
ContactCenters Simulation Library User’s Guide

Examples of simulation programs

Version: March 4, 2014

Eric Buist

We present examples of Java programs based on the ContactCenters library. The exam-
ples are commented and are an excellent starting point for learning how to construct new
contact center simulators or extend existing ones.

March 4, 2014 CONTENTS 1

Contents

Overview 2

1 M/M/c queue and variants 4

1.1 M/M/c queue . 4

1.2 Supporting abandonment . 11

1.3 Clearing the queue at the end of the day . 16

1.4 Limiting the queue capacity . 19

1.5 Preparing for parallel simulations . 21

2 A simplified call center with multiple periods 26

3 A simple multi-skill contact center 34

3.1 Implementing the model . 34

3.2 Adding a contact-by-contact trace . 40

3.3 Rerouting queued contacts . 44

4 Telethon call center 51

4.1 Implementing the model . 51

4.2 Modeling the message delay . 59

4.3 Correcting the estimator for occupancy ratio 61

5 Bilingual contact center 65

6 Bank model 77

7 Teamwork contact center 94

8 Blend call center 111

2 OVERVIEW March 4, 2014

Overview

The ContactCenters library provides some generic precompiled simulators for the most com-
mon cases. These simulators use XML parameter files and can estimate several performance
measures. However, they do not cover every contact center and it is sometimes needed to
make customizations to match specific needs. In addition, a simulator specialized for the
needed model is often more efficient than a generic system adapted for a wider range of
contact centers.

The ContactCenters library is more than a set of programs; it is a toolkit permitting
the construction of simulators. It provides building blocks to model the simulation logic of
contact centers using the SSJ simulation library [8] and Colt [6]. The simulated horizon can
be finite or infinite.

We present some Java simulation programs using the ContactCenters library. These
examples will help the reader better understand how the contact center simulation works and
how new models can be implemented by combining or extending the components provided by
the library. Reading these examples is a good way to start learning about the ContactCenters
library. While studying the programs, the reader can refer to the functional definitions of
ContactCenters classes and methods in the guides of the corresponding packages. It is
preferable to refer to the PDF versions of the guides, because they contain a more detailed
and complete documentation than the HTML versions, which are better suited for quick
on-line referencing for those who are already familiar with ContactCenters.

A basic understanding of the SSJ library is needed to read these examples. See the
SSJ examples and API documentation for more information [8]. Knowledge of the Java
programming language is also strongly recommended. See [3] or the Java tutorial and Java
API documentation for more information. Familiarity with contact center simulation is also
recommended [5, 9].

Section 1 presents a M/M/c queue with FIFO discipline to illustrate the structure of a
basic ContactCenters simulator. The simple system is then extended several ways to demon-
strate various aspects of the library. Section 2 gives a second simplified call center supporting
multiple periods. Section 3 demonstrates how to construct a non-stationary multi-skill con-
tact center. Sections 4, 5, 6, and 7 describe four examples of non-stationary simulators which
have been adapted from Rockwell’s Arena Contact Center Edition sample models in order
to help the user map the features of this commercial tool to the ContactCenters library. The
last example, in section 8, models a blend contact center in order to demonstrate how to put
a dialer into action.

Since these examples model call centers, a contact corresponds to a phone call in this
guide. However, the library is capable of simulating any type of contacts such as fax, e-mail,
chat, etc.

The examples do not implement the high-level interface defined in the app package for
simplicity. In most cases, it is recommended to implement it since it allows other programs
such as statistical analyzers or optimizers to better interact with the simulator.

March 4, 2014 3

Moreover, most examples shown here use the basic SSJ API which does not support
parallel simulations. This means that if several instances of the example classes are created
in a Java program, and one instance is associated with one thread, the resulting multi-
threaded application will not work, because all instances will share the same simulation clock
and event list. Making parallel simulations requires the use of the Simulator class rather
than static methods in the Sim class. However, multiple instances of the java command
executing copies of the following examples can run concurrently without problem.

4 1 M/M/C QUEUE AND VARIANTS March 4, 2014

1 M/M/c queue and variants

1.1 M/M/c queue

One of the simplest system that can be modeled with the library is a call center with a single
call type, and a single agent group having a fixed capacity c, i.e., a M/M/c queue with
FIFO discipline. This model is implemented for demonstration purposes only since simple
formulas are available to compute the average waiting time, the average queue length, etc.
[7] It could also be implemented without ContactCenters, as shown in the Examples user’s
guide of SSJ [8].

Arrivals follow an homogeneous Poisson process with rate λ, and customers are queued
if they cannot be served immediately. Abandonment is not allowed and service times are
i.i.d. exponential variables with mean 1/µ.

The system estimates the service level, the expected speed of answer, and the agents’
occupancy ratio. Let SG(s) be the number of served contacts having waited in queue for less
than an acceptable waiting time s, and let S be the total number of served contacts. Since
no abandonment occurs, this is equivalent to the number of arrivals. Let WS be the sum of
waiting times for served contacts. The service level is defined by

g0(s) =
E[SG(s)]

E[S]
. (1)

The speed of answer is defined by

wX =
E[WS]

E[S]
. (2)

The agents’ occupancy ratio is defined by

o =
E
[∫ tP

0
NB(t) dt

]
E
[∫ tP

0
(N(t) +NG(t))dt

] . (3)

tP corresponds to the time at which the contact center closes. NG(t) gives the number of
ghost agents, i.e., agents that must exit the system after finishing their current service. Since
ghost agents appear only when N(t) changes with time, NG(t) = 0 for this model. To get
an estimate of each performance measure of interest, we perform n independent replications
of a simulation on a finite horizon.

Most elements of the contact center simulator are provided by the ContactCenters library
as independent components. The modeler’s task consists of assembling these elements and
providing some glue code for statistical collecting, routing and stopping conditions, some
elements being optional. For this example, whose code is presented on Listing 1, simpler
programs can be written, especially if the library is not used. However, we prefer to demon-
strate how to balance simplicity and scalability in a contact center simulation.

The first part of the program defines and constructs various objects while the second
part contains the simulation logic. The main method, at the end of the file, constructs a

March 4, 2014 1.1 M/M/c queue 5

M/M/c queue simulator, triggers a simulation by calling simulate, and prints a statistical
report using printStatistics. A Chrono is used to determine the CPU time taken by the
simulation. The simulate method calls simulateOneDay n times to perform the replications
while simulateOneDay initializes the system, performs the simulation, and collects some
observations.

Listing 1: A M/M/c queue implemented with ContactCenters

import umontreal.iro.lecuyer.contactcenters.contact.Contact;
import umontreal.iro.lecuyer.contactcenters.contact.ContactArrivalProcess;
import umontreal.iro.lecuyer.contactcenters.contact.ContactFactory;
import umontreal.iro.lecuyer.contactcenters.contact.PoissonArrivalProcess;
import umontreal.iro.lecuyer.contactcenters.queue.DequeueEvent;
import umontreal.iro.lecuyer.contactcenters.queue.StandardWaitingQueue;
import umontreal.iro.lecuyer.contactcenters.queue.WaitingQueue;
import umontreal.iro.lecuyer.contactcenters.router.ExitedContactListener;
import umontreal.iro.lecuyer.contactcenters.router.QueuePriorityRouter;
import umontreal.iro.lecuyer.contactcenters.router.Router;
import umontreal.iro.lecuyer.contactcenters.server.AgentGroup;
import umontreal.iro.lecuyer.contactcenters.server.EndServiceEvent;
import umontreal.iro.lecuyer.contactcenters.server.GroupVolumeStat;
import umontreal.iro.lecuyer.randvar.ExponentialGen;
import umontreal.iro.lecuyer.rng.MRG32k3a;
import umontreal.iro.lecuyer.simevents.Event;
import umontreal.iro.lecuyer.simevents.Sim;
import umontreal.iro.lecuyer.stat.FunctionOfMultipleMeansTally;
import umontreal.iro.lecuyer.stat.Tally;
import umontreal.iro.lecuyer.util.Chrono;
import umontreal.iro.lecuyer.util.RatioFunction;

public class MMC {
// Input data (times are in minutes)
static final double LAMBDA = 4.2; // Arrival rate
static final double MU = 0.5; // Service rate
static final double AWT = 20/60.0; // Acceptable waiting time
static final int NUMAGENTS = 12;
static final int[][] TYPETOGROUPMAP = { { 0 } };
static final int[][] GROUPTOTYPEMAP = { { 0 } };
static final double LEVEL = 0.95; // Level of conf. int.
static final double DAYLENGTH = 8.0*60.0; // Eight hours
static final int NUMDAYS = 1000;

// Contact center components
ContactArrivalProcess arrivProc;
AgentGroup agents;
WaitingQueue queue;
Router router;

6 1 M/M/C QUEUE AND VARIANTS March 4, 2014

// Service time generator
ExponentialGen sgen = new ExponentialGen (new MRG32k3a(), MU);

// Counters and probe used during replications
int numGoodSL, numServed;
double sumWaitingTimes;
GroupVolumeStat vstat;
double Nb, N;

// Collectors with one obs./rep.
Tally goodSL = new Tally ("Number of contacts in target");
FunctionOfMultipleMeansTally serviceLevel = new FunctionOfMultipleMeansTally

(new RatioFunction(), "Service level", 2),
occupancy = new FunctionOfMultipleMeansTally

(new RatioFunction(), "Occupancy ratio", 2),
speedOfAnswer = new FunctionOfMultipleMeansTally

(new RatioFunction(), "Speed of answer", 2);

MMC() {
arrivProc = new PoissonArrivalProcess

(new MyContactFactory(), LAMBDA, new MRG32k3a());
agents = new AgentGroup (NUMAGENTS);
queue = new StandardWaitingQueue();
router = new QueuePriorityRouter (TYPETOGROUPMAP, GROUPTOTYPEMAP);
arrivProc.addNewContactListener (router);
router.setAgentGroup (0, agents);
router.setWaitingQueue (0, queue);
router.addExitedContactListener (new MyContactMeasures());
vstat = new GroupVolumeStat (agents);

}

// Creates the new contacts
class MyContactFactory implements ContactFactory {

public Contact newInstance() {
final Contact contact = new Contact();
contact.setDefaultServiceTime (sgen.nextDouble());
return contact;

}
}

// Updates counters when a contact exits
class MyContactMeasures implements ExitedContactListener {

public void blocked (Router router, Contact contact, int bType) {}
public void dequeued (Router router, DequeueEvent ev) {}
public void served (Router router, EndServiceEvent ev) {

++numServed;

March 4, 2014 1.1 M/M/c queue 7

final double qt = ev.getContact().getTotalQueueTime();
if (qt < AWT) ++numGoodSL;
sumWaitingTimes += qt;

}
}

class EndSimEvent extends Event {
@Override
public void actions() { endSim(); }

}

void endSim() {
arrivProc.stop();
Nb = vstat.getStatNumBusyAgents().sum(); // Int. for N_b0(t)
N = vstat.getStatNumAgents().sum(); // Int. for N_0(t)

}

void simulateOneDay() {
Sim.init(); // Initialize clock and clear event list
new EndSimEvent().schedule (DAYLENGTH);
arrivProc.init(); agents.init(); queue.init();
numServed = numGoodSL = 0;
sumWaitingTimes = 0;
vstat.init();
arrivProc.start();
Sim.start(); // Simulation runs here
addObs();

}

void addObs() {
goodSL.add (numGoodSL);
serviceLevel.add (numGoodSL, numServed);
speedOfAnswer.add (sumWaitingTimes, numServed);
occupancy.add (Nb, N);

}

void simulate (int days) {
goodSL.init();
serviceLevel.init();
occupancy.init();
for (int r = 0; r < days; r++) simulateOneDay();

}

public void printStatistics() {
System.out.println (goodSL.reportAndCIStudent (LEVEL, 3));
System.out.println (serviceLevel.reportAndCIDelta (LEVEL, 3));
System.out.println (speedOfAnswer.reportAndCIDelta (LEVEL, 3));

8 1 M/M/C QUEUE AND VARIANTS March 4, 2014

System.out.println (occupancy.reportAndCIDelta (LEVEL, 3));
}

public static void main (String[] args) {
final MMC s = new MMC();
final Chrono timer = new Chrono();
s.simulate (NUMDAYS);
System.out.println ("CPU time: " + timer.format());
s.printStatistics();

}
}

At the beginning of the program, the necessary classes are retrieved using import state-
ments, and a class named MMC and representing the simulator is declared. Because variants
of this example will be presented later as subclasses of MMC, some indirections that might
appear unnecessary will be used in the program.

In this example and most of the following ones, hard-coded constants are used as input
data for simplicity. In general, it is strongly recommended to use a parameter file, since
it allows modification of the parameters without recompiling the simulator. The package
umontreal.iro.lecuyer.xmlconfig provides facilities to support XML-based configuration
files. As with the underlying SSJ library, the simulation logic of ContactCenters makes no
assumption about the time unit, but input data should be defined consistently to avoid
confusion in the future. In our examples, unless specified otherwise, the time unit is the
minute. For example, the arrival rate specifies the expected number of contacts per minute.

The objects representing components of the contact center, such as the arrival process,
waiting queue, agent group, as well as the random variate generator for the service times can
be accessed through fields of the MMC class. Since the components themselves do not com-
pute any statistic, the simulator defines some counters and statistical collectors to estimate
the performance measures of interest. Counters are used during replications to compute
observations while statistical collectors are used at the end to collect them. We use integers
for counting events rather than statistical probes to clearly show the difference between the
two steps during the simulation. vstat is used to compute the integrals of the number of
agents over simulation time, for estimating the occupancy ratio. Each agent group volume
statistical object contains accumulates observing the total number of agents, the number of
busy agents, etc. for a single agent group. For each counter, a statistical probe is defined to
collect the observations computed during each replication.

When instantiating the MMC class, the constructor, shown after the declaration of fields,
creates the contact center objects and connects them together. Inbound contacts are simu-
lated using an arrival process which needs to determine how to construct contacts. Contacts
are represented by Contact instances which are constructed by a factory, i.e., a mechanism
permitting the instantiation of objects from the Contact class, or any subclass. In contrast,
a constructor instantiates objects from a single class. A contact factory is defined by creating
a class implementing the ContactFactory interface. The newInstance method, specified by

March 4, 2014 1.1 M/M/c queue 9

this interface, must construct and return an initialized instance of Contact (or any subclass
of Contact). In this example, MyContactFactory creates the contacts and sets their service
times.

Arrival processes of different types could use the same contact factory, but in this example,
a single Poisson process is needed. In addition to the contact factory, the process requires a
random stream for generating the exponential inter-arrival times, and an arrival rate.

Constructing the agent group only requires the number of agents in it. This object
manages the service of contacts and keeps counters for the number of free and busy agents.
All agents of a group are usually considered identical, simplifying the routing significantly.
The agent group automatically schedules events to manage service termination if service
times are associated with handled contacts.

The constructed standard waiting queue orders waiting contacts based on their arrival
times only, implementing First In First Out (FIFO) or Last In First Out (LIFO) disciplines;
the choice between FIFO and LIFO is made by the routing policy.

The router uses a queue priority policy, but in fact, any routing policy will act identically
here since there is a single call type and a single agent group. The only important parameters
are the type-to-group and group-to-type maps which are always the same for a single-type
and single-group contact center. To maximize the flexibility of the library, no assumption
is made about the connections between components. Arrival processes, agent groups, and
waiting queues must be manually connected to the router.

The components of the library communicate using the observers design pattern [4]. In
that setting, an observable object, also called a broadcaster, is capable of transmitting some
information to a list of registered listeners known at runtime only. A listener, also called
an observer, is an object receiving information broadcast by an observable object. In Java,
listeners are required to implement a particular interface the broadcaster uses to transmit
the information through specified methods. Each component of the library defines its own
listener interface to avoid the necessity of type casting by observers.

Each time a new contact is created by the factory and returned to the arrival process, it
is broadcast to a list of registered new-contact listeners. Such a listener can correspond to
any object implementing the NewContactListener interface, which specifies a newContact

method receiving Contact objects. For the contacts to be processed, the list bound to the
arrival process being used must include a reference to the router, which can listen to new
contacts.

While it does not interact with the arrival process, the router affects the waiting queue
by inserting new contacts when they cannot be served immediately, or by pulling ones when
agents are free. It also affects agent groups by sending them contacts to serve. The linking
mechanism is different from arrival processes to emphasize the two types of relationships.

The simulator also needs to be notified about contacts leaving the router through an
exited-contact listener. Such a listener object implements an interface called ExitedContact-

Listener specifying methods to receive exited contacts. Each method transmits all available
information, permitting the simulator to count events under complex conditions.

10 1 M/M/C QUEUE AND VARIANTS March 4, 2014

These connections can easily be changed during the life cycle of the simulator: new
listeners can be added, and old ones can be removed. It is even possible, with some care,
to completely replace the router at runtime, allowing different routing policies to be tested
without recreating the entire system.

The simulate method initializes the statistical collectors and performs n independent
replications by using simulateOneDay. The latter method may be considered as the heart
of the program. First, the simulation clock is initialized, and the event list is cleared by
Sim.init. An event for the end of the day is then scheduled, and all the contact center’s
components are reset, avoiding any side effect from previous replications. This initialization
disables the arrival process. Then, after the event counters are reset to 0, the arrival process
is started, scheduling the first contact. The simulation can now be started using Sim.start.
This instructs SSJ to start executing events, until the event list is empty.

When the first arrival occurs, the Poisson arrival process calls the newInstance method
of MyContactFactory to get a new contact object. This method simply constructs the
appropriate object and generates a service time which is stored in the contact object to be
retrieved later by the agent group. After the new contact is returned, it is broadcast to the
router, and a new arrival is scheduled. The user only needs to provide the newInstance

method, the rest of the logic being implemented once in ContactArrivalProcess, and
inherited by PoissonArrivalProcess.

In its newContact method, the router sends the newly-constructed contact to an agent,
or adds it to the waiting queue if no agent is available. The way the agent or the waiting
queue are selected, called agent selection and queue selection, respectively, depends on the
algorithm implemented in the chosen subclass of Router. In this example, when a service
starts, a free agent becomes busy, and an event is scheduled to happen after the service time
elapses. By default, the service time is extracted from contacts, but this can be customized
in many ways if needed, as we will do in section 6. Since the default service time is infinite, it
is important to set a service time in the contact factory, or change the service time generator
of the agent group. If the contact is queued, the contact is added, with extra information,
to an internal linked list.

When a service ends, the router is notified, the contact exits the system, and it is broad-
cast to the served method of MyContactMeasures. This method receives all information
about the served contact through the end-service event object. In this example, after a
service is counted, the waiting time of the contact must be obtained: the served Contact

is extracted from the end-service event, and the total queue time is queried. Note that
this obtains the cumulative queue time, i.e., the time spent by the contact in all waiting
queues. In simple systems, this is the same as the waiting time in the last queue since the
contact waits only once. Other information such as the starting time of the service, and
the reason why the service ended can be extracted from the event. The two other methods
of MyContactMeasures contain no code, because no contact is blocked or abandons in this
model.

When an agent became free due to the service termination, the router tries to perform
contact selection, i.e., it scans waiting queues to assign a waiting contact to the free agent.
Without contact selection, all queued contacts would wait forever. In this example, the

March 4, 2014 1.2 Supporting abandonment 11

router simply takes the first contact in the waiting queue, implementing a FIFO discipline.
If the queue is empty at pull time, the affected agent remains free until the following arrival.

When the simulation clock reaches DAYLENGTH, the EndSimEvent is executed, which calls
endSim to disable the arrival process. This cancels the last scheduled arrival, breaking the
life cycle of the process. If the arrival process is never disabled, the simulation will run
forever, and results will never be printed. endSim also stores the integrals of N(t) and
NB(t) for the occupancy ratio to exclude the wrap-up period following the closing time.
No more arrival occurs, but in-progress and queued contacts are served before the end of
the replication. After all these services are over, Sim.start ends and the simulateOneDay

method continues its execution. Note that in a further example, the endSim method will be
overridden to change how the simulation is terminated.

It is important not to end the simulation abruptly using Sim.stop, otherwise the system
will end non-empty: queues will contain contacts, and some agents will still be serving
customers. If the simulation is stopped abruptly, the program needs to take this non-empty
state into account during statistical collecting.

The addObs method is called to add observations to statistical collectors. In further
examples, this will be overridden to change how observations are collected. The number
of served contacts as well as the service level for the replication are added into tallies. A
tally for functions of multiple means is used for the service level to get a ratio of averages
instead of an average of ratios. This estimates the long-term service level rather than the
performance measure during a single day. The integrals for NB(t) and N(t) are added to
tallies for estimating the occupancy ratio. As with the service level, we try to estimate a
long-term measure.

After n independent replications of this process, we have statistical results for the esti-
mated performance measures, including sample averages, sample variances, and Student-t
confidence intervals. For the ratios, confidence intervals are computed using the delta the-
orem [10]. The printStatistics method is used to show a statistical report similar to
Listing 2.

1.2 Supporting abandonment

To support abandonment, some modifications to the previous program are necessary: pa-
tience times must be generated and associated with contacts, and the contacts having aban-
doned need to be counted. Even if the abandonment count is not required, the service level
computation must be altered as follows to take this new aspect into account.

Let LB(s) be the number of contacts having abandoned after a waiting time greater than
s, and let L be the total number of abandoned contacts. The new service level estimator is
defined by

g1(s) =
E[SG(s)]

E[S + LB(s)]
. (4)

If abandonment is disabled, the new estimator reverts to (1).

12 1 M/M/C QUEUE AND VARIANTS March 4, 2014

Listing 2: Results of the program MMC

CPU time: 0:0:1.56
REPORT on Tally stat. collector ==> Number of contacts in target

num. obs. min max average standard dev.
1000 1588.000 1964.000 1816.158 57.043

95.0% confidence interval for mean (student): (1812.618, 1819.698)

REPORT on Tally stat. collector ==> Service level
func. of averages standard dev. num. obs.

0.902 0.033 1000
95.0% confidence interval for function of means: (0.900, 0.904)

REPORT on Tally stat. collector ==> Speed of answer
func. of averages standard dev. num. obs.

0.099 0.045 1000
95.0% confidence interval for function of means: (0.097, 0.102)

REPORT on Tally stat. collector ==> Occupancy ratio
func. of averages standard dev. num. obs.

0.695 0.023 1000
95.0% confidence interval for function of means: (0.694, 0.697)

Listing 3 presents an extension of the previous program supporting abandonment. Instead
of rewriting the whole simulator, we inherit from it and change its behavior by overriding
appropriate methods.

Listing 3: An extension of the M/M/c model supporting abandonment

import umontreal.iro.lecuyer.contactcenters.contact.Contact;
import umontreal.iro.lecuyer.contactcenters.queue.DequeueEvent;
import umontreal.iro.lecuyer.contactcenters.router.ExitedContactListener;
import umontreal.iro.lecuyer.contactcenters.router.Router;
import umontreal.iro.lecuyer.contactcenters.server.EndServiceEvent;
import umontreal.iro.lecuyer.randvar.ExponentialGen;
import umontreal.iro.lecuyer.rng.MRG32k3a;
import umontreal.iro.lecuyer.stat.FunctionOfMultipleMeansTally;
import umontreal.iro.lecuyer.stat.Tally;
import umontreal.iro.lecuyer.util.Chrono;
import umontreal.iro.lecuyer.util.RatioFunction;

public class MMCAb extends MMC {
static final double NU = 1.0; // 1/Mean patience time

March 4, 2014 1.2 Supporting abandonment 13

ExponentialGen pgen = new ExponentialGen (new MRG32k3a(), NU);
int numAbandoned;
int numAbandonedAfterAWT;
Tally abandoned = new Tally ("Number of contacts having abandoned");
FunctionOfMultipleMeansTally serviceLevel = new FunctionOfMultipleMeansTally

(new RatioFunction(), "Service level with abandonment", 2);

MMCAb() {
super();
arrivProc.setContactFactory (new MyContactFactoryAb());
router.addExitedContactListener (new MyContactMeasuresAb());

}

class MyContactFactoryAb extends MyContactFactory {
@Override
public Contact newInstance() {

final Contact contact = super.newInstance();
contact.setDefaultPatienceTime (pgen.nextDouble());
return contact;

}
}

class MyContactMeasuresAb implements ExitedContactListener {
public void blocked (Router router, Contact contact, int bType) {}
public void dequeued (Router router, DequeueEvent ev) {

++numAbandoned;
if (ev.getContact().getTotalQueueTime() >= AWT) ++numAbandonedAfterAWT;

}
public void served (Router router, EndServiceEvent ev) {}

}

@Override
void simulateOneDay() {

numAbandoned = numAbandonedAfterAWT = 0;
super.simulateOneDay();

}

@Override
void addObs() {

super.addObs();
abandoned.add (numAbandoned);
serviceLevel.add (numGoodSL, numServed + numAbandonedAfterAWT);

}

@Override
void simulate (int days) {

abandoned.init();

14 1 M/M/C QUEUE AND VARIANTS March 4, 2014

serviceLevel.init();
super.simulate (days);

}

@Override
public void printStatistics() {

System.out.println (abandoned.reportAndCIStudent (LEVEL, 3));
super.printStatistics();
System.out.println (serviceLevel.reportAndCIDelta (LEVEL, 3));

}

public static void main (String[] args) {
final MMCAb s = new MMCAb();
final Chrono timer = new Chrono();
s.simulate (NUMDAYS);
System.out.println ("CPU time: " + timer.format());
s.printStatistics();

}
}

Patience times are i.i.d. exponential variables with mean 1/ν, and are generated the same
way as service times. To support this aspect, new fields containing the abandonment rate
ν as well as a random variate generator for the patience time are defined. Then, a new
counter and a new statistical collector are declared for the number of abandoned contacts.
A statistical probe is also defined for the new service level estimator. The logic of the main
method is the same as for the previous example, except it constructs an instance of MMCAb

rather than MMC.

The constructor first calls the superclass’ constructor to create the contact center, and
alters the constructed system in the following ways. When contacts are created by the
factory, they must now be assigned a patience time. To achieve this result, the factory
bound to the arrival process is replaced by a new one called MyContactFactoryAb. A second
exited-contact listener is also connected to the router in order to count abandoned contacts.
The old listener, registered by the superclass, as well as the new one we have just created,
will both be called by the router when broadcasting an exited contact. This way, is is not
necessary to completely rewrite the event-processing code.

The simulate method needs to be overridden to initialize the added collectors. simulate-
OneDay is also overridden to reset the new counter at the beginning of each replication. All
the code in the superclass is reused, and overridden methods are called instead of old ones.

MyContactFactoryAb extends the previous contact factory to set the patience time of
newly-constructed contacts. The newInstance method of the superclass is first used to
create the contact, then a patience time is set in a way similar to the service time.

Abandonment is managed automatically by the waiting queue as follows. Rather than
contact instances, the queue stores objects representing simulation events happening at the

March 4, 2014 1.2 Supporting abandonment 15

time of automatic removal, e.g., abandonment, disconnection, transfer to another queue,
etc. In the previous subsection, these dequeue events were never scheduled, because patience
times default to infinity if unspecified. The patience time, more generally the maximal queue
time, is by default extracted from the contacts, the same way as the service time.

Listing 4: Results of the program MMCAb

CPU time: 0:0:1.75
REPORT on Tally stat. collector ==> Number of contacts having abandoned

num. obs. min max average standard dev.
1000 20.000 124.000 58.609 15.295

95.0% confidence interval for mean (student): (57.660, 59.558)

REPORT on Tally stat. collector ==> Number of contacts in target
num. obs. min max average standard dev.

1000 1785.000 2028.000 1906.008 35.828
95.0% confidence interval for mean (student): (1903.785, 1908.231)

REPORT on Tally stat. collector ==> Service level
func. of averages standard dev. num. obs.

0.975 7.9E-3 1000
95.0% confidence interval for function of means: (0.974, 0.975)

REPORT on Tally stat. collector ==> Speed of answer
func. of averages standard dev. num. obs.

0.024 6.0E-3 1000
95.0% confidence interval for function of means: (0.023, 0.024)

REPORT on Tally stat. collector ==> Occupancy ratio
func. of averages standard dev. num. obs.

0.675 0.019 1000
95.0% confidence interval for function of means: (0.674, 0.677)

REPORT on Tally stat. collector ==> Service level with abandonment
func. of averages standard dev. num. obs.

0.968 9.9E-3 1000
95.0% confidence interval for function of means: (0.968, 0.969)

The MyContactMeasuresAb class defines the dequeued method to count abandoned con-
tacts. In a way similar to served in MyContactMeasures, this method takes an object
representing a dequeue event to receive maximal information. An abandoned contact is
counted, and if the waiting time is greater than or equal to s, a contact having abandoned
after the acceptable waiting time is added. In contrast with the contact factory, MyContact-
MeasuresAb has no inheritance relationship with its counterpart in MMC. Both inner classes

16 1 M/M/C QUEUE AND VARIANTS March 4, 2014

are independent observers performing complementary tasks.

The addObs method is overridden to collect the number of abandoned contacts and to
compute service level differently. The superclass’ method is called and adds observations in
the old and inherited collectors.

Finally, printStatistics is overridden to take the number of abandoned contacts into
account. Listing 4 presents the results of the extended program. Abandonment increases
the service level, because it reduces the size of the waiting queue and allows customers to
be served more quickly. The occupancy ratio of agents is reduced, because some customers
served in the M/M/c system abandon.

1.3 Clearing the queue at the end of the day

If the contact center was very busy, a big queue could build up during the day. This
would result in agents working for a long time after their shifts. To make the model more
realistic without supporting abandonment, when the contact center closes, queued contacts
may be disconnected instead of being served. Agents still terminate their services, but
the queued contacts are not served. To implement this, at the end of the simulation, the
queue.clear method is called to remove all contacts. This method accepts a dequeue type
giving the reason why contacts are removed. The dequeue type 0 is reserved for contacts to
be served while dequeue type 1 is used for abandoned contacts. In this example, we clear
the queue with an indicator different from 1 to permit statistical collectors to distinguish
abandonment from disconnection. Listing 5 presents a second extension of theM/M/c queue,
with support for disconnection. This new aspect has an impact on the original service level
estimator. We therefore define a new collector for a corrected estimator including the number
of disconnected contacts in its denominator.

Listing 5: An extension of the M/M/c model supporting disconnections

import umontreal.iro.lecuyer.contactcenters.contact.Contact;
import umontreal.iro.lecuyer.contactcenters.queue.DequeueEvent;
import umontreal.iro.lecuyer.contactcenters.router.ExitedContactListener;
import umontreal.iro.lecuyer.contactcenters.router.Router;
import umontreal.iro.lecuyer.contactcenters.server.EndServiceEvent;
import umontreal.iro.lecuyer.stat.FunctionOfMultipleMeansTally;
import umontreal.iro.lecuyer.stat.Tally;
import umontreal.iro.lecuyer.util.Chrono;
import umontreal.iro.lecuyer.util.RatioFunction;

public class MMCClrQ extends MMC {
int numDisconnected;
Tally disconnected = new Tally ("Number of disconnected contacts");
FunctionOfMultipleMeansTally serviceLevel = new FunctionOfMultipleMeansTally

(new RatioFunction(), "Service level with disconnected contacts", 2);

March 4, 2014 1.3 Clearing the queue at the end of the day 17

MMCClrQ() {
super();
router.addExitedContactListener (new MyContactMeasuresClr());

}

class MyContactMeasuresClr implements ExitedContactListener {
public void blocked (Router router, Contact contact, int bType) {}
public void dequeued (Router router, DequeueEvent ev) {

++numDisconnected;
}
public void served (Router router, EndServiceEvent ev) {}

}

@Override
void endSim() { super.endSim(); queue.clear (5); }

@Override
void simulateOneDay() {

numDisconnected = 0;
super.simulateOneDay();

}

@Override
void addObs() {

super.addObs();
disconnected.add (numDisconnected);
serviceLevel.add (numGoodSL, numServed + numDisconnected);

}

@Override
void simulate (int days) {

disconnected.init();
serviceLevel.init();
super.simulate (days);

}

@Override
public void printStatistics() {

System.out.println (disconnected.reportAndCIStudent (LEVEL, 3));
super.printStatistics();
System.out.println (serviceLevel.reportAndCIDelta (LEVEL, 3));

}

public static void main (String[] args) {
final MMCClrQ s = new MMCClrQ();
final Chrono timer = new Chrono();
s.simulate (NUMDAYS);

18 1 M/M/C QUEUE AND VARIANTS March 4, 2014

System.out.println ("CPU time: " + timer.format());
s.printStatistics();

}
}

Listing 6: Results of the program MMCClrQ

CPU time: 0:0:1.58
REPORT on Tally stat. collector ==> Number of disconnected contacts

num. obs. min max average standard dev.
1000 0.000 20.000 0.433 1.688

95.0% confidence interval for mean (student): (0.328, 0.538)

REPORT on Tally stat. collector ==> Number of contacts in target
num. obs. min max average standard dev.

1000 1588.000 1964.000 1816.112 57.042
95.0% confidence interval for mean (student): (1812.572, 1819.652)

REPORT on Tally stat. collector ==> Service level
func. of averages standard dev. num. obs.

0.902 0.033 1000
95.0% confidence interval for function of means: (0.900, 0.904)

REPORT on Tally stat. collector ==> Speed of answer
func. of averages standard dev. num. obs.

0.099 0.045 1000
95.0% confidence interval for function of means: (0.096, 0.102)

REPORT on Tally stat. collector ==> Occupancy ratio
func. of averages standard dev. num. obs.

0.695 0.023 1000
95.0% confidence interval for function of means: (0.694, 0.697)

REPORT on Tally stat. collector ==> Service level with disconnected contacts
func. of averages standard dev. num. obs.

0.902 0.033 1000
95.0% confidence interval for function of means: (0.900, 0.904)

As it was made for abandonment in the previous example, the base M/M/c program
is extended to support disconnection. This time, a new contact factory is not needed. As
with the previous example, a second observer is connected to the router to count additional
events. The exited-contact listener simply counts a disconnection when a contact leaves
the queue. However, if abandonment was additionally supported, it would be important to

March 4, 2014 1.4 Limiting the queue capacity 19

adapt the exited-contact listener to distinguish abandoned and disconnected contacts. The
endSim method is overridden to clear the waiting queue.

Listing 6 presents statistical result of this program. Clearing the waiting queue does not
have a great impact on the performance of the contact center, because the queue at the end
of the day is not too large.

1.4 Limiting the queue capacity

The capacity of a real system is never infinite. For example, call centers own a certain
number of phone lines, and a caller arriving at a time when all lines are busy cannot be
served or wait in queue; it is blocked by the system. To support this aspect, the Router

class defines the setTotalQueueCapacity method to limit the number of queued contacts.
Blocked contacts are notified to the blocked method of registered exited-contact listeners
and can be counted too. With this mechanism, a limitation can be enforced on the capacity
over all waiting queues only. In section 4, we will see a more general way of limiting the
capacity of a contact center, by using trunk groups.

Listing 7 presents an extension of the M/M/c basic model with limited queue capacity.
The program is similar to examples in previous subsections: we extend the MMC class to alter
the contact center and add new statistical counters. The estimator of the service level is
also modified to add the number of blocked contacts in its denominator. This time, the
blocked method of the exited-contact listener is defined and simply increments the counter
for the number of blocked contacts. The bType indicator may be useful to get the reason of
blocking.

Listing 7: An extension of the M/M/c model with limited queue capacity

import umontreal.iro.lecuyer.contactcenters.contact.Contact;
import umontreal.iro.lecuyer.contactcenters.queue.DequeueEvent;
import umontreal.iro.lecuyer.contactcenters.router.ExitedContactListener;
import umontreal.iro.lecuyer.contactcenters.router.Router;
import umontreal.iro.lecuyer.contactcenters.server.EndServiceEvent;
import umontreal.iro.lecuyer.stat.FunctionOfMultipleMeansTally;
import umontreal.iro.lecuyer.stat.Tally;
import umontreal.iro.lecuyer.util.Chrono;
import umontreal.iro.lecuyer.util.RatioFunction;

public class MMCBlocked extends MMC {
static final int QUEUECAPACITY = 5;
int numBlocked;
Tally blocked = new Tally ("Number of blocked contacts");
FunctionOfMultipleMeansTally serviceLevel = new FunctionOfMultipleMeansTally

(new RatioFunction(), "Service level with blocked contacts", 2);

MMCBlocked() {

20 1 M/M/C QUEUE AND VARIANTS March 4, 2014

super();
router.addExitedContactListener (new MyContactMeasuresBlocked());
router.setTotalQueueCapacity (QUEUECAPACITY);

}

class MyContactMeasuresBlocked implements ExitedContactListener {
public void blocked (Router router, Contact contact, int bType) {

++numBlocked; }
public void dequeued (Router router, DequeueEvent ev) {}
public void served (Router router, EndServiceEvent ev) {}

}

@Override
void simulateOneDay() {

numBlocked = 0;
super.simulateOneDay();

}

@Override
void addObs() {

super.addObs();
blocked.add (numBlocked);
serviceLevel.add (numGoodSL, numBlocked + numServed);

}

@Override
void simulate (int days) {

blocked.init();
serviceLevel.init();
super.simulate (days);

}

@Override
public void printStatistics() {

System.out.println (blocked.reportAndCIStudent (LEVEL, 3));
super.printStatistics();
System.out.println (serviceLevel.reportAndCIDelta (LEVEL, 3));

}

public static void main (String[] args) {
final MMCBlocked s = new MMCBlocked();
final Chrono timer = new Chrono();
s.simulate (NUMDAYS);
System.out.println ("CPU time: " + timer.format());
s.printStatistics();

}
}

March 4, 2014 1.5 Preparing for parallel simulations 21

Listing 8 displays the statistical results of the new program. Limiting the capacity has
an effect similar to abandonment by limiting the number of contacts to serve.

Listing 8: Results of the program MMCBlocked

CPU time: 0:0:1.55
REPORT on Tally stat. collector ==> Number of blocked contacts

num. obs. min max average standard dev.
1000 0.000 62.000 18.655 9.831

95.0% confidence interval for mean (student): (18.045, 19.265)

REPORT on Tally stat. collector ==> Number of contacts in target
num. obs. min max average standard dev.

1000 1718.000 1978.000 1854.284 42.176
95.0% confidence interval for mean (student): (1851.667, 1856.901)

REPORT on Tally stat. collector ==> Service level
func. of averages standard dev. num. obs.

0.929 0.019 1000
95.0% confidence interval for function of means: (0.928, 0.930)

REPORT on Tally stat. collector ==> Speed of answer
func. of averages standard dev. num. obs.

0.060 0.016 1000
95.0% confidence interval for function of means: (0.059, 0.061)

REPORT on Tally stat. collector ==> Occupancy ratio
func. of averages standard dev. num. obs.

0.689 0.021 1000
95.0% confidence interval for function of means: (0.688, 0.690)

REPORT on Tally stat. collector ==> Service level with blocked contacts
func. of averages standard dev. num. obs.

0.920 0.022 1000
95.0% confidence interval for function of means: (0.919, 0.922)

1.5 Preparing for parallel simulations

As mentioned in the overview, most examples of this guide use the Sim static class for
simplicity. But if several instances of a simulator are needed, with one instance assigned
to one thread, each call to static methods in the Sim class must be replaced with a call to
methods in an instance of Simulator. The program in Listing 9 is an adaptation of Listing 1
showing how to do this.

22 1 M/M/C QUEUE AND VARIANTS March 4, 2014

Listing 9: An extension of the M/M/c model using Simulator

import umontreal.iro.lecuyer.contactcenters.contact.Contact;
import umontreal.iro.lecuyer.contactcenters.contact.ContactArrivalProcess;
import umontreal.iro.lecuyer.contactcenters.contact.ContactFactory;
import umontreal.iro.lecuyer.contactcenters.contact.PoissonArrivalProcess;
import umontreal.iro.lecuyer.contactcenters.queue.DequeueEvent;
import umontreal.iro.lecuyer.contactcenters.queue.StandardWaitingQueue;
import umontreal.iro.lecuyer.contactcenters.queue.WaitingQueue;
import umontreal.iro.lecuyer.contactcenters.router.ExitedContactListener;
import umontreal.iro.lecuyer.contactcenters.router.QueuePriorityRouter;
import umontreal.iro.lecuyer.contactcenters.router.Router;
import umontreal.iro.lecuyer.contactcenters.server.AgentGroup;
import umontreal.iro.lecuyer.contactcenters.server.EndServiceEvent;
import umontreal.iro.lecuyer.contactcenters.server.GroupVolumeStat;
import umontreal.iro.lecuyer.randvar.ExponentialGen;
import umontreal.iro.lecuyer.rng.MRG32k3a;
import umontreal.iro.lecuyer.simevents.Event;
import umontreal.iro.lecuyer.simevents.Simulator;
import umontreal.iro.lecuyer.simevents.UnusableSimulator;
import umontreal.iro.lecuyer.stat.FunctionOfMultipleMeansTally;
import umontreal.iro.lecuyer.stat.Tally;
import umontreal.iro.lecuyer.util.Chrono;
import umontreal.iro.lecuyer.util.RatioFunction;

public class MMCSim {
// Input data (times are in minutes)
static final double LAMBDA = 4.2; // Arrival rate
static final double MU = 0.5; // Service rate
static final double AWT = 20/60.0; // Acceptable waiting time
static final int NUMAGENTS = 12;
static final int[][] TYPETOGROUPMAP = { { 0 } };
static final int[][] GROUPTOTYPEMAP = { { 0 } };
static final double LEVEL = 0.95; // Level of conf. int.
static final double DAYLENGTH = 8.0*60.0; // Eight hours
static final int NUMDAYS = 1000;

// Contact center components
Simulator sim;
ContactArrivalProcess arrivProc;
AgentGroup agents;
WaitingQueue queue;
Router router;

// Service time generator
ExponentialGen sgen = new ExponentialGen (new MRG32k3a(), MU);

March 4, 2014 1.5 Preparing for parallel simulations 23

// Counters and probe used during replications
int numGoodSL, numServed;
double sumWaitingTimes;
GroupVolumeStat vstat;
double Nb, N;

// Collectors with one obs./rep.
Tally goodSL = new Tally ("Number of contacts in target");
FunctionOfMultipleMeansTally serviceLevel = new FunctionOfMultipleMeansTally

(new RatioFunction(), "Service level", 2),
occupancy = new FunctionOfMultipleMeansTally

(new RatioFunction(), "Occupancy ratio", 2),
speedOfAnswer = new FunctionOfMultipleMeansTally

(new RatioFunction(), "Speed of answer", 2);

MMCSim() {
sim = new Simulator();
arrivProc = new PoissonArrivalProcess

(sim, new MyContactFactory(), LAMBDA, new MRG32k3a());
agents = new AgentGroup (NUMAGENTS);
queue = new StandardWaitingQueue();
router = new QueuePriorityRouter (TYPETOGROUPMAP, GROUPTOTYPEMAP);
arrivProc.addNewContactListener (router);
router.setAgentGroup (0, agents);
router.setWaitingQueue (0, queue);
router.addExitedContactListener (new MyContactMeasures());
vstat = new GroupVolumeStat (sim, agents);

}

// Creates the new contacts
class MyContactFactory implements ContactFactory {

public Contact newInstance() {
final Contact contact = new Contact (sim);
contact.setDefaultServiceTime (sgen.nextDouble());
return contact;

}
}

// Updates counters when a contact exits
class MyContactMeasures implements ExitedContactListener {

public void blocked (Router router, Contact contact, int bType) {}
public void dequeued (Router router, DequeueEvent ev) {}
public void served (Router router, EndServiceEvent ev) {

++numServed;
final double qt = ev.getContact().getTotalQueueTime();
if (qt < AWT) ++numGoodSL;
sumWaitingTimes += qt;

24 1 M/M/C QUEUE AND VARIANTS March 4, 2014

}
}

class EndSimEvent extends Event {
public EndSimEvent (Simulator sim) { super (sim); }
@Override
public void actions() { endSim(); }

}

void endSim() {
arrivProc.stop();
Nb = vstat.getStatNumBusyAgents().sum(); // Int. for N_b0(t)
N = vstat.getStatNumAgents().sum(); // Int. for N_0(t)

}

void simulateOneDay() {
sim.init(); // Initialize clock and clear event list
new EndSimEvent (sim).schedule (DAYLENGTH);
arrivProc.init(); agents.init(); queue.init();
numServed = numGoodSL = 0;
sumWaitingTimes = 0;
vstat.init();
arrivProc.start();
sim.start(); // Simulation runs here
addObs();

}

void addObs() {
goodSL.add (numGoodSL);
serviceLevel.add (numGoodSL, numServed);
speedOfAnswer.add (sumWaitingTimes, numServed);
occupancy.add (Nb, N);

}

void simulate (int days) {
goodSL.init();
serviceLevel.init();
occupancy.init();
for (int r = 0; r < days; r++) simulateOneDay();

}

public void printStatistics() {
System.out.println (goodSL.reportAndCIStudent (LEVEL, 3));
System.out.println (serviceLevel.reportAndCIDelta (LEVEL, 3));
System.out.println (speedOfAnswer.reportAndCIDelta (LEVEL, 3));
System.out.println (occupancy.reportAndCIDelta (LEVEL, 3));

}

March 4, 2014 1.5 Preparing for parallel simulations 25

public static void main (String[] args) {
Simulator.defaultSimulator = new UnusableSimulator();
final MMCSim s = new MMCSim();
final Chrono timer = new Chrono();
s.simulate (NUMDAYS);
System.out.println ("CPU time: " + timer.format());
s.printStatistics();

}
}

First, a field of type Simulator named sim is added to the program. This simulator
encapsulates a simulation clock and event list specific to a MMCSim instance rather than
having a clock and a list shared among all instances. Calls to Sim.init and Sim.start in
the program are then replaced with calls to sim.init and sim.start.

The simulator must be passed to most objects of ContactCenters. This includes con-
tacts, arrival processes, statistical collectors for agent groups, and any user-defined event.
Consequently, we had to add a constructor to the EndSimEvent class in order to pass the
simulator, and change how arrivProc and vcalc are constructed. The MyContactFactory

class is also modified to pass the simulator to each new contact. Agent groups and waiting
queues do not need the simulator, because they use the one assigned to the contacts they
process.

If one forgets to give the simulator to an object that needs one, no compile or run
time errors occur by default. The object in question silently uses the default simulator,
which could result in unexecuted simulation events or other unpredictable errors. To help
in preventing this, we would like the program to crash as soon as possible if the default
simulator is used. This can be done by replacing the default simulator with a dummy
unusable object whose each method throws an UnsupportedOperationException; we do
this at the beginning of the main method in the program. If the program does not throw an
exception, one can then be relatively confident that the default simulator is never used.

26 2 A SIMPLIFIED CALL CENTER WITH MULTIPLE PERIODS March 4, 2014

2 A simplified call center with multiple periods

This example comes from the SSJ User’s Guide [8] and models a call center with a single
call type, a single agent group, but multiple periods. Each day, the center operates for P
hours. The arrival rate of calls and the number of agents answering them vary during the
day, but they are constant within each hour.

The simulation time T of a replication is divided into P + 2 periods. We assume that the
contact center is opened during P main periods. Main period p, for p = 1, . . . , P , corresponds
to time interval [tp−1, tp), where 0 ≤ t0 < · · · < tP . Since the simulation may start before
the contact center opens and stop after it closes, two extra periods are defined. During the
preliminary period [0, t0), the center is closed and no service occurs, but arrivals may start
during this period for a queue to build up. During wrap-up period [tP , T], no arrival occurs,
but in-progress services are terminated and queued contacts are processed.

Calls arrive following a Poisson process with piecewise-constant randomized arrival rate
Bλp during period p, where λp is constant and B is a random variable having the gamma
distribution with parameters (α0, α0). Thus, B has mean 1 and variance 1/α0, and it repre-
sents the busyness of the day. The day is more busy than usual when B > 1 and less busy
than usual when B < 1.

Calls that cannot be served immediately are put in a FIFO queue as in the previous
example, but callers can abandon. The i.i.d. patience times are generated as follows: with
probability ρ, the patience time is 0, i.e., the caller abandons if he cannot be served imme-
diately. With probability 1 − ρ, the patience time is exponential with mean 1/ν. Service
times are i.i.d. gamma random variables with shape parameter α, scale parameter β, and
mean α/β.

During main period p, Np agents are available to serve calls. If, at the end of period p,
the number of busy agents is larger than Np+1, ongoing calls are completed, but new calls are
not accepted until the number of busy agents is smaller than Np+1. During the preliminary
period, there is no agent whereas for the wrap-up period, NP+1 = NP .

We are interested in estimating the long-term expected waiting time among all calls, the
fraction of calls having waited less than s seconds, and the fraction of calls having abandoned.
The service level estimated by this program is defined as

g2(s) =
E[SG(s) + LG(s)]

E[A]
, (5)

which differs from (4). Let WL be the sum of waiting times for calls having abandoned. If
W = WS +WL is the total waiting time of all calls and A = X +Y is the number of arrivals,
the estimated performance measures are E[W]/E[A], E[SG(s)+LG(s)]/E[A], and E[L]/E[A].

The ContactCenters program presented on Listing 10 is simpler than the one presented
in SSJ’s User’s Guide, because many complex aspects are hidden in the library.

March 4, 2014 27

Listing 10: A call center with multiple periods

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.StringTokenizer;

import umontreal.iro.lecuyer.contactcenters.PeriodChangeEvent;
import umontreal.iro.lecuyer.contactcenters.contact.Contact;
import umontreal.iro.lecuyer.contactcenters.contact.ContactFactory;
import umontreal.iro.lecuyer.contactcenters.contact.PiecewiseConstantPoissonArrivalProcess;
import umontreal.iro.lecuyer.contactcenters.queue.DequeueEvent;
import umontreal.iro.lecuyer.contactcenters.queue.StandardWaitingQueue;
import umontreal.iro.lecuyer.contactcenters.queue.WaitingQueue;
import umontreal.iro.lecuyer.contactcenters.router.ExitedContactListener;
import umontreal.iro.lecuyer.contactcenters.router.QueuePriorityRouter;
import umontreal.iro.lecuyer.contactcenters.router.Router;
import umontreal.iro.lecuyer.contactcenters.server.AgentGroup;
import umontreal.iro.lecuyer.contactcenters.server.EndServiceEvent;

import umontreal.iro.lecuyer.probdist.ExponentialDist;
import umontreal.iro.lecuyer.probdist.GammaDist;
import umontreal.iro.lecuyer.randvar.GammaAcceptanceRejectionGen;
import umontreal.iro.lecuyer.randvar.GammaGen;
import umontreal.iro.lecuyer.rng.MRG32k3a;
import umontreal.iro.lecuyer.rng.RandomStream;
import umontreal.iro.lecuyer.simevents.Sim;
import umontreal.iro.lecuyer.stat.Tally;

public class CallCC {
static final double HOUR = 3600.0; // Time is in seconds.

// Data
// Arrival rates are per hour, service and patience times are in seconds.
int numDays; // Number of days to simulate.
double openingTime; // Opening time of the center (in hours).
int numPeriods; // Number of working periods (hours) in the day.
int[] numAgents; // Number of agents for each period.
double[] lambda; // Base arrival rate lambda_j for each j.
double alpha0; // Parameter of gamma distribution for W.
double p; // Probability that patience time is 0.
double nu; // Parameter of exponential for patience time.
double alpha, beta; // Parameters of gamma service time distribution.
double s; // Want stats on waiting times smaller than s.

// Variables
int nArrivals; // Number of arrivals today;
int nAbandon; // Number of abandonments during the day.

28 2 A SIMPLIFIED CALL CENTER WITH MULTIPLE PERIODS March 4, 2014

int nGoodSL; // Number of waiting times less than s today.
double nCallsExpected; // Expected number of calls per day.

PeriodChangeEvent pce; // Event marking new periods
PiecewiseConstantPoissonArrivalProcess arrivProc;
WaitingQueue waitingQueue = new StandardWaitingQueue();
AgentGroup agentGroup;
Router router;

RandomStream streamB = new MRG32k3a(); // For B.
RandomStream streamArr = new MRG32k3a(); // For arrivals.
RandomStream streamPatience = new MRG32k3a(); // For patience times.
RandomStream streamS = new MRG32k3a(); // For service times.
GammaGen genServ; // For service times; created in readData().
GammaGen bgen; // For busyness; created in readData().

Tally statArrivals = new Tally ("Number of arrivals per day");
Tally statWaits = new Tally ("Average waiting time per customer");
Tally statWaitsDay = new Tally ("Waiting times within a day");
Tally statGoodSL = new Tally ("Proportion of waiting times < s");
Tally statAbandon = new Tally ("Proportion of calls lost");

public CallCC (String fileName) throws IOException {
readData (fileName);
pce = new PeriodChangeEvent (HOUR, numPeriods + 2, openingTime*HOUR);
arrivProc = new PiecewiseConstantPoissonArrivalProcess

(pce, new MyContactFactory(), lambda, streamArr);
arrivProc.setNormalizing (true);
agentGroup = new AgentGroup (pce, numAgents);
router = new QueuePriorityRouter (new int[][] { { 0 } }, new int[][] { { 0 }});
arrivProc.addNewContactListener (router);
router.setWaitingQueue (0, waitingQueue);
router.setAgentGroup (0, agentGroup);
router.addExitedContactListener (new MyContactMeasures());

}

// Creates new contacts
class MyContactFactory implements ContactFactory {

public Contact newInstance() {
final Contact contact = new Contact();
contact.setDefaultServiceTime (genServ.nextDouble());
contact.setDefaultPatienceTime (generPatience());
return contact;

}
}

// Updates counters

March 4, 2014 29

class MyContactMeasures implements ExitedContactListener {
public void blocked (Router router, Contact contact, int bType) {}
public void dequeued (Router router, DequeueEvent ev) {

nArrivals++; nAbandon++;
final double qt = ev.getContact().getTotalQueueTime();
if (qt < s) nGoodSL++;
statWaitsDay.add (qt);

}
public void served (Router router, EndServiceEvent ev) {

nArrivals++;
final double qt = ev.getContact().getTotalQueueTime();
if (qt < s) nGoodSL++;
statWaitsDay.add (qt);

}
}

public double generPatience() {
if (agentGroup.getNumFreeAgents() > 0) return 0;
// Generates the patience time for a call.
final double u = streamPatience.nextDouble();
if (u <= p) return 0.0;
else return ExponentialDist.inverseF (nu, (1.0-u) / (1.0-p));

}

void readData (String fileName) throws IOException {
// Reads data and construct arrays.
final BufferedReader input = new BufferedReader (new FileReader (fileName));
StringTokenizer line = new StringTokenizer (input.readLine());
openingTime = Double.parseDouble (line.nextToken());
line = new StringTokenizer (input.readLine());
numPeriods = Integer.parseInt (line.nextToken());

numAgents = new int[numPeriods+2];
lambda = new double[numPeriods+2];
nCallsExpected = 0.0;
for (int j=0; j < numPeriods; j++) {

line = new StringTokenizer (input.readLine());
numAgents[j+1] = Integer.parseInt (line.nextToken());
lambda[j+1] = Double.parseDouble (line.nextToken());
nCallsExpected += lambda[j+1];

}
numAgents[numAgents.length - 1] = numAgents[numAgents.length - 2];
line = new StringTokenizer (input.readLine());
alpha0 = Double.parseDouble (line.nextToken());
line = new StringTokenizer (input.readLine());
p = Double.parseDouble (line.nextToken());
line = new StringTokenizer (input.readLine());

30 2 A SIMPLIFIED CALL CENTER WITH MULTIPLE PERIODS March 4, 2014

nu = Double.parseDouble (line.nextToken());
line = new StringTokenizer (input.readLine());
alpha = Double.parseDouble (line.nextToken());
line = new StringTokenizer (input.readLine());
beta = Double.parseDouble (line.nextToken());
// genServ can be created only after its parameters are known.
genServ = new GammaAcceptanceRejectionGen (streamS, alpha, beta);

// Faster than inversion.
bgen = new GammaGen (streamB, new GammaDist (alpha0, alpha0, 8));
line = new StringTokenizer (input.readLine());
s = Double.parseDouble (line.nextToken());
input.close();

}

void simulateOneDay() {
Sim.init();
statWaitsDay.init();
nArrivals = nAbandon = nGoodSL = 0;
pce.init();
arrivProc.init (bgen.nextDouble());
agentGroup.init();
waitingQueue.init();
arrivProc.start();
pce.start();
Sim.start(); // Here the simulation is running...
pce.stop();
statArrivals.add (nArrivals);
statAbandon.add (nAbandon / nCallsExpected);
statGoodSL.add (nGoodSL / nCallsExpected);
statWaits.add (statWaitsDay.sum() / nCallsExpected);

}

void simulate (int numDays) {
statArrivals.init(); statAbandon.init();
statGoodSL.init(); statWaits.init();
for (int r=1; r <= numDays; r++) simulateOneDay();

}

void printStatistics() {
System.out.println ("\n Num. calls expected = " + nCallsExpected +"\n");
System.out.println (statArrivals.reportAndCIStudent (0.9, 3));
System.out.println (statWaits.reportAndCIStudent (0.9, 3));
System.out.println (statGoodSL.reportAndCIStudent (0.9, 3));
System.out.println (statAbandon.reportAndCIStudent (0.9, 4));

}

static public void main (String[] args) throws IOException {

March 4, 2014 31

final CallCC cc = new CallCC ("CallCenter.dat");
cc.simulate (1000);
cc.printStatistics();

}
}

To be compatible with the SSJ example, this program reads the parameters from a file
with the same format. However, the used file format is sequential, thus inappropriate for
complex models: input errors cannot be detected, and the format cannot be extended easily.
A properties file, or an hierarchical format such as XML, is strongly recommended instead of
this format. Parameters are read by readData, which is the exact copy of the method found
in the SSJ example, and stored in fields used for constructing the system. In this program,
the main time unit is the second rather than the minute.

When reading λp and Np, E[A] =
∑P

p=1 λp is computed. The arrival rate for the two
extra periods is set to 0. After the data is read, the service times generator genServ as well
as the busyness generator bgen are constructed.

The period-change event is then created to divide the simulation horizon into P + 2
periods. This event is used to notify period-change listeners (some arrival processes, agent
groups, custom listeners, etc.) when a new period starts. It also provides methods to convert
simulation times to period indices and get the start and end times of a specific period. It
can manage fixed-sized main periods as well as variable-sized ones. Note that as any other
simulation event, the period-change event has an associated instance of the Simulator class.
If a Simulator instance is created as in section 1.5, it must therefore be passed explicitly to
the constructor when creating the period-change event.

The Poisson arrival process is constructed with a period-change event, a contact factory,
an array of P +2 arrival rates, and a random stream. This process automatically registers as
a period-change listener to update the arrival rate at the beginning of periods. The arrival
rates entered in the input file provide the number of calls for each hour while the Poisson
arrival process needs these rates to be relative to one second. Since the period duration
corresponds to one hour, i.e., HOUR seconds, input data could also be considered to provide
the arrival rate per period. We can then get the appropriate scaling by turning normalization
on for the arrival process. When normalization is enabled, the arrival process automatically
divides arrival rates by the period duration before using them. If it is turned off (the default),
arrival rates are not transformed.

The agent group is constructed with the period-change event and an array of P + 2
elements containing the number of agents for each period. As the arrival process, the agent
group is automatically registered as a period-change listener for the number of members to
be updated at the beginning of periods.

As in the previous section, the router is constructed to associate the single agent group
with the single waiting queue. The same connections as for the M/M/c queue are needed
between the components of the system.

32 2 A SIMPLIFIED CALL CENTER WITH MULTIPLE PERIODS March 4, 2014

The simulate method initializes the statistical collectors and calls simulateOneDay n
times to perform the replications. The latter method initializes the simulation clock and
all counters. It initializes the period-change event, which resets the current period to 0.
The arrival process is initialized with a new value of B, which is obtained using bgen. Even
though the arrival process is started before calling Sim.start, thus at time 0, the first arrival
occurs after t0 ≥ 0, because the arrival rate is 0 during the preliminary period. When the
period-change event is started, using pce.start, it is scheduled at time t0 to open the call
center. The Sim.start method is then called, which starts executing events.

After the simulation is finished, it is recommended to call the stop method of Period-

ChangeEvent for each period-change listener to be notified about the end of the simulation
which is not scheduled as a period-change event. Observations are added to the appropriate
tallies before simulateOneDay exits.

The contact factory is similar to the one in the previous section, except that the pa-
tience time is generated by generPatience. The exited-contact listener contains code in the
dequeued and served methods to count arrived and abandoned contacts if necessary. In
both cases, the waiting time of the contact is obtained and added to a tally, and a good call
is counted if the waiting time is smaller than s.

The contact center closes at the beginning of the wrap-up period, i.e., at time tP . In the
M/M/c queue, we had to manually disable the arrival process, because it was stationary. In
this example, because the arrival rate is set to 0 in the wrap-up period, the arrival process is
shut off automatically. New arrivals do not occur, but all queued contacts are served before
the simulation stops. If NP+1 was equal to 0 rather than Np, agents would terminate their
ongoing service, but no new service would start during the wrap-up period. As a result,
every contact still in queue during this period would have to abandon.

After all replications are terminated, the printStatistics method produces a report
similar to Listing 11.

March 4, 2014 33

Listing 11: Results of the program CallCC

Num. calls expected = 1660.0

REPORT on Tally stat. collector ==> Number of arrivals per day
num. obs. min max average standard dev.

1000 460.000 4206.000 1639.507 513.189
90.0% confidence interval for mean (student): (1612.789, 1666.225)

REPORT on Tally stat. collector ==> Average waiting time per customer
num. obs. min max average standard dev.

1000 0.000 570.757 11.834 34.078
90.0% confidence interval for mean (student): (10.060, 13.608)

REPORT on Tally stat. collector ==> Proportion of waiting times < s
num. obs. min max average standard dev.

1000 0.277 1.155 0.853 0.169
90.0% confidence interval for mean (student): (0.844, 0.862)

REPORT on Tally stat. collector ==> Proportion of calls lost
num. obs. min max average standard dev.

1000 0.0000 0.8440 0.0342 0.0608
90.0% confidence interval for mean (student): (0.0311, 0.0374)

34 3 A SIMPLE MULTI-SKILL CONTACT CENTER March 4, 2014

3 A simple multi-skill contact center

This section presents an example of a contact center with three contact types, two agent
groups, and three two-hours periods. Contacts arrive following a non-homogeneous Poisson
process with randomized arrival rate Bλk,p for contact type k during period p. As in the
previous section, B is a gamma busyness factor with parameters (α0, α0).

When a contact arrives, an agent is selected from a group depending on the contact type.
Contacts of type 0 can only be served by agents in group 0 while contacts of type 2 can only
be served by agents in group 1. Contacts of type 1 are served by agents in group 0, or in
group 1 if no agent is free in group 0. For contacts arriving during period p, service times are
i.i.d. exponential random variables with mean 1/µp. Agents in groups are not differentiated,
and the total number of agents can change from periods to periods.

A contact that cannot be served immediately is added to a waiting queue corresponding to
its type. After a patience time, if service has not started, the contact abandons. For contacts
arriving during period p, patience times are i.i.d. exponential variables with mean 1/νp.

We are interested in the overall service level defined by (4), and the occupancy ratio of
the first agent group defined by

oi =
E
[∫ tP

0
NB,i(t) dt

]
E
[∫ tP

0
(Ni(t) +NG,i(t))dt

] (6)

where NB,i(t) corresponds to the number of busy agents in group i, Ni(t) corresponds to the
total number of agents in group i, and NG,i(t) corresponds to the number of ghost agents in
group i, at time t. We also estimate E[SG,k,p(s)] for k = 0, . . . , K − 1 and p = 0, . . . , P − 1,
the number of contacts meeting the service level target.

3.1 Implementing the model

Listing 12 presents the code implementing this model.

Listing 12: A simple multi-skill contact center

import umontreal.iro.lecuyer.contactcenters.MultiPeriodGen;
import umontreal.iro.lecuyer.contactcenters.PeriodChangeEvent;
import umontreal.iro.lecuyer.contactcenters.contact.Contact;
import umontreal.iro.lecuyer.contactcenters.contact.ContactFactory;
import umontreal.iro.lecuyer.contactcenters.contact.PiecewiseConstantPoissonArrivalProcess;
import umontreal.iro.lecuyer.contactcenters.queue.DequeueEvent;
import umontreal.iro.lecuyer.contactcenters.queue.StandardWaitingQueue;
import umontreal.iro.lecuyer.contactcenters.queue.WaitingQueue;
import umontreal.iro.lecuyer.contactcenters.router.ExitedContactListener;
import umontreal.iro.lecuyer.contactcenters.router.Router;
import umontreal.iro.lecuyer.contactcenters.router.SingleFIFOQueueRouter;

March 4, 2014 3.1 Implementing the model 35

import umontreal.iro.lecuyer.contactcenters.server.AgentGroup;
import umontreal.iro.lecuyer.contactcenters.server.EndServiceEvent;
import umontreal.iro.lecuyer.contactcenters.server.GroupVolumeStat;
import umontreal.iro.lecuyer.probdist.GammaDist;
import umontreal.iro.lecuyer.randvar.GammaGen;
import umontreal.iro.lecuyer.randvar.RandomVariateGen;
import umontreal.iro.lecuyer.rng.MRG32k3a;
import umontreal.iro.lecuyer.simevents.Sim;
import umontreal.iro.lecuyer.stat.FunctionOfMultipleMeansTally;
import umontreal.iro.lecuyer.stat.Tally;
import umontreal.iro.lecuyer.stat.matrix.MatrixOfTallies;
import umontreal.iro.lecuyer.util.RatioFunction;

public class SimpleMSK {
// All times are in minutes
static final int K = 3; // Number of contact types
static final int I = 2; // Number of agent groups
static final int P = 3; // Number of periods
static final double PERIODDURATION = 120.0; // Two hours
// LAMBDA[k][p] gives the arrival rate for type k in period p
static final double[][] LAMBDA =

{ { 0, 4.2, 5.3, 3.2, 0 }, { 0, 5.1, 4.3, 4.8, 0 }, { 0, 6.3, 5.2, 4.8, 0 } };
// Gamma parameter for busyness
static final double ALPHA0 = 28.7;
// Service rate for each period
static final double[] MU = { 0.5, 0.5, 0.6, 0.4, 0.4 };
// Abandonment rate for each period
static final double[] NU = { 0.3, 0.3, 0.4, 0.2, 0.2 };
// Acceptable waiting time (20 sec.)
static final double AWT = 20/60.0;
// NUMAGENTS[i][p] gives the number of agents for group i in period p
static final int[][] NUMAGENTS = { { 0, 12, 18, 9, 9 }, { 0, 15, 20, 11, 11 } };
// Routing table, TYPETOGROUPMAP[k] and GROUPTOTYPEMAP[i] contain ordered lists
static final int[][] TYPETOGROUPMAP = { { 0 }, { 0, 1 }, { 1 } };
static final int[][] GROUPTOTYPEMAP = { { 1, 0 }, { 2, 1 } };
static final double LEVEL = 0.95; // Level for confidence intervals
static final int NUMDAYS = 1000; // Number of replications

PeriodChangeEvent pce; // Event marking the beginning of each period
PiecewiseConstantPoissonArrivalProcess[] arrivProc

= new PiecewiseConstantPoissonArrivalProcess[K];
AgentGroup[] groups = new AgentGroup[I];
WaitingQueue[] queues = new WaitingQueue[K];
Router router;
RandomVariateGen sgen; // Service times generator
RandomVariateGen pgen; // Patience times generator
RandomVariateGen bgen; // Busyness generator

36 3 A SIMPLE MULTI-SKILL CONTACT CENTER March 4, 2014

// Counters
int numGoodSL, numServed, numAbandoned, numAbandonedAfterAWT;
double[][] numGoodSLKP = new double[K][P];
GroupVolumeStat vstat; // Integral of the occupancy ratio

// statistical collectors
Tally served = new Tally ("Number of served contacts");
Tally abandoned = new Tally ("Number of contacts having abandoned");
MatrixOfTallies<Tally> goodSLKP = MatrixOfTallies.createWithTally (K, P);
FunctionOfMultipleMeansTally serviceLevel = new FunctionOfMultipleMeansTally

(new RatioFunction(), "Service level", 2);
FunctionOfMultipleMeansTally occupancy = new FunctionOfMultipleMeansTally

(new RatioFunction(), "Occupancy ratio", 2);

SimpleMSK() {
goodSLKP.setName ("Number of contacts meeting target service level");
for (int k = 0; k < K; k++)

for (int p = 0; p < P; p++) {
goodSLKP.get (k, p).setName ("Type " + k + ", period " + p);
goodSLKP.get (k, p).setConfidenceIntervalStudent();
goodSLKP.get (k, p).setConfidenceLevel (LEVEL);

}
// One dummy preliminary period, P main periods, and one wrap-up period,
// main periods start at time 0.
pce = new PeriodChangeEvent (PERIODDURATION, P + 2, 0);
for (int k = 0; k < K; k++) // For each contact type

arrivProc[k] = new PiecewiseConstantPoissonArrivalProcess
(pce, new MyContactFactory (k), LAMBDA[k], new MRG32k3a());

bgen = new GammaGen (new MRG32k3a(), new GammaDist (ALPHA0, ALPHA0));
for (int i = 0; i < I; i++) groups[i] = new AgentGroup (pce, NUMAGENTS[i]);
for (int q = 0; q < K; q++) queues[q] = new StandardWaitingQueue();
sgen = MultiPeriodGen.createExponential (pce, new MRG32k3a(), MU);
pgen = MultiPeriodGen.createExponential (pce, new MRG32k3a(), NU);
router = createRouter();
for (int k = 0; k < K; k++) arrivProc[k].addNewContactListener (router);
for (int i = 0; i < I; i++) router.setAgentGroup (i, groups[i]);
for (int q = 0; q < K; q++) router.setWaitingQueue (q, queues[q]);
router.addExitedContactListener (new MyContactMeasures());
vstat = new GroupVolumeStat (groups[0]);

}

Router createRouter() {
return new SingleFIFOQueueRouter (TYPETOGROUPMAP, GROUPTOTYPEMAP);

}

// Creates the new contacts

March 4, 2014 3.1 Implementing the model 37

class MyContactFactory implements ContactFactory {
int type;
MyContactFactory (int type) { this.type = type; }
public Contact newInstance() {

final Contact contact = new Contact (type);
contact.setDefaultServiceTime (sgen.nextDouble());
contact.setDefaultPatienceTime (pgen.nextDouble());
return contact;

}
}

// Updates counters when a contact exits
class MyContactMeasures implements ExitedContactListener {

public void blocked (Router router, Contact contact, int bType) {}
public void dequeued (Router router, DequeueEvent ev) {

++numAbandoned;
if (ev.getContact().getTotalQueueTime() >= AWT) ++numAbandonedAfterAWT;

}
public void served (Router router, EndServiceEvent ev) {

++numServed;
final Contact contact = ev.getContact();
if (contact.getTotalQueueTime() < AWT) {

++numGoodSL;
final int period = pce.getPeriod (contact.getArrivalTime()) - 1;
if (period >= 0 || period < P) ++numGoodSLKP[contact.getTypeId()][period];

}
}

}

void simulateOneDay() {
Sim.init(); pce.init();
final double b = bgen.nextDouble();
for (int k = 0; k < K; k++) arrivProc[k].init (b);
for (int i = 0; i < I; i++) groups[i].init();
for (int q = 0; q < K; q++) queues[q].init();
numGoodSL = numServed = numAbandoned = numAbandonedAfterAWT = 0; vstat.init();
for (int k = 0; k < K; k++) for (int p = 0; p < P; p++) numGoodSLKP[k][p] = 0;
for (int k = 0; k < K; k++) arrivProc[k].start();
pce.start(); Sim.start(); // Simulation runs here
pce.stop();
served.add (numServed); abandoned.add (numAbandoned); goodSLKP.add (numGoodSLKP);
serviceLevel.add (numGoodSL, numServed + numAbandonedAfterAWT);
final double Nb = vstat.getStatNumBusyAgents().sum(); // Integral of N_b0(t)
final double N = vstat.getStatNumAgents().sum(); // Integral of N_0(t)
final double Ng = vstat.getStatNumGhostAgents().sum(); // Integral of N_g0(t)
occupancy.add (Nb, N + Ng);

}

38 3 A SIMPLE MULTI-SKILL CONTACT CENTER March 4, 2014

void simulate (int n) {
served.init(); abandoned.init(); goodSLKP.init();
serviceLevel.init(); occupancy.init();
for (int r = 0; r < n; r++) simulateOneDay();

}

public void printStatistics() {
System.out.println (served.reportAndCIStudent (LEVEL, 3));
System.out.println (abandoned.reportAndCIStudent (LEVEL, 3));
System.out.println (serviceLevel.reportAndCIDelta (LEVEL, 3));
System.out.println (occupancy.reportAndCIDelta (LEVEL, 3));
for (int k = 0; k < K; k++)

System.out.println (goodSLKP.rowReport (k));
}

public static void main (String[] args) {
final SimpleMSK s = new SimpleMSK(); s.simulate (NUMDAYS); s.printStatistics();

}
}

As with previous examples, a class representing the simulator is defined. The main

method constructs the simulator, runs a simulation, and prints some statistics.

Fields are declared for contact center’s components, statistical counters, etc. For the
number of served and abandoned contacts, simple integers are sufficient, but a matrix is
needed to get the number of contacts meeting service level target, for each contact type and
main period.

As in previous examples, a constructor is responsible for creating all arrival processes,
agent groups, waiting queues, etc. The period-change event has a preliminary period of
length 0, two-hours main periods, and a wrap-up period with random length. For each
contact type, a factory and an arrival process are constructed. In contrast with the previous
examples, the factory requires the contact type identifier to be given as an argument. In
this example, all the arrival processes use the same period-change event to be notified when
a new period starts. Some arrival processes could of course use different period-change
events. Constructing the agent groups only requires the period-change event for Ni(t) to be
automatically updated, and an array containing the number of agents for each period.

Service and patience times are generated using random variate generators adapted for
multiple periods. Such generators use a period-change event to determine the current period
and select a period-specific generator to get random values. The generic way to construct
them is to create a random variate generator for each period and give the resulting array of
generators, with a period-change event, to the constructor of MultiPeriodGen. For some dis-
tributions, including exponential, helper methods such as createExponential are available
to construct the generators more conveniently.

March 4, 2014 3.1 Implementing the model 39

Because each waiting queue and agent group is functionally identical, it is the task of
the router to decide which contacts to send to which agents or queues, and from which
queues contacts must be removed. For the router to be constructed, a type-to-group map
and a group-to-type map are needed. The selected SingleFIFOQueueRouter class affects
how these structures are used. Here, because we model a multi-skill contact center, the data
structures for the routing policy become important and can greatly affect the performance
of the contact center. The choice of the subclass of Router affects how contacts interact
with the center.

The simulateOneDay method must initialize several arrays of elements, including arrival
processes, agent groups, and counters. The same value of B is used for every arrival process,
because the busyness is not specific to a contact type. As in the previous example, the
period-change event and the arrival processes are started before the simulation starts.

One factory object has been constructed for each arrival process, the only difference
between these objects being the value of their type field. This avoids the necessity of one
factory class for each contact type, which greatly improves scalability. The factory constructs
a contact of the appropriate type and generates a service and a patience times.

When a contact of type 0 arrives, the router takes the element 0 of the type-to-group
map, which corresponds to an ordered list containing the agent group 0 only. Let NF,i(t) be
the number of idle agents in group i available to serve contacts. If NF,0(t) > 0, the contact
is served immediately. Otherwise, it is added to waiting queue 0. Contacts of type 2 are
treated similarly. For contacts of type 1, the router obtains an ordered list containing 0
and 1. If NF,0(t) > 0, the contact is served immediately by an agent in group 0. Otherwise,
it overflows to the next agent group in the list: if NF,1(t) > 0, the contact is served by an
agent in group 1. Otherwise, it is added at the end of the queue 1.

When an agent within group 0 becomes free or is added, the router uses the group-to-type
map to obtain the ordered list {1, 0}. The chosen router selects the queued contact with the
longest waiting time rather than using the order induced by the list. If the waiting queues
accessible for agents in group 0 contain no contact, the agent remains free until new arrivals
occur. Similar routing happens for agents in group 1. This is equivalent to managing a single
FIFO queue by merging all per-type waiting queues, sorting contacts by increasing arrival
times, and removing the first contact the free agent can serve.

If QueuePriorityRouter was used as in previous examples, the algorithm for agent
selection would be the same, but waiting queues would be scanned sequentially rather than
considered as a single FIFO queue. For example, if an agent in group 0 became free, the
queue priority router would check for contacts in queue 0 only when queue 1 is empty.

Each contact exiting the system is notified to the registered exited-contact listener. The
blocked method does nothing because the capacity of the contact center is infinite; no
contact is blocked. When a contact leaves the queue without service, it is counted as having
abandoned. If its waiting time is greater than or equal to s, a contact having abandoned
after the acceptable waiting time is also counted. When a contact is served, a new service is
counted. If its waiting time is small enough, it is also counted as a contact meeting service
level target.

40 3 A SIMPLE MULTI-SKILL CONTACT CENTER March 4, 2014

For a contact to be counted in numGoodSLKP, the main period of its arrival must be
determined. Arrivals occur in periods 1, . . . , P , corresponding to main periods 0, . . . , P − 1.
If the main period index, i.e., the period index minus one, is negative or greater than or
equal to P , the arrival occurred during the preliminary or wrap-up periods, and the event
is ignored. When the arrival occurs during a main period, the appropriate element of the
matrix is incremented.

After the simulation stops, the stop method of PeriodChangeEvent is called, computed
observations are added to collectors. To keep the program simple, we estimate the occupancy
ratio from times 0 to T rather than tP . Getting the correct ratio would require the creation of
a custom period-change listener to get

∫ tP
0
NB,0(t) dt and

∫ tP
0

(N0(t) +NG,0(t))dt at time tP ,
i.e., at the beginning of wrap-up period. This will be done in a further example, in sections 4.3
and 8. Listing 13 displays the results of the program when performing 1000 independent
runs.

3.2 Adding a contact-by-contact trace

For debugging or advanced statistical processing using tools such as SAS or R, it may be
needed to get a contact-by-contact trace of the simulation. This can be done easily by using
observers, as shown in Listing 14. This example is a simplified version of the trace facility
available in the generic simulator of call centers supporting blend and multi-skill systems. It
shows how it is possible to extract information from a contact object, and other parts of the
simulator.

Listing 14: Contact-by-contact trace added to the simple multi-skill contact center example

import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.Writer;

import umontreal.iro.lecuyer.contactcenters.contact.Contact;
import umontreal.iro.lecuyer.contactcenters.queue.DequeueEvent;
import umontreal.iro.lecuyer.contactcenters.router.ExitedContactListener;
import umontreal.iro.lecuyer.contactcenters.router.Router;
import umontreal.iro.lecuyer.contactcenters.server.EndServiceEvent;

public class SimpleMSKWithTrace extends SimpleMSK {
static final int NUMDAYS = 5; // Number of replications
private TraceManager trace;
private File traceFile;
private int currentRep = 0;

public SimpleMSKWithTrace (File traceFile, int timePrecision) {

March 4, 2014 3.2 Adding a contact-by-contact trace 41

super ();
this.traceFile = traceFile;
trace = new TraceManager (timePrecision);
router.addExitedContactListener (trace);

}

final class TraceManager implements ExitedContactListener {
private PrintWriter output;
private boolean closed = true;
private int timePrecision;

public TraceManager (int timePrecision) {
this.timePrecision = timePrecision;

}

public void init (Writer output) {
if (output == null)

throw new NullPointerException ();
this.output = new PrintWriter (new BufferedWriter (output));
closed = false;

}

public void close () {
output.close ();
closed = true;

}

public void writeHeader () {
if (closed)

return;
final String timeP = "%" + (7 + timePrecision) + "s";
output.format (" Step Type Period " + timeP + " "

+ timeP + " Outcome Group " + timeP, "ArvTime",
"QueueTime", "SrvTime");

output.println ();
}

public void blocked (Router router, Contact contact, int bType) {}

public void dequeued (Router router, DequeueEvent ev) {
if (closed)

return;
final Contact contact = ev.getContact ();
final int itr = getStep (contact);
final int k = contact.getTypeId ();
final int p = getPeriod (contact);
final double a = contact.getArrivalTime ();

42 3 A SIMPLE MULTI-SKILL CONTACT CENTER March 4, 2014

final double q = contact.getTotalQueueTime ();
final String timeP = "%" + (7 + timePrecision) + "." + timePrecision + "f";
output.printf ("%6d %6d %6d " + timeP + " " + timeP

+ " %9s %6d " + timeP, itr, k, p, a, q, "Abandoned", -1,
Double.NaN);

output.println ();
}

public void served (Router router, EndServiceEvent ev) {
if (closed)

return;
final Contact contact = ev.getContact ();
final int itr = getStep (contact);
final int k = contact.getTypeId ();
final int p = getPeriod (contact);
final double a = contact.getArrivalTime ();
final double q = contact.getTotalQueueTime ();
final int i = contact.getLastAgentGroup ().getId ();
final double s = contact.getTotalServiceTime ();
final String timeP = "%" + (7 + timePrecision) + "." + timePrecision + "f";
output.printf ("%6d %6d %6d " + timeP + " " + timeP

+ " %9s %6d " + timeP, itr, k, p, a, q, "Served", i, s);
output.println ();

}

private int getStep (Contact contact) {
return currentRep;

}

public int getPeriod (Contact contact) {
return pce.getPeriod (contact.getArrivalTime ());

}
}

@Override
void simulateOneDay () {

super.simulateOneDay ();
++currentRep;

}

@Override
void simulate (int n) {

try {
final Writer output = new FileWriter (traceFile);
trace.init (output);
trace.writeHeader ();

}

March 4, 2014 3.2 Adding a contact-by-contact trace 43

catch (final IOException ioe) {
ioe.printStackTrace ();

}
currentRep = 0;
try {

super.simulate (n);
}
finally {

trace.close ();
}

}

public static void main (String[] args) {
final SimpleMSKWithTrace s = new SimpleMSKWithTrace (new File (

"contactTrace.log"), 3);
s.simulate (NUMDAYS);
s.printStatistics ();

}
}

This program behaves the same as the program in the preceding subsection, but it creates
a text file named contactTrace.log with one line for each processed contact, whether it has
abandoned or was served. One can then open the resulting (large) trace file with any text
editor, or make a program to parse it. Listing 15 displays ten lines of the trace produced
by the program. We cannot display the full trace, because its size is 2MB, even though we
have simulated only five days.

The trace contains the following fields:

Step The index of the replication the contact arrived in.

Type The type of the contact.

Period The period the contact arrived in.

ArvTime The simulation time of the contact’s arrival.

QueueTime The waiting time in queue of the contact.

Outcome The outcome of the contact, can be Served or Abandoned.

Group The group index of the agent who has served the contact, or −1 for abandoned
contacts.

SrvTime The service time of the contact, or NaN for unserved contacts.

44 3 A SIMPLE MULTI-SKILL CONTACT CENTER March 4, 2014

The program defines a class named SimpleMSKWithTrace which extends SimpleMSK to
inherit the simulation logic of the example in the previous subsection, but it adds a new
exited-contact listener to the router for logging contacts. This trace manager, which is
initialized at the beginning of the simulation, writes a trace entry to a file for any exiting
contact. It does not have any effect on how the contacts are managed by the simulator.

The new subclass defines three fields: the trace manager, the output trace file, and the
current replication number. The first two fields are initialized by the constructor, which also
attach the trace manager to the router, defined in the superclass SimpleMSK. This way, every
contact processed by the router is broadcast to the contact trace manager. Moreover, one
could disable the contact-by-contact trace simply by unregistering the trace manager from
the router.

The last field is updated after each replication by an overridden simulateOneDay method,
and is used when formatting trace entries.

The overridden simulate method opens the trace file at the beginning of the simulation,
calls the simulate method from the superclass to perform the simulation, and closes the
trace at the end. We put the call to close into a finally block that will be called even if
an unexpected exception is thrown by the simulator. This prevents any loss of information
caused by an unflushed buffer.

The main part of the program is the TraceManager inner class which is an exited-contact
listener producing the data written into the trace. A trace manager has an associated print
writer used to format trace entries into the output file.

Log lines are constructed by the dequeued and served methods of TraceManager, using
the format method of PrintWriter. Note how the arrival time, the service time, the waiting
time, the contact type, etc. can all be extracted from the Contact object. The format

method fills a user-provided pattern by using the values given by the remaining arguments.
The print stream takes the system’s current locale and the line separator into account.

Arrival times and time durations are formatted with a fixed number timePrecision of
decimal digits of precision, which is set to 3 in this program. This allows for a better visual
formatting of the data in the plain text file. One could easily use another format, e.g., XML,
or use JDBC to write data into a database instead of a file.

3.3 Rerouting queued contacts

Agents may sometimes be allowed to serve some types of contacts only after the contacts
have waited for some time in queue. For example, we can modify the model of this example
to allow agents in group 1 to serve contacts of type 1 only after these contacts have waited
more than 12s. This can be done by customizing the router as in Listing 16 for contact
rerouting, i.e., the router can, after a delay elapses, reprocess a queued contact for a new
agent selection with different criteria. Note that the router in ContactCenters also supports
agent rerouting which is not covered in this example but works in a way similar to contact
rerouting: if an agent stays free after the end of a service for a certain delay, the router can
reprocess the agent to do a new contact selection, with different criteria. Of course, agent
rerouting requires the agent groups to keep track of individual agents.

March 4, 2014 3.3 Rerouting queued contacts 45

Listing 16: Contact rerouting added to the simple multi-skill contact center example

import umontreal.iro.lecuyer.contactcenters.contact.Contact;
import umontreal.iro.lecuyer.contactcenters.queue.DequeueEvent;
import umontreal.iro.lecuyer.contactcenters.queue.WaitingQueue;
import umontreal.iro.lecuyer.contactcenters.router.AgentGroupSelectors;
import umontreal.iro.lecuyer.contactcenters.router.Router;
import umontreal.iro.lecuyer.contactcenters.router.SingleFIFOQueueRouter;
import umontreal.iro.lecuyer.contactcenters.server.Agent;
import umontreal.iro.lecuyer.contactcenters.server.AgentGroup;
import umontreal.iro.lecuyer.contactcenters.server.EndServiceEvent;

import umontreal.iro.lecuyer.simevents.Sim;

public class SimpleMSKWithRerouting extends SimpleMSK {
static final int[][] TYPETOGROUPMAP1 = { { 0 }, { 0 }, { 1 } };
static final int[][] TYPETOGROUPMAP2 = { { 0 }, { 0, 1 }, { 1 } };
static final double DELAY = 0.2;

@Override
Router createRouter () {

return new MyRouter (TYPETOGROUPMAP1, GROUPTOTYPEMAP);
}

class MyRouter extends SingleFIFOQueueRouter {
public MyRouter (int[][] typeToGroupMap, int[][] groupToTypeMap) {

super (typeToGroupMap, groupToTypeMap);
}

@Override
protected double getReroutingDelay (DequeueEvent dqEv, int numReroutingsDone) {

return numReroutingsDone == -1 ? DELAY : -1;
}

@Override
protected EndServiceEvent selectAgent (DequeueEvent dqEv, int numReroutingsDone) {

final Contact contact = dqEv.getContact ();
final AgentGroup g = AgentGroupSelectors.selectFirst
(this, TYPETOGROUPMAP2[contact.getTypeId()]);
if (g == null)

return null;
final EndServiceEvent es = g.serve (contact);
assert es != null : "AgentGroup.serve should not return null";
return es;

}

@Override
protected DequeueEvent selectContact (AgentGroup group, Agent agent) {

46 3 A SIMPLE MULTI-SKILL CONTACT CENTER March 4, 2014

WaitingQueue bestQueue = null;
final double enqueueTime = Double.POSITIVE_INFINITY;
for (final int k : groupToTypeMap[group.getId()]) {

final WaitingQueue queue = getWaitingQueue (k);
if (queue.isEmpty ())

continue;
final DequeueEvent firstContact = queue.getFirst ();
final double time = firstContact.getEnqueueTime ();
if (group.getId () == 1 && k == 1 && (Sim.time() - time) < DELAY)

continue;
if (time < enqueueTime)

bestQueue = queue;
}
if (bestQueue == null)

return null;
else

return bestQueue.removeFirst (DEQUEUETYPE_BEGINSERVICE);
}

}

public static void main (String[] args) {
final SimpleMSKWithRerouting s = new SimpleMSKWithRerouting();
s.simulate (NUMDAYS);
s.printStatistics();

}
}

The customized router, named MyRouter, extends the SingleFIFOQueueRouter used
by the original example. As a result, the agent and contact selections are performed the
same way as in the original example, but we use a different type-to-group map which allows
incoming contacts of type 1 to be served by agents in group 0 only.

Contact rerouting works as follows. When a new contact is notified to the router, an agent
is selected by the selectAgent methods which is given the new contact as its argument.
This method must construct and return an end-service event representing the served contact,
or null if the contact cannot be served. When the contact cannot be served, it is added into
a waiting queue by the selectWaitingQueue method of the router. If the contact can be
queued, the router obtains its initial rerouting delay, i.e., the time after which the queued
contact is reprocessed if still in queue. If this delay is negative, no rerouting happens, which
is the default. When a positive rerouting delay elapses for a queued contact, the router passes
this queued contact to a second selectAgent method which accepts the dequeue event along
with the number of reroutings done. For the first rerouting, this corresponds to 0. This new
method returns an end-service event or null, exactly as the ordinary selectAgent method.
Of course, the scheme for agent selection implemented by this method should differ from the
scheme implemented by the ordinary selectAgent method. If the contact still cannot be

March 4, 2014 3.3 Rerouting queued contacts 47

served, it remains in queue, and a new rerouting delay is required. The process continues
until a negative delay is obtained, the contact is served, or abandons.

The initial rerouting delay is obtained using getReroutingDelay with −1 as the number
of preceding reroutings. By default, this method always returns −1, which results in no
rerouting. In our case, we return DELAY if the number of reroutings done is −1, or −1
otherwise. The selectAgent method for rerouting applies the overflow routing of the original
example, which allows contacts of type 1 to be routed to agents in group 1 when no agent is
available in group 0.

We also need to override contact selection in order to prevent an agent in group 1 to
dequeue a contact of type 1 if its waiting time is smaller than DELAY. We therefore override
the selectContact method of Router, which accepts an agent group containing the free
agents, and returns the dequeue event representing the contact to serve. Our method scans
the waiting queues accessible to the free agent, and records the waiting queue whose first
contact has the smallest enqueue time. However, if the free agent is in group 1, the method
filters out queue 1 if the first contact has a waiting time smaller than DELAY. After the queue
is selected, the first contact is removed, and returned. The contact is removed with dequeue
type DEQUEUETYPE BEGINSERVICE which is used to represent the beginning of the service for
a queued contact.

Listing 17 shows that the modified program produces slightly different results: the num-
ber of contacts having abandoned is higher and the service level is smaller than with the
original model. The simulator behaves as we would expect: some contacts of type 0 have to
wait 12s longer in queue before they can be served, and some of them abandon while they
were served in the original setting.

48 3 A SIMPLE MULTI-SKILL CONTACT CENTER March 4, 2014

Listing 13: Results of the program SimpleMSK

REPORT on Tally stat. collector ==> Number of served contacts
num. obs. min max average standard dev.

1000 2448.000 5291.000 4297.305 437.605
95.0% confidence interval for mean (student): (4270.150, 4324.460)

REPORT on Tally stat. collector ==> Number of contacts having abandoned
num. obs. min max average standard dev.

1000 9.000 3805.000 910.335 551.164
95.0% confidence interval for mean (student): (876.133, 944.537)

REPORT on Tally stat. collector ==> Service level
func. of averages standard dev. num. obs.

0.501 0.128 1000
95.0% confidence interval for function of means: (0.494, 0.509)

REPORT on Tally stat. collector ==> Occupancy ratio
func. of averages standard dev. num. obs.

0.881 0.058 1000
95.0% confidence interval for function of means: (0.877, 0.884)

Report for Number of contacts meeting target service level
num obs. min max average std. dev. conf. int.

Type 0, period 0 1000 5.000 334.000 170.154 93.722 95.0% (\
164.338, 175.970)

Type 0, period 1 1000 274.000 782.000 599.334 83.392 95.0% (\
594.159, 604.509)

Type 0, period 2 1000 0.000 180.000 15.490 27.520 95.0% (\
13.782, 17.198)

Report for Number of contacts meeting target service level
num obs. min max average std. dev. conf. int.

Type 1, period 0 1000 8.000 484.000 262.936 134.377 95.0% (\
254.597, 271.275)

Type 1, period 1 1000 255.000 720.000 511.648 86.571 95.0% (\
506.276, 517.020)

Type 1, period 2 1000 0.000 298.000 34.697 55.230 95.0% (\
31.270, 38.124)

Report for Number of contacts meeting target service level
num obs. min max average std. dev. conf. int.

Type 2, period 0 1000 15.000 540.000 259.806 155.150 95.0% (\
250.178, 269.434)

Type 2, period 1 1000 265.000 850.000 613.732 99.046 95.0% (\
607.586, 619.878)

Type 2, period 2 1000 0.000 282.000 24.888 44.327 95.0% (\
22.137, 27.639)

March 4, 2014 3.3 Rerouting queued contacts 49

Listing 15: Sample trace produced by the program SimpleMSKWithTrace

Step Type Period ArvTime QueueTime Outcome Group SrvTime
0 1 1 0.365 0.000 Served 0 0.012
0 0 1 0.277 0.000 Served 0 0.212
0 0 1 0.162 0.000 Served 0 0.790
0 2 1 0.969 0.000 Served 1 0.567
0 0 1 1.135 0.000 Served 0 1.053
0 0 1 1.339 0.000 Served 0 1.078
0 0 1 1.521 0.000 Served 0 0.941
1 2 1 24.243 0.965 Served 1 0.633
1 1 1 22.958 1.065 Served 0 1.954
1 0 1 24.668 1.104 Served 0 0.215
1 2 1 21.892 0.887 Served 1 3.259
1 1 1 25.111 0.951 Abandoned -1 NaN
1 0 1 23.158 0.942 Served 0 2.015
1 0 1 21.637 0.802 Served 0 3.714
1 1 1 25.874 0.422 Abandoned -1 NaN

50 3 A SIMPLE MULTI-SKILL CONTACT CENTER March 4, 2014

Listing 17: Results of SimpleMSKWithRerouting

REPORT on Tally stat. collector ==> Number of served contacts
num. obs. min max average standard dev.

1000 2430.000 5367.000 4274.426 433.840
95.0% confidence interval for mean (student): (4247.504, 4301.348)

REPORT on Tally stat. collector ==> Number of contacts having abandoned
num. obs. min max average standard dev.

1000 14.000 3720.000 933.214 554.096
95.0% confidence interval for mean (student): (898.830, 967.598)

REPORT on Tally stat. collector ==> Service level
func. of averages standard dev. num. obs.

0.579 0.113 1000
95.0% confidence interval for function of means: (0.572, 0.587)

REPORT on Tally stat. collector ==> Occupancy ratio
func. of averages standard dev. num. obs.

0.884 0.057 1000
95.0% confidence interval for function of means: (0.880, 0.887)

Report for Number of contacts meeting target service level
num obs. min max average std. dev. conf. int\

.
Type 0, period 0 1000 118.000 391.000 298.745 30.117 95.0% (\

296.876, 300.614)
Type 0, period 1 1000 274.000 791.000 595.270 82.484 95.0% (\

590.151, 600.389)
Type 0, period 2 1000 4.000 181.000 106.823 29.504 95.0% (\

104.992, 108.654)

Report for Number of contacts meeting target service level
num obs. min max average std. dev. conf. int\

.
Type 1, period 0 1000 150.000 487.000 383.203 50.558 95.0% (\

380.066, 386.340)
Type 1, period 1 1000 255.000 706.000 504.090 82.433 95.0% (\

498.975, 509.205)
Type 1, period 2 1000 0.000 305.000 121.441 61.286 95.0% (\

117.638, 125.244)

Report for Number of contacts meeting target service level
num obs. min max average std. dev. conf. int\

.
Type 2, period 0 1000 9.000 547.000 239.008 158.435 95.0% (\

229.176, 248.840)
Type 2, period 1 1000 265.000 857.000 611.550 97.645 95.0% (\

605.491, 617.609)
Type 2, period 2 1000 0.000 282.000 22.298 42.372 95.0% (\

19.669, 24.927)

March 4, 2014 51

4 Telethon call center

This example, adapted from Rockwell’s Arena Contact Center Edition 8.0, deals with the
organization of a one-week pledge drive local public radio station. In this model, on each
weekday, from 6AM to 10AM, the 24 phone lines of the contact center accept contacts
from donors while donations are managed by 12 volunteers. If a contact cannot be served
immediately when it enters the system, it is added to a FIFO queue. The contact leaves the
queue if

1. its waiting time is greater than its exponential patience time with mean 2 minutes
(abandonment),

2. its waiting time reaches 2 minutes (the contact leaves a message and is disconnected),

3. the contact center closes (disconnection),

4. or a volunteer becomes idle and serves it.

Service times are i.i.d. exponential variables with mean 10 minutes, and arrivals follow a
Poisson process whose rate is 50 contacts per hour.

Since the expected number of donors is limited, the contact center must minimize busy
signals and abandonment. Key performance measures are blocked and abandoned contacts
as well as the expected speed of answer, which is the expected time a contact must wait in
queue before it is served. The program also estimates the service level defined as

g3(s) =
E[SG(s)]

E[A]
, (7)

where A is the number of arrivals. It also estimates the occupancy ratio of agents defined
by (3).

4.1 Implementing the model

Listing 18: A simulation program implementing the Arena Telethon example

import umontreal.iro.lecuyer.contactcenters.ConstantValueGenerator;
import umontreal.iro.lecuyer.contactcenters.PeriodChangeEvent;
import umontreal.iro.lecuyer.contactcenters.contact.Contact;
import umontreal.iro.lecuyer.contactcenters.contact.ContactFactory;
import umontreal.iro.lecuyer.contactcenters.contact.PiecewiseConstantPoissonArrivalProcess;
import umontreal.iro.lecuyer.contactcenters.contact.TrunkGroup;
import umontreal.iro.lecuyer.contactcenters.queue.DequeueEvent;
import umontreal.iro.lecuyer.contactcenters.queue.StandardWaitingQueue;
import umontreal.iro.lecuyer.contactcenters.queue.WaitingQueue;
import umontreal.iro.lecuyer.contactcenters.router.ExitedContactListener;

52 4 TELETHON CALL CENTER March 4, 2014

import umontreal.iro.lecuyer.contactcenters.router.QueuePriorityRouter;
import umontreal.iro.lecuyer.contactcenters.router.Router;
import umontreal.iro.lecuyer.contactcenters.server.AgentGroup;
import umontreal.iro.lecuyer.contactcenters.server.EndServiceEvent;
import umontreal.iro.lecuyer.contactcenters.server.GroupVolumeStat;
import umontreal.iro.lecuyer.randvar.ExponentialGen;
import umontreal.iro.lecuyer.rng.MRG32k3a;
import umontreal.iro.lecuyer.simevents.Sim;
import umontreal.iro.lecuyer.stat.FunctionOfMultipleMeansTally;
import umontreal.iro.lecuyer.stat.Tally;
import umontreal.iro.lecuyer.util.Chrono;
import umontreal.iro.lecuyer.util.RatioFunction;

public class Telethon {
// Input data (time is in minutes)
static final double SERVICETIME = 10;
static final double PATIENCETIME = 2;
static final double AWT = 1.0;
static final int P = 24*7;
static final double PERIODDURATION = 60.0;
static final int STARTHOUR = 6;
static final int ENDHOUR = 10;
static final int NUMTRUNKS = 24; // Number of phone lines
static final int NUMAGENTS = 12;
static final double ARRIVALRATE = 50;
static final int[][] TYPETOGROUPMAP = { { 0 } };
static final int[][] GROUPTOTYPEMAP = { { 0 } };
static final double LEVEL = 0.95; // Level of confidence intervals
static final int NUMDAYS = 1000;

// Known expectations
// (ENDHOUR - STARTHOUR) hours per day,
// Five working days per week
// ARRIVALRATE contacts per hour
static final double EXPARRIVALS = ARRIVALRATE*(ENDHOUR - STARTHOUR)*5;
// Expected value of the integral for the number of agents N(t)
// NUMAGENTS agents per hour
static final double EXPNUMAGENTS = NUMAGENTS*(ENDHOUR -

STARTHOUR)*PERIODDURATION*5;

// Contact center components
PeriodChangeEvent pce; // Event marking new periods
TrunkGroup trunks; // Manages phone lines
PiecewiseConstantPoissonArrivalProcess donors;
AgentGroup volunteers;
WaitingQueue queue;
Router router;

March 4, 2014 4.1 Implementing the model 53

// Service time generator
ExponentialGen sgen = new ExponentialGen (new MRG32k3a(), 1.0/SERVICETIME);
// Patience time generator
ExponentialGen pgen = new ExponentialGen (new MRG32k3a(), 1.0/PATIENCETIME);

// Counters and probe used during replications
int numArrivals, numBlocked, numAbandoned,

numMessages, numDisconnected, numGoodSL,
numServed;

double sumWaitingTimes;
GroupVolumeStat vstat;

// Statistical collectors
Tally arrivals = new Tally ("Number of arrived contacts"),

served = new Tally ("Number of served contacts"),
blocked = new Tally ("Number of blocked contacts"),
abandoned = new Tally ("Number of abandoned contacts"),
messages = new Tally ("Number of messages"),
disconnected = new Tally ("Number of disconnected contacts"),
goodSL = new Tally ("Number of contacts in target"),
serviceLevel = new Tally ("Service level"),
occupancy = new Tally ("Agents’ occupancy ratio");

FunctionOfMultipleMeansTally speedOfAnswer =
new FunctionOfMultipleMeansTally
(new RatioFunction(), "Speed of answer", 2);

Telethon() {
pce = new PeriodChangeEvent (PERIODDURATION, P + 2, 0.0);
final double[] arrivalRates = new double[P+2];
for (int day = 0; day < 5; day++)

for (int hour = STARTHOUR; hour < ENDHOUR; hour++)
arrivalRates[24*day + hour + 1] = ARRIVALRATE;

donors = new PiecewiseConstantPoissonArrivalProcess
(pce, new MyContactFactory(), arrivalRates, new MRG32k3a());

donors.setNormalizing (true);
trunks = new TrunkGroup (NUMTRUNKS);

final int[] numAgents = new int[P+2];
for (int day = 0; day < 5; day++)

for (int hour = STARTHOUR; hour < ENDHOUR; hour++)
numAgents[24*day + hour + 1] = NUMAGENTS;

volunteers = new AgentGroup (pce, numAgents);
queue = new StandardWaitingQueue();
queue.setMaximalQueueTimeGenerator

(5, new ConstantValueGenerator (1, PATIENCETIME));

54 4 TELETHON CALL CENTER March 4, 2014

router = createRouter();
router.setClearWaitingQueues (true);
router.setWaitingQueue (0, queue);
router.setAgentGroup (0, volunteers);
donors.addNewContactListener (router);
router.addExitedContactListener (new MyContactMeasures());
vstat = new GroupVolumeStat (volunteers);

}
Router createRouter() {

return new QueuePriorityRouter (TYPETOGROUPMAP, GROUPTOTYPEMAP);
}

// Creates new contacts
class MyContactFactory implements ContactFactory {

public Contact newInstance() {
final Contact contact = new Contact();
contact.setTrunkGroup (trunks);
contact.setDefaultPatienceTime (pgen.nextDouble());
contact.setDefaultServiceTime (sgen.nextDouble());
return contact;

}
}

// Updates counters when a contact exits
class MyContactMeasures implements ExitedContactListener {

public void blocked (Router router, Contact contact, int bType) {
++numArrivals; ++numBlocked;

}

public void dequeued (Router router, DequeueEvent ev) {
++numArrivals;
if (ev.getEffectiveDequeueType() == 5)

++numMessages;
else if (ev.getEffectiveDequeueType() == Router.DEQUEUETYPE_NOAGENT)

++numDisconnected;
else

++numAbandoned;
}

public void served (Router router, EndServiceEvent ev) {
++numArrivals; ++numServed;
final double qt = ev.getContact().getTotalQueueTime();
if (qt < AWT) ++numGoodSL;
sumWaitingTimes += qt;

}
}

March 4, 2014 4.1 Implementing the model 55

public void simulateOneDay() {
Sim.init(); pce.init();
trunks.init(); donors.init();
queue.init(); volunteers.init();
numArrivals = numBlocked = numAbandoned

= numMessages = numDisconnected = numGoodSL
= numServed = 0;

sumWaitingTimes = 0;
vstat.init();
donors.start();
pce.start();
Sim.start();
pce.stop();
addObs();

}

void addObs() {
arrivals.add (numArrivals);
served.add (numServed);
goodSL.add (numGoodSL);
serviceLevel.add (100*numGoodSL/EXPARRIVALS);
final double Nb = vstat.getStatNumBusyAgents().sum();
occupancy.add (100*Nb/EXPNUMAGENTS);
blocked.add (numBlocked);
abandoned.add (numAbandoned);
messages.add (numMessages);
disconnected.add (numDisconnected);
speedOfAnswer.add (sumWaitingTimes, numServed);

}

void simulate (int days) {
arrivals.init(); served.init(); blocked.init();
abandoned.init(); messages.init(); disconnected.init();
serviceLevel.init(); speedOfAnswer.init(); occupancy.init();
goodSL.init();
for (int r = 0; r < days; r++) simulateOneDay();

}

public void printStatistics() {
System.out.println (arrivals.reportAndCIStudent (LEVEL, 3));
System.out.println (served.reportAndCIStudent (LEVEL, 3));
System.out.println (blocked.reportAndCIStudent (LEVEL, 3));
System.out.println (abandoned.reportAndCIStudent (LEVEL, 3));
System.out.println (messages.reportAndCIStudent (LEVEL, 3));
System.out.println (disconnected.reportAndCIStudent (LEVEL, 3));
System.out.println (goodSL.reportAndCIStudent (LEVEL, 3));
System.out.println (speedOfAnswer.reportAndCIDelta (LEVEL, 3));

56 4 TELETHON CALL CENTER March 4, 2014

System.out.println (serviceLevel.reportAndCIStudent (LEVEL, 3));
System.out.println (occupancy.reportAndCIStudent (LEVEL, 3));

}

public static void main (String[] args) {
final Telethon t = new Telethon();
final Chrono timer = new Chrono();
t.simulate (NUMDAYS);
System.out.println ("CPU time: " + timer.format());
t.printStatistics();

}
}

Listing 18 gives the implementation of the simple non-stationary contact center described
above. As with previous examples, fields are used for input data and objects, and a con-
structor is defined to create the necessary elements of the contact center. We first construct
the event that will mark the beginning of new periods. In this example and all other sample
programs adapted from Arena Contact Center Edition, the horizon is set to a full week, and
simulation time is thus divided into 24 ∗ 7 60-minutes main periods. The preliminary and
wrap-up periods defined by the period-change event have length 0, but they must be counted
in the total number of periods, so we need 24 ∗ 7 + 2 periods.

As usual, we then construct an arrival process using a contact factory, a random stream,
and other parameters. In contrast with Arena Contact Center Edition only expecting the
number of arrivals for each main period, ContactCenters requires the user to specify which
arrival process to use along with its parameters. The normalization is enabled for the given
rates to be divided by the period duration.

In contrast with most previous examples, the capacity of the system is limited. As a
result, some donors may receive a busy signal and be blocked. It could be possible to limit
the number of phone lines by setting the queue capacity to 12 as shown in section 1.4. With
this setting, when the 12 agents are busy and 12 contacts are in queue, all the phone lines
are busy, the system is full, and any new contact is blocked until a service ends or a donor
leaves the queue. However, in general, because the number of agents in the system changes,
the limit on queue capacity needs to be updated at the beginning of each period. It is also
possible to associate some contact types, e.g., premium contacts using a specific phone bank
as opposed to ordinary contacts accessing an independent pool of phone lines. Therefore,
a more general framework for capacity limitation may be needed. The ContactCenters
library supports the same notion of trunk groups as Arena Contact Center Edition, but it
is disabled by default. A trunk group is a set of communication channels (e.g., phone lines)
being allocated during the lifetime of contacts. For this facility to be enabled, each contact
needs to be linked to a trunk group by using the setTrunkGroup method. A channel is then
allocated when the contact reaches the router, and freed when it leaves the system. If a
contact arrives when all channels of its trunk group are busy, it is blocked. To implement
this feature in the Telethon example, the constructor creates a TrunkGroup instance which
is associated with new contacts in the newInstance method of the contact factory.

March 4, 2014 4.1 Implementing the model 57

The same constructor as in the two preceding examples is used to create the agent group
and define the shift of the agents. In Arena Contact Center Edition, an agent group schedule
defines the shifts for agents whereas agent groups only specify their capacity. The library
does not define such an agent group schedule; agent groups can be created, as in section 1,
with a fixed number of agents which can change at any time, or, as in sections 2 and 3, with
a per-period number of members. In the example, the number of agents is constant, but
it must be set to 0 when the contact center closes. Therefore, an array of P + 2 elements
is constructed and any index corresponding to an opening hour is filled with 12, while the
other values keep their default, 0.

We then construct a standard waiting queue to use a FIFO discipline. In Arena Contact
Center Edition, each agent group is associated with a waiting queue. In the ContactCenters
library, the waiting queues and agent groups are independent from each other for maximal
flexibility. It is the router’s task to create the connection between these two elements.

The same router as in sections 1 and 2 is used since there is a single contact type and
a single agent group. However, to simulate the same model as with Arena Contact Center
Edition, the queues have to be cleared when all the agents go off-duty. The Router class
fortunately provides some facilities to perform this clearing automatically if it is activated
by the setClearWaitingQueues method. For more simplicity, we do not simulate the 30-
seconds delay necessary for a donor to leave the message before being disconnected. This
aspect would require the definition of a custom router, which will be studied in the next
subsection.

The simulate and simulateOneDay methods are very similar to their counterparts in
previous examples. However, the simulation logic, i.e., which events are executed during
Sim.start, differs slightly, because queued contacts can be disconnected.

Automatic queue clearing is implemented by the router while the disconnection after
2 minutes must be implemented by setting a secondary queue time distribution through the
setMaximalQueueTimeGenerator method of WaitingQueue. By default, a waiting queue
only has a primary maximal queue time generator associated with abandonment, i.e., dequeue
type 1, and the generated value is the patience time extracted from contact objects. Each
queue time distribution is given by an implementation of ValueGenerator which specifies
a nextDouble method taking an argument of class Contact and returning a number. To
support message leaving, the constructor of Telethon therefore creates a constant value
generator for a single contact type and assigns it to dequeue type 5. This value was chosen
arbitrarily, because any dequeue type different from 0 or 1 could be used.

When a contact enters the previously-configured queue, if the extracted patience time is
greater than 2, the maximal queue time is set to 2, and the dequeue type is set to 5. If this
maximal queue time is elapsed before a contact is served, the contact is disconnected, and
is asked to leave a message. Otherwise, if the patience time is smaller than or equal to 2,
the maximal queue time is the patience time and the dequeue type is 1. In this case, an
abandonment occurs if the maximal queue time is elapsed before service starts.

As in previous examples, we use an exited-contact listener to count events. However, when
abandonment, disconnection, and message leaving are considered simultaneously, counting

58 4 TELETHON CALL CENTER March 4, 2014

the dequeued contacts requires special care, because the dequeued method in MyContact-

Measures receives various kinds of events. The effective dequeue type must therefore be used
to differentiate the three types of removals. Dequeue type 1 is used for abandonment, type 5
is used for message leaving while the router defines its own dequeue type for disconnection
when there is no agent. The dequeue type 0 is reserved for dequeued contacts to be served;
these contacts are not notified to the dequeued method of MyContactMeasures since they
have not left the contact center yet.

Statistical collecting is performed the same way as in the previous examples: during
the simulation, values are counted and summed up. The waiting times of served contacts
are also considered to get the average speed of answer. Another similar measure which is
computed by the example in section 2 but not by this program is the average waiting time
which includes the served and abandoned contacts. At the end of each replication, addObs
is used to add the observations to the appropriate statistical collectors.

We can reduce the variance on the service level and the occupancy ratio by replacing the
denominators with the true, known, expectations. The expected daily number of donors is
4 ∗ 50 = 200, so E[A] = 1000 for the whole week, which excludes the weekend in this model.
Since N0(t) is constant during all the opening hours, the integral of N0(t) is constant, because
we never have ghost agents.

However, to get an accurate estimator of the occupancy ratio, we should not count
the integral of busy agents during periods where N0(t) = 0. We could achieve this using
ContactCenters (see section 4.3), but the resulting occupancy ratio would not correspond to
the output given by Arena Contact Center Edition.

Results of the simulation, presented on Listing 19, seem different from Arena Contact
Center Edition, because different random seeds are used in the ContactCenters simulator.
If the system is simulated with the same number of replications in both programs, the
confidence intervals intersects, partly showing that the results are not significantly different.
The simplification of the model to avoid a custom router does not seem to bias the estimators
significantly.

Listing 19: Results of the program Telethon

CPU time: 0:0:1.2
REPORT on Tally stat. collector ==> Number of arrived contacts

num. obs. min max average standard dev.
1000 907.000 1108.000 1000.169 33.164

95.0% confidence interval for mean (student): (998.111, 1002.227)

REPORT on Tally stat. collector ==> Number of served contacts
num. obs. min max average standard dev.

1000 890.000 1057.000 963.109 27.984
95.0% confidence interval for mean (student): (961.372, 964.846)

REPORT on Tally stat. collector ==> Number of blocked contacts
num. obs. min max average standard dev.

March 4, 2014 4.2 Modeling the message delay 59

1000 0.000 0.000 0.000 0.000
95.0% confidence interval for mean (student): (0.000, 0.000)

REPORT on Tally stat. collector ==> Number of abandoned contacts
num. obs. min max average standard dev.

1000 4.000 67.000 31.820 10.437
95.0% confidence interval for mean (student): (31.172, 32.468)

REPORT on Tally stat. collector ==> Number of messages
num. obs. min max average standard dev.

1000 0.000 21.000 4.960 2.973
95.0% confidence interval for mean (student): (4.776, 5.144)

REPORT on Tally stat. collector ==> Number of disconnected contacts
num. obs. min max average standard dev.

1000 0.000 7.000 0.280 0.718
95.0% confidence interval for mean (student): (0.235, 0.325)

REPORT on Tally stat. collector ==> Number of contacts in target
num. obs. min max average standard dev.

1000 880.000 1042.000 950.265 27.173
95.0% confidence interval for mean (student): (948.579, 951.951)

REPORT on Tally stat. collector ==> Speed of answer
func. of averages standard dev. num. obs.

0.036 0.012 1000
95.0% confidence interval for function of means: (0.036, 0.037)

REPORT on Tally stat. collector ==> Service level
num. obs. min max average standard dev.

1000 88.000 104.200 95.026 2.717
95.0% confidence interval for mean (student): (94.858, 95.195)

REPORT on Tally stat. collector ==> Agents’ occupancy ratio
num. obs. min max average standard dev.

1000 59.365 75.824 66.772 2.650
95.0% confidence interval for mean (student): (66.607, 66.936)

4.2 Modeling the message delay

After a contact waits for two minutes in the model of Arena Contact Center Edition, it leaves
a message for a duration of 30 seconds before the phone line is released. This delay cannot
be modeled by adding 0.5 minutes to the maximal queue time since an agent must not be
able to pick a contact having waited more than two minutes while he is leaving its message.
This aspect cannot be simulated unless the router is customized such as in Listing 20.

60 4 TELETHON CALL CENTER March 4, 2014

The QueuePriorityRouter must be extended to override its dequeued method being
called every time a contact is removed from a waiting queue connected to the router. If
the effective dequeue type is 0, the event must be ignored since the contact is about to be
served. Otherwise, if the dequeue type is 5, an event is scheduled to happen after 30 seconds
(0.5 minutes). This exiting event must be defined as an inner class in the custom router to
call the protected exitDequeued method which releases the phone line and broadcasts the
exited contact. If the dequeue type is 1, the exitDequeued method must be used for the
phone line to be released at the time of abandonment. Note that this technique could also
be used to model more realistic random message delays.

In this model, the delay is too short to have any impact on the results over all time. We
may observe an effect on some individual periods, or if the arrival rates were higher.

Listing 20: Extension of Telethon for the 30 second delay

import umontreal.iro.lecuyer.contactcenters.queue.DequeueEvent;
import umontreal.iro.lecuyer.contactcenters.router.QueuePriorityRouter;
import umontreal.iro.lecuyer.contactcenters.router.Router;

import umontreal.iro.lecuyer.simevents.Event;
import umontreal.iro.lecuyer.util.Chrono;

public class TelethonMsg extends Telethon {
@Override
Router createRouter() {

return new MyRouter (TYPETOGROUPMAP, GROUPTOTYPEMAP);
}

class MyRouter extends QueuePriorityRouter {
MyRouter (int[][] gt, int[][] tg) { super (gt, tg); }
@Override
protected void dequeued (DequeueEvent ev) {

final int dq = ev.getEffectiveDequeueType();
if (dq == 0) return;
else if (dq == 5) new MessageDelayEvent (ev).schedule (0.5);
else exitDequeued (ev);

}

class MessageDelayEvent extends Event {
DequeueEvent ev;
MessageDelayEvent (DequeueEvent ev) {

this.ev = ev;
}
@Override
public void actions() { exitDequeued (ev); }

}
}

March 4, 2014 4.3 Correcting the estimator for occupancy ratio 61

public static void main (String[] args) {
final Telethon t = new TelethonMsg();
final Chrono timer = new Chrono();
t.simulate (NUMDAYS);
System.out.println ("CPU time: " + timer.format());
t.printStatistics();

}
}

4.3 Correcting the estimator for occupancy ratio

The integral for NB,0(t) needs to be computed for the opening hours only to get an unbiased
estimator for the agents’ occupancy ratio. The statistical collecting in vstat must be disabled
when N0(t) = 0 in order to achieve this.

In Listing 21, we define a new statistical collector for the corrected estimator as well as a
new group-volume statistical counter. In the constructor, we call the superclass’ constructor
and connect a custom listener to the agent group before we create our new group volume
statistical collector.

The custom listener, implemented in MyAgentGroupListener, reacts when the agent
group is initialized, and the number of volunteers changes, i.e., goes from 0 to 12 or from 12
to 0. Setting the agent group of a group volume statistical counter modifies the list of listen-
ers of the agent group. However, modifications to the list of listeners during the broadcast
of an event can lead to unpredictable results. As a result, the program needs to create a
support event that configures the group volume statistical collector. Moreover, to prevent
inconsistencies, the group volume statistical collector needs to be initialized after the simu-
lation clock is reset, which cannot be done without rewriting simulateOneDay or modifying
the base class Telethon. Fortunately, when an agent group is initialized, it notifies every
registered listener. We therefore react to this event by initializing the new group volume
statistical counter.

When the number of agents goes from 12 to 0 at the end of the day, statistical collecting
for vstatCorr needs to be disabled. This can be achieved by breaking the association
between the agent group and the statistical counter. The internal counters then reset to 0
until the association is restored, at the beginning of the next day.

Listing 21: Extension of Telethon for corrected occupancy ratio estimator

import umontreal.iro.lecuyer.contactcenters.server.AgentGroup;
import umontreal.iro.lecuyer.contactcenters.server.AgentGroupListener;
import umontreal.iro.lecuyer.contactcenters.server.EndServiceEvent;
import umontreal.iro.lecuyer.contactcenters.server.GroupVolumeStat;

import umontreal.iro.lecuyer.simevents.Event;

62 4 TELETHON CALL CENTER March 4, 2014

import umontreal.iro.lecuyer.stat.Tally;
import umontreal.iro.lecuyer.util.Chrono;

public class TelethonOcc extends Telethon {
Tally occupancyCorr = new Tally ("Corrected agents’ occupancy ratio");
GroupVolumeStat vstatCorr;

TelethonOcc() {
super();
volunteers.addAgentGroupListener (new MyAgentGroupListener());
vstatCorr = new GroupVolumeStat (volunteers);

}

class MyAgentGroupListener implements AgentGroupListener {
public void agentGroupChange (AgentGroup group) {

if (group.getNumAgents() == 0)
new SetAgentGroupEvent (null).scheduleNext();

else
new SetAgentGroupEvent (group).scheduleNext();

}

public void beginService (EndServiceEvent es) {}
public void endContact (EndServiceEvent es) {}
public void endService (EndServiceEvent es) {}
public void init (AgentGroup group) { vstatCorr.init(); }

}

class SetAgentGroupEvent extends Event {
AgentGroup group;

public SetAgentGroupEvent (AgentGroup group) {
this.group = group;

}

@Override
public void actions() {

vstatCorr.setAgentGroup (group);
}

}

@Override
public void addObs() {

super.addObs();
final double Nb = vstatCorr.getStatNumBusyAgents().sum();
occupancyCorr.add (100.0*Nb/EXPNUMAGENTS);

}

March 4, 2014 4.3 Correcting the estimator for occupancy ratio 63

@Override
public void simulate (int n) {

occupancyCorr.init();
super.simulate (n);

}

@Override
public void printStatistics() {

super.printStatistics();
System.out.println (occupancyCorr.reportAndCIStudent (LEVEL, 3));

}

public static void main (String[] args) {
final Telethon t = new TelethonOcc();
final Chrono timer = new Chrono();
t.simulate (NUMDAYS);
System.out.println ("CPU time: " + timer.format());
t.printStatistics();

}
}

Listing 22 presents the output of the modified program. We see that the corrected
occupancy ratio is significantly different from the ratio obtained using Arena Contact Center
Edition.

Listing 22: Results of the program TelethonOcc

CPU time: 0:0:1.9
REPORT on Tally stat. collector ==> Number of arrived contacts

num. obs. min max average standard dev.
1000 907.000 1108.000 1000.169 33.164

95.0% confidence interval for mean (student): (998.111, 1002.227)

REPORT on Tally stat. collector ==> Number of served contacts
num. obs. min max average standard dev.

1000 890.000 1057.000 963.109 27.984
95.0% confidence interval for mean (student): (961.372, 964.846)

REPORT on Tally stat. collector ==> Number of blocked contacts
num. obs. min max average standard dev.

1000 0.000 0.000 0.000 0.000
95.0% confidence interval for mean (student): (0.000, 0.000)

REPORT on Tally stat. collector ==> Number of abandoned contacts
num. obs. min max average standard dev.

1000 4.000 67.000 31.820 10.437

64 4 TELETHON CALL CENTER March 4, 2014

95.0% confidence interval for mean (student): (31.172, 32.468)

REPORT on Tally stat. collector ==> Number of messages
num. obs. min max average standard dev.

1000 0.000 21.000 4.960 2.973
95.0% confidence interval for mean (student): (4.776, 5.144)

REPORT on Tally stat. collector ==> Number of disconnected contacts
num. obs. min max average standard dev.

1000 0.000 7.000 0.280 0.718
95.0% confidence interval for mean (student): (0.235, 0.325)

REPORT on Tally stat. collector ==> Number of contacts in target
num. obs. min max average standard dev.

1000 880.000 1042.000 950.265 27.173
95.0% confidence interval for mean (student): (948.579, 951.951)

REPORT on Tally stat. collector ==> Speed of answer
func. of averages standard dev. num. obs.

0.036 0.012 1000
95.0% confidence interval for function of means: (0.036, 0.037)

REPORT on Tally stat. collector ==> Service level
num. obs. min max average standard dev.

1000 88.000 104.200 95.026 2.717
95.0% confidence interval for mean (student): (94.858, 95.195)

REPORT on Tally stat. collector ==> Agents’ occupancy ratio
num. obs. min max average standard dev.

1000 59.365 75.824 66.772 2.650
95.0% confidence interval for mean (student): (66.607, 66.936)

REPORT on Tally stat. collector ==> Corrected agents’ occupancy ratio
num. obs. min max average standard dev.

1000 57.250 72.489 64.049 2.499
95.0% confidence interval for mean (student): (63.894, 64.204)

March 4, 2014 65

5 Bilingual contact center

This example represents a contact center serving an English and a Spanish population.
On each weekday, contacts of each type arrive following a Poisson process with rate 100/h
from 8AM to 9AM, and 50/h from 9AM to 5PM. 7 English-speaking, 7 Spanish-speaking,
and 4 bilingual agents are available to serve contacts. The contact center provides 40 phone
lines to accommodate contacts.

When a contactor arrives, the router randomly selects a free agent or queues the contact
if there is no free agent. Patience times are i.i.d. exponential variables with mean 2 minutes.
I.i.d. service times follow the uniform distribution, ranging from 3 minutes to 7 minutes for
English contacts, and from 4 minutes to 6 minutes for Spanish contacts.

If abandonment occurs, with probability 0.75, the contactor retries to join an agent
after 20 minutes. Arena Contact Center Edition supports a generalization of this concept
called contact backs. Whenever a contactor exits the system, he has the possibility to enter
back with a certain probability, after a possibly random time. In the call center terminology,
contact backs after abandonment are denoted retrials whereas contact backs after service are
named returns. This differs from the concept of returns, i.e., agents recontacting customers,
implemented in Arena Contact Center Edition.

The program estimates the service level for contact types k = 0 and 1, and the service
level over all contact types, as well as the occupancy ratio for agent groups i = 0, 1, 2 and the
ratio over all agent groups. Let SG,k,·(s) be the number of served contacts of type k having
waited in queue for less than s, and let Ak,· be the total number of arrivals of type k. The
service level for type k is defined by

E[SG,k,·(s)]

E[Ak,·]
. (8)

The occupancy ratio in group i is defined by (6). Since

S =
K−1∑
k=0

Sk,·,

A =
K−1∑
k=0

Ak,·,

N(t) =
I−1∑
i=0

Ni(t),

NB(t) =
I−1∑
i=0

NB,i(t),

etc.,

equations (7) and (3) can be used for the overall service level and occupancy ratio.

The program given on Listing 23 simulates the above model and computes required
statistics.

66 5 BILINGUAL CONTACT CENTER March 4, 2014

Listing 23: A simulation program for a bilingual contact center

import umontreal.iro.lecuyer.contactcenters.ContactCenter;
import umontreal.iro.lecuyer.contactcenters.PeriodChangeEvent;
import umontreal.iro.lecuyer.contactcenters.contact.Contact;
import umontreal.iro.lecuyer.contactcenters.contact.ContactFactory;
import umontreal.iro.lecuyer.contactcenters.contact.PiecewiseConstantPoissonArrivalProcess;
import umontreal.iro.lecuyer.contactcenters.contact.TrunkGroup;
import umontreal.iro.lecuyer.contactcenters.queue.DequeueEvent;
import umontreal.iro.lecuyer.contactcenters.queue.StandardWaitingQueue;
import umontreal.iro.lecuyer.contactcenters.queue.WaitingQueue;
import umontreal.iro.lecuyer.contactcenters.router.AgentGroupSelectors;
import umontreal.iro.lecuyer.contactcenters.router.ExitedContactListener;
import umontreal.iro.lecuyer.contactcenters.router.Router;
import umontreal.iro.lecuyer.contactcenters.router.SingleFIFOQueueRouter;
import umontreal.iro.lecuyer.contactcenters.server.AgentGroup;
import umontreal.iro.lecuyer.contactcenters.server.EndServiceEvent;
import umontreal.iro.lecuyer.contactcenters.server.GroupVolumeStat;

import umontreal.iro.lecuyer.probdist.UniformDist;
import umontreal.iro.lecuyer.randvar.ExponentialGen;
import umontreal.iro.lecuyer.randvar.UniformGen;
import umontreal.iro.lecuyer.rng.MRG32k3a;
import umontreal.iro.lecuyer.rng.RandomStream;
import umontreal.iro.lecuyer.simevents.Event;
import umontreal.iro.lecuyer.simevents.Sim;
import umontreal.iro.lecuyer.stat.Tally;
import umontreal.iro.lecuyer.stat.list.ListOfTallies;
import umontreal.iro.lecuyer.util.Chrono;

public class Bilingual {
// Contact type and agent group identifiers and names
static final int ENGLISH = 0;
static final int SPANISH = 1;
static final int BILINGUAL = 2;
// TYPENAMES[k] gives the name of contact type k, for k = 0 and 1
// TYPENAMES[K] gives the name for all contact types
static final String[] TYPENAMES = {

"English", "Spanish","all types"
};
// GROUPNAMES[i] gives the name of agent group i, for i = 0, 1, and 2
// GROUPNAMES[I] gives the name for all agent groups
static final String[] GROUPNAMES = {

"English-only", "Spanish-only", "bilingual", "all groups"
};

// Input data (times are in minutes)
static final int K = 2;

March 4, 2014 67

static final int I = 3;
static final int P = 24*7;
static final double PERIODDURATION = 60;
static final int STARTHOUR = 8;
static final int ENDHOUR = 17;
static final double FIRSTHOURARRIVALRATE = 100;
static final double ARRIVALRATE = 50;
// Capacity of each agent group
// 7 English-only, 7 Spanish-only, 4 bilingual
static final int[] NUMAGENTS = { 7, 7, 4 };
static final int NUMTRUNKS = 40;
static final double AWT = 1.0;
static final double PTIME = 2.0;
static final double STIMEENGLISHMIN = 3.0;
static final double STIMEENGLISHMAX = 7.0;
static final double STIMESPANISHMIN = 4.0;
static final double STIMESPANISHMAX = 6.0;
static final double PROBCBACK = 0.75;
static final double CBACKTIME = 20.0;
static final int[][] TYPETOGROUPMAP = {

// English contact type
{ ENGLISH, BILINGUAL },
// Spanish contact type
{ SPANISH, BILINGUAL },

};
static final int[][] GROUPTOTYPEMAP = {

// English-only agents
{ ENGLISH },
// Spanish-only agents
{ SPANISH },
// Bilingual agents
{ ENGLISH, SPANISH }

};

static final double LEVEL = 0.95; // Level of conf. int.
static final int NUMDAYS = 1000;

// Known expectations
static final double EXPARRIVALS = 5*(FIRSTHOURARRIVALRATE +

(ENDHOUR - STARTHOUR - 1)*ARRIVALRATE);
static double[] EXPNUMAGENTS = new double[I + 1];
static {

for (int i = 0; i < I; i++) {
EXPNUMAGENTS[i] = 5*PERIODDURATION*(ENDHOUR - STARTHOUR)*NUMAGENTS[i];
EXPNUMAGENTS[I] += EXPNUMAGENTS[i];

}
}

68 5 BILINGUAL CONTACT CENTER March 4, 2014

// Contact center components
PeriodChangeEvent pce; // Event marking new periods
TrunkGroup trunks; // Manages phone lines
PiecewiseConstantPoissonArrivalProcess[] arrivProc = new

PiecewiseConstantPoissonArrivalProcess[K];
AgentGroup[] agentGroups = new AgentGroup[I];
WaitingQueue[] queues = new WaitingQueue[K];
Router router;

// Random streams and random variate generators
RandomStream agentStream = new MRG32k3a();
RandomStream streamContactBack = new MRG32k3a();
// Patience time generator
ExponentialGen pgen = new ExponentialGen (new MRG32k3a(), 1.0/PTIME);
// Service time generator, for each contact type
UniformGen[] sgen = {

// English
new UniformGen (new MRG32k3a(), new UniformDist

(STIMEENGLISHMIN, STIMEENGLISHMAX)),
// Spanish
new UniformGen (new MRG32k3a(), new UniformDist

(STIMESPANISHMIN, STIMESPANISHMAX))
};

// Counters and probes used during replications
double[] numArriv = new double[K + 1];
double[] numContactBack = new double[K + 1];
double[] numGoodSL = new double[K + 1];
double[] numServed = new double[K + 1];
double[] numDisconnected = new double[K + 1];
double[] numAbandoned = new double[K + 1];
GroupVolumeStat[] vstat = new GroupVolumeStat[I];
// Used as a temporary variable in addObs
double[] Nb = new double[I + 1];

// Statistical collectors
ListOfTallies<Tally> arrivals = create

("Number of arrived contacts", TYPENAMES);
ListOfTallies<Tally> contactBack = create

("Number of retrials after abandonment", TYPENAMES);
ListOfTallies<Tally> served = create

("Number of served contacts", TYPENAMES);
ListOfTallies<Tally> disconnected = create

("Number of disconnected contacts", TYPENAMES);
ListOfTallies<Tally> abandoned = create

("Number of abandoned contacts", TYPENAMES);

March 4, 2014 69

ListOfTallies<Tally> goodSL = create
("Number of contacts in target", TYPENAMES);

ListOfTallies<Tally> serviceLevel = create
("Service level", TYPENAMES);

ListOfTallies<Tally> occupancy = create
("Agents’ occupancy ratio", GROUPNAMES);

private ListOfTallies<Tally> create (String name, String[] elementNames) {
final ListOfTallies<Tally> lt = ListOfTallies.createWithTally (elementNames.length);
lt.setName (name);
for (int i = 0; i < elementNames.length; i++) {

lt.get (i).setName (elementNames[i]);
lt.get (i).setConfidenceIntervalStudent();
lt.get (i).setConfidenceLevel (LEVEL);

}
return lt;

}

Bilingual() {
pce = new PeriodChangeEvent (PERIODDURATION, P + 2, 0.0);
trunks = new TrunkGroup (NUMTRUNKS);

final double[] arrivalRates = new double[P + 2];
for (int day = 0; day < 5; day++) {

arrivalRates[24*day + STARTHOUR + 1] = FIRSTHOURARRIVALRATE;
for (int hour = STARTHOUR + 1; hour < ENDHOUR; hour++)

arrivalRates[24*day + hour + 1] = ARRIVALRATE;
}
for (int k = 0; k < K; k++) {

arrivProc[k] = new PiecewiseConstantPoissonArrivalProcess
(pce, new MyContactFactory (k), arrivalRates, new MRG32k3a());

arrivProc[k].setNormalizing (true);
}

final int[][] numAgents = new int[I][P + 2];
for (int day = 0; day < 5; day++)

for (int hour = STARTHOUR; hour < ENDHOUR; hour++) {
final int ind = 24*day + hour + 1;
for (int i = 0; i < I; i++)

numAgents[i][ind] = NUMAGENTS[i];
}

for (int i = 0; i < I; i++) {
agentGroups[i] = new AgentGroup (pce, numAgents[i]);
vstat[i] = new GroupVolumeStat (agentGroups[i]);

}
for (int q = 0; q < K; q++)

queues[q] = new StandardWaitingQueue();

70 5 BILINGUAL CONTACT CENTER March 4, 2014

router = new MyRouter (TYPETOGROUPMAP, GROUPTOTYPEMAP);
for (int k = 0; k < K; k++) arrivProc[k].addNewContactListener (router);
for (int q = 0; q < K; q++) router.setWaitingQueue (q, queues[q]);
for (int i = 0; i < I; i++) router.setAgentGroup (i, agentGroups[i]);
router.setClearWaitingQueues (true);
router.addExitedContactListener (new MyContactMeasures());

}

// Add a flag for determining if the contacts have retried
// after abandoning.
class MyContact extends Contact {

boolean contactBack = false;
MyContact (int type) {

super (type);
}

}

// Creates new contacts
class MyContactFactory implements ContactFactory {

int type;
MyContactFactory (int type) { this.type = type; }

public Contact newInstance() {
final MyContact contact = new MyContact (type);
contact.setTrunkGroup (trunks);
contact.setDefaultPatienceTime (pgen.nextDouble());
contact.setDefaultServiceTime (sgen[type].nextDouble());
return contact;

}
}

// Implements random agent selection and retrials.
class MyRouter extends SingleFIFOQueueRouter {

MyRouter (int[][] typeToGroupMap, int[][] groupToTypeMap) {
super (typeToGroupMap, groupToTypeMap);

}

// Random agent selection
@Override
protected EndServiceEvent selectAgent (Contact contact) {

final int tid = contact.getTypeId();
final AgentGroup group = AgentGroupSelectors.selectUniform

(this, typeToGroupMap[tid], agentStream);
if (group == null) return null;
return group.serve (contact);

}

March 4, 2014 71

// Retrial with some probability for abandoned contacts
@Override
protected void dequeued (DequeueEvent ev) {

if (ev.getEffectiveDequeueType() == 0) return;
if (ev.getEffectiveDequeueType() == 1) {

final double u = streamContactBack.nextDouble();
if (u <= PROBCBACK)

new ContactBackEvent (ev.getContact()).schedule (CBACKTIME);
}
exitDequeued (ev);

}
}

// Event happening when a customer contacts back
class ContactBackEvent extends Event {

Contact contact;
ContactBackEvent (Contact contact) { this.contact = contact; }

@Override
public void actions() {

contact.setExited (false);
((MyContact)contact).contactBack = true;
router.newContact (contact);

}
}

// Updates counters
class MyContactMeasures implements ExitedContactListener {

public void blocked (Router router, Contact contact, int bType) {
countArrival (contact);

}

private void countArrival (Contact contact) {
final int type = contact.getTypeId();
++numArriv[type];
++numArriv[K];
if (((MyContact)contact).contactBack) {

++numContactBack[type];
++numContactBack[K];

}
}

public void dequeued (Router router, DequeueEvent ev) {
final Contact contact = ev.getContact();
countArrival (contact);
final int type = contact.getTypeId();

72 5 BILINGUAL CONTACT CENTER March 4, 2014

if (ev.getEffectiveDequeueType() == Router.DEQUEUETYPE_NOAGENT) {
++numDisconnected[type];
++numDisconnected[K];

}
else {

++numAbandoned[type];
++numAbandoned[K];

}
}

public void served (Router router, EndServiceEvent ev) {
final Contact contact = ev.getContact();
countArrival (contact);
final int type = contact.getTypeId();
++numServed[type];
++numServed[K];
if (contact.getTotalQueueTime() < AWT) {

++numGoodSL[type];
++numGoodSL[K];

}
}

}

void simulateOneDay() {
Sim.init();
// Initializes period-change event, trunk group, arrival processes,
// waiting queues, and agent groups.
pce.init();
trunks.init();
ContactCenter.initElements (arrivProc);
ContactCenter.initElements (agentGroups);
ContactCenter.initElements (queues);
for (int k = 0; k <= K; k++) {

numArriv[k] = 0;
numServed[k] = 0;
numGoodSL[k] = 0;
numDisconnected[k] = 0;
numAbandoned[k] = 0;
numContactBack[k] = 0;

}
for (final GroupVolumeStat element : vstat)

element.init();
ContactCenter.toggleElements (arrivProc, true);
pce.start();
Sim.start();
pce.stop();
addObs();

March 4, 2014 73

}

protected void addObs() {
arrivals.add (numArriv);
contactBack.add (numContactBack);
served.add (numServed);
disconnected.add (numDisconnected);
abandoned.add (numAbandoned);
goodSL.add (numGoodSL);
for (int k = 0; k < K; k++)

numGoodSL[k] /= EXPARRIVALS/100.0;
numGoodSL[K] /= K*EXPARRIVALS/100.0;
serviceLevel.add (numGoodSL);
Nb[I] = 0;
for (int i = 0; i < I; i++) {

Nb[i] = vstat[i].getStatNumBusyAgents().sum();
Nb[I] += Nb[i];
Nb[i] /= EXPNUMAGENTS[i]/100.0;

}
Nb[I] /= EXPNUMAGENTS[I]/100.0;
occupancy.add (Nb);

}

void simulate (int days) {
arrivals.init(); served.init(); disconnected.init();
abandoned.init(); serviceLevel.init(); occupancy.init();
goodSL.init(); contactBack.init();
for (int r = 0; r < days; r++) simulateOneDay();

}

public void printStatistics() {
System.out.println (arrivals.report ());
System.out.println (contactBack.report ());
System.out.println (served.report ());
System.out.println (disconnected.report ());
System.out.println (abandoned.report ());
System.out.println (goodSL.report ());
System.out.println (serviceLevel.report ());
System.out.println (occupancy.report ());

}

public static void main (String[] args) {
final Bilingual b = new Bilingual();
final Chrono timer = new Chrono();
b.simulate (NUMDAYS);
System.out.println ("CPU time: " + timer.format());
b.printStatistics();

74 5 BILINGUAL CONTACT CENTER March 4, 2014

}
}

The program uses a helper class called ContactCenter providing convenience static meth-
ods for initializing components of the contact center.

In real-life models, contact types and agent groups have names. However, for efficiency, to
distinguish contact types and agent groups, the library uses numerical identifiers rather than
strings. On the other hand, replacing names with numerical identifiers reduces the readability
of the program and the produced statistical reports. To make the program clearer, constants
are associated with each identifier. The arrays TYPENAMES and GROUPNAMES contain names
for contact types and agent groups being used for statistical reports.

In this model, we are interested in statistics for each contact type separately as well as for
all contact types. In the program, many scalars are then replaced by arrays of K+1 elements,
and lists of tallies are used instead of tallies for easier statistical collecting and reporting.
Each list of tally has a global name corresponding to a type of performance measure, e.g.,
service level. Each element in a list of tallies also has its own local name corresponding to
a particular measure, e.g., the service level for a contact type, or the occupancy ratio of the
agents in a a group. The list of tallies are constructed using a create method that also
initializes the global and local names, and set reporting options to show confidence intervals.

The model in Arena Contact Center Edition is made of two parent groups which create
two waiting queues for contacts. A parent group is a set of agent groups defining a selection
rule for the agents and assigning a preference for each contact type. To implement the
parent group efficiently, a queue is created for each contact type and the contact selection is
implemented in the router.

This contact center simulator requires a custom router to implement the random selection
of agents as well as the contact back mechanism. This router, represented by the MyRouter

class, extends SingleFIFOQueueRouter used in section 3. For this model, the type-to-group
map indicates that an English contact must be served by an English-speaking or a bilingual
agent, in that order. A Spanish contact must be served by a Spanish-speaking or a bilingual
agent. The group-to-type map assigns contact types to agents: an English-speaking agent
can serve English people only whereas a Spanish-speaking agent can serve Spanish people.
The bilingual agents are generalists since they can serve any contact type in this system.

The agent selection rule of the chosen router is not appropriate, since we do not want
specialists to have priority over generalists in this particular example. To implement random
agent selection, the selectAgent method is thus overridden. This method is called by the
router when a contact arrives and must be assigned an agent. It selects an agent, starts the
service, and returns a reference to the end-service event. The selectUniform helper method
manages the random selection automatically: each agent group is assigned a probability of
selection given by the number of free agents in the group over the total number of free agents
capable of serving the contact. If no group contains free agents, a null agent group reference
is returned by selectUniform, and selectAgent returns null to indicate the router that
the contact must be queued. Otherwise, the service of the contact is started.

March 4, 2014 75

When an agent becomes free, the router tries to pull contacts from waiting queues. In this
example, the contact selection rule of the inherited router does not need to be customized.
For specialists, the appropriate waiting queue is checked for a new contact which is removed
and served. For generalists, both waiting queues are checked and the contact with the longest
waiting time is removed.

Further customization is needed to support retrials, by overriding the dequeued method
in the router. First, if the effective dequeue type is 0, the method returns immediately
because this is not an abandoning contact; the dequeue type 0 is reserved for contacts being
removed from the queue to be served. If the dequeue type is 1, with some probability, a
ContactBackEvent is scheduled after a fixed delay. The contact then leaves the system,
using the exitDequeued method. It is important to remove the contact from the system in
order to free its associated phone line. When the contact-back event occurs, the newContact
method is called with the Contact object. This is exactly what is performed by an arrival
process broadcasting a new contact to the registered router.

However, some internal checks are performed to avoid contacts entering multiple times
in the system, which would produce wrong simulation results. When a contact exits the
system, the router sets an internal exit indicator that must be cleared before the contact can
enter the router again.

To count the number of retrials, we need to define a subclass of Contact with a new
field being updated when retrial occurs. The subclass MyContact must be referred to in My-

ContactFactory to get the appropriate instances and typecasts are often needed in listeners
such as MyContactMeasures.

As we can see in the program, using arrays requires more work than scalars. Of course,
they must be constructed when declared or in the constructor of the simulator. Then, at
the beginning of each replication, in the simulateOneDay method, each element must be
initialized separately. Finally, in the exited-contact listener, events must be counted in two
elements of the arrays. When the event concerns a contact of type k, the index k of the
arrays must be updated in addition to index K for the measures for all types. In addition, in
addObs, estimating the occupancy ratio requires

∫ T

0
NB,i(t) dt and

∫ T

0
Ni(t) dt to be obtained

for each agent group separately.

report is used to format reports about each contact type or agent group, depending
on the type of performance measure. The list report contains the same information as the
ordinary report, but, as shown on Listing 24, it is more condensed and more appropriate for
related performance measures.

Listing 24: Results of the program Bilingual

CPU time: 0:0:4.10
Report for Number of arrived contacts

num obs. min max average std. dev. conf. int.
English 1000 2369.000 2745.000 2555.811 56.822 95.0% (2552.285, 2559.337)
Spanish 1000 2398.000 2743.000 2554.350 57.003 95.0% (2550.813, 2557.887)
all types 1000 4826.000 5372.000 5110.161 83.029 95.0% (5105.009, 5115.313)

76 5 BILINGUAL CONTACT CENTER March 4, 2014

Report for Number of retrials after abandonment
num obs. min max average std. dev. conf. int.

English 1000 17.000 111.000 54.073 13.495 95.0% (53.236, 54.910)
Spanish 1000 9.000 110.000 53.095 13.253 95.0% (52.273, 53.917)
all types 1000 55.000 187.000 107.168 21.377 95.0% (105.841, 108.495)

Report for Number of served contacts
num obs. min max average std. dev. conf. int.

English 1000 2330.000 2650.000 2483.933 48.612 95.0% (2480.916, 2486.950)
Spanish 1000 2344.000 2651.000 2483.302 49.449 95.0% (2480.233, 2486.371)
all types 1000 4716.000 5192.000 4967.235 69.111 95.0% (4962.946, 4971.524)

Report for Number of disconnected contacts
num obs. min max average std. dev. conf. int.

English 1000 0.000 3.000 0.030 0.222 95.0% (0.016, 0.044)
Spanish 1000 0.000 2.000 0.028 0.193 95.0% (0.016, 0.040)
all types 1000 0.000 3.000 0.058 0.291 95.0% (0.040, 0.076)

Report for Number of abandoned contacts
num obs. min max average std. dev. conf. int.

English 1000 31.000 142.000 71.848 16.652 95.0% (70.815, 72.881)
Spanish 1000 17.000 137.000 71.020 16.459 95.0% (69.999, 72.041)
all types 1000 73.000 256.000 142.868 26.740 95.0% (141.209, 144.527)

Report for Number of contacts in target
num obs. min max average std. dev. conf. int.

English 1000 2313.000 2613.000 2448.662 46.470 95.0% (2445.778, 2451.546)
Spanish 1000 2306.000 2615.000 2448.223 47.889 95.0% (2445.251, 2451.195)
all types 1000 4658.000 5104.000 4896.885 66.002 95.0% (4892.789, 4900.981)

Report for Service level
num obs. min max average std. dev. conf. int.

English 1000 92.520 104.520 97.946 1.859 95.0% (97.831, 98.062)
Spanish 1000 92.240 104.600 97.929 1.916 95.0% (97.810, 98.048)
all types 1000 93.160 102.080 97.938 1.320 95.0% (97.856, 98.020)

Report for Agents’ occupancy ratio
num obs. min max average std. dev. conf. int.

English-only 1000 44.783 50.922 47.624 0.977 95.0% (47.563, 47.684)
Spanish-only 1000 44.830 50.927 47.639 0.962 95.0% (47.580, 47.699)
bilingual 1000 59.156 65.900 63.254 0.908 95.0% (63.197, 63.310)
all groups 1000 48.433 53.713 51.103 0.719 95.0% (51.059, 51.148)

March 4, 2014 77

6 Bank model

This example represents a bank model where each agent can process all contact types,
but agents serve their specialty more efficiently. The bank can receive contacts for Savings,
Checking, and Account Balance, and employs 4 Checking specialists and 3 Savings specialists.
The Checking and Savings contacts are preferred to be handled by specialists when possible,
because service times are multiplied by a 0.75 reward factor. For the Account Balance
contacts, the system must use the two agent groups in a balanced way, so agent selection
is random and uniform among free agents. For this model, patience times are uniform and
service times are exponential. Arrivals follow a non-homogeneous Poisson process whose rate
depends on the period of the day and the contact type. Table 1 presents the rest of the input
data for this model.

Table 1: Input data for the Bank contact center
Savings Checking Account balance

Patience U(3min, 5min) U(3min, 5min) U(2.5min, 3.5min)
Service Exp(5min) Exp(5min) Exp(1min)
Awt 60s 90s 30s
Arrivals from 8AM to 9AM 4/h 40/h 100/h
Hourly arrivals from 9AM to 5PM 2/h 20/h 50/h

The program estimates the service level as well as the occupancy ratio, defined by (8)
and (6), respectively. The program also estimates per-contact type occupancy ratio defined
by

oi,k =
E
[∫ T

0
NB,i,k(t) dt

]
E
[∫ T

0
(Ni(t) +NG,i(t))dt

] (9)

for i = 0, . . . , I − 1, and the global contact-type specific occupancy ratio

oI,k =
E
[∫ T

0

∑I−1
i=0 NB,i,k(t) dt

]
E
[∫ T

0

∑I−1
i=1 (Ni(t) +NG,i(t))dt

] .
which is not estimated by Arena Contact Center Edition.

In the Arena Contact Center Edition model, idle and busy costs are assigned to the two
agent groups. The expected busy cost of agents in group i Cb,i is defined by

Cb,i = cb,iE

[∫ T

0

NB,i(t) dt

]
,

where cb,i is the cost of one busy agent in group i per simulation time unit. Similarly, the
idle cost of agents in group i is defined by

Ci,i = ci,iE

[∫ T

0

NI,i(t) dt

]
.

78 6 BANK MODEL March 4, 2014

The cost of Savings specialists is 12$/hour while the cost of Checking specialists is 7.50$/hour,
whether the agents are idle or busy. Of course, more general costing models could be imple-
mented by a ContactCenters model, e.g., time-varying idle and busy costs.

Listing 25 gives the implementation of the above model to estimate various performance
measures for each contact type as well as aggregate measures for all types.

Listing 25: A simulation program for a bank model

import java.util.ArrayList;
import java.util.List;

import umontreal.iro.lecuyer.contactcenters.ContactCenter;
import umontreal.iro.lecuyer.contactcenters.MatrixUtil;
import umontreal.iro.lecuyer.contactcenters.NonStationaryMeasureMatrix;
import umontreal.iro.lecuyer.contactcenters.PeriodChangeEvent;
import umontreal.iro.lecuyer.contactcenters.RepSimCC;
import umontreal.iro.lecuyer.contactcenters.StatUtil;
import umontreal.iro.lecuyer.contactcenters.contact.Contact;
import umontreal.iro.lecuyer.contactcenters.contact.ContactFactory;
import umontreal.iro.lecuyer.contactcenters.contact.ContactSumMatrix;
import umontreal.iro.lecuyer.contactcenters.contact.PiecewiseConstantPoissonArrivalProcess;
import umontreal.iro.lecuyer.contactcenters.contact.TrunkGroup;
import umontreal.iro.lecuyer.contactcenters.queue.DequeueEvent;
import umontreal.iro.lecuyer.contactcenters.queue.StandardWaitingQueue;
import umontreal.iro.lecuyer.contactcenters.queue.WaitingQueue;
import umontreal.iro.lecuyer.contactcenters.router.AgentGroupSelectors;
import umontreal.iro.lecuyer.contactcenters.router.ExitedContactListener;
import umontreal.iro.lecuyer.contactcenters.router.Router;
import umontreal.iro.lecuyer.contactcenters.router.SingleFIFOQueueRouter;
import umontreal.iro.lecuyer.contactcenters.server.Agent;
import umontreal.iro.lecuyer.contactcenters.server.AgentGroup;
import umontreal.iro.lecuyer.contactcenters.server.ContactTimeGenerator;
import umontreal.iro.lecuyer.contactcenters.server.EndServiceEvent;
import umontreal.iro.lecuyer.contactcenters.server.GroupVolumeStatMeasureMatrix;
import umontreal.iro.lecuyer.probdist.UniformDist;
import umontreal.iro.lecuyer.randvar.ExponentialGen;
import umontreal.iro.lecuyer.randvar.UniformGen;
import umontreal.iro.lecuyer.rng.MRG32k3a;
import umontreal.iro.lecuyer.rng.RandomStream;
import umontreal.iro.lecuyer.simevents.Sim;
import umontreal.iro.lecuyer.stat.FunctionOfMultipleMeansTally;
import umontreal.iro.lecuyer.stat.Tally;
import umontreal.iro.lecuyer.stat.matrix.MatrixOfFunctionOfMultipleMeansTallies;
import umontreal.iro.lecuyer.stat.matrix.MatrixOfTallies;
import umontreal.iro.lecuyer.stat.mperiods.IntegralMeasureMatrix;
import umontreal.iro.lecuyer.stat.mperiods.MeasureMatrix;
import umontreal.iro.lecuyer.stat.mperiods.MeasureSet;

March 4, 2014 79

import umontreal.iro.lecuyer.util.Chrono;
import umontreal.iro.lecuyer.util.RatioFunction;
import cern.colt.matrix.DoubleMatrix2D;
import cern.jet.math.Functions;

public class Bank {
// Contact type and agent group identifiers and names
static final int SAVINGS = 0;
static final int CHECKING = 1;
static final int BALANCE = 2;
static final String[] TYPENAMES = {

"savings", "checking", "account balance", "all types"
};
static final String[] GROUPNAMES = {

"savings specialists", "checking specialists", "all groups"
};
static final int K = 3;
static final int I = 2;
static final int P = 24*7;
static final String[] GROUPTYPENAMES = new String[K*(I + 1)];
// PERIODNAMES[p] gives the name for period p
static final String[] PERIODNAMES = new String[P + 1];

static {
for (int i = 0; i <= I; i++)

for (int k = 0; k < K; k++) {
String tn = TYPENAMES[k];
String gn = GROUPNAMES[i];
if (tn.equals ("account balance"))

tn = "balance";
gn = gn.replaceFirst ("specialists", "spec.");
GROUPTYPENAMES[i*K + k] = gn + "/" + tn;

}
for (int p = 0; p < P; p++)

PERIODNAMES[p] = "period " + (p + 1);
PERIODNAMES[P] = "all periods";

}

// Input data (all times are in minutes)
// Cost of agents per minute.
// The array contains the cost of Savings and Checking specialists,
// in that order.
static final double[] COST = { 12.0/60, 7.5/60 };
static final double PERIODDURATION = 60.0;
static final int STARTHOUR = 8;
static final int ENDHOUR = 17;
static final int NUMTRUNKS = 15;

80 6 BANK MODEL March 4, 2014

static final double[] FIRSTHOURARRIVALRATES =
{ 4, 40, 100 };
static final double[] ARRIVALRATES = { 2, 20, 50 };
static final int[] NUMAGENTS = { 3, 4 };
// Service time multipliers
static final double[][] STIMEMULT = {

// Savings specialists
{ 0.75, 1.0, 1.0 },
// Checking specialists
{ 1.0, 0.75, 1.0 }

};

// Mean service times
static final double[] STIME = { 5, 5, 1 };
static final double[] AWT = { 1.0, 90.0/60.0, 30.0/60.0 };
static final int[][] TYPETOGROUPMAP = {

// Savings contact type
{ SAVINGS, CHECKING },
// Checking contact type
{ CHECKING, SAVINGS },
// Account balance contact type
{ SAVINGS, CHECKING }

};
static final int[][] GROUPTOTYPEMAP = {

// Savings specialists
{ SAVINGS, CHECKING, BALANCE },
// Checking specialists
{ CHECKING, SAVINGS, BALANCE }

};
static final double LEVEL = 0.95; // Level of conf. int.
static final int NUMDAYS = 1000;

// Contact center components
PeriodChangeEvent pce; // Event marking beginning of periods
TrunkGroup trunks; // Manages phone lines
PiecewiseConstantPoissonArrivalProcess[] arrivProc =

new PiecewiseConstantPoissonArrivalProcess[K];
AgentGroup[] agentGroups = new AgentGroup[I];
WaitingQueue[] queues = new WaitingQueue[K];
Router router;

// Random streams and random variate generators
RandomStream agentStream = new MRG32k3a();
UniformGen[] pgen = {

// Savings
new UniformGen (new MRG32k3a(), new UniformDist (3.0, 5.0)),
// Checking

March 4, 2014 81

new UniformGen (new MRG32k3a(), new UniformDist (3.0, 5.0)),
// Account balance
new UniformGen (new MRG32k3a(), new UniformDist (2.5, 3.5))

};
ExponentialGen sgen[] = {

// Savings
new ExponentialGen (new MRG32k3a(), 1.0/STIME[SAVINGS]),
// Checking
new ExponentialGen (new MRG32k3a(), 1.0/STIME[CHECKING]),
new ExponentialGen (new MRG32k3a(), 1.0/STIME[BALANCE])

};

// Measure matrices (counters)
List<MeasureMatrix> mats = new ArrayList<MeasureMatrix>();
ContactSumMatrix numArriv;
ContactSumMatrix numBlocked;
ContactSumMatrix numGoodSL;
ContactSumMatrix numServed;
ContactSumMatrix numAbandoned;
ContactSumMatrix numDisconnected;
ContactSumMatrix sumServiceTimes;
ContactSumMatrix sumWaitingTimes;
IntegralMeasureMatrix<?>[] vstat = new IntegralMeasureMatrix[I];
MeasureSet svm;
MeasureSet ivm;
MeasureSet tvm;
MeasureSet dsvm;
MeasureSet dtvm;

// Statistical collectors
List<MatrixOfTallies<Tally>> mTallies = new ArrayList<MatrixOfTallies<Tally>>();
MatrixOfTallies<Tally> arrivals;
MatrixOfTallies<Tally> blocked;
MatrixOfTallies<Tally> served;
MatrixOfFunctionOfMultipleMeansTallies<FunctionOfMultipleMeansTally> serviceLevel;
MatrixOfTallies<Tally> occupancy;
MatrixOfTallies<Tally> occupancyPerType;
MatrixOfTallies<Tally> serviceTimes;
MatrixOfTallies<Tally> idleCost;
MatrixOfTallies<Tally> busyCost;
MatrixOfTallies<Tally> waitingTimes;
MatrixOfTallies<Tally> disconnected;
MatrixOfTallies<Tally> abandoned;
Tally trunkAvail;
Tally trunkBusy;

Bank() {

82 6 BANK MODEL March 4, 2014

pce = new PeriodChangeEvent (PERIODDURATION, P + 2, 0.0);
trunks = new TrunkGroup (NUMTRUNKS);
trunks.setStatCollecting (true);

final double[][] arrivalRates = new double[K][P + 2];
for (int day = 0; day < 5; day++) {

for (int k = 0; k < K; k++)
arrivalRates[k][24*day + STARTHOUR + 1] =

FIRSTHOURARRIVALRATES[k];
for (int hour = STARTHOUR + 1; hour < ENDHOUR; hour++)

for (int k = 0; k < K; k++)
arrivalRates[k][24*day + hour + 1] = ARRIVALRATES[k];

}
for (int k = 0; k < K; k++) {

arrivProc[k] = new PiecewiseConstantPoissonArrivalProcess
(pce, new MyContactFactory (k), arrivalRates[k], new MRG32k3a());

arrivProc[k].setNormalizing (true);
}

final int[][] numAgents = new int[I][P + 2];
for (int day = 0; day < 5; day++)

for (int hour = STARTHOUR; hour < ENDHOUR; hour++)
for (int i = 0; i < I; i++)

numAgents[i][24*day + hour + 1] = NUMAGENTS[i];
for (int i = 0; i < I; i++) {

agentGroups[i] = new AgentGroup (pce, numAgents[i]);
agentGroups[i].setContactTimeGenerator

(0, new ContactTimeGenerator (agentGroups[i], STIMEMULT[i]));
}

for (int q = 0; q < K; q++)
queues[q] = new StandardWaitingQueue();

router = new MyRouter (TYPETOGROUPMAP, GROUPTOTYPEMAP);
for (int k = 0; k < K; k++) arrivProc[k].addNewContactListener (router);
for (int q = 0; q < K; q++) router.setWaitingQueue (q, queues[q]);
for (int i = 0; i < I; i++) router.setAgentGroup (i, agentGroups[i]);
router.setClearWaitingQueues (true);
router.addExitedContactListener (new MyContactMeasures());

mats.add (numArriv = new ContactSumMatrix (K, P + 2));
mats.add (numBlocked = new ContactSumMatrix (K, P + 2));
mats.add (numServed = new ContactSumMatrix (K, P + 2));
mats.add (numGoodSL = new ContactSumMatrix (K, P + 2));
mats.add (numAbandoned = new ContactSumMatrix (K, P + 2));
mats.add (numDisconnected = new ContactSumMatrix (K, P + 2));
mats.add (sumWaitingTimes = new ContactSumMatrix (K, P + 2));

March 4, 2014 83

mats.add (sumServiceTimes = new ContactSumMatrix (K, P + 2));
for (int i = 0; i < I; i++)

mats.add (vstat[i] = new NonStationaryMeasureMatrix<GroupVolumeStatMeasureMatrix>
(pce, new GroupVolumeStatMeasureMatrix (agentGroups[i], K)));

svm = GroupVolumeStatMeasureMatrix.getServiceVolumeMeasureSet (vstat);
ivm = GroupVolumeStatMeasureMatrix.getIdleVolumeMeasureSet (vstat);
tvm = GroupVolumeStatMeasureMatrix.getTotalVolumeMeasureSet (vstat);
dsvm = GroupVolumeStatMeasureMatrix.getServiceVolumeMeasureSet (vstat, K);
dtvm = GroupVolumeStatMeasureMatrix.getTotalVolumeMeasureSet (vstat, K);

mTallies.add (arrivals = create
("Number of arrived contacts",
TYPENAMES, PERIODNAMES));

mTallies.add (blocked = create
("Number of blocked contacts",
TYPENAMES, PERIODNAMES));

mTallies.add (served = create
("Number of served contacts",
TYPENAMES, PERIODNAMES));

serviceLevel = createRatio
("Service level",
TYPENAMES, PERIODNAMES);

mTallies.add (occupancy = create
("Agents’ occupancy ratio",
GROUPNAMES, PERIODNAMES));

mTallies.add (occupancyPerType = create
("Occupancy ratio per contact type",
GROUPTYPENAMES, PERIODNAMES));

mTallies.add (serviceTimes = create
("Service time",
TYPENAMES, PERIODNAMES));

mTallies.add (busyCost = create
("Busy cost of agents",
GROUPNAMES, PERIODNAMES));

mTallies.add (idleCost = create
("Idle cost of agents",
GROUPNAMES, PERIODNAMES));

trunkAvail = new Tally
("Number of available trunks");

trunkBusy = new Tally
("Number of busy trunks");

mTallies.add (waitingTimes = create
("Average waiting time",
TYPENAMES, PERIODNAMES));

mTallies.add (abandoned = create
("Number of abandoned contacts",
TYPENAMES, PERIODNAMES));

84 6 BANK MODEL March 4, 2014

mTallies.add (disconnected = create
("Number of disconnected contacts",
TYPENAMES, PERIODNAMES));

}

private MatrixOfTallies<Tally> create
(String name, String[] rowNames, String[] columnNames) {

final MatrixOfTallies<Tally> mta = MatrixOfTallies.createWithTally
(rowNames.length, columnNames.length);
mta.setName (name);
for (int r = 0; r < rowNames.length; r++)

for (int c = 0; c < columnNames.length; c++)
mta.get (r, c).setName (rowNames[r] + ", " + columnNames[c]);

for (final Tally ta : mta) {
ta.setConfidenceIntervalStudent();
ta.setConfidenceLevel (LEVEL);

}
return mta;

}

private MatrixOfFunctionOfMultipleMeansTallies<FunctionOfMultipleMeansTally>
createRatio (String name, String[] rowNames, String[] columnNames) {

final RatioFunction ratio = new RatioFunction();
final MatrixOfFunctionOfMultipleMeansTallies<FunctionOfMultipleMeansTally> mta =

MatrixOfFunctionOfMultipleMeansTallies.create
(ratio, 2, rowNames.length, columnNames.length);

mta.setName (name);
for (int r = 0; r < rowNames.length; r++)

for (int c = 0; c < columnNames.length; c++)
mta.get (r, c).setName (rowNames[r] + ", " + columnNames[c]);

for (final FunctionOfMultipleMeansTally ta : mta) {
ta.setConfidenceIntervalDelta();
ta.setConfidenceLevel (LEVEL);

}
return mta;

}

// Creates new contacts
class MyContactFactory implements ContactFactory {

int type;
MyContactFactory (int type) { this.type = type; }

public Contact newInstance() {
final Contact contact = new Contact (type);
contact.setTrunkGroup (trunks);
contact.setDefaultServiceTime (sgen[type].nextDouble());
contact.setDefaultPatienceTime (pgen[type].nextDouble());

March 4, 2014 85

return contact;
}

}

class MyRouter extends SingleFIFOQueueRouter {
MyRouter (int[][] typeToGroupMap, int[][] groupToTypeMap) {

super (typeToGroupMap, groupToTypeMap);
}

@Override
protected EndServiceEvent selectAgent (Contact contact) {

final int tid = contact.getTypeId();
if (tid == BALANCE) {

final AgentGroup group = AgentGroupSelectors.selectUniform
(this, typeToGroupMap[tid], agentStream);

if (group == null) return null;
return group.serve (contact);

}
else

return super.selectAgent (contact);
}

@Override
protected DequeueEvent selectContact (AgentGroup group, Agent agent) {

final int gid = group.getId();
final int bestType = groupToTypeMap[gid][0];
if (queues[bestType].isEmpty ())

return super.selectContact (group, agent);
else

return queues[bestType].removeFirst (DEQUEUETYPE_BEGINSERVICE);
}

}

class MyContactMeasures implements ExitedContactListener {
public void blocked (Router router, Contact contact, int bType) {

final int type = contact.getTypeId();
final int period = pce.getPeriod (contact.getArrivalTime());
numArriv.add (type, period, 1);
numBlocked.add (type, period, 1);

}

public void dequeued (Router router, DequeueEvent ev) {
final Contact contact = ev.getContact();
final int type = contact.getTypeId();
final int period = pce.getPeriod (contact.getArrivalTime());
numArriv.add (type, period, 1);
if (ev.getEffectiveDequeueType() == Router.DEQUEUETYPE_NOAGENT)

86 6 BANK MODEL March 4, 2014

numDisconnected.add (type, period, 1);
else

numAbandoned.add (type, period, 1);
}

public void served (Router router, EndServiceEvent ev) {
final Contact contact = ev.getContact();
final int type = contact.getTypeId();
final int period = pce.getPeriod (contact.getArrivalTime());
numArriv.add (type, period, 1);
numServed.add (type, period, 1);
final double qt = contact.getTotalQueueTime();
if (qt < AWT[type]) numGoodSL.add (type, period, 1);
final double st = contact.getTotalServiceTime();
sumServiceTimes.add (type, period, st);
sumWaitingTimes.add (type, period, contact.getTotalQueueTime());

}
}

public void simulateOneDay() {
Sim.init();
pce.init();
trunks.init();
ContactCenter.initElements (arrivProc);
ContactCenter.initElements (agentGroups);
ContactCenter.initElements (queues);
ContactCenter.initElements (mats);
ContactCenter.toggleElements (arrivProc, true);
pce.start();
Sim.start();
pce.stop();
addObs();

}

void addObs() {
final DoubleMatrix2D arrivalsM = RepSimCC.getReplicationValues (numArriv, false, false);
arrivals.add (arrivalsM);
final DoubleMatrix2D bl = RepSimCC.getReplicationValues (numBlocked, false, false);
blocked.add (bl);
final DoubleMatrix2D servedM = RepSimCC.getReplicationValues

(numServed, false, false);
served.add (servedM);
final DoubleMatrix2D gslM = RepSimCC.getReplicationValues

(numGoodSL, false, false);
gslM.assign (Functions.mult (100));
//addRatio (serviceLevel, gslM, arrivalsM);
serviceLevel.addSameDimension (gslM, arrivalsM);

March 4, 2014 87

final DoubleMatrix2D svM = RepSimCC.getReplicationValues
(svm, false, false);

final DoubleMatrix2D ivM = RepSimCC.getReplicationValues
(ivm, false, false);

final DoubleMatrix2D tvM = RepSimCC.getReplicationValues
(tvm, false, false);

StatUtil.addRatio (occupancy, svM, tvM, 100.0);
final DoubleMatrix2D dsvM = RepSimCC.getReplicationValues

(dsvm, false, false);
final DoubleMatrix2D dtvM = RepSimCC.getReplicationValues

(dtvm, false, false);
StatUtil.addRatio (occupancyPerType, dsvM, dtvM, 100.0);

MatrixUtil.getCost (svM, COST);
MatrixUtil.getCost (ivM, COST);
busyCost.add (svM);
idleCost.add (ivM);
final DoubleMatrix2D st = RepSimCC.getReplicationValues (sumServiceTimes, false, false);
StatUtil.addRatio (serviceTimes, st, servedM);
final DoubleMatrix2D wt = RepSimCC.getReplicationValues (sumWaitingTimes, false, false);
StatUtil.addRatio (waitingTimes, wt, arrivalsM);
final DoubleMatrix2D ab = RepSimCC.getReplicationValues (numAbandoned, false, false);
abandoned.add (ab);
final DoubleMatrix2D dis = RepSimCC.getReplicationValues (numDisconnected, false, false);
disconnected.add (dis);
trunkBusy.add (trunks.getStatLines().average());
trunkAvail.add (trunks.getCapacity() - trunks.getStatLines().average());

}

public void simulate (int n) {
ContactCenter.initElements (mTallies);
serviceLevel.init();
trunkAvail.init();
trunkBusy.init();
for (int r = 0; r < n; r++) simulateOneDay();

}

public void printStatistics() {
System.out.println (trunkAvail.reportAndCIStudent (LEVEL, 3));
System.out.println (trunkBusy.reportAndCIStudent (LEVEL, 3));

System.out.println
(arrivals.columnReport
(arrivals.columns() - 1));

System.out.println
(blocked.columnReport
(blocked.columns() - 1));

88 6 BANK MODEL March 4, 2014

System.out.println
(serviceLevel.columnReport
(serviceLevel.columns() - 1));

System.out.println
(serviceTimes.columnReport
(serviceTimes.columns() - 1));

System.out.println
(waitingTimes.columnReport
(waitingTimes.columns() - 1));

System.out.println
(abandoned.columnReport
(abandoned.columns() - 1));

System.out.println
(disconnected.columnReport
(disconnected.columns() - 1));

System.out.println
(occupancy.columnReport
(occupancy.columns() - 1));

System.out.println
(idleCost.columnReport
(idleCost.columns() - 1));

System.out.println
(busyCost.columnReport
(busyCost.columns() - 1));

System.out.println
(occupancyPerType.columnReport
(occupancyPerType.columns() - 1));

}

public static void main (String[] args) {
final Bank b = new Bank();
final Chrono timer = new Chrono();
b.simulate (NUMDAYS);
System.out.println ("CPU time: " + timer.format());
b.printStatistics();

}
}

The Bank class representing the simulator uses the ContactCenter utility class as in the
previous example. Names are also associated with each contact type, agent group, period,
and (contact type, agent group) pair, for clearer statistical reports.

This example demonstrates an alternative way for performing statistical collecting. In-
stead of built-in types or arrays for counting events, we use special measure matrices adapted
for storing observations for multiple performance measures and periods. For example, num-
Arriv is a (K + 1) × (P + 2) matrix whose rows correspond to contact types and columns

March 4, 2014 89

correspond to periods. The used contact sum matrix must be constructed with the number of
contact types and periods, and provides an add method accepting an observation for contact
type k during period p. If K = 1, the matrix contains a single row. Otherwise, each addition
to element (k, p) is automatically repeated in the last row, at element (K, p), to update the
sum over all contact types. In this model, since the lengths of the preliminary and wrap-up
periods are 0, the columns 0 and P + 1 of the matrix will always contain 0’s. However, in
general, these columns could contain non-zero values. Similar matrices are constructed for
other statistics such as the number of blocked, abandoned, and served contacts.

For the occupancy ratio, as in the previous example, a statistical collector is constructed
for each agent group. An agent group volume statistical collector is also a measure matrix,
with rows for the number of busy agents, the number of working agents, etc. Since it
contains a single column for the integrals over all simulation time, each matrix of agent
group measures is wrapped into an integral measure matrix to get the integrals for multiple
periods, by recording the values of integrals each time a period ends. For NB,i(t) and Ni(t)+
NG,i(t), measure sets regrouping the values for each agent group during each period are
constructed. A measure set is a matrix of measures whose rows are copied from other
matrices. For example, svm is a measure set containing the service volumes: for i = 0, . . . , I−
1 and p = 1, . . . , P , element (i, p) corresponds to

∫ tp
tp−1

NB,i(t) dt, and element (I, p) contains∫ tp
tp−1

NB(t) dt. Additionally, the program can compute
∫ tp

tp−1
NB,i,k(t) dt, the number of busy

agents in group i serving contacts of type k, because the vstat instances were constructed
with K. To regroup the values, in dsvm, each row j = Ki + k, for i = 0, . . . , I − 1 and
k = 0, . . . , K − 1, contains integrals for NB,i,k(t). For i = I, KI + k contains the integrals
for NB,i(t). dtvm is similar to tvm, except that each row is duplicated K times to get the
same number of rows as dsvm.

For each matrix of measures, a matrix of collectors is declared. Each matrix of collectors
contains the same number of rows than its corresponding matrix of measures, and P + 1
columns. The first P columns correspond to main periods while the last column contains
time-aggregate values for all periods. Optionally, these aggregate values may include the
preliminary and wrap-up periods, but this is not used in this example. Each matrix of
probes has a global name corresponding to a performance measure, row names corresponding
to type or group names, and column names corresponding to period names.

Matrices of measures and probes are created in the constructor to be added to lists. This
allows them to be automatically initialized by the initElements method.

The simulate method initializes all probes in the list repProbes and calls simulate-

OneDay n times to perform the replications. Each replication initializes the simulator, the
contact center components, and the matrices of measures. The arrival processes are turned
on, and the simulation can start.

The addObs method uses a convenience method from ContactCenter and RepSimCC

(another utility class) to convert matrices of measures into Colt matrices. Let M be a
R × (P + 2) matrix of measures. For r = 0, . . . , R − 1 and p = 1, . . . , P , element m(r, p) of
the matrix of measures is copied into element (r, p − 1) of the Colt matrix. Element (r, P)

90 6 BANK MODEL March 4, 2014

is obtained by
P∑

p=1

m(r, p),

for each r = 0, . . . , R−1. For computing the costs, another convenience method in Contact-

Center is used.

When a contact is served by a specialist, the service time is multiplied by 0.75. However,
at the time its service time is generated, if the contact is not served immediately, we do not
know the group of its serving agent. This problem is addressed by changing the agent groups’
service time generator. Similarly to waiting queues, a value generator is associated with an
end-communication indicator. By default, service times are extracted from contacts and the
end-communication type is 0. This can be changed to any ValueGenerator implementation
by calling the setContactTimeGenerator method in AgentGroup. The default contact time
generator supports multipliers similar to the talk time multipliers of Arena Contact Center
Edition. To activate this feature, the program constructs a new ContactServiceTime-

Generator and assigns it to the end-communication type 0. For example, the Savings
specialists will have a 0.75 service time multiplier for Savings contacts and 1.0 multipliers
for other types. Note that this does not affect random number synchronization if it is used,
since the random service times are generated at the contact’s creation and multiplied by a
constant afterward.

The agents’ proficiency rewards preferred contacts-to-agents associations, but it is the
task of the router to enforce the preference. The router is a modified SingleFIFOQueue-

Router whose type-to-group map specifies that Savings contact types should be routed to
Savings specialists first, then to Checking specialists if no Savings specialist is available.
For Checking contact type, this is the reversed order. For Account Balance, any order may
be used. The inherited routing policy implements the expected selection rule for the two
first types, but it enforces an unwanted priority for Account Balance. We therefore need to
override the selectAgent method to redefine the scheme for this particular contact type.
The new method simply selects a Checking or Savings specialist randomly and uniformly
among the available agents, or reverts to the superclass’ selection rule if the contact type
corresponds to Savings or Checking.

The contact selection rule of the single FIFO queue router is not appropriate for our
needs, because it enforces no priority at all on waiting queues. We therefore need to override
the selectContact method to add such priorities. The new method, which is called when an
agent becomes free, first tries to pick a contact in the queue corresponding to the preferred
type. The removeFirst method removes the first contact in queue with dequeue type
DEQUEUETYPE BEGINSERVICE (which corresponds to 0), and returns a dequeue event reference
from which information can be extracted. Note that the argument to removeFirst is the
dequeue type, not the index of the contact in the queue to be removed. The removed contact
is extracted from the event and handled to the serve method of the agent group having a
free member. If the prioritized queue is empty, the method falls back to the superclass’
implementation which takes the contact with the longest waiting time.

March 4, 2014 91

Listing 26 gives the statistical results for the simulated Bank model. We can notice
that the agents mainly serve Checking contacts. Also, if we sum up the per-contact type
occupancy ratios for an agent group, we obtain its global occupancy ratio.

Listing 26: Results of the program Bank

CPU time: 0:0:3.48
REPORT on Tally stat. collector ==> Number of available trunks

num. obs. min max average standard dev.
1000 14.243 14.392 14.320 0.022

95.0% confidence interval for mean (student): (14.318, 14.321)

REPORT on Tally stat. collector ==> Number of busy trunks
num. obs. min max average standard dev.
1000 0.608 0.757 0.680 0.022

95.0% confidence interval for mean (student): (0.679, 0.682)

Report for Number of arrived contacts
num obs. min max average std. dev. conf\

. int.
savings, all periods 1000 70.000 131.000 99.819 10.045 95.0%\

(99.196, 100.442)
checking, all periods 1000 885.000 1097.000 1000.146 31.172 95.0%\

(998.212, 1002.080)
account balance, all periods 1000 2349.000 2656.000 2502.340 50.017 95.0%\

(2499.236, 2505.444)
all types, all periods 1000 3438.000 3787.000 3602.305 58.647

Report for Number of blocked contacts
num obs. min max average std. dev. conf\

. int.
savings, all periods 1000 0.000 2.000 0.069 0.276 95.0%\

(0.052, 0.086)
checking, all periods 1000 0.000 7.000 0.756 1.172 95.0%\

(0.683, 0.829)
account balance, all periods 1000 0.000 15.000 1.826 2.245 95.0%\

(1.687, 1.965)
all types, all periods 1000 0.000 22.000 2.651 3.125

Report for Service level
func. of averages std. dev. nobs. conf. int.

savings, all periods 99.234 0.991 1000 95.0% (99.172, \
99.295)

checking, all periods 99.461 0.486 1000 95.0% (99.431, \
99.491)

account balance, all periods 97.301 1.032 1000 95.0% (97.237, \
97.365)

92 6 BANK MODEL March 4, 2014

all types, all periods 97.954 0.813 1000

Report for Service time
num obs. min max average std. dev. conf\

. int.
savings, all periods 1000 2.664 5.059 3.781 0.383 95.0%\

(3.758, 3.805)
checking, all periods 1000 3.383 4.269 3.852 0.127 95.0%\

(3.844, 3.860)
account balance, all periods 1000 0.915 1.059 0.999 0.021 95.0%\

(0.998, 1.001)
all types, all periods 1000 1.724 2.041 1.870 0.046

Report for Average waiting time
num obs. min max average std. dev. conf\

. int.
savings, all periods 1000 0.000 0.109 0.024 0.020 95.0%\

(0.023, 0.026)
checking, all periods 1000 2.9E-3 0.106 0.028 0.014 95.0%\

(0.027, 0.029)
account balance, all periods 1000 7.7E-3 0.086 0.036 0.014 95.0%\

(0.035, 0.037)
all types, all periods 1000 7.7E-3 0.079 0.034 0.013

Report for Number of abandoned contacts
num obs. min max average std. dev. conf\

. int.
savings, all periods 1000 0.000 1.000 0.017 0.129 95.0%\

(9.0E-3, 0.025)
checking, all periods 1000 0.000 4.000 0.161 0.501 95.0%\

(0.130, 0.192)
account balance, all periods 1000 0.000 32.000 5.357 5.133 95.0%\

(5.038, 5.676)
all types, all periods 1000 0.000 34.000 5.535 5.334

Report for Number of disconnected contacts
num obs. min max average std. dev. conf\

. int.
savings, all periods 1000 0.000 0.000 0.000 0.000 95.0%\

(0.000, 0.000)
checking, all periods 1000 0.000 1.000 6.0E-3 0.077 95.0%\

(1.2E-3, 0.011)
account balance, all periods 1000 0.000 3.000 0.017 0.157 95.0%\

(7.2E-3, 0.027)
all types, all periods 1000 0.000 3.000 0.023 0.175

Report for Agents’ occupancy ratio

March 4, 2014 93

num obs. min max average std. dev. \
conf. int.

savings specialists, all periods 1000 21.425 29.202 25.353 1.160 \
95.0% (25.281, 25.425)

checking specialists, all periods 1000 39.273 47.129 43.093 1.270 \
95.0% (43.014, 43.172)

all groups, all periods 1000 32.086 38.386 35.496 1.044

Report for Idle cost of agents
num obs. min max average std. dev. \

conf. int.
savings specialists, all periods 1000 1147.079 1273.639 1210.287 18.789 \

95.0% (1209.121, 1211.453)
checking specialists, all periods 1000 716.097 821.755 770.012 17.104 \

95.0% (768.951, 771.074)
all groups, all periods 1000 1888.014 2078.247 1980.299 30.467

Report for Busy cost of agents
num obs. min max average std. dev. \

conf. int.
savings specialists, all periods 1000 347.282 473.466 411.051 18.827 \

95.0% (409.883, 412.219)
checking specialists, all periods 1000 531.028 638.323 583.101 17.290 \

95.0% (582.028, 584.174)
all groups, all periods 1000 895.940 1083.427 994.152 30.607

Report for Occupancy ratio per contact type
num obs. min max average std. dev\

. conf. int.
savings spec./savings, all periods 1000 2.726 6.887 4.386 0.630\

95.0% (4.347, 4.425)
savings spec./checking, all periods 1000 2.794 7.927 5.040 0.866\

95.0% (4.986, 5.094)
savings spec./balance, all periods 1000 14.192 18.409 15.927 0.624\

95.0% (15.888, 15.966)
checking spec./savings, all periods 1000 0.000 1.018 0.200 0.141\

95.0% (0.191, 0.208)
checking spec./checking, all periods 1000 27.526 36.326 31.783 1.300\

95.0% (31.702, 31.863)
checking spec./balance, all periods 1000 9.742 12.569 11.111 0.444\

95.0% (11.083, 11.138)
all groups/savings, all periods 1000 1.212 3.073 1.992 0.284\

95.0% (1.975, 2.010)
all groups/checking, all periods 1000 17.638 23.428 20.331 0.939\

95.0% (20.273, 20.389)
all groups/balance, all periods 1000 11.818 14.360 13.173 0.386

94 7 TEAMWORK CONTACT CENTER March 4, 2014

7 Teamwork contact center

This models a contact center with complex routing logic in which a contact is processed by
several agents. This model contains a single contact type but several agent groups. Contacts
arrive following a non-homogeneous Poisson process with a mean arrival rate of 200/h from
8AM to 9AM and 100/h from 9AM to 5PM, and are served by several agents sequentially.

When a contact enters the system, it is routed to one of the two receptionists, or queued
if the receptionists are not available. Service times are i.i.d. variables following the trian-
gular distribution with minimum 0.5 minutes, mode 1 minute, and maximum 5 minutes.
After the service is over, with probability 0.2, a conference is initiated with the accounting
department if the corresponding agent is free. When a conference occurs, the contact still
keeps the receptionist busy and requests a communication with a secondary agent, from the
accounting agent group, if available. The service time with the accounting agent is uniform
2∗U(0, 1) minutes. The time spent with the receptionist is the sum of the triangular service
time, and the uniform conference time if conferencing was required and succeeded. After
the communication is over, the receptionist transfers the contact to the manager or to the
technical support. Before going idle or accepting a new contact, the agent performs some
after-contact work, e.g., updating a folder. The after-contact work has an exponential dura-
tion with mean 1 minute, and starts after the contact is transferred, not after it leaves the
contact center. After-contact work is also performed by the technical support and manager
with the same distribution, but it is not performed by conferenced agents.

With probability 0.05, the contact is transferred to the manager by the receptionist
before after-contact work begins. If the manager is unavailable, the contact can be queued.
After being served by the manager, the contact exits the system. The service time with the
manager is generated from the same distribution as the service time with the receptionist,
but the generated value is multiplied by 3.

With probability 0.95, the receptionist transfers the contact it has served to one of the
five technical support agents instead of the manager. In contrast with the manger, if the
contact cannot be served immediately, it disconnects without waiting in queue. The service
time with the technical support is generated from the same triangular distribution as the
receptionist, but the obtained value is multiplied by 10. After the service is done, with
probability 0.2, a conference with the development agent is initiated. If the developer is
available, the conference time is uniform 5 ∗ U(0, 1).

Listing 27: A simulation program for a teamwork model

import umontreal.iro.lecuyer.contactcenters.ContactCenter;
import umontreal.iro.lecuyer.contactcenters.PeriodChangeEvent;
import umontreal.iro.lecuyer.contactcenters.ValueGenerator;
import umontreal.iro.lecuyer.contactcenters.contact.Contact;
import umontreal.iro.lecuyer.contactcenters.contact.ContactFactory;
import umontreal.iro.lecuyer.contactcenters.contact.PiecewiseConstantPoissonArrivalProcess;
import umontreal.iro.lecuyer.contactcenters.contact.TrunkGroup;
import umontreal.iro.lecuyer.contactcenters.queue.DequeueEvent;

March 4, 2014 95

import umontreal.iro.lecuyer.contactcenters.queue.StandardWaitingQueue;
import umontreal.iro.lecuyer.contactcenters.queue.WaitingQueue;
import umontreal.iro.lecuyer.contactcenters.router.ExitedContactListener;
import umontreal.iro.lecuyer.contactcenters.router.Router;
import umontreal.iro.lecuyer.contactcenters.server.Agent;
import umontreal.iro.lecuyer.contactcenters.server.AgentGroup;
import umontreal.iro.lecuyer.contactcenters.server.EndServiceEvent;
import umontreal.iro.lecuyer.contactcenters.server.GroupVolumeStat;
import umontreal.iro.lecuyer.probdist.TriangularDist;
import umontreal.iro.lecuyer.probdist.UniformDist;
import umontreal.iro.lecuyer.randvar.ExponentialGen;
import umontreal.iro.lecuyer.randvar.RandomVariateGen;
import umontreal.iro.lecuyer.randvar.TriangularGen;
import umontreal.iro.lecuyer.randvar.UniformGen;
import umontreal.iro.lecuyer.rng.MRG32k3a;
import umontreal.iro.lecuyer.rng.RandomStream;
import umontreal.iro.lecuyer.simevents.Event;
import umontreal.iro.lecuyer.simevents.Sim;
import umontreal.iro.lecuyer.stat.FunctionOfMultipleMeansTally;
import umontreal.iro.lecuyer.stat.Tally;
import umontreal.iro.lecuyer.stat.list.ListOfTallies;
import umontreal.iro.lecuyer.util.Chrono;
import umontreal.iro.lecuyer.util.RatioFunction;

public class Teamwork {
// Agent group identifiers
static final int RECEPTION = 0;
static final int ACCOUNTING = 1;
static final int TECHSUP = 2;
static final int DEV = 3;
static final int MANAGER = 4;
static final String[] GROUPNAMES = {

"Reception", "Accounting", "Technical support", "Development",
"Manager", "All groups"

};

// Input data (times are in minutes)
static final int P = 24*7;
static final double PERIODDURATION = 60;
static final int NUMQUEUES = 2;
static final int I = 5;
static final int STARTHOUR = 8;
static final int ENDHOUR = 17;
static final int NUMTRUNKS = 25;
static final double FHARRIVALRATE = 200;
static final double ARRIVALRATE = 100;
static final double PATIENCETIME = 2.0;

96 7 TEAMWORK CONTACT CENTER March 4, 2014

static final double MINSERVICETIME = 0.5;
static final double MODESERVICETIME = 1.0;
static final double MAXSERVICETIME = 5.0;
// Mean time for after contact work
static final double ACWTIME = 1.0;
static final double PROBCONFACCOUNTING = 0.2;
static final double PROBTRANSMANAGER = 0.05;
static final double PROBCONFDEV = 0.2;
// Acceptable waiting time
static final double AWT = 120/60.0;
// 2 receptionists, 5 technical support, and 1 agent in each other groups
static final int[] NUMAGENTS = { 2, 1, 5, 1, 1 };
// Service time is multiplied by 10 for technical support,
// and by 3 for the manager.
// Conference time is multiplied by 2 for accounting,
// and by 5 for developer.
static final double[] STIMEMULT = { 1, 2, 10, 3, 5 };
static final double LEVEL = 0.95; // Level of conf. int.
static final int NUMDAYS = 1000;

// Known expectations
static double EXPARRIVALS = (FHARRIVALRATE +

(ENDHOUR - STARTHOUR - 1)*ARRIVALRATE)*7;
static double[] EXPNUMAGENTS = new double[I + 1];
static {

for (int i = 0; i < I; i++) {
EXPNUMAGENTS[i] = 7*PERIODDURATION*(ENDHOUR - STARTHOUR)*NUMAGENTS[i];
EXPNUMAGENTS[I] += EXPNUMAGENTS[i];

}
}

// Contact center components
PeriodChangeEvent pce; // Event marking new periods
TrunkGroup trunks; // Manages phone lines
PiecewiseConstantPoissonArrivalProcess customers;
AgentGroup[] groups = new AgentGroup[I];
WaitingQueue[] queues = new WaitingQueue[NUMQUEUES];
Router router;

// Random number generators
RandomVariateGen pgen = new ExponentialGen (new MRG32k3a(), 1.0/PATIENCETIME);
RandomVariateGen sgen = new TriangularGen

(new MRG32k3a(), new TriangularDist
(MINSERVICETIME, MAXSERVICETIME, MODESERVICETIME));

RandomVariateGen acwgen = new ExponentialGen (new MRG32k3a(), 1.0/ACWTIME);
RandomVariateGen confGen = new UniformGen (new MRG32k3a(), 0, 1);
RandomStream probConfAccountingStream = new MRG32k3a();

March 4, 2014 97

RandomStream probTransManagerStream = new MRG32k3a();
RandomStream probConfDevStream = new MRG32k3a();

// Counters used during replications
int numArrived, numOffered, numBlocked, numAbandoned,

numGoodSL, numServed, numDisconnected;
double[] Nb = new double[I + 1];
double sumWaitingTimes, sumServiceTimes, sumTotalTimes;
GroupVolumeStat[] vstat = new GroupVolumeStat[I];

// Statistical probes
Tally arrived = new Tally ("Number of arrived contacts");
Tally offered = new Tally ("Offered load");
Tally served = new Tally ("Number of served contacts");
Tally disconnected = new Tally ("Number of disconnected contacts");
Tally goodSL = new Tally ("Number of contacts in target");
Tally serviceLevel = new Tally ("Service level");
Tally blocked = new Tally ("Number of blocked contacts");
Tally abandoned = new Tally ("Number of abandoned contacts");
Tally totalTime = new Tally ("Sojourn time of contacts");
FunctionOfMultipleMeansTally speedOfAnswer =

new FunctionOfMultipleMeansTally (new RatioFunction(), "Speed of answer", 2);
Tally serviceTime = new Tally ("Service time");
ListOfTallies<Tally> occupancy = ListOfTallies.createWithTally (I + 1);
Tally trunkBusy = new Tally ("Number of busy trunks");
Tally trunkAvail = new Tally ("Number of available trunks");

Teamwork() {
occupancy.setName ("Agents’ occupancy ratio");
for (int i = 0; i <= I; i++) {

occupancy.get (i).setName (GROUPNAMES[i]);
occupancy.get (i).setConfidenceIntervalStudent();
occupancy.get (i).setConfidenceLevel (LEVEL);

}
pce = new PeriodChangeEvent (PERIODDURATION, P + 2, 0.0);
trunks = new TrunkGroup (NUMTRUNKS);
trunks.setStatCollecting (true);

final double[] arrivalRates = new double[P + 2];
for (int day = 0; day < 7; day++) {

arrivalRates[24*day + STARTHOUR + 1] = FHARRIVALRATE;
for (int hour = STARTHOUR + 1; hour < ENDHOUR; hour++)

arrivalRates[24*day + hour + 1] = ARRIVALRATE;
}
customers = new PiecewiseConstantPoissonArrivalProcess

(pce, new MyContactFactory(), arrivalRates, new MRG32k3a());
customers.setNormalizing (true);

98 7 TEAMWORK CONTACT CENTER March 4, 2014

final int[][] numAgents = new int[I][P + 2];
for (int day = 0; day < 7; day++)

for (int hour = STARTHOUR; hour < ENDHOUR; hour++) {
final int ind = 24*day + hour + 1;
for (int i = 0; i < I; i++)

numAgents[i][ind] = NUMAGENTS[i];
}

for (int i = 0; i < I; i++) {
groups[i] = new AgentGroup (pce, numAgents[i]);
groups[i].setAfterContactTimeGenerator

(0, new AfterContactGen (i));
vstat[i] = new GroupVolumeStat (groups[i]);

}
for (int q = 0; q < queues.length; q++)

queues[q] = new StandardWaitingQueue();
queues[1].setMaximalQueueTimeGenerator

(1, new ValueGenerator() {
public void init() {}

public double nextDouble (Contact contact) {
return ((MyContact)contact).pManager;

}
});

router = new MyRouter();
router.setClearWaitingQueues (true);
customers.addNewContactListener (router);
for (int q = 0; q < queues.length; q++)

router.setWaitingQueue (q, queues[q]);
for (int i = 0; i < I; i++) router.setAgentGroup (i, groups[i]);
router.addExitedContactListener (new MyContactMeasures());

}

// Create new contacts
class MyContactFactory implements ContactFactory {

public Contact newInstance() {
final Contact contact = new MyContact();
contact.setTrunkGroup (trunks);
return contact;

}
}

// Contact subclass with custom attributes
class MyContact extends Contact {

double pManager;
double[] stime = new double[I];

March 4, 2014 99

double[] acwTime = new double[I];
double uConfAccounting;
double uTransManager;
double uConfDev;

MyContact() {
setDefaultPatienceTime (pgen.nextDouble());
pManager = pgen.nextDouble();
for (int i = 0; i < I; i++) {

double baseServiceTime;
if (i == ACCOUNTING || i == DEV) {

baseServiceTime = confGen.nextDouble();
acwTime[i] = 0;

}
else {

baseServiceTime = sgen.nextDouble();
acwTime[i] = acwgen.nextDouble();

}
stime[i] = STIMEMULT[i]*baseServiceTime;

}

uConfAccounting = probConfAccountingStream.nextDouble();
uTransManager = probTransManagerStream.nextDouble();
uConfDev = probConfDevStream.nextDouble();

}
}

// Custom router
class MyRouter extends Router {

MyRouter() {
super (1, NUMQUEUES, I);

}

@Override
public boolean canServe (int i, int k) {

return true;
}

// Agent selection for incoming contacts
@Override
protected EndServiceEvent selectAgent (Contact contact) {

if (groups[RECEPTION].getNumFreeAgents() == 0)
return null;

final EndServiceEvent es = groups[RECEPTION].serve (contact);
return es;

}

100 7 TEAMWORK CONTACT CENTER March 4, 2014

// Queue selection for incoming contacts, if agent selection fails
@Override
protected DequeueEvent selectWaitingQueue (Contact contact) {

return queues[0].add (contact);
}

private WaitingQueue getQueue (int gid) {
WaitingQueue queue = null;
switch (gid) {
case RECEPTION:

queue = getWaitingQueue (0);
break;

case MANAGER:
queue = getWaitingQueue (1);
break;

}
return queue;

}

// Contact selection for receptionists and manager
@Override
protected DequeueEvent selectContact (AgentGroup group, Agent agent) {

final int gid = group.getId();
final WaitingQueue queue = getQueue (gid);
if (queue == null)

return null;
if (queue.size() == 0)

return null;
return queue.removeFirst (DEQUEUETYPE_BEGINSERVICE);

}

// Clear queues when agents are off-duty
@Override
protected void checkWaitingQueues (AgentGroup group) {

final int gid = group.getId();
final WaitingQueue queue = getQueue (gid);
if (queue == null)

return;
if (!mustClearWaitingQueue (queue.getId()))

return;
if (group.getNumAgents() == 0)

queue.clear (DEQUEUETYPE_NOAGENT);
}

// Determines the service times, and manages conferencing
@Override
protected void beginService (EndServiceEvent es) {

March 4, 2014 101

final int gid = es.getAgentGroup().getId();
final MyContact contact = (MyContact)es.getContact();
switch (gid) {
case RECEPTION:

if (contact.uConfAccounting < PROBCONFACCOUNTING)
new ConferenceEvent (es, groups[ACCOUNTING]).schedule

(contact.stime[RECEPTION]);
else

es.schedule (contact.stime[RECEPTION]);
break;

case TECHSUP:
if (contact.uConfDev < PROBCONFDEV)

new ConferenceEvent (es, groups[DEV]).schedule
(contact.stime[TECHSUP]);

else
es.schedule (contact.stime[TECHSUP]);

break;
case ACCOUNTING:
case DEV:

break;
default:

es.schedule (contact.stime[gid]);
}

}

// At the end of the communication with an agent,
// manages transfer or exit
@Override
protected void endContact (EndServiceEvent es) {

final AgentGroup group = es.getAgentGroup();
final MyContact contact = (MyContact)es.getContact();
if (group == groups[ACCOUNTING] ||

group == groups[DEV])
return;

else if (group == groups[RECEPTION]) {
if (contact.uTransManager < PROBTRANSMANAGER) {

// Transfer to manager
if (groups[MANAGER].getNumAgents() == 0)

// Disconnected contact, but counted in offered load
exitBlocked (contact, 5);

else if (groups[MANAGER].getNumFreeAgents() == 0)
queues[1].add (contact);

else
groups[MANAGER].serve (contact);

}
else // Transfer to technical support
if (groups[TECHSUP].getNumFreeAgents() == 0)

102 7 TEAMWORK CONTACT CENTER March 4, 2014

// Disconnected contact counted in offered load
exitBlocked (contact, 5);

else
groups[TECHSUP].serve (contact);

}
else

// The contact exits at the manager or technical support
exitServed (es);

}

// Event happening at the end of a service, to manage conferencing
class ConferenceEvent extends Event {

// Secondary agent group to conference with (accounting or developer)
AgentGroup targetGroup;
// End-service event for primary agent
EndServiceEvent es;
// End-service event for secondary agent
EndServiceEvent esConf;

ConferenceEvent (EndServiceEvent es,
AgentGroup targetGroup) {

this.es = es;
this.targetGroup = targetGroup;

}

@Override
public void actions() {

final MyContact contact = (MyContact)es.getContact();
if (esConf != null ||

targetGroup.getNumFreeAgents() == 0) {
// End conferencing or abort it because
// there is no agent in the target group.
if (esConf != null)

esConf.getAgentGroup().endContact (esConf, 0);
es.getAgentGroup().endContact (es, 0);

}
else {

// Start the conference: the contact is
// served simultaneously by two agents.
esConf = targetGroup.serve (contact);
schedule (contact.stime[targetGroup.getId()]);

}
}

}
}

// Extracts after-contact work from contacts

March 4, 2014 103

class AfterContactGen implements ValueGenerator {
private int groupId;

AfterContactGen (int groupId) {
this.groupId = groupId;

}

public void init() {}

public double nextDouble (Contact contact) {
return ((MyContact)contact).acwTime[groupId];

}
}

// Updates counters
class MyContactMeasures implements ExitedContactListener {

public void blocked (Router router, Contact contact, int bType) {
++numArrived;
if (bType == 5) {

++numOffered;
++numDisconnected;

}
else

++numBlocked;
}

public void dequeued (Router router, DequeueEvent ev) {
++numArrived;
++numOffered;
if (ev.getEffectiveDequeueType() == Router.DEQUEUETYPE_NOAGENT)

++numDisconnected;
else

++numAbandoned;
}

public void served (Router router, EndServiceEvent ev) {
final Contact contact = ev.getContact();
++numArrived;
++numOffered;
final double qt = contact.getTotalQueueTime();
if (qt < AWT) ++numGoodSL;
sumWaitingTimes += qt;
final double st = ev.getEffectiveContactTime();
sumServiceTimes += st;
++numServed;
sumTotalTimes += contact.getTotalQueueTime()

+ contact.getTotalServiceTime();

104 7 TEAMWORK CONTACT CENTER March 4, 2014

}
}

void simulateOneDay() {
Sim.init();
// Initializes period-change event, trunk group, arrival process,
// waiting queues, and agent groups.
pce.init();
trunks.init();
customers.init();
ContactCenter.initElements (groups);
ContactCenter.initElements (queues);
numArrived = numOffered = numBlocked = numAbandoned = 0;
sumWaitingTimes = sumServiceTimes = sumTotalTimes = 0;
numGoodSL = numServed = numDisconnected = 0;
for (int i = 0; i < I; i++) vstat[i].init();
customers.start();
pce.start();
Sim.start();
pce.stop();
addObs();

}

void addObs() {
arrived.add (numArrived);
offered.add (numOffered);
served.add (numServed);
disconnected.add (numDisconnected);
goodSL.add (numGoodSL);
blocked.add (numBlocked);
abandoned.add (numAbandoned);
serviceTime.add (sumServiceTimes/numServed);
totalTime.add (sumTotalTimes/numServed);
serviceLevel.add (100.0*numGoodSL/EXPARRIVALS);
speedOfAnswer.add (sumWaitingTimes, numServed);

trunkBusy.add (trunks.getStatLines().average());
trunkAvail.add (trunks.getCapacity() - trunks.getStatLines().average());

Nb[I] = 0;
for (int i = 0; i < I; i++) {

Nb[i] = vstat[i].getStatNumBusyAgents().sum();
Nb[I] += Nb[i];
Nb[i] /= EXPNUMAGENTS[i]/100;

}
Nb[I] /= EXPNUMAGENTS[I]/100;
occupancy.add (Nb);

March 4, 2014 105

}

void simulate (int n) {
arrived.init();
offered.init();
served.init();
disconnected.init();
goodSL.init();
serviceLevel.init();
blocked.init();
abandoned.init();
totalTime.init();
speedOfAnswer.init();
serviceTime.init();
occupancy.init();
trunkBusy.init();
trunkAvail.init();
for (int r = 0; r < n; r++) simulateOneDay();

}

public void printStatistics() {
System.out.println (trunkAvail.reportAndCIStudent (LEVEL, 3));
System.out.println (trunkBusy.reportAndCIStudent (LEVEL, 3));
System.out.println (arrived.reportAndCIStudent (LEVEL, 3));
System.out.println (offered.reportAndCIStudent (LEVEL, 3));
System.out.println (served.reportAndCIStudent (LEVEL, 3));
System.out.println (disconnected.reportAndCIStudent (LEVEL, 3));
System.out.println (blocked.reportAndCIStudent (LEVEL, 3));
System.out.println (goodSL.reportAndCIStudent (LEVEL, 3));
System.out.println (abandoned.reportAndCIStudent (LEVEL, 3));
System.out.println (totalTime.reportAndCIStudent (LEVEL, 3));
System.out.println (speedOfAnswer.reportAndCIDelta (LEVEL, 3));
System.out.println (serviceTime.reportAndCIStudent (LEVEL, 3));
System.out.println (serviceLevel.reportAndCIStudent (LEVEL, 3));
System.out.println (occupancy.report ());

}

public static void main (String[] args) {
final Teamwork t = new Teamwork();
final Chrono timer = new Chrono();
t.simulate (NUMDAYS);
System.out.println ("CPU time: " + timer.format());
t.printStatistics();

}
}

106 7 TEAMWORK CONTACT CENTER March 4, 2014

Listing 27 presents the complete source code for this example. In the program, a class
Teamwork is created, and constants are declared for input data. Most events are counted
using integers since the system supports a single contact type. The occupancy ratios of
agents require arrays because the system has five agent groups.

In previous examples, the different steps of a service were not modeled explicitly. An
exponential or uniform service time was generated and used, and the end of service was
automatically scheduled by ContactCenters. In this example, the service of a contact is
divided in three parts: the communication time with the agent, the optional conference time
with another agent, and the after-contact time. The library supports after-contact time,
but conferencing must be implemented by the user, because an infinity of models can be
imagined.

In ContactCenters, the service of a contact is a two-pass process composed of the com-
munication with the agent (first phase), and the after-contact work (second phase). When
the first phase is over, the contact is notified to exited-contact listeners by the router for
statistical purposes, but the busy agent is not freed up until the second phase is over. In
previous examples, since there was no after-contact work, the two steps were ending at the
same time.

The setDefaultServiceTime method of Contact we used in previous examples sets the
contact time to the service time, and resets the after-contact time to 0. The two durations
can be changed separately by using the setDefaultContactTime and setDefaultAfter-

ContactTime methods, respectively.

In section 4.3, we used an agent-group listener to track the number of agents in a group,
in order to disable statistical collecting when N(t) = 0. Because such a listener can be
notified about the end of a service, one could think about using this mechanism to implement
conferencing. However, conferencing cannot be modeled with an agent-group listener because
the listener is notified only after the phases of the service are terminated. It is not possible to
conditionally extend the service duration as it is needed in a conferencing model. To model
such complex services, automatic service termination must be disabled. By default, contact
times are extracted from contact objects and are infinite if unspecified. As with the waiting
queue which does not schedule the dequeue event when the maximal queue time is infinite,
the end-service event is not scheduled if the obtained service time is infinite. The event can
then be manually scheduled to simulate a simple service, or a wrapper event can be used to
add logic before the service termination.

Usually, a patience, a contact (or handle) and an after-contact times are the only random
variables associated with a contact. Here, additional variables are required: the contact
time for each agent group (including conference times), the after-contact times, as well as
probabilistic branching decision variables. These variates can be generated when needed, but
to maximize random number synchronization, it is better to generate all random variates
at the creation of the contact object since all the information is already available at this
moment. We do not know in advance the exact path of the contact, but we know which
random variates it might need during its lifecycle. To support this extra information, a

March 4, 2014 107

subclass of Contact called MyContact is created. The MyContactFactory instantiates My-

Contact objects instead of Contact objects as before. Unfortunately, the library’s classes
manage Contact instances which must be casted to MyContact as needed.

For each agent group not used for conferencing, i.e., reception, manager and technical
support, an exponential after-contact time is generated and stored in contacts. A custom
value generator is assigned to each agent group in order to extract the appropriate time from
the contact objects. The after-contact time generation works the same way as the service
time and maximal queue time generation.

The router is the most complex part of this contact center. This time, we define a
completely custom router which extends the Router abstract class. The abstract router is
constructed with the supported number of contact types, agent groups, and waiting queues.
In this example, there are two waiting queues: a first one for receptionists, and a second one
for the manager. There are five agent groups: Reception, Accounting, Manager, Technical
support, and Development. Every incoming contact is sent to the Reception by select-

Agent. If there is no free receptionist, selectAgent returns null and the contact is queued
by selectWaitingQueue.

When the communication part of a service is terminated, the appropriate agent group
notifies it to the router which calls its protected method endContact. By default, this method
simply calls exitServed in order for the contact to leave the system after service. We can
implement contact transfer by overriding this method as follows. The end-contact event is
ignored for the Accounting and Development agent groups since the method will be called
again to end the communication with the associated Reception or Technical support agent
groups. When the communication between the contactor and the receptionist is terminated,
the transfer occurs: with probability 0.05, the contact is sent to the manager. If the contact
center is closed at transfer time, the contactor is disconnected by calling the exitBlocked

method. The blocking-type indicator, given to exitBlocked, is set to 5 in order to distinguish
this disconnection from true blocking because of no phone line. If there is no free manager,
the contact is put in the queue for the manager, i.e., the second waiting queue. Otherwise,
the second service of the contact begins. If the contact is transferred to technical support,
the system applies the same algorithm as for the manager, except that there is no waiting
queue and a conference can occur. If no technical support agent is available, the service of
the contact ends at the receptionist (exitBlocked is called). For any other agent group, the
endContact method calls exitServed for the served contact to leave the system.

When the service of a contact by an agent begins, whether it is started by agent or contact
selection, the protected beginService method is called. We override the method in our
custom router to schedule the end-service event appropriately, or to construct and schedule
a wrapper event for conferencing. For the case of the receptionist, with probability 0.2, a
wrapper ConferenceEvent is scheduled to manage the service termination. The end-service
event is kept inside the conference event for future use. With probability 0.8, the regular
end-service event is scheduled and no conference event is constructed. Similar logic is used
for the technical support, with a different secondary agent group. In the case of the manager,
the regular end-service event is always scheduled. For Accounting and Development, nothing
happens in that method, because the service termination is managed by the conferencing
event.

108 7 TEAMWORK CONTACT CENTER March 4, 2014

Conferencing is implemented using an auxiliary wrapper event containing three fields: es
for the end-service event associated with the main agent, esConf for the end-service event
bound to the conferenced agent, and targetGroup, a reference to the conferenced agent
group. The end-service event objects are only used as information containers instead of
being scheduled as simulation events. The conference event happens at most twice: one
time to start the conference, and a second time to terminate the communication with the
main agent as well as the conference. The conference happens only if the conferenced agent
is free.

Automatic waiting queue clearing must be redefined since there is no default data struc-
ture in use. The checkWaitingQueues method, which is called each time Ni(t) = 0 for an
agent group i, is responsible for this operation. If it is called for a Reception agent, the
Reception waiting queue is cleared. If it is called for the Manager, the Manager waiting
queue is cleared. Otherwise, nothing is done. The waiting queue is cleared only if there is
no available agent in te corresponding group.

The average speed of answer and service level performance measures can be computed
several ways. Each contact in the system can sojourn in the reception’s waiting queue, the
manager’s waiting queue, or both queues. Using the getTotalQueueTime method of the class
Contact as in the previous examples gives the cumulative waiting time in both queues. We
could also get the queue time for each waiting queue. Here, to keep the program as simple
as possible, the speed of answer is assumed to be the total waiting time in both queues for
served contacts. The average handle time is computed by taking the contact time for the
last agent, which is extracted from the end-service event given to the served method of
MyContactMeasures.

There are two types of disconnections: when agents go off-duty or when no technical
support agent is free. The first case is handled in dequeued as usual. The second case is
handled in blocked since the disconnection was performed using exitBlocked, in the end-

Contact method of MyRouter. The blocking type is tested to distinguish this event from a
blocking due to no available phone line.

We can see from the statistical report on Listing 28 that our results are different from
Arena Contact Center Edition 8.0’s. This is due to several factors and possible bugs in Arena
Contact Center Edition arising when contacts are served by several agents sequentially.

First, there are several ways to define the same performance measure and Rockwell’s
documentation often does not clearly specify what is estimated when service is performed by
multiple agents. By experimenting with simplified models, it is sometimes but not always
possible to guess what computation is made. Inconsistencies such as service levels greater
than 100% even arise in some extreme conditions. Without accessing the definitions of the
Contact Center Arena templates, which cannot be done without the Professional edition, an
explanation for these inconsistencies cannot be found.

Listing 28: Results of the program Teamwork

CPU time: 0:0:10.5
REPORT on Tally stat. collector ==> Number of available trunks

March 4, 2014 109

num. obs. min max average standard dev.
1000 21.665 21.813 21.739 0.025

95.0% confidence interval for mean (student): (21.738, 21.741)

REPORT on Tally stat. collector ==> Number of busy trunks
num. obs. min max average standard dev.

1000 3.187 3.335 3.261 0.025
95.0% confidence interval for mean (student): (3.259, 3.262)

REPORT on Tally stat. collector ==> Number of arrived contacts
num. obs. min max average standard dev.

1000 6766.000 7281.000 7003.654 86.815
95.0% confidence interval for mean (student): (6998.267, 7009.041)

REPORT on Tally stat. collector ==> Offered load
num. obs. min max average standard dev.

1000 6766.000 7281.000 7003.628 86.816
95.0% confidence interval for mean (student): (6998.241, 7009.015)

REPORT on Tally stat. collector ==> Number of served contacts
num. obs. min max average standard dev.

1000 828.000 920.000 866.968 13.219
95.0% confidence interval for mean (student): (866.148, 867.788)

REPORT on Tally stat. collector ==> Number of disconnected contacts
num. obs. min max average standard dev.

1000 1264.000 1419.000 1339.118 23.725
95.0% confidence interval for mean (student): (1337.646, 1340.590)

REPORT on Tally stat. collector ==> Number of blocked contacts
num. obs. min max average standard dev.

1000 0.000 5.000 0.026 0.260
95.0% confidence interval for mean (student): (9.9E-3, 0.042)

REPORT on Tally stat. collector ==> Number of contacts in target
num. obs. min max average standard dev.

1000 457.000 593.000 522.891 18.231
95.0% confidence interval for mean (student): (521.760, 524.022)

REPORT on Tally stat. collector ==> Number of abandoned contacts
num. obs. min max average standard dev.

1000 4555.000 5089.000 4797.542 88.275
95.0% confidence interval for mean (student): (4792.064, 4803.020)

REPORT on Tally stat. collector ==> Sojourn time of contacts
num. obs. min max average standard dev.

1000 23.917 26.069 25.069 0.333

110 7 TEAMWORK CONTACT CENTER March 4, 2014

95.0% confidence interval for mean (student): (25.049, 25.090)

REPORT on Tally stat. collector ==> Speed of answer
func. of averages standard dev. num. obs.

1.774 0.056 1000
95.0% confidence interval for function of means: (1.771, 1.778)

REPORT on Tally stat. collector ==> Service time
num. obs. min max average standard dev.
1000 19.818 21.825 20.828 0.326

95.0% confidence interval for mean (student): (20.808, 20.848)

REPORT on Tally stat. collector ==> Service level
num. obs. min max average standard dev.
1000 6.529 8.471 7.470 0.260

95.0% confidence interval for mean (student): (7.454, 7.486)

Report for Agents’ occupancy ratio
num obs. min max average std. dev. conf. \

int.
Reception 1000 97.413 98.917 98.258 0.241 95.0% (\

98.243, 98.273)
Accounting 1000 9.607 12.471 10.995 0.514 95.0% (\

10.963, 11.027)
Technical support 1000 93.262 96.251 94.657 0.416 95.0% (\

94.631, 94.682)
Development 1000 4.102 7.293 5.663 0.487 95.0% (\

5.632, 5.693)
Manager 1000 20.453 35.089 27.244 2.463 95.0% (\

27.092, 27.397)
All groups 1000 70.492 72.448 71.370 0.320 95.0% (\

71.350, 71.390)

March 4, 2014 111

8 Blend call center

This example is a simplified version of the model analyzed in [1], with reduced choice of
distributions and dialing policies. Although it is a special case of the blend/multi-skill generic
simulator, it demonstrates how to use a dialer as well as per-period probability distributions.
The simulated day starts at 8AM, ends at 2PM, and is divided into three two-hours periods.
Calls received by the center are denoted inbound calls and arrive following a Poisson process
with randomized arrival rates Bλp. To keep the agents busy, a dialer is used to perform
outbound calls at some times during the day. Only a portion of the agents, denoted blend,
are qualified for handling these calls in addition to inbound ones.

Before 11AM, there is no outbound call, so all agents perform inbound calls only. After
11AM, a portion of the agents becomes blend, and the dialer starts. Inbound agents still
serve inbound calls only while calls that cannot be served immediately overflow to blend
agents. From 11AM to five minutes before the end of the day, each time a service ends, the
dialer tries to compose some phone numbers. The probability of a caller to be reached, or
equivalently of right party connect, is specified for each period. Reached customers produce
outbound calls which can only be served by blend agents. Outbound calls then follow a
non-Poisson arrival process which cannot be modeled in simulation software such as Arena
Contact Center Edition.

If no blend agent is available when an outbound call succeeds, the call is put in queue
and considered as a mismatch. The mismatched calls are put into a different waiting queue
than the inbound calls in order to be served with the greatest priority, because most reached
callers will hang up without even waiting. Since in this model, there is no delay between
the dialing and the right party connect, mismatches only occur when the dialer tries to call
more customers than the number of free blend agents.

The program, shown in Listing 29, is very similar to the other examples, except that a
dialer is used.

Listing 29: A blend call center model

import umontreal.iro.lecuyer.contactcenters.ConstantValueGenerator;
import umontreal.iro.lecuyer.contactcenters.PeriodChangeEvent;
import umontreal.iro.lecuyer.contactcenters.PeriodChangeListener;
import umontreal.iro.lecuyer.contactcenters.ToggleEvent;
import umontreal.iro.lecuyer.contactcenters.contact.Contact;
import umontreal.iro.lecuyer.contactcenters.contact.ContactFactory;
import umontreal.iro.lecuyer.contactcenters.contact.NewContactListener;
import umontreal.iro.lecuyer.contactcenters.contact.PiecewiseConstantPoissonArrivalProcess;
import umontreal.iro.lecuyer.contactcenters.dialer.Dialer;
import umontreal.iro.lecuyer.contactcenters.dialer.DialerPolicy;
import umontreal.iro.lecuyer.contactcenters.dialer.InfiniteDialerList;
import umontreal.iro.lecuyer.contactcenters.dialer.ThresholdDialerPolicy;
import umontreal.iro.lecuyer.contactcenters.queue.DequeueEvent;
import umontreal.iro.lecuyer.contactcenters.queue.QueueSizeStat;

112 8 BLEND CALL CENTER March 4, 2014

import umontreal.iro.lecuyer.contactcenters.queue.StandardWaitingQueue;
import umontreal.iro.lecuyer.contactcenters.queue.WaitingQueue;
import umontreal.iro.lecuyer.contactcenters.router.ExitedContactListener;
import umontreal.iro.lecuyer.contactcenters.router.QueuePriorityRouter;
import umontreal.iro.lecuyer.contactcenters.router.Router;
import umontreal.iro.lecuyer.contactcenters.server.AgentGroup;
import umontreal.iro.lecuyer.contactcenters.server.AgentGroupSet;
import umontreal.iro.lecuyer.contactcenters.server.EndServiceEvent;
import umontreal.iro.lecuyer.contactcenters.server.GroupVolumeStat;
import umontreal.iro.lecuyer.probdist.GammaDist;
import umontreal.iro.lecuyer.randvar.ExponentialGen;
import umontreal.iro.lecuyer.randvar.GammaAcceptanceRejectionGen;
import umontreal.iro.lecuyer.randvar.GammaGen;
import umontreal.iro.lecuyer.randvar.RandomVariateGen;
import umontreal.iro.lecuyer.rng.MRG32k3a;
import umontreal.iro.lecuyer.rng.RandomStream;
import umontreal.iro.lecuyer.simevents.Sim;
import umontreal.iro.lecuyer.stat.FunctionOfMultipleMeansTally;
import umontreal.iro.lecuyer.stat.Tally;
import umontreal.iro.lecuyer.stat.list.ListOfFunctionOfMultipleMeansTallies;
import umontreal.iro.lecuyer.stat.list.ListOfTallies;
import umontreal.iro.lecuyer.util.Chrono;
import umontreal.iro.lecuyer.util.RatioFunction;

public class Blend {
// Contact type and agent group identifiers and names
static final int INBOUND = 0;
static final int OUTBOUND = 1;
static final int BLEND = 1;
// Input data (times are in minutes)
static final String[] TYPENAMES = {

"Inbound", "Outbound", "All types"
};
static final String[] GROUPNAMES = {

"Inbound only", "Blend", "All groups"
};
// Input data (all times are in minutes)
static final int K = 2;
static final int I = 2;
static final int P = 3;
static final double PERIODDURATION = 120.0;
static final double STARTDAY = 8*60;
static final double STARTDIALER = 11*60;
static final double[] ARRIVALRATES = {

0, 68.45/30, 72.93/30, 71.92/30, 0
};
static final double ALPHA0 = 29.7;

March 4, 2014 113

static final double PROBBALK = 0.005;
static final double INPATIENCETIME = 500/60.0;
static final double ALPHA = 0.755;
static final double BETA = 753.8/60.0;
static final double AWT = 20.0/60.0;
static final double OUTSERVICETIME = 440.2/60.0;
static final double OUTPATIENCETIME = 5.0/60.0;
static final double[] PROBREACH = { 0.28, 0.28, 0.29, 0.29, 0.29 };
static final int MINFREEAGENTS = 4;
static final double KAPPA = 2.0;
static final int C = 0;
static final int[] INBOUNDAGENTS = { 0, 23, 23, 21, 21 };
static final int[] BLENDAGENTS = { 0, 16, 18, 16, 16 };
static final int QUEUECAPACITY = 80;
static final int[][] TYPETOGROUPMAP = {

// Inbound calls
{ 0, 1 },
// Outbound calls
{ 1 }

};
static final int[][] GROUPTOTYPEMAP = {

// Inbound-only agents
{ 0 },
// Blend agents
{ 1, 0 }

};
static final double LEVEL = 0.95; // Level of conf. int.
static final int NUMDAYS = 1000;

// Contact center components
PeriodChangeEvent pce; // Event marking beginning of periods
Dialer dialer;
Router router;
PiecewiseConstantPoissonArrivalProcess arrivProc;
AgentGroup inboundAgents;
AgentGroup blendAgents;
WaitingQueue inQueue;
WaitingQueue outQueue;

// Random number generators
// Busyness generator
RandomVariateGen bgen = new GammaGen

(new MRG32k3a(), new GammaDist (ALPHA0, ALPHA0));
RandomStream streamBalk = new MRG32k3a();
// Service times for inbound calls
RandomVariateGen sigen = new GammaAcceptanceRejectionGen

(new MRG32k3a(), new GammaDist (ALPHA, 1.0/BETA));

114 8 BLEND CALL CENTER March 4, 2014

// Service times for outbound calls
RandomVariateGen sogen = new ExponentialGen (new MRG32k3a(), 1.0/OUTSERVICETIME);
// Patience times for inbound calls
RandomVariateGen pigen = new ExponentialGen (new MRG32k3a(), 1.0/INPATIENCETIME);

// Counters
int numTriedDialed;
double[] numArriv = new double[K + 1];
double[] numServed = new double[K + 1];
double[] numAbandoned = new double[K + 1];
double numBadSL;
double[] numPosWait = new double[K + 1];
double[] sumWaitingTimes = new double[K + 1];
QueueSizeStat inQueueSize;
QueueSizeStat outQueueSize;
GroupVolumeStat inboundVolume;
GroupVolumeStat blendVolume;
double[] Nb = new double[I + 1];
double[] N = new double[I + 1];
double[] qs = new double[K + 1];

// Statistical collectors
Tally triedDial = new Tally ("Number of tried outbound calls");
ListOfTallies<Tally> arrivals = create

("Number of arrived contacts", TYPENAMES);
ListOfTallies<Tally> served = create

("Number of served contacts", TYPENAMES);
ListOfTallies<Tally> abandoned = create

("Number of abandoned contacts", TYPENAMES);
Tally badSL = new Tally ("Number of contacts not in target");
FunctionOfMultipleMeansTally serviceLevel =

new FunctionOfMultipleMeansTally (new RatioFunction(), "Service level", 2);
ListOfFunctionOfMultipleMeansTallies<FunctionOfMultipleMeansTally> occupancy =

createRatio ("Agents’ occupancy ratio", GROUPNAMES);
ListOfTallies<Tally> queueSize =

create ("Time-average queue size", TYPENAMES);
ListOfFunctionOfMultipleMeansTallies<FunctionOfMultipleMeansTally> totalQueueWait =

createRatio ("Waiting time", TYPENAMES);
ListOfTallies<Tally> posWait =

create ("Number of contacts having to wait", TYPENAMES);

private ListOfTallies<Tally> create
(String name, String[] elementNames) {

final ListOfTallies<Tally> lt =
ListOfTallies.createWithTally (elementNames.length);

lt.setName (name);
for (int i = 0; i < elementNames.length; i++) {

March 4, 2014 115

lt.get (i).setName (elementNames[i]);
lt.get (i).setConfidenceIntervalStudent();
lt.get (i).setConfidenceLevel (LEVEL);

}
return lt;

}

private ListOfFunctionOfMultipleMeansTallies<FunctionOfMultipleMeansTally>
createRatio (String name, String[] elementNames) {

final RatioFunction ratio = new RatioFunction();
final ListOfFunctionOfMultipleMeansTallies<FunctionOfMultipleMeansTally> mta =

ListOfFunctionOfMultipleMeansTallies.create (ratio, 2, elementNames.length);
mta.setName (name);
for (int r = 0; r < elementNames.length; r++) {

mta.get (r).setName (elementNames[r]);
mta.get (r).setConfidenceIntervalDelta();
mta.get (r).setConfidenceLevel (LEVEL);

}
return mta;

}

Blend() {
pce = new PeriodChangeEvent (PERIODDURATION, P + 2, STARTDAY);
pce.addPeriodChangeListener (new MyPeriodChangeListener());
inboundAgents = new AgentGroup (pce, INBOUNDAGENTS);
inboundVolume = new GroupVolumeStat (inboundAgents);
blendAgents = new AgentGroup (pce, BLENDAGENTS);
blendVolume = new GroupVolumeStat (blendAgents);

inQueue = new StandardWaitingQueue();
inQueueSize = new QueueSizeStat (inQueue);
outQueue = new StandardWaitingQueue();
outQueueSize = new QueueSizeStat (outQueue);

final AgentGroupSet testSet = new AgentGroupSet();
testSet.add (inboundAgents);
testSet.add (blendAgents);
final AgentGroupSet targetSet = new AgentGroupSet();
targetSet.add (blendAgents);
final DialerPolicy pol = new ThresholdDialerPolicy

(new InfiniteDialerList (new MyContactFactory (OUTBOUND)),
testSet, targetSet, MINFREEAGENTS, 1, KAPPA, C);

final ConstantValueGenerator pReachGen = new ConstantValueGenerator
(pce, K, PROBREACH);

dialer = new Dialer (pol, new MRG32k3a(), pReachGen);
final ContactCounter ntd = new ContactCounter();

116 8 BLEND CALL CENTER March 4, 2014

dialer.addReachListener (ntd);
dialer.addFailListener (ntd);

arrivProc = new PiecewiseConstantPoissonArrivalProcess
(pce, new MyContactFactory (INBOUND), ARRIVALRATES,
new MRG32k3a());

router = new QueuePriorityRouter (TYPETOGROUPMAP, GROUPTOTYPEMAP);
arrivProc.addNewContactListener (router);
dialer.addReachListener (router);
router.addExitedContactListener (new MyContactMeasures());
router.setAgentGroup (INBOUND, inboundAgents);
router.setAgentGroup (BLEND, blendAgents);
router.getDialers (INBOUND).add (dialer);
router.getDialers (BLEND).add (dialer);
router.setWaitingQueue (INBOUND, inQueue);
router.setWaitingQueue (OUTBOUND, outQueue);
router.setTotalQueueCapacity (QUEUECAPACITY);

}

// Creates contacts
class MyContactFactory implements ContactFactory {

int type;
public MyContactFactory (int type) { this.type = type; }

public Contact newInstance() {
final Contact contact = new Contact (type);
switch (type) {
case INBOUND:

// Inbound contact
contact.setDefaultContactTime (sigen.nextDouble());
final double u = streamBalk.nextDouble();
if (u < PROBBALK) contact.setDefaultPatienceTime (0);
else contact.setDefaultPatienceTime (pigen.nextDouble());
break;

case OUTBOUND:
// Outbound contact
contact.setDefaultContactTime (sogen.nextDouble());
contact.setDefaultPatienceTime (OUTPATIENCETIME);
break;

}
return contact;

}
}

// Updates counters
class MyContactMeasures implements ExitedContactListener {

March 4, 2014 117

public void blocked (Router router, Contact contact, int bType) {
if (contact.getArrivalTime() < STARTDAY)

return;
final int type = contact.getTypeId();
++numArriv[type];
++numArriv[K];
++numAbandoned[type];
++numAbandoned[K];
++numPosWait[type];
++numPosWait[K];

}

public void dequeued (Router router, DequeueEvent ev) {
final Contact contact = ev.getContact();
if (contact.getArrivalTime() < STARTDAY)

return;
final int type = contact.getTypeId();
++numArriv[type];
++numArriv[K];
++numAbandoned[type];
++numAbandoned[K];
final double qt = contact.getTotalQueueTime();
sumWaitingTimes[type] += qt;
sumWaitingTimes[K] += qt;
++numPosWait[type];
++numPosWait[K];
if (qt >= AWT && type == INBOUND) ++numBadSL;

}

public void served (Router router, EndServiceEvent ev) {
final Contact contact = ev.getContact();
if (contact.getArrivalTime() < STARTDAY)

return;
final int type = contact.getTypeId();
++numArriv[type];
++numArriv[K];
++numServed[type];
++numServed[K];
final double qt = contact.getTotalQueueTime();
sumWaitingTimes[type] += qt;
sumWaitingTimes[K] += qt;
if (qt > 0) {

++numPosWait[type];
++numPosWait[K];

}
if (qt >= AWT && type == INBOUND) ++numBadSL;

}

118 8 BLEND CALL CENTER March 4, 2014

}

// Counts tried outbound calls
class ContactCounter implements NewContactListener {

public void newContact (Contact contact) {
if (contact.getArrivalTime() < STARTDAY)

return;
++numTriedDialed;

}
}

// Ensures that integrals are computed over main periods only
class MyPeriodChangeListener implements PeriodChangeListener {

public void changePeriod (PeriodChangeEvent pce) {
if (pce.getCurrentPeriod() == 1) {

// End of preliminary period
inQueueSize.init();
outQueueSize.init();
inboundVolume.init();
blendVolume.init();

}
else if (pce.getCurrentPeriod() == P + 1) {

// Beginning of wrap-up period
Nb[INBOUND] = inboundVolume.getStatNumBusyAgents().sum();
N[INBOUND] = inboundVolume.getStatNumAgents().sum() +

inboundVolume.getStatNumGhostAgents().sum();
Nb[BLEND] = blendVolume.getStatNumBusyAgents().sum();
N[BLEND] = blendVolume.getStatNumAgents().sum() +

blendVolume.getStatNumGhostAgents().sum();
Nb[2] = Nb[INBOUND] + Nb[BLEND];
N[2] = N[INBOUND] + N[BLEND];

qs[INBOUND] = inQueueSize.getStatQueueSize().sum()/(PERIODDURATION*P);
qs[OUTBOUND] = outQueueSize.getStatQueueSize().sum()/(PERIODDURATION*P);
qs[2] = qs[INBOUND] + qs[OUTBOUND];

}
}

public void stop (PeriodChangeEvent pce) {}
}

void simulate (int n) {
triedDial.init();
arrivals.init();
served.init();
abandoned.init();
badSL.init();

March 4, 2014 119

serviceLevel.init();
occupancy.init();
queueSize.init();
totalQueueWait.init();
posWait.init();
for (int r = 0; r < n; r++) simulateOneDay();

}

void simulateOneDay() {
Sim.init();
pce.init();
arrivProc.init (bgen.nextDouble());
dialer.init();
inboundAgents.init();
blendAgents.init();
inQueue.init();
outQueue.init();
numTriedDialed = 0;
numBadSL = 0;
for (int k = 0; k <= K; k++) {

numArriv[k] = 0;
numServed[k] = 0;
numAbandoned[k] = 0;
numPosWait[k] = 0;
sumWaitingTimes[k] = 0;

}
new ToggleEvent (arrivProc, true).schedule (STARTDAY - 5);
new ToggleEvent (dialer, true).schedule (STARTDIALER);
final double endDay = STARTDAY + P*PERIODDURATION;
new ToggleEvent (dialer, false).schedule (endDay - 5);
pce.start();
Sim.start();
pce.stop();
addObs();

}

void addObs() {
triedDial.add (numTriedDialed);
arrivals.add (numArriv);
served.add (numServed);
abandoned.add (numAbandoned);
badSL.add (numBadSL);
serviceLevel.add (100*(numArriv[INBOUND] - numBadSL), numArriv[INBOUND]);
for (int i = 0; i < Nb.length; i++)

Nb[i] *= 100;
occupancy.addSameDimension (Nb, N);
queueSize.add (qs);

120 8 BLEND CALL CENTER March 4, 2014

totalQueueWait.addSameDimension (sumWaitingTimes, numArriv);
posWait.add (numPosWait);

}

public void printStatistics() {
System.out.println (triedDial.report ());
System.out.println (arrivals.report ());
System.out.println (served.report ());
System.out.println (abandoned.report ());
System.out.println (badSL.report ());
System.out.println (serviceLevel.report ());
System.out.println (occupancy.report ());
System.out.println (queueSize.report ());
System.out.println (totalQueueWait.report ());
System.out.println (posWait.report ());

}

public static void main (String[] args) {
final Blend blend = new Blend();
final Chrono timer = new Chrono();
blend.simulate (NUMDAYS);
System.out.println ("CPU time: " + timer.format());
blend.printStatistics();

}
}

We took most input values from table 2 in [2], at periods 15, 16, and 17. From the
input data, we get the expected number of arrivals per half hour. We then divide these
rates by 30 to get the arrival rates per minute. The arrival process is constructed as in
previous examples, using the processed arrival rates. The exponential patience time is set
to 500 seconds, so we divide it by 60 to convert it in minutes. The probability of balking
also comes from the input data and is set to 0.005 for the three observed periods. In the
input data, service times follow a gamma distribution with shape parameter α and scale
parameter β = 1/λ. Its mean, expressed in seconds, is given by αβ. To get the mean in
minutes, we divide β by 60. When we construct the gamma generator, we will invert β for
the parameter to be compatible with SSJ. The gamma service times are generated using
acceptance-rejection, because inversion is too slow.

For the outbound type, we need the mean service time to be 440.2 seconds to follow the
input data. In contrast with the input data in [2] setting the patience time for outbound
calls to 0, we fixed this patience time to five seconds for some outbound calls to get queued.
The probability of reaching a caller and the staffing vectors were all taken from the input
data in [2].

To take balking into account, in the newInstance method of MyContactFactory, a uni-
form is drawn. If it is smaller than the probability of immediate abandonment, the patience

March 4, 2014 121

time is 0. Otherwise, it is exponential. For the outbound calls, the patience time is constant
and set in the newInstance method too.

The router is a simple queue priority router with fixed tables. If an inbound call arrives,
it is served by an inbound agent or, if no inbound agent is available, by a blend agent. If
an outbound call arrives, it is served by a blend agent. If an inbound agent becomes free,
it checks the inbound queue only. If a blend agent is free, it checks the outbound and the
inbound queues, in that order. When agents arrive, they check for calls in the queues as
when they become free.

The dialer is the newest and most complex part of this model. To be constructed, it
requires at least a dialing policy, a random stream to determine if the right party is reached,
and a value generator giving the probability of the right party to be reached. Reached calls
are notified to the router while reached and failed calls are counted using a ContactCounter

which is a custom new-contact listener. Failed calls include wrong party connects (answering
machine or wrong person) as well as busy signals or no answer. The dialer is connected to
the router in order to be automatically started (if it is enabled) each time any agent, whether
inbound or blend, ends a service. It is also registered to be automatically initialized at the
beginning of each replication.

When the dialer starts, if it is enabled, it uses its policy to determine how many calls to
try. Dialed calls are extracted from a dialer list which is associated with the dialing policy.
In most general settings, the list of outbound calls to try can depend on the state of the
system. In this example, the dialer list is infinite, i.e., it uses a contact factory to produce a
call each time it is asked to. Retrials of failed calls are included in the calls extracted from
this infinite list. For each tried call, a random number is drawn to determine if it reaches the
right party. If it is successful, it is sent to the router and the contact counter. Otherwise, it
is sent to the contact counter only.

The dialer of this example uses a generic threshold-based policy which works as follows.
It computes NT

F (t), the total number of free agents in a test set comprised in this example
of both agent groups. It then checks that this number is greater than or equal to a certain
threshold fixed to 4 in this example. If the condition holds, the dialer then computes ND

F (t),
the number of free agents in a target set. In this example, this set contains blend agents
only. If ND

F (t) is greater than or equal to a second threshold fixed to 1 in this example, the
dialer tries to reach 2 ∗ND

F (t) customers.

inQueueSize and outQueueSize are queue size statistical collector being used for com-
puting the time-average queue size. Each queue size collector monitors a single waiting queue
and computes the integrals for the queue size and optionally the number of contacts of each
type in the queue. inboundVolume and blendVolume are agent group volume statistical
collector used for the occupancy ratio.

Statistical collecting is performed the same way as in other examples. However, we want
events to be counted for main periods only. As a result, events related to contacts arriving
during the preliminary period are ignored. For agents’ occupancy ratio and time-average
queue size, we need to create a custom period-change listener. At the end of the preliminary,
the agent group volume and queue size counters are reset to keep statistics about main

122 8 BLEND CALL CENTER March 4, 2014

periods only. At the beginning of the wrap-up period, the necessary integrals are obtained
before they are updated with observations from the wrap-up period. In addition, to get the
time-average queue size over the opening hours, we divide the integral of queue size by the
appropriate time duration. If we use the average method, the returned average is on all
simulation time, including the complete preliminary period. Of course, our custom period-
change listener needs to be registered with the period-change event to receive information;
this operation is done in the constructor of Blend. Note that we could also solve this problem
with an agent-group listener, as we did in section 4.3.

Listing 30 presents the statistical results of the call center.

Listing 30: Results of the program Blend

CPU time: 0:0:1.56
REPORT on Tally stat. collector ==> Number of tried outbound calls

num. obs. min max average standard dev.
1000 52.000 1670.000 1109.040 258.167

Report for Number of arrived contacts
num obs. min max average std. dev. conf. int.

Inbound 1000 425.000 1564.000 848.592 156.201 95.0% (838.899, 858.285)
Outbound 1000 21.000 475.000 321.896 74.396 95.0% (317.279, 326.513)
All types 1000 852.000 1586.000 1170.488 94.589 95.0% (1164.618, 1176.358)

Report for Number of served contacts
num obs. min max average std. dev. conf. int.

Inbound 1000 425.000 1434.000 843.477 149.608 95.0% (834.193, 852.761)
Outbound 1000 19.000 444.000 298.876 68.318 95.0% (294.637, 303.115)
All types 1000 825.000 1465.000 1142.353 93.386 95.0% (1136.558, 1148.148)

Report for Number of abandoned contacts
num obs. min max average std. dev. conf. int.

Inbound 1000 0.000 130.000 5.115 9.985 95.0% (4.495, 5.735)
Outbound 1000 0.000 49.000 23.020 7.609 95.0% (22.548, 23.492)
All types 1000 8.000 132.000 28.135 8.843 95.0% (27.586, 28.684)

REPORT on Tally stat. collector ==> Number of contacts not in target
num. obs. min max average standard dev.

1000 0.000 749.000 39.427 63.682

REPORT on Tally stat. collector ==> Service level
func. of averages standard dev. num. obs.

95.354 6.894 1000

Report for Agents’ occupancy ratio
func. of averages std. dev. nobs. conf. int.

Inbound only 81.596 7.447 1000 95.0% (81.135, 82.058)
Blend 55.665 6.900 1000 95.0% (55.237, 56.092)

March 4, 2014 123

All groups 70.514 6.818 1000 95.0% (70.091, 70.936)

Report for Time-average queue size
num obs. min max average std. dev. conf. int.

Inbound 1000 0.000 2.967 0.115 0.234 95.0% (0.101, 0.130)
Outbound 1000 0.000 0.012 5.8E-3 1.9E-3 95.0% (5.7E-3, 5.9E-3)
All types 1000 4.8E-3 2.967 0.121 0.233 95.0% (0.107, 0.135)

Report for Waiting time
func. of averages std. dev. nobs. conf. int.

Inbound 0.049 0.094 1000 95.0% (0.043, 0.055)
Outbound 6.5E-3 1.2E-3 1000 95.0% (6.4E-3, 6.6E-3)
All types 0.037 0.070 1000 95.0% (0.033, 0.042)

Report for Number of contacts having to wait
num obs. min max average std. dev. conf. int.

Inbound 1000 0.000 913.000 70.241 86.800 95.0% (64.855, 75.627)
Outbound 1000 0.000 57.000 27.445 9.034 95.0% (26.884, 28.006)
All types 1000 23.000 921.000 97.686 81.085 95.0% (92.654, 102.718)

124 REFERENCES March 4, 2014

References

[1] A. Deslauriers. Modélisation et simulation d’un centre d’appels téléphoniques dans un
environnement mixte. Master’s thesis, Department of Computer Science and Operations
Research, University of Montreal, Montreal, Canada, 2003.

[2] A. Deslauriers, J. Pichitlamken, P. L’Ecuyer, A. Ingolfsson, and A. N. Avramidis.
Markov chain models of a telephone call center with call blending. Computers and
Operations Research, 34(6):1616–1645, 2007.

[3] D. Flanagan. Java in a Nutshell. O’Reilly, Sebastopol, CA, third edition, 1999.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, second edition,
1998.

[5] N. Gans, G. Koole, and A. Mandelbaum. Telephone call centers: Tutorial, review,
and research prospects. Manufacturing and Service Operations Management, 5:79–141,
2003.

[6] Wolfgang Hoschek. The Colt Distribution: Open Source Libraries for High Performance
Scientific and Technical Computing in Java. CERN, Geneva, 2004. Available at
http://dsd.lbl.gov/~hoschek/colt/.

[7] L. Kleinrock. Queueing Systems, Vol. 1. Wiley, New York, NY, 1975.

[8] P. L’Ecuyer. SSJ: A Java Library for Stochastic Simulation, 2004. Software user’s
guide, available at http://www.iro.umontreal.ca/~lecuyer.

[9] V. Mehrotra and J. Fama. Call center simulation modeling: Methods, challenges,
and opportunities. In Proceedings of the 2003 Winter Simulation Conference, pages
135–143. IEEE Press, 2003.

[10] R. J. Serfling. Approximation Theorems for Mathematical Statistics. Wiley, New York,
NY, 1980.

http://dsd.lbl.gov/~hoschek/colt/
http://www.iro.umontreal.ca/~lecuyer

	Overview
	M/M/c queue and variants
	M/M/c queue
	Supporting abandonment
	Clearing the queue at the end of the day
	Limiting the queue capacity
	Preparing for parallel simulations

	A simplified call center with multiple periods
	A simple multi-skill contact center
	Implementing the model
	Adding a contact-by-contact trace
	Rerouting queued contacts

	Telethon call center
	Implementing the model
	Modeling the message delay
	Correcting the estimator for occupancy ratio

	Bilingual contact center
	Bank model
	Teamwork contact center
	Blend call center

