “qualitative” approach linking quality characteris-
tics related to the maintainers’ perception and work directly.

The Problem:

– Are all sub-characteristics equal in affecting software characteristics: In the
literature, quality models define the relation between quality characteristics
and sub-characteristics. However, the impacts of quality sub-characteristics
on characteristics are not equivalent. For example: Adaptability and Insta-
lability are two sub-characteristics related to Portability, the question is: If
we assess the value of Adaptability as A and the value of Instalability as B,
then is the value of Protability equals to A+B or 2

3
A + 1

3
B or . . .

73 K. Khosravi and Y.-G. Guéhéneuc



– Main concepts of quality are missing: In 384 BCE, Aristotle, as a scientist,
knew all about medicine, philosophy. . . In 2005 AD, the concept of quality
is the same as science in the age of Aristotle: Quality does not distribute in
specific part, when we talk about software quality, we talk about assessing
entire items which are part of the concept of quality.

The Solution:

– Coefficient: Quality as an objective value is dependent on sets of software
attributes and customer’s requirements. These attributes are explain as dif-
ferent level of characteristics and sub-characteristics in models of quality, but
the relation and impact of each characteristic and sub-characteristic should
be distinguished. Models can be made more meaningful for different persons
by using coefficients which relate characteristic and sub-characteristic. For
example: ISO/IEC TR 9126-2:2003(E) [8] define Maintainability as Analyz-
ability, Changeability, Stability, Testability, and Compliance, but what is the
impact of Changeability or Maintainability? 20%? 30%? . . .

– Jack of all trades and master of none: Assessing all the attributes related to
software quality represent lots of work. We extend quality models by defining
a subject (super-characteristic) to focus on as base concept in quality. Also,
the super-characteristic describe the context of the model.

4 Our approach to Software Quality Evaluation

To highlight some solutions of the above mentioned problems, we deal with the 9
steps needed to apply our approach to software quality evaluation, which solves
some of the open issues.

4.1 Step by Step:

The following steps highlight the main ideas to implement software quality as-
sessment while considering human requirements.

Step1: Choosing Category of People. We must choose at least a person from
the category of people which our software evaluation will be implement for, for
example: Programmers, End-user . . .

Step2: Identifying Sample Program. We must choose a simple programs (BP) to
be considered as sample evaluation set of our model.

Step3: Building a Quality Model. The process of building a quality model de-
composes in two main tasks generally:

– Choosing a super-characteristic.
– Choosing and organising characteristics related to super-characteristic.

In our case study, we consider design patterns especially as bridge between
internal attributes of programs, external quality characteristics, and software
engineers.

Open Issues with Software Quality Models 74



Step4: Human Evaluation. The small group, or at least one person from the
group, must look in the program or product BP and evaluate the quality chara-
teristics we defined in our quality model, the evaluation could be in form of
numerical value or different levels on aLickert scale.

Step5: Computing Software Metrics over BP. By using software metrics we
evaluate BP numerical values related to software internal attributes.

Step6: Machine Learning Tools. JRip [9] as machine learning algorithm generate
the relation between human evaluation of software quality (result from Step4)
and value of software metrics (result from Step5). The WEKA’s out put consider
as set of RULE (an example is shown in Table1) to be used for other software
evaluation .

if (LCOM5 ≤ 1.1) ∧ (NOA ≤ 33.25)

then (Learnability = Good)

else (Learnability = Fair)

Table 1. RULE for learnability by assessment the quality value of BP

Step7: Computing Software Metrics over EP. Software metrics are used to assess
the values of internal attributes over the EP in the same way as they were for
the evaluation of BP

Step8: Adapting Metric. By using ratio over the values from Step7 and Step5,
we can related the numerical values of Step7 with those of Step5. The following
method will be used for relation evaluation:

Phase1. Finding the Max and Min value of each metrics in EP.

Phase2. Finding the Max and Min value of same metrics we were compute
on Phase1 over the BP.

Phase3. Analyzing the ratio for the values from Phase1 plus values we have
in RULE, we build a new RULE compatible with EP. For example: consider the
RULE in Table1, considering that upper range and lower range of metrics NOA
in BP is UBP

NOA and LBP

NOA, then the new RULE for Learnability is presented in
Table2.

Step9: Software Evaluation. Now, we can evaluate other programs (EP) by ap-
plying the of adjusted RULE (from Step8) and software metrics evaluation over
the EP.

75 K. Khosravi and Y.-G. Guéhéneuc



if (LCOM5 ≤
(U

EP

LCOM5
−L

EP

LCOM5
)(1.1−L

BP

LCOM5
)

UBP

LCOM5
−LBP

LCOM5

)

∧

(NOA ≤
(U

EP

NOA
−L

EP

NOA
)(33.25−L

BP

NOA
)

UBP

NOA
−LBP

NOA

)

then (Learnability = Good)

else (Learnability = Fair)

Table 2. Adjustable learnability RULE for EP

4.2 Conclusion

To our best knowledge, the method we presented is new but still we were using
the classical tools of software engineering. The only modification we respect
from our modification in Section3 is using the super-characteristic for building
our software quality model.

5 Case Study

We perform a case study to apply the previous approach to building and to
applying a quality model considering program architectures.

5.1 General Information

The following general information offer a synthetic view on our quality evaluation
method.

Dependent Variables. The dependent variables in our quality model are the
quality characteristics related to a super-characteristics.

Independent Variables. The independent variables in our quality model are the
internal attributes which can be measured by software metrics. These internal
attributes are similar to those in other quality models from the literature: Size,
filiation, cohesion, coupling, and complexity.

Analysis Technique. We use a propositional rule learner algorithm, JRip. JRip

is Weka—an open-source program collecting machine learning algorithms for
data mining tasks [9]—implementation of the Ripper rule learner. It is a fast
algorithm for learning “If–Then” rules. Like decision trees, rule learning algo-
rithms are popular because the knowledge representation is easy to interpret.

Open Issues with Software Quality Models 76



Design Patterns. We use design patterns as a basis to build a quality model. We
choose design patterns because they are now well-known constructs and have
been studied extensively.

Design patterns provide good solutions to architectural design problems,
which maintainers can use in the assessment of the quality characteristics of
program architectures naturally. Indeed, “[a]ll well-structured object-oriented
architectures are full of patterns” [7, page xiii]. Also, design patterns provide a
basis for choosing and for organising external quality characteristics related to
the maintenance effort.

5.2 Implementation of our Approach to Software Quality

Assessment

We perform the following tasks to build a quality assessment method considering
program architectures based on design patterns.

Choose Category of People. We consider for our experience group of university
students who know enough about programming and are familiar with the basic
concepts of software engineering.

Building a Quality Model. Paragraph Defining a Super-characteristic.

By considering software reusability as super-characteristic in our quality
model, we focus on reusability, understandability, flexibility, and modularity [7].
So, we add these quality characteristics to our quality model.

Also, through our past experience, we add robustness and scalability (which
define together software elegancy [10]) to our quality model.

Software elegancy is defined as maximizing the information delivered through
the simplest possible interface. Issues of elegance in software are reflected to
robustness, scalability, flexibility, and usability [11].

Thus, the structure of our model starts with the following quality character-
istics:

– Flexibility.
– Reusability.
– Robustness.
– Scalability.
– Usability.

Organising the Quality Characteristics. We consider a hierarchical model, be-
cause it is more understandable and also most of the standard models are hi-
erarchical [12]. To define attributes and metrics for our model, we start with
standard definitions from IEEE and ISO/IEC and, if we do not find a match for
the characteristics we are looking for, we try to match them with other models.

– Usability: ISO/IEC defines the usability as part of quality characteristics
related with the following attributes:

77 K. Khosravi and Y.-G. Guéhéneuc



• Understandability.

• Learnability.

• Operability.

For assistance of this definition, McCall’s model defines the usability as:

• Operability.

• Training.

• Communicativeness.

To cover the understandability’s attributes, Boehm’s model define the un-
derstandability as a characteristic that is related to:

• Structuredness.

• Conciseness.

• Legibility.

– Reusability McCall’s model defines the reusability as a characteristic that is
related with following attributes:

• Software system independence.

• Machine independence.

• Generality.

• Modularity.

– Flexibility

McCall’s model defines the flexibility as a characteristic that is related with
following attributes:

• Self Descriptiveness.

• Expendability

• Generality.

• Modularity.

– Scalability

Smith and Williams are defined the scalability as “the ability of a system to
continue to meet its response time or throughput objectives as the demand
for the software functions increases” [13], but with considering the vertical
definition, the Scalability would be increase by levels of processing power
and application performance” [14].

– Robustness Donald G. Firesmith in his Technical Note [15] define the Ro-
bustness as a characteristic that is related to:

• Environmental tolerance.

• Error tolerance.

• Failure tolerance.

Tus, we organise the quality characteristics and decompose these in sub-
characteristics using definitions from IEEE, ISO/IEC, and several other models,
such as McCall’s, Boehm’s, Firesmith’s [13, 15, 16, 14]. Figure 1 presents our
quality model to evaluate software quality related to software maintenance based
on design patterns.

Open Issues with Software Quality Models 78



Scalability

Usability

Flexibility

Reusability

Software-Reusing

Robustness

Expandability

Operability

Understandability

Learnability

Modularity

Generality

Simplicity

= Super Characteristic = Characteristic = Sub-Characteristic

Fig. 1. A quality model based on software reusing

Software Metrics. We choose size, filiation, coupling, cohesion, and complexity as
internal attributes. We use the metrics from Chidamber and Kemerer’s study [17]
mainly to measure these internal attributes, with additions from other metrics
by Briand et al. [18], by Hitz and Montazeri [19], by Lorenz and Kidd [6], and
by Tegarden et al. [20].

The complete list of metrics used to measure internal attributes is: ACAIC,
ACMIC, AID, CBO, CLD, cohesionAttributes, connectivity, DCAEC, DCMEC,
DIT, ICHClass, LCOM1, LCOM2, LCOM5, NCM, NMA, NMI, NMO, NOA,
NOC, NOD, NOP, SIX, and WMC.

Identifying Base Program (BP). We use the set of programs implementing design
patterns from Kuchana’s book as base programs [21]. Each program of this set
implements design patterns from Gamma et al.’s book [7]. This set of programs
forms our base programs BP.

Human Evaluation. We assess the quality characteristics of design patterns man-
ually, using our quality model and the set BP. Table 3 summaries our evaluation
of the quality characteristics of the twenty-three design patterns.

Computing Metrics. The metrics we chose for evaluation of BP are used to
measure the internal attributes of programs are all class-based metrics.

79 K. Khosravi and Y.-G. Guéhéneuc



Quality Sub-characteristics and Characteristics

Design

Patterns

E
x
p
e
n
d
a
b
il
it
y

S
im

p
li
c
it
y

G
e
n
e
r
a
li
t
y

M
o
d
u
la

r
it
y

L
e
a
r
n
a
b
il
it
y

U
n
d
e
r
s
t
a
n
d
a
b
il
it
y

O
p
e
r
a
b
il
it
y

S
c
a
la

b
il
it
y

R
o
b
u
s
t
n
e
s
s

Abs. Fact. E E G G G G G G G

Builder G G F F F G F G G

Fact. Met. P P F G G G G G G

Prototype E G F G F G F E G

Singleton P B F E F F F G G

Adapter F F P G G F F G F

Bridge G F G G F F G G G

Composite F F F F F G F F G

Decotator E E G F G G G G F

Façade G G G G F G F F F

Flyweight P P F G G P F G G

Proxy G P F G F P G G F

Chain of Res. G G G P F F G P F

Command G P F F P B G G G

Interpreter G F G F F F G G F

Iterator E E G F G F F G G

Mediator G F G G F F G G F

Memento G F F B P F G F P

Observer E G E F F G G G G

State G G F P F B G G F

Strategy G F P F P P F P F

Tem. Met. E G F F G G G G G

Visitor E G G F G P F G F

Table 3. Design patterns quality characteristics in BP (E = Excellent, G = Good, F = Fair, P =

Poor, and B = Bad)

We analyse the programs and their micro-architectures using PADL, a meta-
model to represent programs. Then, we apply POM, a framework for metrics
definition and computation based on PADL [22], on the program models to
compute the metric values.

Linking Internal Attributes and Quality Characteristics. We use the JRip al-
gorithm to find the relation between quality characteristics and values of the
metrics. The rule in Table 1 is the rule associated with the learnability quality
characteristics, when applying JRip ion the metric values of the base programs.
It shows that the learnability quality characteristics is related to the NOA and
LCOM5 metrics more than to any other metric.

We do not introduce here all the rules found for the different quality sub-
characteristics and characteristics in our model for lack of space. The rules are
specific to the current case study but help in illustrating the advantages and
limitations of our approach.

Open Issues with Software Quality Models 80



Adapting our RULE. We apply the quality model built in the previous Sub-
section to JHotDraw (we only apply our model on a subset of the micro-
architectures for lack of space), JUnit, and Lexi programs. For lack of space,
we only applying RULE in Table1.

We adapt the metric values in the rule in Table1 by computing the ratio
between the minimum and maximin values of the LCOM5 and NOA metrics for
the base programs on the one hand, and each micro-architecture on the other
hand. Table 4 also displays the adapted rules for all the micro-architectures.

Upper lower range of NOA and LCOM5 for BP are computed as:

minLCOM5 = 0.75, maxLCOM5 = 1.82, minNOA = 1.00, and maxNOA =
86.00.

M
ic

ro
-A

rc
h
it

ec
tu

re
s

D
es

ig
n

P
a
tt

er
n
s

L
C

O
M

5

m
i
n

L
C

O
M

5

m
a
x

L
C

O
M

5

N
O

A

m
i
n

N
O

A

m
a
x

N
O

A

R
u
le

fo
r

le
a
rn

a
b
il
it
y

Subset of the micro-architectures in JHotDraw

MA74 Command 1.07 0.50 1.63 29.35 1.00 164.00 (LCOM5 ≤ 1.16) ∧ (NOA ≤ 62.30) ⇒ Good

MA85 Singleton 0.67 0.67 0.67 1.00 1.00 1.00 (LCOM5 ≤ 0.00) ∧ (NOA ≤ 0.00) ⇒ Fair

MA91 Strategy 0.95 0.80 1.0 553.88 221.00 792.00 (LCOM5 ≤ 0.21) ∧ (NOA ≤ 218.23) ⇒ Fair

JUnit

MA65 Composite 0.65 0.25 0.95 70.10 4.00 148.00 (LCOM5 ≤ 0.72) ∧ (NOA ≤ 56.33) ⇒ Fair

MA66 Decorator 0.65 0.25 0.90 135.41 49.00 176.00 (LCOM5 ≤ 0.67) ∧ (NOA ≤ 49.68) ⇒ Fair

MA67 Iterator 0.92 0.83 0.99 30.67 1.00 48.00 (LCOM5 ≤ 0.17) ∧ (NOA ≤ 18.38) ⇒ Fair

MA68 Observer 0.90 0.66 1.03 112.43 1.00 191.00 (LCOM5 ≤ 0.38) ∧ (NOA ≤ 74.32) ⇒ Fair

MA69 Observer 0.83 0.83 0.83 1.00 1.00 1.00 (LCOM5 ≤ 0.00) ∧ (NOA ≤ 0.00) ⇒ Fair

MA70 Observer 0.83 0.83 0.83 11.00 11.00 11.00 (LCOM5 ≤ 0.00) ∧ (NOA ≤ 0.00) ⇒ Fair

MA71 Singleton 0.00 0.00 0.00 1.00 1.00 1.00 (LCOM5 ≤ 0.00) ∧ (NOA ≤ 0.00) ⇒ Fair

MA72 Singleton 0.00 0.00 0.00 1.00 1.00 1.00 (LCOM5 ≤ 0.00) ∧ (NOA ≤ 0.00) ⇒ Fair

Lexi

MA8 Builder 0.95 0.93 0.97 7.75 1.00 12.00 (LCOM5 ≤ 0.03) ∧ (NOA ≤ 4.30 ⇒ Fair

MA9 Observer 0.95 0.94 0.97 9.50 1.00 18.00 (LCOM5 ≤ 0.02) ∧ (NOA ≤ 6.65) ⇒ Fair

MA10 Observer 0.95 0.94 0.97 61.67 35.00 94.00 (LCOM5 ≤ 0.02) ∧ (NOA ≤ 23.08) ⇒ Fair

MA11 Singleton 1.01 1.01 1.01 1.00 1.00 1.00 (LCOM5 ≤ 0.00) ∧ (NOA ≤ 0.00) ⇒ Fair

MA12 Singleton 0.99 0.99 0.99 2.00 2.00 2.00 (LCOM5 ≤ 0.00) ∧ (NOA ≤ 0.00) ⇒ Fair

Table 4. Data and rules when applying the quality model to a subset of JHotDraw,
JUnit, and Lexi

81 K. Khosravi and Y.-G. Guéhéneuc



Applying the Rules. We compare the expected metric values in the adapted rules
with the metric values computed for each micro-architecture and we update the
RULE related to our software evaluation. The results are shown in Table4.

6 Conclusion

In this position paper, we reported our experience in using software metrics and
quality models to assess software. Our conclusion are:

– Software quality models must state clearly their target user’s and define an
supplementary layer of characteristics (“super”-characteristics) to be more
useful and comparable.
item Software quality models must take into account other aspects of soft-
ware such as their performance, runtime adequacy, and architecture (for
example, through the assessment of design patterns).

– More experience is needed to describe out advantage and disadvantage of
our quality assessment method.

We would like to discuss with the participants the identified open issued
and their proposed solutions and opportunities of improving software quality
models.

References

1. O’Regan, G.: A Practical Approach to Software Quality. 1st edn. Springer (2002)
2. Floyd, C., Budde, R., Zullighoven, H.: 1. In: Human Questions in Computer

Science. Springer Verlag (1992) 15–27
3. Basili, V.R.: The experimental paradigm in software engineering. In Rombach,

H.D., Basili, V.R., Selby, R.W., eds.: proceedings of the international workshop on
Experimental Software Engineering Issues: Critical Assessment and Future Direc-
tions, Springer Verlag (1992) 3–12

4. Glass, R.L.: The software-research crisis. IEEE Software 11 (1994) 42–47
5. ISO: ISO/IEC 14598-1. International Standard Information technology soft-

ware product evaluation (1999)
6. Lorenz, M., Kidd, J.: Object-Oriented Software Metrics. 1st edn. Prentice Hall

(1994)
7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns – Elements of

Reusable Object-Oriented Software. 1st edn. Addison-Wesley (1994)
8. Standard, I.: Iso/iec 9126-1. Institute of Electrical and Electronics Engineers Part

1,2,3: Quality model (2001)
9. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques with Java Implementations. 1st edn. Morgan Kaufmann (1999)
10. for Software Engineering, C.: OO Analysis and Design: Modeling, Integration, Ab-

straction. (2002) http://sunset.usc.edu/classes/ cs577b 2002/EC/03/EC-03.ppt.
11. Erich Gamma, Richard Helm, R.J., Vlissides, J.: Design Patterns Elements of

Reusable Object-Oriented Software. Addison-Wesley Pub Co (1995)

Open Issues with Software Quality Models 82



12. Fenton, N.E., Pfleeger, S.L.: Software Metrics A Rigorous and Practical Approach.
2nd edn. PWS Publishing Company (1997)

13. Connie U. Smith, L.G.W.: 1. In: Introduction to
Software Performance Engineering. Addison Wesley (2001)
http://www.awprofessional.com/articles/article.asp?p=24009.

14. Online, C.: Scalability from the edge. Computer Business review Online, CBR
Online (2002)

15. Firesmith, D.G.: Common concepts underlying safety, security, and survivabil-
ity engineering. Carnegie Mellon Software Engineering Institute - Technical note
CMU/SEI-2003-TN-033 (2003)

16. Khosravi, K., Guéhéneuc, Y.G.: A quality model for design patterns. Technical
Report 1249, Université de Montréal (2004)

17. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object-oriented design. Tech-
nical Report E53-315, MIT Sloan School of Management (1993)

18. Briand, L., Devanbu, P., Melo, W.: An investigation into coupling measures for
C++. In Adrion, W.R., ed.: proceedings of the 19th International Conference on
Software Engineering, ACM Press (1997) 412–421

19. Hitz, M., Montazeri, B.: Measuring coupling and cohesion in object-oriented sys-
tems. In: proceedings of the 3rd Intermational Symposium on Applied Corporate
Computing, Texas A & M University (1995) 25–27

20. Tegarden, D.P., Sheetz, S.D., Monarchi, D.E.: A software complexity model of
object-oriented systems. Decision Support Systems 13 (1995) 241–262

21. Kuchana, P.: Software Architecture Design Patterns in Java. 1st edn. Auerbach
Publications (2004)

22. Guéhéneuc, Y.G., Sahraoui, H., Zaidi, F.: Fingerprinting design patterns. In
Stroulia, E., de Lucia, A., eds.: proceedings of the 11th Working Conference on
Reverse Engineering, IEEE Computer Society Press (2004) 172–181

83 K. Khosravi and Y.-G. Guéhéneuc




