Record 1 of 13
Author(s): Tsuchiya T; Shimizu M; Yoshio H; Ino H; Okeie K; Yasuda T; Mabuchi H
Title: Quantitative assessment of diffuse coronary artery disease using a three-dimensional reconstruction method compared with intravascular ultrasound images
Source: CORONARY ARTERY DISEASE 2001, Vol 12, Iss 2, pp 127-133
No. cited references: 15
Author Keywords: diffuse coronary artery disease; quantitative coronary angiography; intravascular ultrasound images
KeywordsPlus: ANGIOGRAPHY
Abstract: Background It can be difficult to estimate the degree of stenosis in patients with diffuse coronary artery disease (CAD), because of the lack of a normal reference segment. If the size of normal coronary lumen has a direct relation to size of distal myocardial bed, it could be used to estimate the 'normal' cross-sectional area of coronary lumen. Accordingly, we could estimate the degree of stenosis of coronary arteries with diffuse disease by comparing them with calculated 'normal' areas of lumen.

Objective To assess the validity of the above hypothesis.

Method Fourteen subjects without coronary atherosclerosis (group A) and 16 patients with CAD (group B) underwent simultaneous bidirectional coronary arteriography. Using these coronary arteriograms, we determined the relationship between cross-sectional area of coronary lumen measured by using a computerized edge-detection system and summed distal branch length calculated by using our computerized three-dimensional reconstruction method.

Results For group A, we found a dose correlation between area of lumen and branch length (r = 0.948). However, for group B, there were some segments for which the measured area of lumen was clearly smaller than that expected from the relationship for group A. From this relationship for group A, we calculated the stenosis ratios of 22 segments and, to confirm their accuracy, we compared the stenotic ratios with those measured on intravascular ultrasound images. The stenotic ratio of each segment of stenotic coronary artery calculated by our method agreed significantly well with the results obtained from the ultrasound measurements (r = 0.980).

Conclusions These observations validate a novel approach to quantifying diffuse CAD using clinical arteriograms. Coron Artery Dis 12:127-133 (C) 2001 Lippincott Williams & Wilkins.

Cited references: COY KM-1991-J-AM-COLL-CARDIOL-V18-P1811
FREIMAN PC-1987-CLIN-RES-V35-PA831
HODGSON JM-1993-J-AM-COLL-CARDIOL-V21-P35
HUTCHINS GM-1977-AM-HEART-J-V64-P196
KIM HC-1982-IEEE-T-MED-IMAGING-V1-P152
KOIWA Y-1986-CIRCULATION-V74-P157
LEWIS BS-1973-BRIT-HEART-J-V35-P1150
NISSEN SE-1992-AM-J-CARDIOL-V69-PH18
PAGE HL-1975-CATHET-CARDIOVASC-DI-V1-P71
PARKER DL-1987-COMPUT-BIOMED-RES-V20-P166
POTEL MJ-1984-INVEST-RADIOL-V19-P499
RACKLEY CE-1964-CIRCULATION-V24-P666
ROBERTS CS-1980-CIRCULATION-V62-P953
VIEWEG WVR-1976-CATHET-CARDIOVASC-DI-V2-P269
WOLLSCHLAGER H-1985-IEEE-COMP-CARDIOL-P483
Source item page count: 7
Publication Date: MAR
IDS No.: 414YF
29-char source abbrev: CORONARY ARTERY DIS



Record 2 of 13
Author(s): Frangi AF; Niessen WJ; Viergever MA
Title: Three-dimensional modeling for functional analysis of cardiac images: A review
Source: IEEE TRANSACTIONS ON MEDICAL IMAGING 2001, Vol 20, Iss 1, pp 2-25
No. cited references: 227
Author Keywords: cardiac imaging; functional analysis; model-based image analysis
KeywordsPlus: TAGGED MR-IMAGES; MYOCARDIAL PERFUSION SPECT; LEFT-VENTRICULAR SURFACE; NONRIGID MOTION ESTIMATION; TRANSFORM NEURAL NETWORKS; SEGMENTAL WALL MOTION; CANINE LEFT-VENTRICLE; MEDICAL IMAGES; COMPUTED-TOMOGRAPHY; OPTICAL-FLOW
Abstract: Three-dimensional (3-D) imaging of the heart is a rapidly del eloping area of research in medical imaging, Advances in hardware and methods for fast spatio-temporal cardiac imaging are extending the frontiers of clinical diagnosis and research on cardiovascular diseases.

In the last few Sears, many approaches hare been proposed to analyze images and extract parameters of cardiac shape and function from a variety of cardiac imaging modalities. In particular, techniques based on spatio-temporal geometric models have received considerable attention. This paper surveys the literature of tno decades of research on cardiac modeling. The contribution of the paper is three-fold: 1) to serve as a tutorial of the field for both clinicians and technologists, 2) to provide an extensive account of modeling techniques in a comprehensive and systematic manner, and 3) to critically review these approaches in terms of their performance and degree of clinical evaluation with respect to the final goal of cardiac functional analysis, From this review it is concluded that whereas 3-D model-based approaches have the capability. to improve the diagnostic value of cardiac images, issues as robustness, 3-D interaction, computational complexity and clinical validation still require significant attention.

Cited references: 1988-HDB-APPL-ADV-GEOSTAT
1999-J-MAGN-RESON-IMAG-V10
*AM HEART ASS-1999-HEART-STROK-STAT-UPD
AMARTUR SC-1993-MAGNET-RESON-MED-V29-P59
AMINI AA-1992-IMAGE-VISION-COMPUT-V10-P418
AMINI AA-LECT-NOTES-COMPUTER-V1679-P498
ARIET M-1984-AM-J-CARDIOL-V54-P415
ARTS T-1993-ADV-EXP-MED-BIOL-V346-P383
ARTS T-1992-J-BIOMECH-V25-P1119
AXEL L-1993-P-SMRM-12-ANN-SCI-M-P724
AXEL L-1989-RADIOLOGY-V172-P349
AZHARI H-1990-AM-J-PHYSIOL-V259-PH1492
AZHARI H-1989-IEEE-T-BIO-MED-ENG-V36-P322
AZHARI H-1987-IEEE-T-BIO-MED-ENG-V34-P345
AZHARI H-1991-IEEE-T-MED-IMAGING-V10-P207
BARDINET E-1998-COMPUT-VIS-IMAGE-UND-V71-P39
BARDINET E-1996-MED-IMAGE-ANAL-V1-P129
BARLETTA G-1998-CARDIOLOGY-V90-P195
BARR AH-1981-IEEE-COMPUT-GRAPH-V1-P11
BARTELS K-1993-COMPUT-MED-IMAG-GRAP-V17-P89
BARTELS KA-1994-MATH-METH-BIOMED-IMA-P110
BAZILLE A-1994-INVEST-RADIOL-V29-P427
BEAUCHEMIN SS-1995-ACM-COMPUT-SURV-V27-P444
BENAYOUN S-1998-INT-J-COMPUT-VISION-V26-P25
BESL PJ-1986-COMPUT-VISION-GRAPH-V33-P33
BESL PJ-1992-IEEE-T-PATTERN-ANAL-V14-P239
BEYAR R-1990-CIRCULATION-V81-P297
BIEDENSTEIN S-1999-EUR-J-NUCL-MED-V26-P201
BOLSON EL-1993-P-IEEE-COMP-CARD-LON-P735
BOLSON EL-1995-P-IEEE-COMPUTERS-CAR-P63
BOYD D-1993-MED-IMAG-TECH-V11-P578
BOYD DP-1983-P-IEEE-V71-P298
BROWER RW-1978-AM-J-CARDIOL-V41-P1222
BULLER VGM-1994-P-IEEE-COMP-CARD-LOS-P245
CASELLES V-1993-NUMER-MATH-V66-P1
CAUVIN JC-1993-COMPUT-MED-IMAG-GRAP-V17-P345
CHAKRABORTY A-1996-IEEE-T-MED-IMAGING-V15-P859
CHEN CW-1995-COMPUT-MED-IMAG-GRAP-V19-P85
CHEN CW-1998-IEEE-T-IMAGE-PROCESS-V7-P1673
CHEN CW-1994-IEEE-T-PATTERN-ANAL-V16-P342
CHEN CW-1990-P-INT-C-COMP-VIS-OS
CLARK NR-1991-CIRCULATION-V84-P67
CLARYSSE P-1997-IEEE-T-MED-IMAGING-V16-P392
COHEN LD-1991-CVGIP-IMAG-UNDERSTAN-V53-P211
COLCHESTER A-1998-LECT-NOTES-COMPUT-SC-V1496
COOTES TF-1994-IMAGE-VISION-COMPUT-V12-P355
COPPINI G-1995-IEEE-T-MED-IMAGING-V14-P301
CRANNEY GB-1990-CIRCULATION-V82-P154
CRESWELL LL-1992-IEEE-T-MED-IMAGING-V11-P581
CZEGLEDY FP-1993-J-BIOMED-ENG-V15-P387
DAVILA JC-1966-AM-J-CARDIOL-V18-P31
DECLERCK J-1998-3535-INRIA
DECLERCK J-1997-IEEE-T-MED-IMAGING-V16-P727
DECLERCK J-1998-MED-IMAGE-ANAL-V2-P197
DECLERCK J-2000-PHYS-MED-BIOL-V45-P1611
DELINGETTE H-1999-INT-J-COMPUT-VISION-V32-P111
DENNEY TS-1995-IEEE-T-IMAGE-PROCESS-V4-P1324
DENNEY TS-1994-IEEE-T-IMAGE-PROCESS-V3-P178
DENNEY TS-1995-IEEE-T-MED-IMAGING-V14-P1
DENNEY TS-1997-JMRI-J-MAGN-RESON-IM-V7-P799
DENSLOW S-1994-ACAD-RADIOL-V1-P345
DOCARMO MP-1976-DIFFERENTIAL-GEOMETR
DODGE HT-1966-AM-J-CARDIOL-V18-P10
DORAI C-1997-IEEE-T-PATTERN-ANAL-V19-P1139
DOUGHERTY L-1999-IEEE-T-MED-IMAGING-V18-P359
DOUGLAS AS-1990-J-BIOMECH-V23-P331
DULCE MC-1993-RADIOLOGY-V188-P371
DUNCAN J-1998-PROG-BIOPHYS-MOL-BIO-V69-P333
EKOULE E-1988-P-COGNITIVA-87-PAR-F
FABER TL-1991-IEEE-T-MED-IMAGING-V10-P321
FABER TL-1995-J-NUCL-MED-V36-P697
FABER TL-1991-J-NUCL-MED-V32-P2311
FABER TL-1989-J-NUCL-MED-V30-P638
FELDMAR J-1996-INT-J-COMPUT-VISION-V18-P99
FISCHER SE-1994-MAGNET-RESON-MED-V31-P401
FRIBOULET D-1993-COMPUT-MED-IMAG-GRAP-V17-P257
FRIBOULET D-1992-INT-J-CARDIAC-IMAG-V8-P175
FUNG YC-1990-BIOMECHANICS-MOTION
GAROT J-2000-CIRCULATION-V101-P981
GEISER EA-1982-AM-HEART-J-V103-P1056
GEISER EA-1980-COMPUT-BIOMED-RES-V13-P225
GERMANO G-1999-CLIN-GATED-CARDIAC-S-P115
GERMANO G-1997-INT-J-CARDIAC-IMAG-V13-P337
GERMANO G-1997-J-AM-COLL-CARDIOL-V30-P1360
GERMANO G-1997-J-NUCL-MED-V38-P749
GERMANO G-1995-J-NUCL-MED-V36-P2127
GERMANO G-1995-J-NUCL-MED-V36-P2138
GOLDMAN DB-1992-SECOND-SOURCE-BIOMED-V3-P4
GOPAL AS-1992-J-AM-SOC-ECHOCARDIOG-V5-P115
GORCE JM-1996-MED-IMAGE-ANAL-V1-P245
GOSHTASBY A-1995-IEEE-T-MED-IMAGING-V14-P56
GOSHTASBY A-1993-INT-J-COMPUT-VISION-V10-P233
GREENBAUM RA-1981-BRIT-HEART-J-V45-P29
GUCCIONE JM-1991-THEORY-HEART-P122
GUSTAVSSON T-1993-COMPUT-MED-IMAG-GRAP-V17-P273
GUTTMAN MA-1997-IEEE-COMPUT-GRAPH-AP-V17-P55
GUTTMAN MA-1994-IEEE-T-MED-IMAGING-V13-P74
HABER E-1997-BIOMED-ENG-SOC-ANN-M
HABER E-COMPUTERS-CARDIOLOGY-V1496-P177
HANSON AJ-1988-COMPUTER-VISION-GRAP-V44-P191
HARRISON DC-1963-CIRC-RES-V13-P448
HERMANN HJ-1968-CARDIOVASC-RES-V2-P404
HIGGINS CB-1986-AM-J-ROENTGENOL-V146-P907
HILLIS LD-1986-AM-J-CARDIOL-V56-P764
HOPFIELD JJ-1984-P-NATL-ACAD-SCI-USA-V81-P3088
HOPPE H-1994-THESIS-U-WASHINGTON
HUANG JT-1999-IEEE-T-MED-IMAGING-V18-P957
HUANG WC-1993-IEEE-T-PATTERN-ANAL-V15-P611
INGELS NB-1980-CIRCULATION-V61-P966
KAMBHAMETTU C-1994-CVGIP-IMAG-UNDERSTAN-V60-P26
KASS DA-1988-CIRC-RES-V62-P127
KASS M-1988-INT-J-COMPUT-VISION-V4-P321
KELLER AM-1986-J-AM-COLL-CARDIOL-V8-P113
KENNEDY JW-1966-CIRCULATION-V34-P272
KERWIN WS-1999-IEEE-T-SIGNAL-PROCES-V47-P2942
KERWIN WS-1999-INT-J-IMAG-SYST-TECH-V10-P128
KERWIN WS-1998-MED-IMAGE-ANAL-V2-P339
KIM HC-1985-IEEE-T-BIO-MED-ENG-V32-P503
KITTLER J-1985-IMAGE-VISION-COMPUT-V3-P206
KLINGENBECKREGN K-1999-EUR-J-RADIOL-V31-P110
KOENDERINK JJ-1992-IMAGE-VISION-COMPUT-V10-P557
KONDO C-1991-AJR-V157-P9
KRAITCHMAN DL-1995-IEEE-T-MED-IMAGING-V14-P422
KUMAR S-1994-IEEE-T-MED-IMAGING-V13-P122
KUWAHARA M-1991-COMPUT-MED-IMAG-GRAP-V15-P241
LEGGET ME-1998-IEEE-T-BIOMED-ENG-V454-P494
LELIEVELDT BPF-1999-IEEE-T-MED-IMAGING-V18-P231
LELIEVELDT BPF-1999-THESIS-LEIDEN-U-LEID
LEOTTA DF-1997-J-AM-SOC-ECHOCARDIOG-V10-P830
LORENZ CH-1999-J-CARDIOV-MAGN-RESON-V1-P7
LOTJONEN J-1999-MED-IMAGE-ANAL-V3-P387
MAEHLE J-1994-ECHOCARDIOGR-J-CARD-V11-P397
MALLADI R-1995-IEEE-T-PATTERN-ANAL-V17-P158
MANCINI GBJ-1987-AM-HEART-J-V113-P326
MANCINI GBJ-1988-AM-HEART-J-1-V116-P1611
MARCUS JT-1999-J-CARDIOV-MAGN-RESON-V1-P1
MATHENY A-1995-IEEE-T-PATTERN-ANAL-V17-P967
MCCANN HA-1988-P-IEEE-V76-P1063
MCEACHEN JC-1994-P-IEEE-WORKSH-BIOM-I-P124
MCINERNEY T-1995-COMPUT-MED-IMAG-GRAP-V19-P69
MCINERNEY T-1996-MED-IMAGE-ANAL-V1-P91
MCVEIGH ER-1996-MAGN-RESON-IMAGING-V14-P137
MEIER GD-1980-AM-J-PHYSIOL-V239-PH794
METAXAS D-1993-IEEE-T-PATTERN-ANAL-V15-P580
METAXAS DN-1996-PHYSICS-BASED-DEFORM
MEYER FG-1996-IEEE-T-MED-IMAGING-V15-P453
MONGA O-1991-CVGIP-IMAG-UNDERSTAN-V53-P76
MONTAGNAT J-1999-LECT-NOTES-COMPUTER-V1679-P168
MOORE CC-1992-JMRI-J-MAGN-RESON-IM-V2-P165
MOULTON MJ-1996-AM-J-PHYSIOL-V270-PH281
MUNT BI-1998-J-AM-SOC-ECHOCARDIOG-V11-P761
NASTAR C-1996-IEEE-T-PATTERN-ANAL-V18-P1067
NELSON TR-1999-3-DIMENSIONAL-ULTRAS
NIESSEN WJ-1998-IEEE-T-MED-IMAGING-V17-P634
ODELL WG-1995-RADIOLOGY-V195-P829
ODONNELL T-1996-COMPUT-VIS-PATTE-JUN-P293
ODONNELL T-1995-IEEE-COMPUT-CARD-SEP-P5
OHNESORGE B-2000-RADIOLOGE-V40-P111
OSHER S-1988-J-COMPUT-PHYS-V79-P12
OSMAN NF-1998-INT-C-IM-PROC-V1-P704
OSMAN NF-1999-MAGNET-RESON-MED-V42-P1048
OSMAN NF-2000-PHYS-MED-BIOL-V45-P1665
OZTURK C-1999-P-SOC-PHOTO-OPT-INS-V3660-P46
PANDIAN NG-1983-AM-J-CARDIOL-V51-P1667
PAPADEMETRIS X-1999-199901-YAL-U-LAB-DEP
PAPADEMETRIS X-LECT-NOTES-COMPUTER-V1679-P421
PAPADEMETRIS X-1999-LECT-NOTES-COMPUTER-V1613-P352
PARK J-1996-IEEE-T-MED-IMAGING-V15-P278
PARK J-1996-MED-IMAGE-ANAL-V1-P53
PENTLAND A-1991-IEEE-T-PATTERN-ANAL-V13-P703
PENTLAND A-1991-IEEE-T-PATTERN-ANAL-V13-P730
PIEGL L-1996-NURBS-BOOK
PIROLO JS-1993-ANN-BIOMED-ENG-V21-P199
POTEL MJ-1983-INVEST-RADIOL-V18-P47
PRINCE JL-1992-IEEE-T-MED-IMAGING-V11-P238
QUISTGAARD JU-1997-IEEE-SIGNAL-PROCESSI-P67
RADEVA P-1997-COMPUT-VIS-IMAGE-UND-V66-P163
RANGANATH S-1995-IEEE-T-MED-IMAGING-V14-P56
RANKIN JS-1976-CIRC-RES-V39-P304
RAPHAEL MJ-1998-TXB-RADIOLOGY-IMAGIN-P541
REQUICHA AAG-1982-IEEE-COMPUT-GRAPH-AP-V2-P9
ROBB RA-1983-P-IEEE-V71-P308
RUECKERT D-1997-LECT-NOTES-COMPUTER-V1223
SACKS MS-1993-ANN-BIOMED-ENG-V21-P263
SASAYAMA S-1984-J-AM-COLL-CARDIOL-V3-P1187
SATO Y-1997-IEEE-T-PATTERN-ANAL-V19-P253
SCHWEPPE FC-1973-UNCERTAIN-DYNAMIC-SY
SEDERBERG TW-P-SIGGRAPH-86-V20-P151
SHAPIRO E-1981-BRIT-HEART-J-V45-P264
SHEEHAN FH-1986-CIRCULATION-V74-P293
SHEEHAN FH-LECT-NOTES-COMPUTER-V1496-P102
SHI PC-2000-IEEE-T-MED-IMAGING-V19-P36
SHI PC-1999-INT-J-COMPUT-VISION-V35-P87
SIMOONS ML-1999-21-EUR-SOC-CARD-C-BA
SINGH A-1998-DEFORMABLE-MODELS-ME
SONG SM-1994-IEEE-T-MED-IMAGING-V14-P386
SONG SM-1991-IEEE-T-MED-IMAGING-V10-P295
SPINALE FG-1990-J-APPL-PHYSIOL-V68-P1707
STAIB LH-1996-IEEE-T-MED-IMAGING-V15-P720
STETTEN GD-1999-IEEE-T-MED-IMAGING-V18-P1025
TARATORIN AM-1995-COMPUT-MED-IMAG-GRAP-V19-P113
TAYLOR C-1999-LECT-NOTES-COMPUTER-V1679
TERZOPOULOS D-1986-IEEE-T-PATTERN-ANAL-V8-P413
TISTARELLI M-1994-P-IEEE-WORKSH-BIOM-I-P100
TREECE G-1999-LECT-NOTES-COMPUTER-V1613-P70
TSENG YH-1997-IEEE-T-NEURAL-NETWOR-V8-P141
TSENG YH-1998-J-VLSI-SIG-PROCESS-S-V18-P207
TU HK-1995-COMPUT-MED-IMAG-GRAP-V19-P27
VANDERGEEST RJ-1997-INT-J-CARDIAC-IMAG-V13-P247
VILLARREAL FJ-1988-CIRC-RES-V62-P711
VUILLE C-1994-PRINCIPLES-PRACTICE
WAKS E-1996-MATH-METHODS-BIOMED-P182
WATSON DF-1981-COMPUT-J-V24-P167
WEBER KT-1981-FED-PROC-V40-P2005
WRIGHT GA-1997-IEEE-SIGNAL-PROCESSI-P56
YETTRAM AL-1979-J-BIOMECH-V101-P221
YETTRAM AL-1982-J-BIOMECH-ENG-V104-P148
YEZZI A-1997-IEEE-T-MED-IMAGING-V16-P199
YEZZI A-1996-P-IS-T-49-ANN-C-MINN
YOUNG AA-1989-COMPUT-VISION-GRAPH-V47-P111
YOUNG AA-1992-IEEE-T-BIO-MED-ENG-V39-P526
YOUNG AA-1999-MED-IMAGE-ANAL-V3-P361
YOUNG AA-1993-RADIOLOGY-V188-P101
YOUNG AA-1992-RADIOLOGY-V185-P241
YOUNG RH-1995-SEMIN-DIAGN-PATHOL-V12-P14
ZERHOUNI EA-1988-RADIOLOGY-V169-P59
ZHANG SQ-1996-MED-PHYS-V23-P1359
Source item page count: 24
Publication Date: JAN
IDS No.: 408KG
29-char source abbrev: IEEE TRANS MED IMAGING



Record 3 of 13
Author(s): Hoffmann KR; Sen A; Lan L; Chua KG; Esthappan J; Mazzucco M
Title: A system for determination of 3D vessel tree centerlines from biplane images
Source: INTERNATIONAL JOURNAL OF CARDIAC IMAGING 2000, Vol 16, Iss 5, pp 315-330
No. cited references: 49
Author Keywords: biplane angiography; three-dimensional; vascular analysis
KeywordsPlus: DIGITAL SUBTRACTION ANGIOGRAPHY; CORONARY ARTERIAL TREE; 3-DIMENSIONAL RECONSTRUCTION; IMAGING GEOMETRIES; VASCULAR TREES; QUANTITATIVE-EVALUATION; 3-D RECONSTRUCTION; VIEWS; CALIBRATION; RADIOGRAPHY
Abstract: With the increasing number and complexity of therapeutic coronary interventions, there is an increasing need for accurate quantitative measurements. These interventions and measurements may be facilitated by accurate and reproducible magnifications and orientations of the vessel structures, specifically by accurate 3D vascular tree centerlines. A number of methods have been proposed to calculate 3D vascular tree centerlines from biplane images. In general, the calculated magnifications and orientations are accurate to within approximately 1-3% and 2-5 degrees, respectively. Here, we present a complete system for determination of the 3D vessel centerlines from biplane angiograms without the use of a calibration object. Subsequent to indication of the vessel centerlines, the imaging geometry and 3D centerlines are calculated automatically and within approximately 2 min. The system was evaluated in terms of the intra- and inter-user variations of the various calculated quantities. The reproducibilities obtained with this system are comparable to or better than the accuracies and reproducibilities quoted for other proposed methods. Based on these results and those reported in earlier studies, we believe that this system will provide accurate and reproducible vascular tree centerlines from biplane images while the patient is still on the table, and thereby will facilitate interventions and associated quantitative analyses of the vasculature.
Cited references: ALPERIN A-1991-MED-IMAGING-V1396-P27
BUECHI M-1990-INT-J-CARDIAC-IMAG-V5-P93
CHEN S-1994-P-IEEE-INT-C-AC-SPEE-P653
CHEN SJ-1996-P-COMP-CARD-IND-P117
CHEN SYJ-1997-MED-PHYS-V24-P633
CHEN SYJ-1996-P-SOC-PHOTO-OPT-INS-V2710-P103
CHERIET F-1999-COMPUT-MED-IMAG-GRAP-V23-P133
CLOSE R-1996-MED-PHYS-V23-P133
COSTE E-1999-MED-PHYS-V26-P1783
ESTHAPPAN J-1998-MED-PHYS-V25-P965
FENCIL LE-1990-MED-PHYS-V17-P951
FUJITA H-1987-MED-PHYS-V14-P549
GUGGENHEIM N-1991-PHYS-MED-BIOL-V36-P99
HENRI CJ-1996-MED-PHYS-V23-P197
HENRI CJ-1996-MED-PHYS-V23-P617
HOFFINANN KR-1999-P-SOC-PHOTO-OPT-INS-V3660-P335
HOFFMANN KR-1995-MED-PHYS-V22-P1219
HOFFMANN KR-1996-P-IEEE-P113
HOFFMANN KR-1996-P-SOC-PHOTO-OPT-INS-V2710-P462
HOFFMANN KR-1996-P-SOC-PHOTO-OPT-INS-V2708-P371
HOFFMANN KR-1986-SPIE-MED-14-V626-P326
JOHNS PC-1994-PRIMARY-CARDIOL-V20-P27
KLEIN JL-1998-INT-J-CARDIAC-IMAG-V14-P75
LIU IH-1992-OPT-ENG-V31-P2197
METZ CE-1989-MED-PHYS-V16-P45
MUIJTJENS AMM-1999-MED-PHYS-V26-P310
NAVAB N-1996-P-SOC-PHOTO-OPT-INS-V2708-P361
NGUYEN TV-1986-COMPUT-BIOMED-RES-V19-P428
NGYUEN TV-1997-COMPUTER-ASSISTED-RA-P765
PARKER DL-1987-COMPUT-BIOMED-RES-V20-P166
POTEL MJ-1983-INVEST-RADIOL-V8-P47
PRAUSE GPM-1993-COMPUTER-ASSISTED-RA-P547
REIMERS B-1997-CATHETER-CARDIO-DIAG-V40-P343
ROUGEE A-1987-IMAGE-CAPTURE-FORMAT-P161
SCHALIJ MJ-1998-CATHETER-CARDIO-DIAG-V43-P19
SCHOENEMAN PH-1996-PSYCHOMETRIKA-V31-P1
SCHREINER S-1997-P-SOC-PHOTO-OPT-INS-V3031-P160
SEN A-1999-MED-PHYS-V26-P698
SEN A-1998-P-SOC-PHOTO-OP-1-&-2-V3338-P1396
SOLZBACH U-1994-COMPUT-BIOMED-RES-V27-P178
SUGIMOTO N-1997-P-SOC-PHOTO-OPT-1&2-V3034-P830
SUN Y-1990-IEEE-T-MED-IMAGING-V8-P78
TOENNIES KD-1997-P-SOC-PHOTO-OPT-INS-V3031-P19
TONNIES KD-1998-MED-IMAGING-V3338-P492
WAHLE A-1991-COMPUTER-ASSISTED-RA-P669
WAHLE A-1995-IEEE-T-MED-IMAGING-V14-P230
WAHLE A-1993-P-IEEE-COMPUTERS-CAR-P97
WELLNHOFER E-1999-INT-J-CARDIAC-IMAG-V15-P339
WOLLSCHLAGER H-1986-BIOMED-TECH-V31-P101
Source item page count: 16
Publication Date: OCT
IDS No.: 379VY
29-char source abbrev: INT J CARDIAC IMAGING



Record 4 of 13
Author(s): Ding ZH; Friedman MH
Title: Quantification of 3-D coronary arterial motion using clinical biplane cineangiograms
Source: INTERNATIONAL JOURNAL OF CARDIAC IMAGING 2000, Vol 16, Iss 5, pp 331-346
No. cited references: 26
Author Keywords: arterial motion; coronary arteries; image analysis
KeywordsPlus: RECONSTRUCTION; BIFURCATION; ANGIOGRAMS; BRANCH; WALL
Abstract: Speculation that the motion of the coronary arteries might be involved in the pathogenesis of coronary atherosclerosis has generated growing interest in the study of this motion. Accordingly, a system has been developed to quantify 3-D coronary arterial motion using clinical biplane cineangiograms. Exploiting the temporal continuity of sequential angiographic images, a template matching technique is designed to track the non-uniform frame-to-frame motion of coronary arteries without assuming that the vessels experience uniform axial strain. The implementation of the system is automated by a coarse-to-fine matching process, thus improving the efficiency and objectivity of motion analysis. The system has been validated and employed to characterize the in vivo motion dynamics of human coronary arteries; illustrative results show that this system is a promising tool for routine clinical and laboratory analysis of coronary arterial motion.
Cited references: ARAD N-1994-CVGIP-GRAPH-MODEL-IM-V56-P161
BARRON JL-1994-OPTICAL-FLOW-BRATISL-P3
CANNY J-1986-IEEE-T-PATTERN-ANAL-V8-P679
CARO CG-1969-NATURE-V223-P1159
COATRIEUX JL-1994-CRIT-REV-BIOMED-ENG-V22-P1
DING Z-IN-PRESS-J-BIOMECH-E
DUFRESNE TE-1994-COMPUT-MED-IMAG-GRAP-V18-P343
FRIEDMAN MH-1998-J-BIOMECH-V31-P273
FRIEDMAN MH-1999-P-1999-SUMM-BIOENG-C
FUNG YC-1996-BIOMECHANICS-CIRCULA
GROSS MF-1998-J-BIOMECH-V31-P479
GUGGENHEIM N-1991-PHYS-MED-BIOL-V36-P99
JAIN AK-1989-FUNDAMENTALS-DIGITAL
KASS M-1988-INT-J-COMPUT-VISION-V2-P321
KONG Y-1971-AM-CARDIOL-V27
LIU IC-1993-IEEE-T-MED-IMAGING-V12-P334
MAKEY SA-1982-COMPUT-BIOMED-RES-V15-P455
MOORE JE-1994-J-BIOMECH-ENG-T-ASME-V116-P302
NEREM RM-1992-J-BIOMECH-ENG-V114-P274
PAO YC-1992-J-BIOMECH-V25-P287
POTEL MJ-1983-INVEST-RADIOL-V18-P47
RUPRECHT D-1995-IEEE-COMPUT-GRAPH-V15-P37
SONKA M-1994-IEEE-T-BIO-MED-ENG-V41-P520
STEVENSON DJ-1987-PATTERN-RECOGN-LETT-V20-P6
THUBRIKAR MJ-1990-J-BIOMECH-V23-P15
YUAN QS-1987-FUNDAMENTALS-COMPUTA
Source item page count: 16
Publication Date: OCT
IDS No.: 379VY
29-char source abbrev: INT J CARDIAC IMAGING



Record 5 of 13
Author(s): Puentes J; Garreau M; Roux C; Coatrieux JL
Title: Towards dynamic cardiac scenes interpretation based on spatial-temporal knowledge
Source: ARTIFICIAL INTELLIGENCE IN MEDICINE 2000, Vol 19, Iss 2, pp 155-183
No. cited references: 53
Author Keywords: cardiac motion analysis; spatial-temporal knowledge; time-varying; interpretation; motion description
KeywordsPlus: BIPLANE CORONARY CINEANGIOGRAMS; WALL MOTION; BOUNDARY DETECTION; IMAGE SEQUENCES; EXPERT SYSTEM; RECONSTRUCTION; SEGMENTATION; EXTRACTION; ANGIOGRAMS
Abstract: Cardiac motion analysis enables to identify pathologies related to myocardial anomalies or coronary arteries circulation deficiencies. Conventionally, bi-dimensional (2D) left ventricle contour images have been extensively used, to perform quantitative measurements and qualitative evaluations of the cardiac function. Nevertheless, there are other cardiac anatomical structures, the coronary arteries, imaged on routine procedures, upon which complementary motion interpretation can be conducted. This paper presents an experimental methodology to perform dynamic cardiac scenes interpretation, studying three-dimensional (3D) coronary arteries spatial-temporal behavior. Being an alternative way to approach computer assisted cardiac motion interpretation, it reveals a wide range of rarely explored spatial-temporal situations and proposes how to address them. Considering the challenges to achieve dynamic scene interpretation, it is explained how spatial and temporal knowledge, are connected to specialist knowledge and measured parameters, to obtain a dynamic scene interpretation. Global and local motion features are modeled according to cardiac motion and geometrical knowledge, before its transformation into symbols. Anatomical knowledge and spatial-temporal knowledge are applied, along with spatial-temporal reasoning schemes, to access symbols meaning. Experimental results obtained using real data are presented. Complexity of interpretation envisioning is discussed, taking the given results as an example. (C) 2000 Elsevier Science B.V. All rights reserved.
Cited references: ALLEN E-1995-LECT-NOTES-COMPUT-SC-V988-P397
ALLEN JF-1984-ARTIF-INTELL-V23-P123
BESTOUGEFF H-1989-OUTILS-LOGIQUES-TRAI
CATROS JY-1988-PATTERN-RECOGN-LETT-V8-P123
CHEYLAND JP-1993-LECT-NOTES-COMPUT-SC-V716-P158
CLEMENT V-1993-CVGIP-IMAG-UNDERSTAN-V57-P166
COATRIEUX JL-1994-CRIT-REV-BIOMED-ENG-V22-P10
COATRIEUX JL-1994-INNOV-TECH-BIOL-MED-V15-P253
COATRIEUX JL-1992-INT-J-CARDIAC-IMAG-V8-P1
COATRIEUX JL-1996-J-BIOL-SYST-V4-P181
COPPINI G-1992-J-BIOMED-ENG-V14-P321
DENNEY TS-1995-IEEE-T-MED-IMAGING-V14-P625
DICKMANNS ED-1990-IEEE-T-SYST-MAN-CYB-V20-P1273
DOJAT M-1997-ARTIF-INTELL-MED-V11-P97
DUNCAN JS-1987-IEEE-T-MED-IMAGING-V6-P325
GALTON A-1993-P-13-INT-JOINT-C-ART-P1550
GAMPER J-1997-ARTIF-INTELL-MED-V103-P209
GARBAY C-1987-TRAIT-SIGNAL-V4-P229
GARREAU M-1991-IEEE-T-MED-IMAGING-V10-P122
GARREAU M-1994-J-BIOL-SYST-V2-P183
GELBERG HJ-1979-CIRCULATION-V59-P991
HAN CY-1991-IEEE-T-MED-IMAGING-V10-P602
HORN BKP-1986-ROBOT-VISION
HUANG TS-1994-P-IEEE-V82-P252
HURST JW-1978-HEART-P1156
INGELS NB-1980-CIRCULATION-V61-P966
KARSCH KR-1980-CLIN-CARDIOL-V3-P123
KIM HC-1985-IEEE-T-BIO-MED-ENG-V32-P503
KONG Y-1971-AM-J-CARDIOL-V27-P529
LEVINE MD-1983-NATO-ASI-SERIES-F-V2-P663
LIU KJ-1984-J-SURG-RES-V36-P24
MARCUS ML-1991-CARDIAC-IMAGING-COMP-P24
MEIER GD-1980-IEEE-T-BIOMED-ENG-V27-P319
MEUNIER J-1991-P-C-IEEE-COMP-CARD-C-P457
NAZIF AM-1984-IEEE-T-PATTERN-ANAL-V6-P555
NIEMANN H-1985-IEEE-T-PATTERN-ANAL-V7-P246
OLLIVIER JP-1993-METHODES-INVESTIGATI-P422
PENNA MA-1992-CVGIP-IMAG-UNDERSTAN-V563-P336
POTEL MJ-1983-INVEST-RADIOL-V18-P47
PUENTES J-1998-ARTIF-INTELL-MED-V13-P207
PUENTES J-1998-IEEE-T-MED-IMAGING-V17-P857
RAYA SP-1990-IEEE-T-MED-IMAGING-V9-P327
RITCHINGS RT-1985-IMAGE-VISION-COMPUT-V3-P217
ROUX C-1997-COMTEMPORARY-PERSPEC
RUAN S-1994-IMAGE-VISION-COMPUT-V12-P683
SAGERER G-1988-PATTERN-RECOGN-V8-P87
SHEEHAN FH-1991-CARDIAC-IMAGING-COMP-P109
SMETS C-1988-PATTERN-RECOGN-P425
STANSFIELD SA-1986-IEEE-T-PATTERN-ANAL-V8-P188
SUH DY-1993-IEEE-T-MED-IMAGING-V12-P65
TISTARELLI M-1994-INNOV-TECH-BIOL-MED-V15-P322
TSOTSOS JK-1985-COMPUT-INTELL-V1-P16
WINDYGA P-1994-THESIS-U-RENNES-V1
Source item page count: 29
Publication Date: JUN
IDS No.: 319YN
29-char source abbrev: ARTIF INTELL MED



Record 6 of 13
Author(s): Wang Y; Vidan E; Bergman GW
Title: Cardiac motion of coronary arteries: Variability in the rest period and implications for coronary MR angiography
Source: RADIOLOGY 1999, Vol 213, Iss 3, pp 751-758
No. cited references: 37
Author Keywords: coronary angiography; coronary arteries; MR; heart; flow dynamics; magnetic resonance (MR); artifact
KeywordsPlus: RESPIRATORY FEEDBACK MONITOR; BREATH-HOLD; FAT-SATURATION; NAVIGATOR-ECHO; ARTIFACTS; ACQUISITION; REDUCTION; CONTRAST; HEART
Abstract: PURPOSE: To measure the duration of the rest period in the cardiac cycle, a parameter vital to data acquisition in coronary magnetic resonance (MR) angiography.

MATERIALS AND METHODS: Motion of coronary arteries was measured in 13 patients by using breath-hold, biplane, conventional angiography, with frontal and :: lateral projections of the left and right coronary arteries acquired at 30 frames per second. The time courses of the coordinates of bifurcations of proximal parts of the coronary arteries were measured, from which the rest period (motion < 1 mm in orthogonal axes), velocity, displacement range, motion correlation, and reproducibility from heartbeat to heartbeat were estimated.

RESULTS: Both the motion pattern and the amplitude varied substantially from patient to patient. The rest period varied from 66 to 333 msec (mean, 161 msec) for the left coronary artery and from 66 to 200 msec (mean, 120 msec) for the right coronary artery.

CONCLUSION: The rest period for coronary arteries in the cardiac cycle varies substantially from patient to patient, which may cause quality to be inconsistent in current coronary MR angiography. A cardiac motion image prior to coronary data acquisition (preimage) may be used to estimate the optimal duration and timing in the cardiac cycle for coronary MR angiography.

Cited references: ALEXANDER J-1979-RADIOLOGY-V131-P609
BAILES DR-1985-J-COMPUT-ASSIST-TOMO-V9-P835
BOMERT P-1995-MAGNET-RESON-MED-V34-P779
BRITTAIN JH-1995-MAGNET-RESON-MED-V33-P689
DANIAS PG-1997-RADIOLOGY-V203-P733
DODGE HT-1992-HEART-CARDIOVASCULAR-P725
DUERINCKX AJ-1996-EUR-RADIOL-V6-P312
DUERINCKX AJ-1994-RADIOLOGY-V193-P731
EDELMAN RR-1991-RADIOLOGY-V181-P641
GAULT JH-1968-CIRC-RES-V22-P451
GOLDFARB JW-1998-RADIOLOGY-V206-P830
HARDY CJ-1993-MAGNET-RESON-MED-V29-P667
HOFMAN MBM-1995-J-COMPUT-ASSIST-TOMO-V19-P56
HOFMAN MBM-1998-JMRI-J-MAGN-RESON-IM-V8-P568
HUBER AM-1997-RADIOLOGY-V205-P153
KONG Y-1971-AM-J-CARDIOL-V27-P529
LI D-1993-RADIOLOGY-V187-P401
LI DB-1996-RADIOLOGY-V201-P857
MANNING WJ-1993-NEW-ENGL-J-MED-V328-P828
MEYER CH-1992-MAGNET-RESON-MED-V28-P202
MULLER MF-1997-JMRI-J-MAGN-RESON-IM-V7-P644
OSHINSKI JN-1996-RADIOLOGY-V201-P737
PASCHAL CB-1993-JMRI-J-MAGN-RESON-IM-V3-P491
PAULIN S-1964-ACTA-RADIOL-DIAG-S-S-V233-P1
PENNELL DJ-1993-BRIT-HEART-J-V70-P315
POST JC-1996-AM-J-ROENTGENOL-V166-P1399
POTEL MJ-1983-INVEST-RADIOL-V18-P47
SACHS TS-1995-MAGNET-RESON-MED-V34-P412
SANDSTEDE J-1997-RADIOLOGY-S-V205-P153
SARDANELLI F-1997-RADIOLOGY-S-V205-P152
WANG Y-1995-MAGNET-RESON-MED-V34-P11
WANG Y-1995-MAGNET-RESON-MED-V33-P116
WANG Y-1995-MAGNET-RESON-MED-V33-P541
WANG Y-1995-MAGNET-RESON-MED-V33-P713
WANG Y-1996-RADIOLOGY-V198-P55
WANG Y-1998-RADIOLOGY-P-S-V209-P355
WIELOPOLSKI PA-1995-JMRI-J-MAGN-RESON-IM-V5-P403
Source item page count: 8
Publication Date: DEC
IDS No.: 258EM
29-char source abbrev: RADIOLOGY



Record 7 of 13
Author(s): Meijering EHW; Zuiderveld KJ; Viergever MA
Title: Image registration for digital subtraction angiography
Source: INTERNATIONAL JOURNAL OF COMPUTER VISION 1999, Vol 31, Iss 2-3, pp 227-246
No. cited references: 65
Author Keywords: digital subtraction angiography; motion correction; registration; matching; warping
KeywordsPlus: SIMILARITY MEASURES; SUBPIXEL ACCURACY; MAPPING FUNCTIONS; ALGORITHM; CRITERION
Abstract: In clinical practice, Digital Subtraction Angiography (DSA) is a powerful technique for the visualization of blood vessels in the human body. The diagnostic relevance of the images is often reduced by artifacts which arise from the misalignment of successive images in the sequence, due to patient motion. In order to improve the quality of the subtraction images, several registration techniques have been proposed. However, because of the required computation times, it has never led to algorithms that are fast enough so as to be acceptable for integration in clinical applications. In this paper, a new approach to the registration of digital angiographic images is proposed. It involves an edge-based selection of control points for which the displacement is computed by means of template matching, and from which the complete displacement vector field is constructed by means of interpolation. The final warping of the images according to the calculated displacement vector field is performed real-time by graphics hardware. Experimental results with several clinical data sets show that the proposed algorithm is both effective and very fast.
Cited references: AGGERWAL JK-1988-P-IEEE-V76-P917
ALTHOF RJ-1997-IEEE-T-MED-IMAGING-V16-P308
BARNEA DI-1972-IEEE-T-COMPUT-V21-P179
BEIER T-1992-COMPUT-GRAPH-V26-P35
BRODY WR-1982-IEEE-T-NUCL-SCI-V29-P1176
BRODY WR-1981-RADIOLOGY-V141-P828
BRODY WR-1981-RADIOLOGY-V139-P297
BROWN LG-1992-COMPUT-SURV-V24-P325
BUZUG TM-1996-INT-CONGR-SER-V1124-P145
BUZUG TM-1997-LECT-NOTES-COMPUT-SC-V1205-P203
BUZUG TM-1997-LECT-NOTES-COMPUTER-V1296-P106
CANNY JF-1986-PAMI-V8-P6
CHIANG JY-1993-IEEE-T-MED-IMAGING-V12-P30
CHILCOTE WA-1981-RADIOLOGY-V139-P287
COX GS-1994-P-SOC-PHOTO-OPT-INS-V2167-P188
COX GS-1995-REV-TEMPLATE-MATCHIN
DAVIS LS-1983-COMPUT-VISION-GRAPH-V23-P313
FITZPATRICK JM-1988-COMPUT-VISION-GRAPH-V44-P155
FITZPATRICK JM-1988-INFORMATION-PROCESSI-P415
FLUSSER J-1992-PATTERN-RECOGN-V25-P45
FOGEL SV-1991-CVGIP-IMAG-UNDERSTAN-V53-P253
FOLEY J-1990-SYSTEMS-PROGRAMMING
GOSHTASBY A-1986-IEEE-T-GEOSCI-REMOTE-V24-P390
GOSHTASBY A-1987-PATTERN-RECOGN-V20-P525
GOSHTASBY A-1986-PATTERN-RECOGN-V19-P459
HECKBERT PS-1986-IEEE-COMPUT-GRAPH-V6-P56
HILDRETH EC-1983-COMPUTER-VISION-GRAP-V22-P1
HILDRETH EC-1984-P-ROY-SOC-LOND-B-BIO-V221-P189
HILLMAN BJ-1981-RADIOLOGY-V139-P277
HORN BKP-1981-ARTIF-INTELL-V17-P185
HUA P-1993-P-SOC-PHOTO-OPT-INS-V1898-P24
KRUGER RA-1984-RADIOLOGY-V152-P805
KRUGER RA-1983-RADIOLOGY-V147-P863
KRUGER RA-1982-RADIOLOGY-V145-P315
KRUGER RA-1977-RADIOLOGY-V125-P243
LAWSON CL-1977-MATH-SOFTWARE-V3-P161
LEE DT-1980-INT-J-COMPUT-INF-SCI-V9-P219
MAINTZ JBA-1998-MED-IMAGE-ANAL-V2-P1
MANDAVA VR-1989-IEEE-T-MED-IMAGING-V8-P251
MARR D-1980-P-ROY-SOC-LOND-B-BIO-V207-P187
MISTRETTA CA-1973-INVEST-RADIOL-V8-P402
NEIDER J-1995-OPENGL-PROGRAMMING-G
OUNG H-1984-P-INT-S-MED-IM-IC-SI-P336
OUSTERHOUT JK-1994-PROFESSIONAL-COMPUTI
POTEL MJ-1983-IEEE-FRONTIERS-ENG-C-P166
POWELL MJD-1964-COMPUT-J-V7-P155
PRATT WK-1974-IEEE-T-AERO-ELEC-SYS-V10-P353
RUPRECHT D-1995-IEEE-COMPUT-GRAPH-V15-P37
RUPRECHT D-1994-THESIS-U-DORTMUND
SHI J-1994-IEEE-C-COMP-VIS-PATT-P593
STOCKMAN G-1982-IEEE-T-PAMI-V4-P229
STROUSTRUP B-1991-CPLUSPLUS-PROGRAMMIN
SZELISKI R-1997-INT-J-COMPUT-VISION-V22-P199
TOMASI C-1991-CMUCS91132-SCH-COMP
VANDENELSEN PA-1993-IEEE-ENG-MED-BIOL-V12-P26
VANTRAN L-1992-IEEE-T-MED-IMAGING-V11-P407
VENOT A-1984-COMPUT-VISION-GRAPH-V28-P176
VENOT A-1994-IEEE-T-MED-IMAGING-V13-P565
VENOT A-1984-IEEE-T-MED-IMAGING-V3-P179
VERHOEVEN LAJ-1985-THESIS-DELFT-U-TECHN
WATSON DF-1981-COMPUT-J-V24-P167
WATSON DF-1984-COMPUT-VISION-GRAPH-V26-P217
WOLBERG G-1990-DIGITAL-IMAGE-WARPIN
YANAGISAWA M-1984-P-7-INT-C-PATT-REC-V2-P1288
ZUIDERVELD KJ-1989-P-SOC-PHOTO-OPT-INS-V1137-P22
Source item page count: 20
Publication Date: APR
IDS No.: 209NA
29-char source abbrev: INT J COMPUT VISION



Record 8 of 13
Author(s): Sen A; Lan L; Doi K; Hoffmann KR
Title: Quantitative evaluation of vessel tracking techniques on coronary angiograms
Source: MEDICAL PHYSICS 1999, Vol 26, Iss 5, pp 698-706
No. cited references: 35
Author Keywords: vessel tracking; coronary angiograms; blood vessels; vessel centerline; quantitative analysis
KeywordsPlus: BIPLANE ANGIOGRAMS; 3-D RECONSTRUCTION; ARTERIAL TREE; FLOW-RATES; SYSTEM; ARTERIOGRAM; VARIABILITY; DIMENSIONS
Abstract: Accurate, automated determination of vessel center lines is essential for two- and three-dimensional analysis of the coronary vascular tree. Therefore, we have been developing techniques for vessel tracking and for evaluating their accuracy and precision in clinical images. After points in vessels are manually indicated, the vessels are tracked automatically by means of a modified sector-search approach. The perimeters of sectors centered on previous tracking points are searched for the pixels with the maximum contrast. The sector size and radius are automatically adjusted based on local vessel tortuosity. The performance of the tracking technique in regions of high-intensity background is improved by application of a nonlinear adaptive filtering technique in which the vessel signal is effectively removed prior to background estimation. The tracking results were evaluated visually and by calculation of distances between the tracked and user-indicated centerlines, which were used as the "truth." Two hundred and fifty-six coronary vessels were tracked in 32 angiograms. Vessels as small as 0.6 mm in diameter were tracked accurately. This technique correctly tracked 255/256 (>99%) vessels based on an average of 2-3 indicated points per vessel. The one incorrect tracking result was due to a low signal-to-noise ratio (SNR<2). The distance between the tracked and the "true" centerlines ranged from 0.4 to 1.8 pixels, with an average of 0.8 pixels. These results indicate that this technique can provide a reliable basis for 2D and 3D vascular analysis. (C) 1999 American Association of Physicists in Medicine. [S0094-2405(99)02205-1].
Cited references: ALPERIN N-1989-IEEE-COMPUTERS-CARDI-P153
BROWN BG-1977-CIRCULATION-V55-P329
BUERSCH JH-1981-RADIOLOGY-V141-P39
CHEN SJ-1996-IEEE-COMPUTERS-CARDI-P117
CHEN SYJ-1996-P-SOC-PHOTO-OPT-INS-V2710-P103
DEROUEN TA-1977-CIRCULATION-V55-P324
DETRE KM-1975-CIRCULATION-V52-P979
EPSTEIN SE-1989-NEW-ENGL-J-MED-V321-P320
FENCIL LE-1989-PHYS-MED-BIOL-V34-P659
FESLER JA-1991-IEEE-T-MED-IMAGING-V10-P25
FUJITA H-1987-MED-PHYS-V14-P549
FUKUI T-1980-P-5-INT-C-PATT-REC-M-P383
GERBRANDS JJ-1982-IEEE-INT-S-MED-IM-IM-P54
HART M-1993-IEEE-COMPUTERS-CARDI-P93
HAWKES DJ-1994-INVEST-RADIOL-V29-P434
HOFFMANN KR-1991-INVEST-RADIOL-V26-P207
HOFFMANN KR-1990-INVEST-RADIOL-V25-P1069
KORBULY DE-1973-INVEST-RADIOL-V8-P255
KRUGER RA-1984-BASIC-CONCEPTS-DIGIT-P197
LIU IC-1993-IEEE-T-MED-IMAGING-V12-P334
MISTRETTA CA-1981-RADIOLOGY-V139-P273
NGUYEN TV-1986-COMPUT-BIOMED-RES-V19-P428
POPE DL-1984-IEEE-COMPUTERS-CARDI-P71
POTEL MJ-1983-INVEST-RADIOL-V18-P47
REIBER JHC-1988-CATHET-CARDIOVASC-DI-V14-P221
ROSS J-1987-CIRCULATION-V76-PA963
SARWAL A-1995-P-SOC-PHOTO-OPT-INS-V2434-P361
SEN A-1997-P-19-INT-C-IEEE-EMBS-P573
SEN A-1998-P-SOC-PHOTO-OP-1-&-2-V3338-P1396
SPILLER P-1983-CIRCULATION-V68-P337
STANSFIELD SA-1986-IEEE-T-PATTERN-ANAL-V8-P188
SUN Y-1989-IEEE-T-MED-IMAGING-V8-P78
WAHLE A-1995-IEEE-T-MED-IMAGING-V14-P230
WHITE CW-1984-NEW-ENGL-J-MED-V310-P819
ZIR LM-1976-CIRCULATION-V53-P627
Source item page count: 9
Publication Date: MAY
IDS No.: 196NQ
29-char source abbrev: MED PHYS



Record 9 of 13
Author(s): Hofman MBM; Wickline SA; Lorenz CH
Title: Quantification of in-plane motion of the coronary arteries during the cardiac cycle: Implications for acquisition window duration for MR flow quantification
Source: JMRI-JOURNAL OF MAGNETIC RESONANCE IMAGING 1998, Vol 8, Iss 3, pp 568-576
No. cited references: 29
Author Keywords: coronary artery; MRI; cardiac motion; flow quantification; image blurring
KeywordsPlus: MAGNETIC-RESONANCE; BREATH-HOLD; PHASE-CONTRAST; VELOCITY; RESERVE; ANGIOGRAPHY; DIFFERENCE; SEQUENCE; ACCURACY; HUMANS
Abstract: Motion of the coronary arteries during the heart cycle can result in image blurring and inaccurate now quantification by MR. This condition applies particularly for longer acquisition windows that are typical of breath-hold coronary now measurements. To determine the sensitivity of the technique to in-plane motion of different coronary arteries, the temporal variation in coronary position was measured in a plane perpendicular to the proximal portion of the vessel. The results indicated the presence of substantial displacement of the coronary arteries within the cardiac cycle, with a magnitude of motion approximately twice as large for the right as for the left coronary arteries. An estimation of the resulting vessel blurring was calculated, showing that the duration of the acquisition window for high spatial resolution coronary now acquisitions should be less than 25 to 120 msec, depending on the specific coronary artery studied. In addition. these data specify optimal acquisition window placement for high resolution coronary angiography.
Cited references: ATKINSON DJ-1991-RADIOLOGY-V178-P357
CLARKE GD-1995-CIRCULATION-V91-P2627
CLARKE GD-1996-JMRI-J-MAGN-RESON-IM-V6-P733
DODGE JT-1992-CIRCULATION-V86-P232
DUERINCKX AJ-1996-P-3-ANN-SCI-M-SOC-MA
GUILFOYLE DN-1991-MAGNET-RESON-MED-V18-P1
HOFMAN MBM-1995-J-COMPUT-ASSIST-TOMO-V19-P56
HOFMAN MBM-1996-MAGNET-RESON-MED-V35-P521
HUNDLEY WG-1996-CIRCULATION-V93-P1502
KARWATOWSKI SP-1994-BRIT-HEART-J-V72-P332
KEEGAN J-1994-MAGNET-RESON-MED-V31-P526
LENZ GW-1989-MAGN-RESON-IMAGING-V7-P445
LI D-1993-RADIOLOGY-V187-P401
LI HF-1995-MED-PHYS-V22-P391
MANNING WJ-1993-MAGN-RESON-QUART-V9-P131
MCDONALD DA-1974-BLOOD-FLOW-ARTERIES
OSHINSKI JN-1995-P-SOC-MAGN-RES-BERK-P22
PAULIN S-1964-ACTA-RADIOL-DIAG-S-S-V233-P1
PIKE GB-1994-MAGNET-RESON-MED-V32-P476
POLZIN JA-1996-JMRI-J-MAGN-RESON-IM-V6-P113
POLZIN JA-1996-MAGNET-RESON-MED-V35-P755
POST JC-1995-AM-HEART-J-V130-P167
POST JC-1998-UNPUB-CIRCULATION
POTEL MJ-1983-INVEST-RADIOL-V18-P47
SAKUMA H-1996-RADIOLOGY-V198-P745
SCHEIDEGGER M-1994-P-SOC-MAGN-RES-1994-P498
STUBER M-1995-P-SMR-ESMRMB-NICE-P1419
WANG Y-1995-MAGNET-RESON-MED-V33-P541
WEISSLER AM-1968-CIRCULATION-V37-P149
Source item page count: 9
Publication Date: MAY-JUN
IDS No.: 193NT
29-char source abbrev: JMRI-J MAGN RESON IMAGING



Record 10 of 13
Author(s): Puentes J; Roux C; Garreau M; Coatrieux JL
Title: Dynamic feature extraction of coronary artery motion using DSA image sequences
Source: IEEE TRANSACTIONS ON MEDICAL IMAGING 1998, Vol 17, Iss 6, pp 857-871
No. cited references: 35
Author Keywords: coronary artery motion features extraction; image sequence analysis; motion and shape homogeneous segments; time-varying descriptions
KeywordsPlus: WALL MOTION; RECONSTRUCTION; CINEANGIOGRAPHY; TREE
Abstract: This paper aims to define and describe features of the motion of coronary arteries in two and three dimensions, presented as geometrical parameters that identify motion patterns. The main left coronary artery centerlines, obtained from digital subtraction angiography (DSA) image sequences, are first reconstructed. Thereafter, global and local motion features are evaluated along the sequence. The global attributes are centerline and point trajectory lengths, displacement amplitude, and virtual reference point, while local attributes are displacement direction, perpendicular/radial components, rotation direction, and curvature and torsion. These kinetic features allow us to obtain a detailed quantitative description of the displacements of arteries' centerlines, as well as associated epicardium deformations. Our modeling of local attributes as quasi-homogeneous on a segment analysis, enables us to propose a novel numeric to symbolic image transformation, which provides the required facts for knowledge-based motion interpretation. Experimental results using real data are consistent with cardiac dynamic behavior.
Cited references: CHEN CW-1994-IEEE-T-PATTERNS-ANAL-V6-P342
COATRIEUX JL-1994-CRIT-REV-BIOMED-ENG-V22-P1
COATRIEUX JL-1994-INNOV-TECH-BIOL-MED-V15-P253
COATRIEUX JL-1992-INT-J-CARDIAC-IMAG-V8-P1
COPPINI G-1995-P-IEEE-COMPUTERS-CAR-P71
COPPINI G-1988-P-IEEE-COMPUTERS-CAR-P293
COPPINI G-1986-P-IEEE-COMPUTERS-CAR-P711
DEBOOR C-1978-PRACTICAL-GUIDE-SPLI-P218
DOCARMO MP-1976-DIFFERENTIAL-GEOMETR-P16
DODGE JT-1988-CIRCULATION-V78-P1167
GARREAU M-1991-IEEE-T-MED-IMAGING-V10-P122
GELBERG HJ-1979-CIRCULATION-V59-P991
HURST JW-1978-HEART-P1156
INGELS NB-1980-CIRCULATION-V61-P966
KARSCH KR-1980-CLIN-CARDIOL-V3-P123
KIM HC-1985-IEEE-T-BIO-MED-ENG-V32-P503
KONG Y-1971-AM-J-CARDIOL-V27-P529
LIU KJ-1984-J-SURG-RES-V36-P24
MARCUS ML-1991-CARDIAC-IMAGING-COMP-P24
MEIER GD-1980-IEEE-T-BIOMED-ENG-V27-P319
MEUNIER J-1994-INNOV-TECH-BIOL-MED-V15-P282
MEUNIER J-1990-P-IEEE-COMPUTERS-CAR-P497
MISHRA SK-1991-P-IEEE-WORKSH-VIS-MO-P300
OLLIVIER JP-1993-METHODES-INVESTIGATI-P422
PERRY RA-1986-P-IEEE-COMPUTERS-CAR-P625
POTEL MJ-1983-INVEST-RADIOL-V18-P47
PUENTES J-1996-THESIS-U-RENNES-1-RE-P317
ROUX C-1997-CONT-PERSPECTIVES-3-P393
RUAN S-1991-ACT-13-GRETSI-JUAN-P-P957
RUAN S-1994-IMAGE-VISION-COMPUT-V12-P683
RUSHMER RF-1953-CIRC-RES-V1-P162
SABBAH HN-1981-AM-J-PHYSL-HEART-CIR-V9-PH920
SHEEHAN FH-1991-CARDIAC-IMAGING-COMP-P109
TOM BCS-1994-IEEE-T-MED-IMAGING-V13-P450
YOUNG AA-1991-THEORY-HEART-P175
Source item page count: 15
Publication Date: DEC
IDS No.: 166TH
29-char source abbrev: IEEE TRANS MED IMAGING



Record 11 of 13
Author(s): Puentes J; Garreau M; Lebreton H; Roux C
Title: Under-standing coronary artery movement: a knowledge-based approach
Source: ARTIFICIAL INTELLIGENCE IN MEDICINE 1998, Vol 13, Iss 3, pp 207-237
No. cited references: 52
Author Keywords: spatio-temporal knowledge and reasoning; understanding arterial movement; time-varying interpretation; characteristic motion attributes
KeywordsPlus: WALL MOTION; BOUNDARY DETECTION; EXPERT SYSTEM; IMAGES; RECONSTRUCTION; SEGMENTATION; REPRESENTATION; CINEANGIOGRAMS; VISION; BRAIN
Abstract: The aim of this paper is to describe a knowledge-based system that interprets three-dimensional (3D) coronary artery movement, using data from digital subtraction angiography image sequences. Dynamic information obtained from artery centerline 3D reconstruction and optical flow estimation, is classified according to experimental evidence indicating that artery displacements are quasi-homogeneous by a segment analysis. Characteristic motion features like displacement direction, perpendicular/radial components, rotation direction, curvature and torsion are qualitatively described from an image sequence using symbolic labels. These facts are then related and interpreted using anatomical-functional knowledge provided by a specialist, as well as spatial and temporal knowledge, applying spatio-temporal reasoning schemes. Facts, knowledge and reasoning rules are stated in a declarative form. Detailed examples of local and global interpretation results, using a real reconstructed angiographic biplane image sequence are presented in order to illustrate how our system suitably interprets coronary artery dynamic behavior. (C) 1998 Elsevier Science B.V. All rights reserved.
Cited references: ALLEN E-1995-LECT-NOTES-COMPUT-SC-V988-P397
ALLEN JF-1984-ARTIF-INTELL-V23-P123
BARONI M-1989-P-IEEE-COMP-CARD-JER-P483
BOBICK AF-1992-IEEE-T-PATTERN-ANAL-V14-P146
BROOKS RA-1983-IEEE-T-PATTERN-ANAL-V5-P140
BUCHANAN BG-1989-KSL8971280-STANF-U-K
CATROS JY-1988-PATTERN-RECOGN-LETT-V8-P123
CHEYLAND JP-1993-LECT-NOTES-COMPUT-SC-V716-P158
CLEMENT V-1993-CVGIP-IMAG-UNDERSTAN-V57-P166
COATRIEUX JL-1994-CRIT-REV-BIOMED-ENG-V22-P1
COATRIEUX JL-1994-INNOV-TECH-BIOL-MED-V15-P253
DICKMANNS ED-1990-IEEE-T-SYST-MAN-CYB-V20-P1273
DOJAT M-1997-ARTIF-INTELL-MED-V11-P97
DUNCAN JS-1987-IEEE-T-MED-IMAGING-V6-P325
ESHERA MA-1986-IEEE-T-PATTERN-ANAL-V8-P604
GALTON A-1993-P-13-INT-JOINT-C-ART-P1550
GAMPER J-1997-ARTIF-INTELL-MED-V10-P209
GARBAY C-1987-TRAIT-SIGNAL-V4-P229
GARREAU M-1991-IEEE-T-MED-IMAGING-V10-P122
GELBERG HJ-1979-CIRCULATION-V59-P991
HAN CY-1991-IEEE-T-MED-IMAGING-V10-P602
HOFFMAN DD-1985-COGNITION-V18-P65
INGELS NB-1980-CIRCULATION-V61-P966
KARSCH KR-1980-CLIN-CARDIOL-V3-P123
KIM HC-1985-IEEE-T-BIO-MED-ENG-V32-P503
KONG Y-1971-AM-J-CARDIOL-V27-P529
LEVINE MD-1983-NATO-ASI-SERIES-F-V2-P663
LI CL-1993-IEEE-T-MED-IMAGING-V12-P740
LIU KJ-1984-J-SURG-RES-V36-P24
MARCUS ML-1991-CARDIAC-IMAGING-COMP-P24
MCDERMOTT DV-1982-COGNITIVE-SCI-V6-P101
MEIER GD-1980-IEEE-T-BIOMED-ENG-V27-P319
NAGEL HH-1988-IMAGE-VISION-COMPUT-V6-P59
NAZIF AM-1984-IEEE-T-PATTERN-ANAL-V6-P555
NIEMANN H-1985-IEEE-T-PATTERN-ANAL-V7-P246
POTEL MJ-1983-INVEST-RADIOL-V18-P47
PUENTES J-1995-IMAGENES-MED-ADQUISI-P177
PUENTES J-1993-P-15-INT-C-IEEE-ENG-P598
PUENTES J-1996-THESIS-U-RENNES-1
RAYA SP-1990-IEEE-T-MED-IMAGING-V9-P327
ROUX C-1990-P-EUSIPCO-90-BARC-SP-P55
RUAN S-1991-ACT-13-GRETSI-JUAN-P-P957
RUAN S-1994-IMAGE-VISION-COMPUT-V12-P683
SAGERER G-1988-PATTERN-RECOGN-V8-P87
SHEEHAN FH-1991-CARDIAC-IMAGING-COMP-P109
SHOHAM Y-1987-ARTIF-INTELL-V33-P89
STANSFIELD SA-1986-IEEE-T-PATTERN-ANAL-V8-P188
SUH DY-1993-IEEE-T-MED-IMAGING-V12-P65
TARR MJ-1994-CVGIP-IMAGE-UNDERST-V59-P65
TISTARELLI M-1994-INNOV-TECH-BIOL-MED-V15-P322
TSOTSOS JK-1985-COMPUT-INTELL-V1-P16
WALKER EL-1988-AI-MAG-V9-P47
Source item page count: 31
Publication Date: JUL
IDS No.: 103CF
29-char source abbrev: ARTIF INTELL MED



Record 12 of 13
Author(s): Taleb N; Jetto L
Title: Image registration for applications in Digital Subtraction Angiography
Source: CONTROL ENGINEERING PRACTICE 1998, Vol 6, Iss 2, pp 227-238
No. cited references: 22
Author Keywords: image registration; image processing; digital angiography; medical imaging
KeywordsPlus: MOTION CORRECTION; CORONARY BORDERS
Abstract: A major problem encountered in Digital Subtraction Angiography (DSA) is misregistration of images due to patient motion. A new technique for removing motion artifacts, based on local similarity detection, geometric image transformation and pixel manipulation, is presented. The designed algorithms for this technique have the capability to register images both globally and locally, even when applied to the worst DSA cases. This new registration method is not only faster, but also results in higher quality images. Moreover, the technique described here works perfectly well for both slow and sudden motions, and presents some very interesting results for coronary applications. (C) 1998 Elsevier Science Ltd. All rights reserved.
Cited references: ALEXANDER P-1983-IEEE-COMPUTER-JUN-P17
DEMI M-1994-COMPUT-BIOMED-RES-V27-P157
DIGALAKIS VV-1993-MULTIDIM-SYST-SIGN-P-V4-P307
FIGUEIREDO MAT-1995-IEEE-T-MED-IMAGING-V14-P162
FITZPATRICK JM-1987-OPT-ENG-V26-P1085
FITZPATRICK JM-1988-SPIE-V914-P379
KRUGER RA-1982-RADIOLOGY-V145-P315
KUTKA R-1996-IEEE-T-MED-IMAGING-V15-P51
MOLLOI S-1995-IEEE-T-MED-IMAGING-V14-P747
MOLLOI SY-1990-INVEST-RADIOL-V25-P908
MOLLOI SY-1989-MED-PHYS-V16-P209
PICKENS DR-1987-MED-PHYS-V14-P56
POTEL MJ-1983-IEEE-FRONTIERS-ENG-C-P166
REZAIE B-1984-IEEE-T-AEROSP-ELECT-V20-P716
RO DW-1987-IEEE-T-MED-IMAGING-V6-P297
ROSENFELD A-1982-DIGITAL-PICTURE-PROC-V1-P245
SIMON JC-1981-DIGITAL-IMAGE-PROCES-P109
SONKA M-1995-IEEE-T-MED-IMAGING-V14-P151
SONKA M-1993-IEEE-T-MED-IMAGING-V12-P588
TOGGART EJ-1988-CLIN-APPL-CARDIAC-DI-P253
VANLYSEL MS-1991-INT-J-CARDIAC-IMAG-V7-P55
VENOT A-1984-IEEE-T-MED-IMAGING-V3-P179
Source item page count: 12
Publication Date: FEB
IDS No.: ZU857
29-char source abbrev: CONTROL ENG PRACTICE



Record 13 of 13
Author(s): Hoffmann KR; Williams BB; Esthappan J; Chen SYJ; Carroll JD; Harauchi H; Doerr V; Kay GN; Eberhardt A; Overland M
Title: Determination of 3D positions of pacemaker leads from biplane angiographic sequences
Source: MEDICAL PHYSICS 1997, Vol 24, Iss 12, pp 1854-1862
No. cited references: 20
Author Keywords: 3D(1) pacemaker leads; in vivo analysis; biplane; temporal sequences
KeywordsPlus: 3-DIMENSIONAL STRUCTURE; IMAGING GEOMETRIES; RECONSTRUCTION; VIEWS
Abstract: In vitro and in vivo analyses of stress on pacemaker leads and their components during the heart cycle have become especially important because of incidences of failure of some of these mechanical components. For stress analyses, the three-dimensional (3D) position, shape, and motion of the pacemaker leads must be known accurately at each time point during the cardiac cycle. We have developed a method for determination of the in vivo 3D positions of pacemaker leads during the entire heart cycle. Sequences of biplane images of patients with pacemakers were obtained at 30 frames/s for each projection. The sequences usually included at least two heart cycles. After patient imaging, biplane images of a calibration object were obtained from which the biplane imaging geometry was determined. The centerlines of the leads and unique, identifiable points on the attached electrodes were indicated manually for all acquired images. Temporal interpolation of the lead and electrode data was performed so that the temporal nonsynchronicity of the image acquisition was overcome. Epipolar lines, generated from the calculated geometry, were employed to identify corresponding points along the leads in the pairs of biplane images for each time point. The 3D positions of the lead and electrodes were calculated from the known geometry and from the identified corresponding points in the images. Using multiple image sets obtained with the calibration object at various orientations, the precision of the calculated rotation matrix and of the translation vector defining the imaging geometry was found to be approximately 0.7 degrees and 1%, respectively. The 3D positions were reproducible to within 2 mm, with the error lying primarily along the axis between the focal spot and the imaging plane. Using data obtained by temporally downsampling to 15 frames/s, the interpolated data were found to lie within approximately 2 mm of the true position for most of the heart cycle. These results indicate that, with this technique, one can reliably determine pacemaker lead positions throughout the heart cycle, and thereby it will provide the basis for stress analysis on pacemaker leads. (C) 1997 American Association of Physicists in Medicine.
Cited references: BARBA J-1987-P-SOC-PHOTO-OPT-INS-V767-P441
BRINKER JA-1995-PACE-V18-P953
FAHRIG R-1996-P-SOC-PHOTO-OPT-INS-V2708-P351
FENCIL LE-1990-MED-PHYS-V17-P951
HARRIGAN T-1996-J-AM-COLL-CARDIOL-V27-PA345
HOFFMANN KR-1997-MED-PHYS-V24-P555
HOFFMANN KR-1995-MED-PHYS-V22-P1219
HOFFMANN KR-1996-P-SOC-PHOTO-OPT-INS-V2710-P462
HOFFMANN KR-1996-P-SOC-PHOTO-OPT-INS-V2708-P371
LLOYD MA-1995-PACE-V18-P958
METZ CE-1989-MED-PHYS-V16-P45
ONNASCH DGW-1992-P-C-COMP-CARD-P647
PARKER DL-1987-COMPUT-BIOMED-RES-V20-P166
POTEL MJ-1983-INVEST-RADIOL-V8-P47
SCHONEMANN P-1966-PSYCHOMETRIKA-V31-P1
SCHONEMANN PH-1970-PSYCHOMETRIKA-V35-P245
SMETS C-1991-MED-BIOL-ENG-COMPUT-V29-PNS27
SULKE N-1995-LANCET-V346-P25
WAHLE A-1995-IEEE-T-MED-IMAGING-V14-P230
WANG LL-1991-IEEE-T-PATTERN-ANAL-V13-P370
Source item page count: 9
Publication Date: DEC
IDS No.: YM376
29-char source abbrev: MED PHYS



Acceptable Use Policy

Copyright © 2001 Institute for Scientific Information