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Abstract

We present a method that defines a numerical 3D model of the main coronary arteries of
the human heart at end-diastole. The data used in this article are a subset of the data used
in two articles by Dodge et al. [1, 2]. 26 subjects with normal hearts, having measures for
the 3 main arteries (right coronary artery, left anterior descending artery and left
circumflex artery), were chosen. The method used to obtain the heart model can be
summarized as follows: A well-formed subject is chosen as the reference. Subsequently,
each of the other subjects is fitted to the reference with affine transformations (translation,
rotation and scaling). The model is obtained by applying the mean of the inverse affine
transformations back on the reference coronary tree. This model is the first step for the 3D
construction of an atlas of the structure and motion of coronary arteries for cardiac
contraction analysis.
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1. Introduction
When confronted with the task of recovering 3D information of the coronary arteries from
angiographic images, one can use multiple views [3, 4], but due to the structure of the
coronary tree, there exist a large number of possible ambiguities. The use of a priori
knowledge in the form of a qualitative model [5], quantitative model [6], or a combination
of both [7], helps alleviate these ambiguities. The use of a model can also help in the
reconstruction of coronary arteries from a single view cineangiogram [8, 7]. Qualitative
models can contain information in the form of a graph structure used for labeling
purposes, quantitative models can be expressed with global shape descriptors as in a
parametrically deformable model [9] or with more local attributes, like the location and
variation of branching points [1]. It is an accepted fact that the location of the coronary
arteries is variable, nonetheless certain constancy exists. And even if numerical models do
not capture all the subtleties of the coronary tree, they offer certain advantages over the
qualitative models, if only for anatomical visualization purposes.

In 1988 Dodge et al. published an article in which they describe the 3D location of
branching points, among others, of the coronary tree [1]. An article published in 1992,
added information about the lumen diameter at the different reference points [2].

Dodge’s articles are often cited in the literature (32, 54 respectively [10]) and a phantom
called Coronix [11], used in various simulation studies, has also been constructed based
on Dodge’s data.
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Starting with Dodge’s data we made some
transformations in order to obtain a model
less dependent on certain parameters like
the absolute position of the coronary tree
or the relative heart size. We are interested
in the spatial location of reference points
along the coronary tree in order to
construct a model that will be used for
tracking the motion of coronary arteries.

2. Data
The coronary tree present itself as a
hierarchical structure divided in 3 main
sections according to the heart region
irrigated. We use here a nomenclature
devised by Dodge et al. [1], see Figure 1.
The left coronary artery (LCA) starts at the
left of the aorta as the left main artery
(LM) and divides itself into the left
anterior descending artery (LAD) and the
left circumflex artery (LCx). The right
coronary artery (RCA) starts at the right of

the aorta and irrigates the right side of the heart. Each of these main arteries divides
themselves into smaller ramifications. The artery that irrigates the heart’s anterior wall is
said to define the dominance anatomy. There are three dominance anatomies: the right
dominance, left dominance and the balanced anatomy.

The original data comes from the 3D location of 102 points along the coronary tree of 37
normal subjects. The measurements were taken at the end diastole by a biplane
angiographic apparatus and were corrected for optical magnification and X-ray beam
divergence, see Dodge’s et al. articles for more details [1, 2].

For the elaboration of our model, a subset of the original data was selected, based on
certain criteria. We kept only the subjects where the three main arteries were present.
Also, the reference points from secondary branches and those having sporadic presence
were dropped. We ended up with 26 subjects having a coronary tree composed of 36
reference points. See Table 1 for the demographic description of the subjects.

Age Gender Coronary dominance
M F Left Balanced Right

26 to 77 (mean, 48) 23 3 2 22 2
Table 1. Demographic summary

3. Methodology
In order to construct a coronary tree model that is immune to certain influences, we allow
some transformations of the selected subset data. For example, scaling attenuates the
inter-subject variation of the overall size of the coronary tree, translation and rotation

Figure 1. Right coronary artery dominance
anatomy. RCA: Right coronary artery; LCA: Left
coronary artery; LAD: Left anterior descending;
LCx: Left circonflex. From Dodge [1]
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bring the coronary tree in a reference space that is less dependent on the relative position
between the body and the measuring apparatus.

In a way similar to Guimond et al. [12], the method used for obtaining the heart model can
be summarized as follow:

• First, a well-formed subject is chosen as a reference, the reference subject;
• Subsequently, the reference subject is fitted to each of the other subjects with affine

transformations (translation, rotation and scaling);
• An average of the affine transformations is then computed;
• Finally, the coronary tree model is obtained by applying the average transformation

on the reference subject.

The choice of the well-formed subject is based ... on its well-form! Without large
variations to what could be described as an ideal normal subject.

Next, to find the affine transformations we consider this problem as a classic computer
vision problem known, among various aliases, as model-based object location. It can be
stated as follow: knowing the correspondence between two 3D points sets and their
locations, find the best geometric transformation that minimize a cost function with
respect to certain constraints. Different analytical and numerical techniques exist that
solve such problems. Closed form solutions solved by singular value decomposition [13]
or represented by orthonormal matrices [14] or unit quaternions [15] exist and they all
give similar results [16].

The problem can be formulated as follows: given the relation between two point sets
{mi} and {di}, i =1..N  as di = sRmi + T +Vi  where s  is a scaling factor, R  is a

3 × 3  rotation matrix, T  is a translation vector and Vi  is a noise vector. We want to find

ˆ s , ˆ R  and ˆ T  that minimize the sum of the Euclidean distances between corresponding

points di − ˆ s ˆ R mi +
ˆ T ( )i=1

N∑
2

. We solve the scaling factor using Horn method [15] and

the translation and rotation using the Arun method [13]. The three transformation
components can be solved independently. By expressing the points sets by their respective

centroids m = 1 N mii=1

N∑  and d = 1 N dii=1

N∑  as ′ m i = mi −m  and ′ d i = di − d ,
the translation component is simplified and we are left with the scaling and rotation
components only. The scaling is independent from the rotation and can be defined as

ˆ s =
2
′ d ii=1

N∑
2
′ m ii =1

N∑ . The solution to the rotation matrix is ˆ R = VUt
 where the

singular value decomposition of the correlation matrix H = ′ m i ′ d i
t

i=1

N∑  is H = ULV t
.

The translation component can then be found by using the rotation matrix on the centroids
ˆ T = d − ˆ R m .

As previously stated, the coronary tree model results from the application of the average
transformations on the reference subject.
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4. Results
After applying the outlined method on the 26 coronary trees, we obtain the coronary tree
model, see Figure 2. The average coefficients of transformation found after fitting the
reference subject to the other subjects are:

• for the scaling factor, s  = 1.08;
• for the rotation expressed as the

angles of rotation about the x, y, and
z axes respectively, α  = -0.04, β  =
0.09, γ  = -0.31 and

• for the translation component,
Tx  = 0.59, Ty  = 0.18 and Tz  = -

0.04, corresponding to the
translation on the specific axes.

The average distance between the
matching points of the coronary tree
model and the other subjects is 0.84 cm
(0.15 SD). This average distance was
1.42 cm (0.45 SD) before applying the
mean transformation.

5. Conclusions
We have presented a method that
composes a model of the main coronary
arteries of the human heart based on 3D
reconstructions of 26 normal hearts.
Although the reference system used by
Dodge et al. was adequate for their
study, the proposed method focuses on
the morphological variations and
considerably reduces the variability
observed by their group by eliminating
heart size, orientation and position

variations. This model is the first step for a more general 3D atlas of the structure and
motion of coronary arteries that will help cardiac contraction analysis and understanding.
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Figure 2. Wire-frame of the coronary tree model
with an angle of view similar to Figure 1. See
Figure 1 for definitions.
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