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Abstract

The purpose of this paper is to present an overview of existing medical image registration methods. These methods
will be classified according to a model based on nine salient criteria, the main dichotomy of wétfnisicversus
intrinsic methods. The statistics of the classification show definite trends in the evolving registration techniques,
which will be discussed. At this moment, the bulk of interesting intrinsic methods is either based on segmented
points or surfaces, or on techniques endeavoring to use the full information content of the images involved.

1 Introduction

Within the current clinical setting, medical imaging is a vital component of a large number of applications. Such
applications occur throughout the clinical track of events; not only within clinical diagnostis settings, but prominently
so in the area of planning, consummation, and evaluation of surgical and radiotherapeutical procedures.

Since information gained from two images acquired in the clinical track of events is usually of a complementary
nature, propeintegration of useful data obtained from the separate images is often desired. A first step in this
integration process is to bring the modalities involved into spatial alignment, a procedure referreedisteetion
After registration, dusionstep is required for the integrated display of the data involved.

An example of the use of registering different modalities can be found in radiotherapy treatment planning, where
currently CT is used almost exclusively. However, the use of MR and CT combined would be beneficial, as the former
is better suited for delineation of tumor tissue (and has in general better soft tissue contrast), while the latter is needed
for accurate computation of the radiation dose. Another eminent example is in the area of epilepsy surgery. Patients
may undergo various MR, CT, and DSA studies for anatomical reference; ictal and interictal SPECT studies; MEG and
extra and/or intra-cranial (subdural or depth) EEG, as weftBBG and/or! C-Flumazenil PET studies. Registration
of the images from practically any combination will benefit the surgeon.

In this paper, our aim is to classify registration methods, and give an overview of current techniques.

2 Classification of registration methods

The classification of registration methods used in this chapter is based on the criteria formulated by van den Elsen, Pol
& and Viergever [1]. A version considerably augmented and detailed is presented. Nine basic criteria are used, which
can each be subdivided again. The nine criteria and primary subdivisions are given is figure 1.

In the following sections, we will discuss the separate criteria in more detail.

3 Dimensionality

3.1 Spatial registration methods

The main division here is whether all dimensions are spatial, or that time is an added dimension. In either case, the
problem can be further categorized depending on the number of spatial dimensions involved. Most current papers focus
on the3D/3D registration of two images (no time involvedD/3D registration normally applies to the registration

of two tomographic datasets, or the registration of a single tomographic image to any spatially defined information,
e.g.,a vector obtained from EEG dat2D/2D registration may apply to separate slices from tomographic data, or
intrinsically 2D images like portal images. Compare®i/3D registration,2D/2D registration is less complex by

1Corresponding author: J.B.A. Maintz, University Hospital Utrecht, Room E.01.334, Heidelberglaan 100, NL-3584 CX, Utrecht, the Nether-
lands. email: twan@cv.ruu.nl



Classification for medical registration

|. Dimensionality
a. Spatial dimensions only:

methods 8. Video

9. X-ray or DSA
b. Multi-modal

1. 2D/2D 1. CT—MR
2. 2D/3D 2. CT—PET
3. 3D/3D 3. CT—SPECT
b. Time series (more than two images), with spatial di- g Eg.?:,mg
mensions: -
6. PET—US
1. 2b/2D 7. SPECT—MR
2. 2D/3D 8. SPECT—US
3. 3D/3D 9. TMS—MR
10. US—CT

Il. Nature of registration basis
a. Extrinsic
1. Invasive

A. Stereotactic frame
B. Fiducials (screw markers)
2. Non-invasive

A. Mould, frame, dental adaptezic.

B. Fiducials (skin markers)

11. US—MR
12. X-ray—CT
13. X-ray—MR
14. X-ray—portal
15. X-ray—US
16. Video—CT
17. Video—MR

c. Modality to model

b. Intrinsic 1. CT
2. MR
e e > seecr
B. Geometrical 4 p ? >:-tray dalit
2. Segmentation based ’ a1|enCTo modality
A. Rigid models (points, curves, surfaces) 2' MR
B. Deformable models (snakes, nets) 3' PET
3. Voxel property based 4. Portal
A. Reduction to scalars/vectors (moments, 5. X-ray

principal axes)
B. Using full image content

c. Non-image based (calibrated coordinate systems)

11l. Nature of transformation
a. Rigid
b. Affine
c. Projective
d. Curved
IV. Domain of transformation
a. Local
b. Global
V. Interaction
a. Interactive

1. Initialization supplied

2. No initialization supplied
b. Semi-automatic

1. User initializing

2. User steering/correcting

3. Both

c. Automatic
VI. Optimization procedure

a. Parameters computed

b. Parameters searched for
VII. Modalities involved

a. Mono-modal

1. Autoradiographic
CT or CTA

MR

PET

Portal

SPECT

us

NogrON

VIIl. Subject
a. Intrasubject (1)
b. Intersubject
c. Atlas
IX. Object
a. Head
1. Brain or skull
2. Eye
3. Dental
b. Thorax
1. Entire
2. Cardiac
3. Breast
c. Abdomen
1. General
2. Kidney
3. Liver
d. Pelvis and perineum
e. Limbs (orthopedic)
1. General
2. Femur
3. Humerus
4. Hand
f. Spine and vertebrae

e brief registration criterion description
e brief optimization procedure description
e validation (if any) used
Registration:
1. Problem statement (1,111,VIIL,VIIIIX)
2. Criterion (paradigm) (I11,111,1\V,V)
3. Optimization (V,VI)
Related:
e Validation
e Visualization/fusion

Figure 1:Classification of registration methods. See text for details.



an order of magnitude both where the number of parameters and the volume of the data are concerned, so obtaining
a registration is in many cases easier and faster than iBO&D case. We reservaD/3D registration for the direct
alignment of spatial data to projective data.g(,a pre-operative CT image to an intra-operative X-ray image), or the
alignment a single tomographic slice to spatial data. Since 28D applications concern intra-operative procedures

within the operating theater, they are heavily time-constrained and consequently have a strong focus on speed issues
connected to the computation of the paradigm and the optimization. The majority of applications outside the operating
theater and radiotherapy setting allow for off-line registration, so speed issues need only be addressed as constrained
by clinical routine.

3.2 Registration of time series

Time serienf images are acquired for various reasons, such as monitoring of bone growth in children (long time
interval), monitoring of tumor growth (medium interval), post-operative monitoring of healing (short interval), or
observing the passing of an injected bolus trough a vessel tree (ultra-shortinterval). If two images need to be compared,
registration will be necessary except in instances of ultra-short time series, where the patient does not leave the scanner
between the acquisition of two images. The same observations as for spatial-only registrations apply.

4 Nature of registration basis

4.1 Extrinsic registration methods

Image based registration can be divided iextrinsic i.e.,based on foreign objects introduced into the imaged space,
andintrinsic methodsj.e.,based on the image information as generated by the patient.

Extrinsicmethods rely on artificial objects attached to the patient, objects which are designed to be well visible and
accurately detectable in all of the pertinent modalities. As such, the registration of the acquired images is comparatively
easy, fast, can usually be automated, and, since the registration parameters can often be computed explicitly, has no
need for complex optimization algorithms. The main drawbacks of extrinsic registration are the prospective character,
i.e., provisions must be made in the pre-acquisition phase, and the often invasive character of the marker objects.
Non-invasive markers can be used, but as a rule are less accurate. A commonly used fiducial objectagaatic
frame([2, 3, 4, 5, 6, 7, 8, 9screwed rigidly to the patient’s outer skull table, a device which until recently provided
the best “gold standard” for registration accuracy. Such frames are used for localization and guidance purposes in
neurosurgery. Since neurosurgery is one of the main application areas of registration, the use of a stereotactic frame
in the registration task does not add an additional invasive strain to the patient. However, the mounting of a frame for
the sole purpose of registration is not permissible. Sometimes other invasive objects are used, such as screw-mounted
markers[10, 11, 12, 13, 14, 15, 16, 17, 18but usually non-invasive marking devices are reverted to. Most popular
amongst these are markers glued to the EldN20, 21, 22, 23, 24, 13, 25, 26, 27, 28, 29,30t larger devices that can be
fitted snugly to the patient, like individualized foam moulds, head holder frames, and dental adapters have also been
used, although they are little reported on in recent literg81re32, 33, 34, 35, 19]

Since extrinsic methods by definition cannot include patient related image information, the nature of the regis-
tration transformation is often restricted to be rigid (translations and rotations only). Furthermore, if they are to be
used with images of low (spatial) information content such as EEG or MEG, a calibrated video image or spatial
measurements are often necessary to provide spatial information for basing the registration on. Because of the rigid-
transformation constraint, and various practical considerations, use of extrinsic 3D/3D methods is largely limited to
brain and orthopedifl7, 18] imaging, although markers can often be used in projective (2D) imaging of any body
area. Non-rigid transformations can in some cases be obtained using margeirs studies of animal heart motion,
where markers can be implanted into the cardiac wall.

4.2 Intrinsic registration methods

Intrinsic methods rely on patient generated image content only. Registration can be based on a limited set of identified
salient pointglandmarks) on the alignment of segmented binary structysegmentation basednost commonly
object surfaces, or directly onto measures computed from the image grey (xadebproperty based)



4.2.1 Landmark based registration methods

Landmarkscan beanatomicali.e., salient and accurately locatable points of the morphology of the visible anatomy,
usually identified interactively by the usgss, 19, 36, 37, 20, 38, 39, 40, 41, 42, 43, 44, 45, 46, 23, 47, 48, 49, 50, 6,

25, 26, 51, 52, 53, 27, 54, 55, 56, 57, 28, 8, 58, 59, 60, 61, 62, 63, 9064Jeometrical i.e., points at the locus of the
optimum of some geometric propers.g.,local curvature extrema, corneetc, generally localized in an automatic
fashion[65, 66, 67, 68, 69, 70, 71, 72, 73, 74[Technically, the identification of landmark points is a segmentation
procedure, but we reserve the classificaiegmentation basaggistration for methods relating to segmentation of
structures of higher ordere., curves, surfaces, and volumes. Landmark based registration is versatile in the sense that
it —at least in theory— can be applied to any image, no matter what the object or subject is. Landmark based methods
are mostly used to find rigid or affine transformations. If the sets of points are large enough, they can theoretically be
used for more complex transformations. Anatomical landmarks are also often used in combination with an entirely
different registration basigs, 19, 23, 49, 53, 55, 58, 59, 60inethods that rely on optimization of a parameter space

that is not quasi-convex are prone to sometimes get stuck in local optima, possibly resulting in a large mismatch. By
constraining the search space according to anatomical landmarks, such mismatches are unlikely to occur. Moreover,
the search procedure can be sped up considerably. A drawback is that user interaction is usually required for the
identification of the landmarks.

In landmark based registration, the set of identified points is sparse compared to the original image content, which
makes for relatively fast optimization procedures. Such algorithms optimize measures such as the averagddistance (
norm) between each landmark and its closest counterpaf(tiweusteammetric), or iterated minimal landmark dis-
tances. For the optimization of the latter measurdttrative closest poinlCP) algorithm[75] and derived methods
are popular. Its popularity can be accredited to its versatility —it can be used for point sets, and implicitly and explicitly
defined curves, surfaces and volumes—, computational speed, and ease of implementation. The Procrustean optimum
can sometimes be computed, usag.,Arun’s method [76], but is more commonly searched for using general opti-
mization techniques. Such techniques are referred to in section 7. Yet other methods perform landmark registration
by testing a number of likely transformation hypotheses, which ean,be formulated by aligning three randomly
picked points from each point set involved. Common optimization methods here are quasi-exhaustive searches, graph
matching and dynamic programming approaches.

4.2.2 Segmentation based registration methods

Segmentation basedgistration methods can bigid model based77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 14, 117, 118,
119, 120, 121, 122, 123, 124, 125, 6, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 7, 140, 141, 52, 53, 142,
143, 144, 145, 16, 146, 147, 148, 149, 150, 151, 17, 152, 153, 154, 155, 156, 157, 158, 8, 159, 58, 160, 60, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 1%8here anatomically the same structures (mostly surfaces) are extracted from
both images to be registered, and used as sole input for the alignment procedure. They cadeftmoradbdle model
based[174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189wt@le an extracted structure
(also mostly surfaces, and curves) from one image is elastically deformed to fit the second imaggidThedel
basedapproaches are probably the most popular methods currently in clinical use. Their popularity relative to other
approaches is probably for a large part due to the success of the “head-hat” method as introduced by Pelizzari and
co-workerg77, 78, 191, 192]which relies on the segmentation of the skin surface from CT, MR and PET images of
the head. Since the segmentation task is fairly easy to perform, and the computational complexity relatively low, the
method has remained popular, and many follow-up papers aimed at automating the segmentation step, improving the
optimization performance, or otherwise extending the method have been published. Another popularity cause is the
fastChamfer matchingechnique for alignment of binary structures by means of a distance transform, introduced by
Borgefors [193]. A drawback of segmentation based methods is that the registration accuracy is limited to the accuracy
of the segmentation step. In theory, segmentation based registration is applicable to images of many areas of the body,
yet in practice the application areas have largely been limited to neuroimaging and orthopedic imaging. The methods
are commonly automated but for the segmentation step, which is performed semi-automatically most of the times.
With deformable modelsowever, the optimization criterion is different: it is always locally defined and computed,
and the deformation is constrained by elastic modeling constraints (by a regularization term) imposed onto the seg-
mented curve or surface. Deformable curves appear in literatweekeor active contours3D deformable models
are sometimes referred to msts To ease the physical modeling, the data structure of deformable models is not com-



monly a point set. Instead, it is often represented using localized functions such as splines. The deformation process
is always done iteratively, small deformations at a time. Deformable model approaches are batsdpmata model

that needs to be defined in one image. After this, two types of approaches can be identified: the template is either
deformed to match a segmented structure in the second ifhzgye 77, 179, 180, 181, 182, 184, 185, 186, 187, 188,,190]

or the second image is usedsegmentefi74, 175, 178] In the latter case, the fit criterion of the template can be,
e.g.,to lie on an edge region in the second image. Opposed to registration based on extracted rigid models, which is
mainly suited for intrasubject registration, deformable models are in theory very well suited for intersubject and atlas
registration, as well as for registration of a template obtained from a patient to a mathematically defined general model
of the templated anatomy. A drawback of deformable models is that they often need a good initial position in order to
properly converge, which is generally realized by (rigid) pre-registration of the images involved. Another disadvantage
is that the local deformation of the template can be unpredictably erratic if the target structure differs sufficiently from
the template structure. A typical error is that the deformable model matches the anatomy perfectly, except in the one
interesting image area where a large tumor growth has appeared. In intrasubject mat&hipglaf,cortical surface,

this may result in entire gyri being missed or misplaced. The solution may lie in locally adapting the elasticity con-
straintg181, 194] Deformable models are best suited to find local curved transformations between images, and less so
for finding (global) rigid or affine transformations. They can be used on almost any anatomical area or modality, and
are usually automated but for the segmentation step. In the current literature the major applications are registration of
bone contours obtained from &Tnd cortical registration of MR imag§is4, 177, 178, 179, 184, 185, 186, 187, 188, 190]
Deformable models are ideally suited for the former application, as the bone contours are easily extracted from the
CT, and there are often no other contours near that disturb the proper deformation convergence. The latter application
is important because if a cortical registration between two brains can be found, a segmentation of one cortex can be
instantly transfered to the other.

4.2.3 Voxel property based registration methods

The voxel property basedegistration methods stand apart from the other intrinsic methiogishe fact that they
operate directly on the image grey values, without prior data reduction by the user or segmentation. There are two
distinct approaches: the first is to immediatedgducethe image grey value content to a representative set of scalars
and orientations, the second is to use the full image content throughout the registration process.

Principal axes and moments based methadsthe prime examples oéductiveregistration methods. Within
these methods the image center of gravity and its principal orientations (principal axes) are computed from the image
zeroth and first order moments. Registration is then performed by aligning the center of gravity and the principal
orientationg195, 196, 98, 99, 197, 198, 199, 200, 208pometimes, higher order moments are also computed and used in
the process. The result is usually not very accurate, and the method is not equipped to handle differences in scanned
volume well, although some authors attempt to remedy this latter problem. Despite its drawbacks, principal axes
methods are widely used in registration problems that require no high accuracy, because of the automatic and very
fast nature of its use, and the easy implementation. The method is used primarily in the re-alignment of scintigraphic
cardiac studies (even intersubjefd9], and as a coarse pre-registration in various other registration [a88a98,

99, 197, 199, 200]Moment based methods also appear as hybridly classified registration methods that use segmented
or binarized image data for input. In many applications, pre-segmentation is mandatory in order for moment based
methods to produce acceptable results.

Voxel property based methods using the full image cortenthe most interesting methods researched currently.
Theoretically, these are the most flexible of registration methods, since they —unlike all other methods mentioned— do
not start with reducing the grey valued image to relatively sparse extracted information, but use all of the available
information throughout the registration process. Although voxel property based methods have been around a long
time, their use in extensive 3D/3D clinical applications has been limited by the considerable computational costs. An
increasing clinical call for accurate and retrospective registration, along with the development of ever-faster computers
with large internal memories, have enabled full-image-content methods to be used in clinical practice, although they
have not yet been introduced in time-constrained applications such as intra-operative 2D/3D registration. Methods
using the full image content can be applied in almost any medical application area, using any type of transformation.

Lintersubject and atlas registration is covered in section9.
2e.g.,see [63]
SExcept some instances of geometric landmark registration.



However, such a statement is largely merited by the fact that “full-image-content based” is a very gross classifier. The
real versatility of a method can only be established on an individual basis. Many recent papers report on applications
that are tailored for rigid or affine global registration of 3D images of the head. Nearly all presented methods are
automatic, although hybrid approachesy(,including an interactive landmark based pre-registration) are being sug-
gested202]. While the methods theoretically support curved transformations and intersubject registration, we have
encountered only few publications on this.

As concerns full-image-content based voxel property registration methods, literature reports on the following
paradigms being used € most likely restricted to monomodal applications)

4.3

Cross-correlation (of original images or extracted feature imgge3s)204, 205, 206, 207, 208, 209, 210, 196, 211,
212,213, 214, 215, 49, 216, 217, 197, 218, 132, 131, 219, 220, 221, 7, 55, 222, 223, 224, 225, 200, 226, 227, 228, 229]

Fourier domain based cross-correlation, and phase-only corref2dimr231, 232, 228, 233, 234]
Minimization of variance of intensity ratig207, 90, 235, 236, 224, 225, 237]

Minimization of variance of grey values within segmej28, 130]

Minimization of the histogram entropy of difference image39].

Histogram clustering and minimization of histogram disper§tom, 240, 241, 242, 243, 224, 225, 228]

Maximization of mutual information (relative entropy) of the histogrgga, 245, 246, 247, 248, 249, 202, 250,
251].

Maximization of zero crossings in difference images (Stochastic sign change (SSC), and Deterministic sign
change (DSC) criterior{p52, 253, 254, 208, 255, 256, 223, 257]

Cepstral echo filterin{ps8].
Determination of the optic flow fielf259, 260]

Minimization of the absolute or squared intensity differenees, 261, 96, 49, 262, 263, 264, 265, 266, 267, 268,
143, 199, 269, 59, 270, 27.1]

Matching local low-order Taylor expansions determined by the image grey Jaitas

Implicitly using surface registration by interpreting a 3D image as an instance of a surface in 4[e3pace

Non-image based registration

It seems paradoxical that registration of multimodal images caroheémage basedut it is possible if the imaging
coordinate systems of the two scanners involved are somehow calibrated to each other. This usually necessitates
the scanners to be brought in to the same physical location, and the assumption that the patient remain motionless
between both acquisitions. These are prohibitive prerequisites in nearly all applications, but they can be sufficiently
met in applications involving the use of ultrasoynd9, 274, 62] Since ultrasound systems can come as hand-held
devices that are equipped with a spatial (optical) localization system, they are easily calibrated, and can be used while
the patient is immobilized on the CT, MR or operating gantry. The technique of calibrated coordinate systems is also
often used in registering the position of surgical tools mounted on a robot arm to fmages

4For instance [275, 9]. See computer aided surgery literature [276] for more complete references.



5 Nature and domain of the transformation

5.1 Nature of the transformation

An image coordinate transformation is callégid, when only translations and rotatiSrare allowed. If the trans-
formation maps parallel lines onto parallel lines it is califihe If it maps lines onto lines, it is callegrojective
Finally, if it maps lines onto curves, it is calledrvedor elastic Each type of transformation contains as special cases
the ones described beforeétg.,the rigid transformation is a special kind of affine transformation. A composition of
more than one transformation can be categorized as a single transformation of the most complex type in the composi-
tion, e.g.,a composition of a projective and an affine transformation is a projective transformation, and a composition
of rigid transformations is again a rigid transformation.

A rigid or affine 3D transformation can be described using a single constant mgteqation:y; = a;;x;,
wherez andy are the old and new coordinate vectors. In the rigid case, this equation is constrained as:

Y1 z1

Y2 . r t To

Y3 z3 |’
1 0 0 01 1

wheret is an arbitrary translation vector, ands a3 x 3 rotation matrix defined by:

‘ 1 0 0
rig = TE;)T%)TS), rM =10 cosay —siney |,
0 sina; cosag
cosas 0 —sinas cosaz —sinag 0
r? = 0 1 0 , r® =1 sinas cosas 0 |,
sinas 0 cosas 0 0 1

i.e.,r(V rotates the image around axidy an angley;. In the affine case; is unrestricted. In the projective case,

we can only use a constant matrix representation if employing homogeneous coordjpates; /us, u; = a;;x;,

wherea is an arbitraryl x 4 constant matrix. Curved transformations cannot in general be represented using constant
matrices. Most applications represent curved transformations in terms of adotat displacemer{tisparity) field:

y; = x; + t;(x), or as polynomial transformations in terms of the old coordinates.

5.2 Domain of the transformation

A transformation is calledlobalif it applies to the entire image, amakcal if subsections of the image each have their
own transformations defined. Figure 2 shows examples of all transformation types mentioned.

5.3 General transformation observations

Local transformations are seldom used directly, because they may violate the local continuity and bijectiveness of the
transformations, which impairs straightforward image resampling when applying the transformation to the image. The
termlocal transformationis reserved for transformations that are compositest ¢éasttwo transformations deter-

mined on sub-images that cannot be generally described as a global transformation. Héargletrmnsformation
computed on some volume of interest of an image, ggadal transformation, except that “global” now refers to

the new image, which is a sub-image of the original. This definition, perhaps confusingly, does not impair a global
transformation to be computed locall.g.,some applications compute a global rigid transformation of an image of

the entire head based on computations done in the area of the facial surface only. Local rigid, affine, and projective
transformations occur only rarely in the literature, although local rigid transformations may appear embedded in local
curved transformatioria81, 194] Some problems that are intrinsically locally rigid (such as the individual vertebrae

in an image of the spinal column) are in registration tasks often solved by splitting the image in images meeting the
global rigid body constraint.

5and, technically, reflections, but this is disregarded in our formulation, since they do not apply to the general medical image registration problem.
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Figure 2: Examples of 2D transformations.

In recently published registration papers, as a rule, rigid and affine transformations are global, and curved transfor-
mations are local. This makes sense, given the physical model underlying the curved transformation type, and given
that the rigid body constraint is —globally, or in well defined sub-images— approximately met in many common medical
images. Affine transformations are typically used in instances of rigid body movement where the image scaling factors
are unknown or suspected to be incorrect, (notably in MR images because of geometric distortions). The projective
transformation type has no real physical basis in image registration exc&idfD registration, but is sometimes
used as a “constrained-elastic” transformation when a fully elastic transformation behaves inadequately or has too
many parameters to solve for. The projective transformation is not always ug8&d3p applications: even though
projections will always figure in the problem, the transformation itself is not necessarily projective but may be rigid,
if it applies to the 3D image prior to its projection to the 2D image.

Since local information of the anatomy is essential to provide an accurate local curved transformation, applications
are nearly alwaymtrinsic, mostlydeformable model basexd using the fullimage conterand mostly semi-automatic,
requiring a user-identified initialization. They appear almost solely using anatomical images (CT, MR) of the head,
and are excellently suited for intersubject and image to atlas registration. Many methods require a pre-registration
(initialization) using a rigid or affine transformation.

The global rigid transformation is used most frequently in registration applications. It is popular because in many
common medical images the rigid body constraint is, at least to a good approximation, satisfied. Furthermore, it
has relatively few parameters to be determined, and many registration techniques are not equipped to supply a more
complex transformation. The most common application area is the human head.

6 Interaction

Concerning registration algorithms, three levels of interaction can be recogmzgdmatic where the user only
supplies the algorithm with the image data and possibly information on the image acquisitieractive where
the user does the registration himself, assisted by software supplying a visual or numerical impression of the current
transformation, and possibly an initial transformation gu8gsni-automationvhere the interaction required can be of
two different natures: the user needsrtitialize the algorithme.g.,by segmenting the data, eteerthe algorithm,
e.g.,by rejecting or accepting suggested registration hypotheses.

Many authors strive for fully automated algorithms, but it can be discussed whether this is wishedlfauin



rent clinical applications. The argument is that many current methods have a trade-off between minimal interaction
and speed, accuracy, or robustness. Some methods would doubtlessly benefit if the user were “kept in the loop”,
steering the optimization, narrowing search space, or rejecting mismatches. On the other hand, many methods spent
over 90% of their computation time examining registrations at a resolution level that would hardly benefit from hu-
man intervention. If they perform robustly, such methods are better left automated. Furthermore, many applications
require registration algorithms to operate objectively, and thus allow no human interaction. Human interaction also
complicates the validation of registration methods, inasmuch as it is a parameter not easily quantified or controlled.
Extrinsic methods are often easiputomated since the marker objects are designed to be well visible and de-
tectable in the images involvBd Sometimes users are required to roughly point out the marker region, or supply
a seed point located in the markee(i-automatic Of the intrinsic methods, theanatomical landmarland seg-
mentation basedhethods are commonkemi-automatic (user initializingand thegeometrical landmarkandvoxel
property basednethods are usuallgutomated Fully interactivemethods are reported on very little in the recent
literature[45, 50, 56] Perhaps, like many methods that rely primarily on the proper use of good visualization software,
they are considered trivial.

7 Optimization procedure

VI. Optimization procedure
a. Parameters computed
b. Parameters searched for

The parameters that make up the registration transformation can eitbemipaitedirectly,i.e.,determined in an
explicit fashion from the available data, searched fori.e., determined by finding an optimum of some function de-
fined on the parameter space. Inthe former case, the manner of computation is completely determined by the paradigm.
The only general remark we can make is that the usmofputatiormethods is restricted almost completely to appli-
cations relying on very sparse informatieng.,small point sets In the case o$earchingoptimization methods, most
registration methods are able to formulate the paradigm in a standard mathematical function of the transformation
parameters to be optimized. This function attempts to quantify the similarity as dictated by the paradigm between
two images given a certain transformation. Such functions are generally less complex in monomodal registration ap-
plications, since the similarity is more straightforward to define. Hopefully, the similarity function is well-behaved
(quasi-convex) so one of the standard and well-documented optimization techniques can be used. Popular techniques
are Powell's metho@78, 37, 94, 98, 99, 109, 111, 114, 215, 132, 131, 244, 145, 257, 164, 226 thédDownhill Simplex
method[37, 89, 90, 255, 11, 111, 114, 13, 54, 199, 2®ient's method and series of one-dimensional seal@0gs209,
67, 120, 70, 130, 55, 227] evenberg-Marquardt optimizatiqa76, 106, 107, 123, 124, 182, 52, 53, 144, 269, 170, ,172]
Newton-Raphson iteratiqa2, 235, 237) stochastic search methdds, 245, 246, 247, 250, 251§radient descent meth-
ods[129, 223, 239, 59, 186lgenetic methodf0, 240, 241, 126, 143, 277simulated annealinf16], geometric hash-
ing [79, 81, 148] and quasi-exhaustive search methgds, 206, 208, 238, 213, 214, 117, 216, 217, 221, 222, 200, 229]
Many of these methods are documented in [278]. Frequent additions are multi-resauiopyfamid) and multi-
scale approaches to speed up convergence, to reduce the number of transformations to be examined (which is espe-
cially importantin the quasi-exhaustive search methods) and to avoid local minima. Some registration methods employ
non-standard optimization methods that are designed specifically for the similarity function at hand, such as the ICP
algorithm[75, 121, 100, 16, 148, 152, 133, 134, 279, 137, 18, 273, 162, t86hted forigid modelbased registration.
Many applications use more than one optimization technique, frequently a fast but coarse technique followed by an
accurate yet slow one.

8 Modalities involved in the registration

Note: The lists of modalities in figure 1, in exception, are not meant to be theoretically complete, but give the modality
instances encountered in recent literature.

6seee.g., [29]
“seeg.g., [76, 36, 44]



Four classes of registration tasks can be recognized based on the modalities that are involmedorhodal
applications, the images to be registered belong to the same modality, as oppousdtinmdalregistration tasks,
where the images to be registered stem from two different modalitiesiotiality to modeandpatient to modality
registration only one image is involved and the other “modality” is either a model or the patient himself. Hence we
use the term “modality” in a loose sense, not only applying to acquired images, but also to mathematical models
of anatomy or physiology, and even to the patient himself. Such inclusions are necessary to properly type-cast the
four categories according to the actual registration task to be solved. At a first glance, this classification may seem
paradoxicalpatient to modalitymay seem a registration task appearing in any application. However, the classification
is disjunct and closed if only thectual coordinate systems that need to be related are consides=ghe coordinate
systems referring to the actual modalities named irptbelem statemenfor example:

e For diagnostic purposes, two myocardial SPECT images are acquired of the patient, under rest and stress con-
ditions. Their registration is a monomodal application.

¢ To relate an area of dysfunction to anatomy, a PET image is registered to an MR image. This is a multimodal
application.

e To register an MR to a PET image, a PET image image isdinstilatedfrom the MR image, and the real and
simulated PET images are registered. This is still a multimodal application.

¢ An example of modality to model is the registration of an MR brain image to a mathematically defined compar-
timental model of gross brain structures.

¢ Inradiotherapy treatment, the patient can be positioned with the aid of registration of in-position X-ray simulator
images to a pre-treatment anatomical image. Although the registration task is performed using only the images
acquired, the actual task of patient positioning is clearly an examat@nt to modalityegistration.

Thepatient to modalityegistration tasks appear almost exclusively in intra-operfiyes, 110, 215, 115, 280, 13,
121, 128, 134, 133, 182, 279, 25, 26, 53, 142, 281, 282, 15, 283, 150, 17, 152, 60, 30, 169,avb rafiotherapj4o, 10,
11, 156, 158, 1644pplicationsModality to modetan be applied in gathering statistics on tissue morpholegy,for
finding anomalies relative to normalized structures), and to segmentatior{1asks51, 72, 186, 168]Monomodal
tasks are well suited for growth monitoring, intervention verification, rest-stress comparisons, ictal-interictal compar-
isons, subtraction imaging (also DSA, CTA), and many other applications. The applications of multimodal registration
are abundant and diverse, predominantly diagnostic in nature. A coarse division woulddsaittimical-anatomical
registration, where images showing different aspects of tissue morphology are combintghctiodal-anatomical
where tissue metabolism and its spatial location relative to anatomical structures are related

9 Subject

VIII. Subject
a. Intrasubject
b. Intersubject
c. Atlas

When all of the images involved in a registration task are acquired of a single patient, we referitdrasaghject
registration. If the registration is accomplished using two images of different patients (or a patient and a model),
this is referred to agtersubjectregistration. If one image is acquired from a single patient, and the other image is
somehow constructed from an image information database obtained using imaging of many subjects, watlasme it
registration. In literature, many instances of registration of a patientimage to an image of a “normal” subject is termed
atlas registration. Although this definition is as good as ours, we refer to this type of registraitiversigbject to
keep the class distinctions cledémtrasubjectregistration is by far the most common of the three, used in almost any
type of diagnostic and interventional procedurgersubjec{174, 84, 92, 124, 123, 179, 220, 51, 265, 184, 185, 72, 160, 63,

88, 271, 190pndatlasregistrationf211, 212, 177, 178, 259, 263, 264, 199, 59, 186, 187, apgjear mostly ir8D/3D MR
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or CT brain imageapplications. The nature of the registration transformation is mostlyed these applications are
alwaysintrinsic, eithersegmentation basemr voxel property based, using the full image contéaproper (manual)
initialization is frequently desired. Some applications tiga transforms, but their application is limited. Others
useanatomical landmark$or a deformation basis of eurvedtransformation; unfortunately such applications often
require the transformation in large image areas to be interpolated from the nearest landmark transformations, which
may prove unreliable. The use miftersubjectand atlas matching can notably be found in the areas of gathering
statistics on the size and shape of specific structures, finding (accordingly) anomalous structures, and transferring
segmentations from one image to another.

10 Obiject

The list in figure 1 is not theoretically complete, but composed of those imaging areas encountered in recent literature.
It would go beyond the scope of this paper to classify encountered papers according to object, but it is noteworthy that
the majority of papers concerns global head registration, even if the registration method used could possibly be used
in other image areas.

11 Discussion

What trends can be observed from the current literature? There is a definite shift in research from extrinsic to intrinsic
methods, although clinically used methods are often still extrinsic. Of the intrinsic methods, the surface based methods
appear most frequently, closely followed by “full image content” voxel property based methods. Instances of the latter
type are slowly setting the standard for registration accuracy, a place formerly reserved for frame and invasive fiducial
based registrations. The application of fullimage content voxel property based methods is however still largely limited
in the extensive application field of intra-operative registration and radiotherapy treatment related registration (both
requiring patient to modality registration). Especially in the area of intra-operative registration, surface based methods
are dominant, and voxel based methods almost absent. The reasons may be clear: itis relatively easy to obtain a surface
from the patient, either using laser scanning, probes, 2D imagjerywhile obtaining reliable image information for
voxel property based methods is more difficult: intra-operative imaging may not even be part of the normal surgical
routine. If it is, images are usually 2D, and if 3D, of a relative poor quality given common equipment and acquisition
sequence constraints in the operating theater. Moreover, surface based methods are, on the average, still faster than
voxel property based methods. However, a problem with surface based methods is that they cannot cope with shift of
relevant anatomy relative to the surface used in the registration, which may be severely restraining to intra-operative
application. This problem may be solved using voxel based methods, but given the current state of affairs considering
registration methods, surgical protocol, and intra-operative imaging, this will not be done in the very near future. In the
case of radiotherapy treatment related registration (patient positioning, and patient position verification), the future will
certainly include more of voxel based methods: imaging (X-ray simulator images and portal images) is already part
of the common clinical treatment routine; radiotherapy relies almost exclusively on imaging for (tumor) localization,
unlike surgery, where the visual impression is still the most important cue. It is not unlikely that this will change soon
for a number of surgical applications, given the current trend of less and less invasive surgery that requires making use
of advanced imaging techniques.

Many (but not all)monomodategistration problems appear to have been solved satisfactorily. We can accredit this
to the fact that a registration paradigm can usually be relatively simple in the monomodal problem. Furthermore, given
a computed transformation, many applications do not require complex visualization techniques, but can be adequately
handled using subtraction techniqubtultimodalapplications cannot be discussed in general terms, the applications
are simply too diverse. Itis tempting, but incorrect, to say registration results are somewhat more satisfying in methods
involving scintigraphic imaging, perhaps because the relatively blurry nature of the images allows for a slightly larger
displacement. Ine.g.,CT to MR registration, a displacement of a pixel can sometimes be obvious to the naked
eye, and to obtain an accuracy in this order of magnitude, we cannot avoid to investigate precision at the acquisition
level, (e.g. the distortions induced by field innomogeneity in MR images), which are of the same order of magnitude
However, the resolution of the images should not be used to formulate a clinically relevant level of accuracy: it is very

8Distortion correcting algorithms have been proposed and are now available to a certain extent; scanners are calibrated better, and magnetic
fields are adapted for minimum distortion.
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well possible that a SPECT to MR registration requires a higher accuracy than some instance of CT to MR registration,

even though it is likely that the smaller error is more easily assessed by the naked eye in the latter case. The actual
level of accuracy needed is in many applications still an unknown, and cannot accurately be quantified, even by the

clinicians involved.

Intra-operative registration and methods on patient positioning in radiotherapy are in clinical use with apparent
good results at a number of sites. On thiagnostic us®f registration (modality to modality), much less information
can be found. We suspect that, bearing in mind the possible clinical potential of diagnostic registration, it is actually
used very little. The reasons for this are, probably, in essence of a logistic nature: unlike in the intra-operative scene
(where all imaging and operations take place in the same room), in many multimodal diagnostic settings images
are acquired at different places, —often even at different departments—, by different people, at different times, often
transfered to different media, and frequently evaluated by different specialist diagnosticians. Besides these logistic
reasons, it is also often unclear how a registration can optimally be used in the diagnostic process. It has already been
pointed out that much research can still be done in this area.

Many methods can still be considered barred from meaningful clinical application by the fact that they are as yet
improperly validated. Although the proper verification methods are known in most cases, and coarsely laid out in the
previous section, for most applications the painstaking work of conducting the many experiments involved is only now
starting.
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