Crypto: Un peu de théorie des nombres

Hiver 2019

- * Thme (unicité des quotients et restes): Pour a et b>0 des entiers naturels, il n'y a qu'un seul couple d'entiers naturels k et r< b tel que $a=k\cdot b+r$.
- * **Preuve.** Montrons en premier lieu qu'un tel couple existe. Choisissons k tel que $k \cdot b \le a < (k+1) \cdot b$. C'est toujours possible de trouver un tel entier naturel k. Nous avons alors $a = k \cdot b + r$ avec r < b puisque $r = a \cdot k \cdot b < (k+1) \cdot b k \cdot b = b$.

Montrons maintenant que ce couple (k,r) est unique. Supposons au contraire qu'il existe $(k',r')\neq(k,r)$ tel que $a=k'\cdot b+r'=k\cdot b+r$ avec r'< b et r< b. En conséquence $(k-k')\cdot b=r'-r$. Trois cas sont maintenant possibles:

- 1) si k=k' alors r'-r=0. Donc, r'=r et (k',r')=(k,r) pour une contradiction.
- 2) si k>k' alors $b \le (k-k') \cdot b = r' r \le r' < b$. Donc, $b \le r'$ pour une contradiction.
- 3) si k < k' alors $b \le (k'-k) \cdot b = r-r' \le r$. Donc, $b \le r$ pour une contradiction.
- * **Défn:** Pour a et b>0 des entiers naturels, la *division entière* de a par b, notée $\lfloor a/b \rfloor$, est l'entier naturel k tel que $a=k\cdot b+r$ avec $0 \le r < b$. Le terme r, noté $a \mod b$, est appelé le reste de la division de a par b et k est son *quotient*. Lorsque r=0 nous dirons que b divise a.

Le reste de la division entière d'une somme

- * Dans une expression arithmétique avec des +,· et mod, l'opération mod est de moindre priorité.
- * Lemme M: $\forall x, y \in \mathbb{N} \ \forall b \in \mathbb{N}^*$,

Il est facile de vérifier que $(a \mod b) \mod b = a \mod b$.

 $(x+y) \mod b = ((x \mod b) + (y \mod b)) \mod b$.

* **Preuve.** Posons, $x=k\cdot b+r$, r< b et $y=k'\cdot b+r'$, r'< b promis par le théorème d'**unicité des quotients et restes**. Nous avons, $x+y \mod b = ((k+k')\cdot b+r+r') \mod b$. De la même façon, $r+r'=k''\cdot b+r''$, r''< b (i.e. $r''=r+r' \mod b$) et donc $x+y=(k+k'+k'')\cdot b+r''$, par le théorème d'**unicité des quotients et restes**, $x+y \mod b=r''=r+r' \mod b$ comme nous devions le montrer. ■

Preuve classique par contradiction

- * **Thme E(Euclide):** Pour *p* un nombre premier, *a* et *b* des entiers naturels, si *p* divise *a*·*b* alors *p* divise *a* ou *p* divise *b*.
- * *Preuve*. Nous prouvons le cas b>1, car autrement le théorème est trivialement vrai. Supposons pour une contradiction que p divise $a \cdot b$, mais p ne divise ni a ni b. Pour a et p fixés, choisissons le b minimum qui satisfait ces conditions. Le **Thme d'unicité des quotients et restes** nous indique que $a=k\cdot p+r$ et $b=k'\cdot p+r'$ avec $1\le r< p$ et $1\le r'< p$. Puisque p divise $a\cdot b=a\cdot k'\cdot p+a\cdot r'$ alors p divise $a\cdot r'$, puisque par le **Lemme M**,

 $0=a \cdot b \mod p = (a \cdot k' \cdot p \mod p + a \cdot r' \mod p) \mod p = a \cdot r' \mod p$.

De plus, p ne divise ni r' (puisque r' < p) ni a (par hypothèse). La minimalité de b implique donc $b \le r' < p$. Par **Thme d'unicité des quotients et restes**, posons $p = m \cdot b + s$ avec $1 \le s < b$, car p ne divise pas b. Alors, $a \cdot p = m \cdot a \cdot b + a \cdot s$ et p divise $a \cdot s = a \cdot p - m \cdot a \cdot b$ puisqu'il divise $a \cdot p$ et $m \cdot a \cdot b$ sans diviser a et sans diviser s. Ceci contredit que s soit minimum puisque s < b.

Le théorème fondamental de l'arithmétique

- * Le théorème fondamental de l'arithmétique énonce que chaque entier naturel peut être représenté d'une façon unique par un produit de puissance de nombres premiers.
- * **Défn:** Les nombres premiers qui apparaissent dans la représentation de l'entier naturel *n* sont appelés *facteurs premiers* de *n*. *Factoriser n* signifie trouver ses facteurs premiers.

et sa preuve (I)

* Thme (fondamental de l'arithmétique): Pour n>1 un entier naturel, il existe un seul entier naturel k>0 et un seul ensemble $\{(p_1, e_1), (p_2, e_2), ..., (p_k, e_k)\}$ où chaque p_i est un nombre premier et chaque $e_i>0$ est un entier naturel pour lequel

$$n = p_1^{e_1} \cdot p_2^{e_2} \cdot p_3^{e_3} \cdot \dots \cdot p_k^{e_k}.$$

* *Preuve*. En premier, nous prouvons l'existence par induction mathématique généralisée. Considérons le prédicat P(n)= "chaque entier n>1 est ou bien premier ou le produit de nombres premiers".

base (n=2): 2 est premier.

pas d'induction: Supposons P(j) pour $2 \le j < n$, montrons P(n). Si n est premier alors il n'y a rien à prouver. Si n est composé alors $n = a \cdot b$ pour $2 \le a \le b < n$. Par hypothèse d'induction, $a = p_1 \cdot p_2 \cdot ... \cdot p_l$ et $b = q_1 \cdot q_2 \cdot ... \cdot q_m$ et $n = a \cdot b = p_1 \cdot p_2 \cdot ... \cdot p_l \cdot q_1 \cdot q_2 \cdot ... \cdot q_m$ est un produit de nombres premiers. Ceci établit que chaque entier supérieur à 1 peut être exprimé comme le produit de nombres premiers.

et sa preuve (II)

* *Preuve(suite)*. Nous montrons maintenant l'unicité de la décomposition. Supposons pour *n*>1 que

$$n=p_1\cdot p_2\cdot ...\cdot p_l=q_1\cdot q_2\cdot ...\cdot q_l$$

Nous montrons que les q_i sont un réarrangement des p_i . Notons que p_1 divise s, par le **Thme E** p_1 divise au moins un des q_j . Ceci est impossible à moins que $p_1=q_j$, car q_j est premier. Renommons q_j comme q_1 est q_1 comme q_j . Nous divisons maintenant s par p_1 . Nous avons alors

$$n/p_1=p_2\cdot ...\cdot p_l=q_2\cdot q_3\cdot ...\cdot q_l$$

Le même argument montre que $p_2=q_2$, ensuite $p_3=q_3$, ..., $p_l=q_l$. Nous avons l'=l, car si l'>l nous aurions

$$n/p_1 \cdot p_2 \cdot ... \cdot p_l = 1 = q_{l+1} \cdot q_{l+2} \cdot ... \cdot q_{l'}$$

ce qui est impossible à résoudre. Même chose si l>l'.

Encore une preuve classique par contradiction

- * Thme(Euclide): $|P| = \infty$.
- * *Preuve*. Supposons pour une contradiction que l'ensemble des nombres premiers est de taille finie $P = \{p_1, p_2, ..., p_n\}$. Considérons maintenant l'entier naturel $w=p_1\cdot p_2\cdot ...\cdot p_n+1$. Si west premier alors nous obtenons une contradiction, car $w \notin \mathbf{P}$. Si w n'est pas premier alors par le théorème fondamental de l'arithmétique, il doit être divisible par un nombre premier $q \in \{p_1, p_2, ..., p_n\}$. Impossible, car le reste de la division $w/p_i = 1$ pour chaque 1≤i≤n. L'ensemble P ne contient donc pas tous les nombres premiers, car il ne contient pas q. Contradiction, P ne peut pas être de taille finie.