
User’s Guide for ContactCenters Simulation Library

Core API Specification

Version: March 4, 2014

Eric Buist

This is the API specification of the ContactCenters library, a software library providing
a toolset to build contact center simulators. The document provides detailed documentation
about each interface, class and method for one to extend existing contact center simulators
or create new ones.

March 4, 2014 CONTENTS i

Contents

Overview 2

Package umontreal.iro.lecuyer.contactcenters 4

Initializable . 5

Named . 6

ToggleElement . 7

ToggleEvent . 8

SwitchEvent . 10

PeriodChangeListener . 12

PeriodChangeEvent . 13

NonStationaryMeasureMatrix . 21

MultiPeriodGen . 22

ValueGenerator . 29

ConstantValueGenerator . 30

RandomValueGenerator . 32

MinValueGenerator . 34

ContactCenter . 37

MatrixUtil . 40

RandomStreamUtil . 42

StatUtil . 44

RepSimCC . 46

BatchMeansSimCC . 51

ii CONTENTS March 4, 2014

Package umontreal.iro.lecuyer.contactcenters.contact 54

Contact . 55

ServiceTimes . 67

ContactFactory . 70

SimpleContactFactory . 71

SingleTypeContactFactory . 73

RandomTypeContactFactory . 78

ContactInstantiationException . 80

NewContactListener . 82

ContactSumMatrix . 83

ContactStepInfo . 85

TrunkGroup . 86

ContactSource . 89

ContactArrivalProcess . 91

StationaryContactArrivalProcess . 98

PoissonArrivalProcess . 99

PiecewiseConstantPoissonArrivalProcess . 103

PoissonArrivalProcessWithTimeIntervals . 108

PoissonGammaArrivalProcess . 110

PoissonGammaNortaRatesArrivalProcess . 114

GammaParameterEstimator . 118

DirichletCompoundArrivalProcess . 128

PoissonUniformArrivalProcess . 131

FixedCountsArrivalProcess . 134

DirichletArrivalProcess . 135

NORTADrivenArrivalProcess . 139

CorrelationMatrixCorrector . 142

CorrelationMtxFitting . 144

PoissonArrivalProcessWithInversion . 145

PoissonArrivalProcessWithThinning . 147

March 4, 2014 CONTENTS iii

Package umontreal.iro.lecuyer.contactcenters.queue 149

WaitingQueue . 150

DequeueEvent . 159

DequeueEventComparator . 162

WaitingQueueSet . 163

WaitingQueueListener . 165

StandardWaitingQueue . 166

PriorityWaitingQueue . 167

QueueWaitingQueue . 168

QueueSizeStat . 169

QueueSizeStatMeasureMatrix . 171

ContactPatienceTimeGenerator . 173

WaitingQueueState . 174

EnqueueEvent . 175

Package umontreal.iro.lecuyer.contactcenters.queuemodel 177

ErlangC . 178

Package umontreal.iro.lecuyer.contactcenters.server 184

AgentGroup . 185

EndServiceEvent . 196

DetailedAgentGroup . 200

EndServiceEventDetailed . 206

Agent . 207

AgentGroupSet . 212

AgentGroupListener . 215

AgentListener . 216

GroupVolumeStat . 218

GroupVolumeStatMeasureMatrix . 221

ContactTimeGenerator . 225

AfterContactTimeGenerator . 227

AgentGroupState . 229

DetailedAgentGroupState . 230

AgentState . 231

StartServiceEvent . 232

SetNumAgentsEvent . 236

RestoreAgentsEvent . 237

iv CONTENTS March 4, 2014

Package umontreal.iro.lecuyer.contactcenters.dialer 238

Dialer . 239

DialerActionEvent . 247

DialerPolicy . 248

ConstantDialerPolicy . 250

ThresholdDialerPolicy . 251

BadContactMismatchRatesDialerPolicy . 254

AgentsMoveDialerPolicy . 259

DialerList . 267

InfiniteDialerList . 269

ContactListenerDialerList . 270

DialerListNoQueueing . 272

DialerState . 273

DialerActionState . 274

MismatchChecker . 275

Package umontreal.iro.lecuyer.contactcenters.router 276

Router . 278

WaitingQueueType . 295

WaitingQueueStructure . 296

ContactReroutingEvent . 297

AgentReroutingEvent . 298

QueuePriorityRouter . 299

QueueAtLastGroupRouter . 302

LongestQueueFirstRouter . 306

SingleFIFOQueueRouter . 307

LongestWeightedWaitingTimeRouter . 308

AgentsPrefRouter . 309

AgentsPrefRouterWithDelays . 319

AgentSelectionScore . 324

ContactSelectionScore . 325

LocalSpecRouter . 326

QueueRatioOverflowRouter . 331

March 4, 2014 CONTENTS 1

ExpDelayRouter . 335

OverflowAndPriorityRouter . 337

RankFunction . 343

RoutingStageInfo . 344

ExitedContactListener . 345

RoutingTableUtils . 346

AgentGroupSelectors . 355

RouterState . 358

ReroutingState . 359

EnqueueEventWithRerouting . 360

Package umontreal.iro.lecuyer.contactcenters.expdelay 362

WaitingTimePredictor . 363

ExpectedDelayPredictor . 365

LastWaitingTimePredictor . 366

LastWaitingTimePerQueuePredictor . 367

HeadOfQueuePredictor . 368

Package umontreal.iro.lecuyer.stat.mperiods 369

MeasureMatrix . 371

StatProbeMeasureMatrix . 373

ListOfStatProbesMeasureMatrix . 375

MatrixOfStatProbesMeasureMatrix . 377

MeasureSet . 378

SumMatrix . 382

SumMatrixSW . 385

IntegralMeasureMatrix . 388

IntegralMeasureMatrixSW . 391

Package umontreal.iro.lecuyer.simevents 393

SimTimeMeasureMatrix . 394

UnusableSimulator . 395

2 OVERVIEW March 4, 2014

Overview

A contact center is a set of resources (communication equipment, employees, computers, etc.)
providing an interface between customers and a business [1, 8, 15, 4]. A contact represents a
customer’s request for some service such as information, subscription, order, etc. Customers
may use various media for contacting a business: telephone, fax, mail, or Internet. A contact
center processing phone calls only is named a call center.

Inbound contacts are initiated by customers trying to communicate with the business.
A customer can be blocked, i.e., receive a busy signal, if all phone lines are used at the
time he calls. He can also be queued if service cannot be started immediately. A queued
customer may become impatient and abandon without receiving service. A retrial occurs if
the customer having abandoned tries to contact the business again. A served customer may
also return to get new service, or to satisfy its initial request.

Outbound contacts are initiated by agents contacting customers, or by a predictive dialer
making phone calls by trying to anticipate the number of free agents at the time contacted
customers are reached. A right party connect occurs when an outbound contact is successful,
i.e., the right person has been reached. A mismatch represents a successful contact that
cannot be served immediately. Often, these mismatches are considered as lost calls, because
most customers will not wait after they answer.

Modern contact centers use skill-based routing for processing different types of requests
when each agent is trained for handling only a subset of these types. Each contact is
assigned a type (or skill) k in 0, . . . , K−1. To determine this type, before reaching an agent,
a customer must indicate his needs: callers interact with an interactive voice response (IVR)
unit while Internet users enter data in a Web form. Outbound contacts can also have a type,
since all customers are not contacted for the same reason.

The agents are partitioned in I agent groups or skill sets. All agents in a group i share
the same skills, i.e., they can serve the same types of contacts (although some members may
be more efficient than others).

Queueing theory can be used to derive approximations for estimating the performance
measures of contact centers, but only for models that oversimplify the complexities of real-
life systems for which only simulation can provide accurate results. Simulation permits the
analysis of the impact of parameter changes on contact center’s performance. For example,
it can evaluate service level of contacts, occupancy ratio of agents, waiting times, etc. for
(almost) arbitrary contact centers.

The ContactCenters library provides a set of building blocks to help programmers in the
development of contact center simulators. The library uses Stochastic Simulation in Java
(SSJ) [14] to perform discrete-event simulation and to generate random variates. It also
relies on Collections Tuned (Colt) [9] for matrix manipulation.

A precompiled generic contact center simulator, adapted for blend and multi-skill models,
is provided and can use XML files for parameters. See guidemsk.pdf for more information
about this simulator, how to configure it, and how to use it. The document guideapp.pdf

March 4, 2014 3

describes in more details the various interfaces, classes, and methods permitting the user to
access precompiled simulators from other Java programs.

For existing simulators to be extended or new ones to be created, the simulation toolset
provided by this library must be used directly. This toolset is comprised of various compo-
nents grouped in different packages. Each component corresponds to a specific contact center
element and can easily be extended or replaced by the user. The umontreal.iro.lecuyer.

contactcenters package provides some facilities to manage contact centers in general. It
defines base classes for contact center simulation applications as well as a framework to gen-
erate contact-specific values during the simulation. The package umontreal.iro.lecuyer.

contactcenters.contact defines the Contact class whose instances represent the contacts
traveling into the system. It also defines several arrival processes for inbound contacts.

The package umontreal.iro.lecuyer.contactcenters.server defines the facilities for
serving contacts by agents. It defines agent groups as well as a data structure to store
information about served contacts.

The package umontreal.iro.lecuyer.contactcenters.queue defines the waiting queue
contacts can have to wait in if they cannot be served at the time they enter the center. It
defines a First-In-First-Out waiting queue as well as a generic priority queue, with a data
structure to store information about queued contacts.

The package umontreal.iro.lecuyer.contactcenters.dialer defines the dialer capa-
ble of performing outbound calls. The defined dialer can implement a complex dialing policy
obtaining contacts from various sources.

The package umontreal.iro.lecuyer.contactcenters.router implements the routing
facilities, linking all the contact center objects together. It defines a base class representing
a router as well as several subclasses for various routing policies.

4 March 4, 2014

Package umontreal.iro.lecuyer.contactcenters

Contains general interfaces and classes for simulating contact centers. The interfaces Named
and Initializable are defined to represent objects having a name and which can be ini-
tialized, respectively. The interface ToggleElement is defined for contact center objects that
can be enabled or disabled. The simulation event ToggleEvent can be used to toggle objects
implementing ToggleElement.

The class PeriodChangeEvent can be use to divide the simulation time into periods
to simulate non-stationary contact centers. The interface PeriodChangeListener can be
implemented by simulation objects to be notified when period changes occur.

The ValueGenerator interface is defined to generate state-dependent random values
during the contact center simulation. Some general-purpose implementations of this interface
are provided.

The package also contains a base ContactCenter class providing convenience methods
used to implement a simulator.

March 4, 2014 5

Initializable

Defines an object that can be initialized by the use of an initialization method.

package umontreal.iro.lecuyer.contactcenters;

public interface Initializable

Method

public void init()

Initializes this object.

6 March 4, 2014

Named

Represents an object having a name.

package umontreal.iro.lecuyer.contactcenters;

public interface Named

Methods

public String getName()

Returns the name associated with this object. If no name was set, this must return an empty
string, not null.

Returns the name of this object.

public void setName (String name)

Sets the name of this object to name. The given name cannot be null and the implementation
can throw an UnsupportedOperationException if the name is read-only.

Parameter

name the new name of the object.

Throws

UnsupportedOperationException if the name cannot be changed.

NullPointerException if name is null.

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/UnsupportedOperationException.html

March 4, 2014 7

ToggleElement

Specifies an element that can be enabled or disabled at any time during the simulation. The
meaning of the “enabled” and “disabled” states depends on the particular toggle element.
For example, an enabled contact arrival process provides contacts to the system whereas a
disabled arrival process does not.

package umontreal.iro.lecuyer.contactcenters;

public interface ToggleElement

Methods

public void start()

Enables the element represented by this object. This method throws an IllegalState-
Exception if the element is already enabled.

Throws

IllegalStateException if the element is already enabled.

public void stop()

Disables the element represented by this object. This method throws an IllegalState-
Exception if the element is already disabled.

Throws

IllegalStateException if the element is already disabled.

public boolean isStarted()

Determines if the element is enabled or disabled. Returns true if the element is enabled,
false otherwise.

Returns the current state of the element.

http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html

8 March 4, 2014

ToggleEvent

This event instructs a toggle element, i.e., any object implementing ToggleElement, to be
started or stopped during the simulation. It can be useful to toggle some elements of a
contact center, e.g., arrival processes, at determined moments during simulation. After the
event is constructed and scheduled, when the simulation clock reaches the scheduled time,
the event starts or stops the associated toggle element. Note that for the event to have a
meaningful name when printing the event list, the target toggle element should override its
toString method.

package umontreal.iro.lecuyer.contactcenters;

public class ToggleEvent extends Event

Constructors

public ToggleEvent (ToggleElement element, boolean start)

Constructs a new toggle event that will, at the time of its execution, start the toggle element
element if start is true, or stop it if enabled is false.

Parameters

element the toggle element affected by the event.

start the status of the toggle element after the event occurs.

Throws

NullPointerException if element is null.

public ToggleEvent (Simulator sim, ToggleElement element, boolean start)

Equivalent to ToggleEvent (ToggleElement, boolean), with a user-defined simulator
sim.

Parameters

sim the simulator associated with the toggle event.

element the toggle element affected by the event.

start the status of the toggle element after the event occurs.

Throws

NullPointerException if sim or element are null.

Methods

public ToggleElement getToggleElement()

Returns the toggle element affected by this event.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Event.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html

March 4, 2014 ToggleEvent 9

Returns the toggle element affected by this event.

public void setToggleElement (ToggleElement element)

Changes the associated toggle element to element.

Parameter

element the new toggle element.

Throws

NullPointerException if element is null.

public boolean getStart()

Returns the status of the toggle element associated with this object after this event has
occurred.

Returns the status of the associated toggle element after this event has occurred.

public void setStart (boolean start)

When the event occurs, the activity status of the toggle element will be set to start.

Parameter

start true if the toggle element will be started, false if it will be stopped.

10 March 4, 2014

SwitchEvent

Represents an event that toggles an element on predefined simulation times. This differs
from ToggleEvent that occurs only at a specific simulation time, and enables or disables
the toggle element once. This event is constructed with a toggle element, and an array of
simulation times. The constructors determines the first time, in the array, that is greater
than the current simulation time, and schedules the event at that time. When the event
happens, the element is toggled, and the event is scheduled again until all the times in the
array have been used.

package umontreal.iro.lecuyer.contactcenters;

public class SwitchEvent extends Event

Constructors

public SwitchEvent (ToggleElement el, double[] times)

Constructs a new switch event from the toggle element el, and the simulation times times.
The times in times must be sorted in ascending order.

Parameters

el the toggle element.

times the simulation times the event will occur.

Throws

NullPointerException if el or times are null.

public SwitchEvent (Simulator sim, ToggleElement el, double[] times)

Equivalent to SwitchEvent (ToggleElement, double[]), with a user-defined simulator
sim.

Parameters

sim the simulator attached to the new event.

el the toggle element.

times the simulation times the event will occur.

Throws

NullPointerException if sim, el, or times are null.

Methods

public ToggleElement getToggleElement()

Returns the toggle element affected with this event.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Event.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html

March 4, 2014 SwitchEvent 11

Returns the affected toggle element.

public double[] getToggleTimes()

Returns an array containing the toggle times used by this event.

Returns the array of toggle times.

public void skipTime()

Cancels this event if it is scheduled, and skips to the next toggle time.

12 March 4, 2014

PeriodChangeListener

Represents a period-change listener being notified when period-change events occur.

package umontreal.iro.lecuyer.contactcenters;

public interface PeriodChangeListener

Methods

public void changePeriod (PeriodChangeEvent pce)

Switches to the next period defined by pce. This can change the parameters and correct
scheduled events accordingly. If no parameters are available for the new period, the method
should try to use those of the last available period. The listener is called after the period
change has occurred, so PeriodChangeEvent.getCurrentPeriod() returns the index of the
new period.

Parameter

pce the source period-change event.

public void stop (PeriodChangeEvent pce)

This method is called after the period-change event is stopped by PeriodChangeEvent.
stop().

Parameter

pce the period-change event being stopped.

March 4, 2014 13

PeriodChangeEvent

Defines a simulation event that occurs upon period changes and supporting fixed-sized or
variable-sized periods. Because this event must cover the complete simulation horizon (day,
week, etc.), not only the times at which the contact center is opened, three types of periods
need to be defined.

The P periods during which the contact center is opened are denoted main periods, or
simply periods. Main period p, where p = 1, . . . , P , corresponds to simulation time interval
[tp−1, tp[, where t0 < · · · < tP . During the preliminary period [0, t0), the contact center
is closed. Sometimes, arrivals start at time t0 − τ for a queue to build up before agents
enter into service. During the wrap-up period [tP , T], no more arrival occurs, but ongoing
services are terminated. Note that preliminary and wrap-up periods are more useful when a
simulation replication corresponds to a day.

Before starting the simulation, the period-change event should be initialized by calling
init(), which resets the current period index. The event needs to be started by using
start(); this schedules it at the beginning of the first main period. This also schedules
auxiliary event managing period changes at the other periods. It is recommended to start
the period-change event before scheduling any other event to ensure that period changes have
priority over other events. When the period change occurs, it is notified to any registered
PeriodChangeListener implementation. When returning from Sim.start or just before
calling Sim.stop, it is recommended to call the stop() method of this object, since the
end of the wrap-up period is not scheduled as an event. This notifies all registered listeners
about the end of the simulation, and disables any remaining auxiliary event. This can be
useful for some statistical collectors.

Note: the PeriodChangeListener implementations are notified in the order of the list re-
turned by getPeriodChangeListeners(), and a period-change listener modifying the list of
listeners by using addPeriodChangeListener (PeriodChangeListener) or removePeriod-
ChangeListener (PeriodChangeListener) could result in unpredictable behavior.

package umontreal.iro.lecuyer.contactcenters;

public class PeriodChangeEvent extends Event

implements Initializable, Named, ToggleElement

Field

public static final double PRIORITY

Default priority of period-change events. This priority index is set to 0.1, because the
period-change event should execute before any other event at the same time.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Event.html

14 PeriodChangeEvent March 4, 2014

Constructors

public PeriodChangeEvent (double periodDuration, int numPeriods, double

startingTime)

Constructs a new period-change event with fixed-sized main periods of duration periodDuration,
a total of P + 2 = numPeriods periods, with the first main period beginning at time
t0 = startingTime, and using the default simulator. For the event to be used, there must
be at least two periods (preliminary and wrap-up). With a total of numPeriods periods, the
event defines numPeriods - 2 main periods, a preliminary, and a wrap-up periods, even if
the given starting time is 0.

Note that this constructor calls the setFixedPeriods (double, double) method.

Parameters

periodDuration the length of each period, in simulation time units.

numPeriods the total number of periods P + 2.

startingTime the beginning of the first period.

Throws

IllegalArgumentException if the number of periods is smaller than 2 or the period du-
ration or starting time is smaller than 0.

public PeriodChangeEvent (Simulator sim, double periodDuration, int

numPeriods, double startingTime)

Equivalent to PeriodChangeEvent (double, int, double), with a user-defined simulator
sim.

Parameters

sim the simulator attached to the new event.

periodDuration the length of each period, in simulation time units.

numPeriods the total number of periods P + 2.

startingTime the beginning of the first period.

Throws

IllegalArgumentException if sim is null, if the number of periods is smaller than 2, or
the period duration or starting time is smaller than 0.

public PeriodChangeEvent (double... endingTimes)

Constructs a new period-change event with variable-sized periods, using the default simu-
lator. The object will support endingTimes.length + 1 periods where tp = endTimes[p].
The ending times in the array must be non-decreasing, otherwise an IllegalArgument-
Exception is thrown.

This constructor accepts a variable number of arguments, i.e., one can use new PeriodChangeEvent
(t1, t2, t3, t4, t5), where tN are ending times. One can also pass a regular array.

Note that this constructor calls the setEndingTimes (double...) method.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalArgumentException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalArgumentException.html

March 4, 2014 PeriodChangeEvent 15

Parameter

endingTimes the ending times of periods.

Throws

IllegalArgumentException if one ending time is negative or the ending times are not
non-decreasing.

public PeriodChangeEvent (Simulator sim, double... endingTimes)

Equivalent to PeriodChangeEvent (double...), with a user-defined simulator sim.

Parameters

sim the simulator attached to this event.

endingTimes the ending times of periods.

Throws

IllegalArgumentException if sim is null, or if one ending time is negative or the ending
times are not non-decreasing.

Methods

public final void setFixedPeriods (double periodDuration, double

startingTime)

Sets this period-change event to fixed-length periods of duration periodDuration, and with
main period starting at t0 = startingTime. It should not be used during a simulation
replication. It is not allowed to modify the number of periods as many other objects depend
on this parameter.

Parameters

periodDuration the length of each main period.

startingTime the starting time of the first main period.

Throws

IllegalArgumentException if one argument is negative.

public final void setEndingTimes (double... endingTimes)

Changes the ending times of periods to endingTimes. This should not be used during a
simulation replication, otherwise the period-change event will be cancelled and no more
period change will be notified to listeners. It is also not allowed to change the number of
periods, because many objects can depend on this number.

Parameter

endingTimes the new period ending times.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html

16 PeriodChangeEvent March 4, 2014

Throws

IllegalArgumentException if one ending time is negative, the ending times are not non-
decreasing, or one tries to change the number of periods.

public void addPeriodChangeListener (PeriodChangeListener l)

Registers the period-change listener l to be notified when a period change occurs.

Parameter

l the listener to be registered.

Throws

NullPointerException if l is null.

public void removePeriodChangeListener (PeriodChangeListener l)

Removes the period-change listener l from this period-change event.

Parameter

l the period change listener being removed.

public void clearPeriodChangeListeners()

Removes all the period change listeners from this event.

public List<PeriodChangeListener> getPeriodChangeListeners

()

Returns an unmodifiable list containing the period-change listeners currently registered with
this event.

Returns the list of period-change listeners.

public void init()

Equivalent to init (simulator().time()).

public void init (double initTime)

Inits this period-change event at initial time initTime. This initializes the event for a new
simulation replication, which resets the current period index. When start() is called, no
period changes will be scheduled before initTime.

http://docs.oracle.com/javase/6/docs/api/java/util/List.html

March 4, 2014 PeriodChangeEvent 17

Parameter

initTime the initialization time.

public void initAndNotify()

Equivalent to initAndNotify (simulator().time()).

public void initAndNotify (double initTime)

Calls init() and notifies the period-change listeners if the period changed due to the ini-
tialization. This can be useful to force period-change listeners to restore parameters.

public void start()

Starts the period-change event by scheduling it.

public void stop()

This method should be called when the simulation ends. It calls the PeriodChange-
Listener.stop (PeriodChangeEvent) method of all registered PeriodChangeListener
implementations.

public boolean wasStopped()

Determines if this period-change event was stopped since the last call to init().

Returns true if and only if the period-change event was stopped.

public int getCurrentPeriod()

Returns the index of the current simulation period.

Returns the index of the current period.

public void setCurrentPeriod (int p)

Sets the current period to p and disables all period changes initiated by this event. When
the period is arbitrarily set by this method, the period-change event is cancelled and cannot
be used to change period until the next call to init(), or initAndNotify(). However, this
method can be used multiple times without calling init(). Each time this method changes
the current period, registered period-change listeners are notified.

Parameter

p the new period index.

Throws

IllegalArgumentException if the period index is negative or greater than or equal to
getNumPeriods().

public boolean isLockedPeriod()

Returns true if the current period was changed using setCurrentPeriod (int) from the
last call to init(). When the period is locked, only calls to setCurrentPeriod (int) can
change the period index. If the period is not locked, this returns false.

18 PeriodChangeEvent March 4, 2014

Returns the period locking indicator.

public int getCurrentMainPeriod()

Returns the current main period for this period-change event. This is equivalent to get-
MainPeriod (getCurrentPeriod()).

Returns the index of the current main period.

public boolean isPreliminaryPeriod (int period)

Determines if the period index period corresponds to the preliminary period. This method
returns true if and only if period is equal to 0.

Parameter

period the tested period index.

Returns true if and only if the period index corresponds to the preliminary period.

public boolean isMainPeriod (int period)

Determines if the period index period corresponds to a main period. The method returns
true if and only if period is greater than 0 and smaller than or equal to getNumPeriods()
- 2.

Parameter

period the tested period index.

Returns true if period corresponds to a main period.

public boolean isWrapupPeriod (int period)

Determines if the period index period corresponds to the wrap-up period. This method
returns true if and only if period is equal to getNumPeriods() - 1.

Parameter

period the tested period index.

Returns true if and only if the period index corresponds to the wrap-up period.

public int getMainPeriod (int period)

Returns the main period index corresponding to period period. This returns the result of
period - 1 for main periods. If the period is the preliminary period, this returns 0, the
index of the first main period. If the period is the wrap-up period, this returns the index of
the last main period.

Parameter

period the period index to be processed.

Returns the main period index.

public int getPeriod (double simTime)

Computes the period index corresponding to the simulation time simTime.

March 4, 2014 PeriodChangeEvent 19

Parameter

simTime the simulation time.

Returns the corresponding period index.

public boolean isPeriodStartingTime (double time)

Determines if the time time corresponds to the beginning of a period. This class cannot
force period-change events to have priority over simulation events happening at the time
of a period change, but the period change should usually be processed before any other
event happening at the same time. Otherwise, parameters may have inconsistent values.
This method can be used to help reschedule offending events manually if they cannot be
scheduled after start() is called. One can use getPeriod (double) to obtain the period
corresponding to the given simulation time if needed.

Parameter

time the simulation time to test.

Returns true if the given time corresponds to the time of a (future) period change, false
otherwise.

public double getPeriodStartingTime (int period)

Returns the simulation time at which the period period starts.

Parameter

period the index of the queried period.

Returns the simulation time at which the period begins.

Throws

IllegalArgumentException if the period index is invalid.

public double getPeriodEndingTime (int period)

Returns the simulation time at which the period period ends. If the index of the last
period is given, this returns the time at which stop() was called. If it was not called yet,
this returns the current simulation time if the current period is the last one or Double.NaN
otherwise.

Parameter

period the queried period.

Returns the simulation time of the beginning of the period.

Throws

IllegalArgumentException if the period index is invalid.

public double getPeriodDuration (int period)

Returns the duration of the period period. This corresponds to getPeriodEndingTime
(int) minus getPeriodStartingTime (int).

20 PeriodChangeEvent March 4, 2014

Parameter

period the period of interest.

Returns the duration of the period.

Throws

IllegalArgumentException if the period index is invalid.

public int getNumPeriods()

Returns P + 2, the number of periods supported by this period change event.

Returns the number of periods.

public int getNumMainPeriods()

Returns P , the number of main periods used by this period change event, i.e., getNum-
Periods() - 2.

Returns the number of main periods.

March 4, 2014 21

NonStationaryMeasureMatrix

Computes per-period values for a one-period measure matrix. This class extends the
IntegralMeasureMatrix and maps a period with a contact center period. It automatically
calls IntegralMeasureMatrix.newRecord() upon period changes.

package umontreal.iro.lecuyer.contactcenters;

public class NonStationaryMeasureMatrix<M extends MeasureMatrix> extends

IntegralMeasureMatrix<M>

implements PeriodChangeListener

Constructor

public NonStationaryMeasureMatrix (PeriodChangeEvent pce, M mat)

Constructs a new non-stationary measure matrix from the one-period measure matrix mat
and using the period change event pce to define the periods.

Parameters

pce the period change event.

mat the one-period only measure matrix.

Throws

IllegalArgumentException if a multiple-periods measure matrix is given.

NullPointerException if any argument is null.

22 March 4, 2014

MultiPeriodGen

Represents a random variate generator for non-stationary distributions with constant pa-
rameters during each period. When a new random variate is required, a random variate
generator corresponding to the appropriate period is selected and a value is drawn from this
generator.

This generator supports caching by using internal RandomVariateGenWithCache in-
stances for each period. If a single cache was used, the generator could recover a value
whose distribution does not correspond with the current period. Caching is disabled by
default, and can be enabled by using the setCaching (boolean) method.

package umontreal.iro.lecuyer.contactcenters;

public class MultiPeriodGen extends RandomVariateGen

implements ValueGenerator

Constructors

public MultiPeriodGen (PeriodChangeEvent pce, RandomVariateGen gen)

Constructs a new multi-period random variate generator with period-change event pce, and
random variate generator gen for every period.

Parameters

pce the period-change event.

gen one random variate generator for every period.

Throws

NullPointerException if any argument is null.

public MultiPeriodGen (PeriodChangeEvent pce, RandomVariateGen[] gens)

Constructs a new multi-period random variate generator with period-change event pce, and
the per-period random variate generators gens.

Parameters

pce the period change event.

gens one random variate generator for each period.

Throws

NullPointerException if any argument is null.

IllegalArgumentException if the length of gens does not correspond to the number of
periods.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGenWithCache.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html

March 4, 2014 MultiPeriodGen 23

Methods

public boolean isCaching()

Determines if this multiple-periods generator is caching the generated values, using internal
RandomVariateGenWithCache objects. By default, caching is disabled for better memory
utilization.

Returns the status of the caching.

public void setCaching (boolean caching)

Sets the status of the caching for this generator.

Parameter

caching the new status of the caching.

public PeriodChangeEvent getPeriodChangeEvent()

Returns the period-change event associated with this object.

Returns the associated period-change event.

public RandomVariateGen[] getGenerators()

Returns the random variate generators associated with this object.

Returns the associated random variate generators.

public RandomVariateGenWithCache[] getGeneratorsWithCache

()

Returns the random variate generators with cache used by this object. If caching is disabled
(the default), this method throws an IllegalStateException.

Returns the random variate generators with cache.

Throws

IllegalStateException if caching is disabled.

public void setGenerators (RandomVariateGen[] gens)

Sets the per-period random variate generators to gens. Note that if caching is enabled, the
cache is reset when using this method.

Parameter

gens the array containing the new random variate generators.

Throws

IllegalArgumentException if the length of gens is invalid.

NullPointerException if any argument is null.

public RandomVariateGen getGenerator (int p)

Returns the random variate generator corresponding to the period p.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGenWithCache.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGenWithCache.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html

24 MultiPeriodGen March 4, 2014

Parameter

p index of the period.

Returns the corresponding random variate generator.

Throws

ArrayIndexOutOfBoundsException if p is out of bounds.

public RandomVariateGenWithCache getGeneratorWithCache (int p)

Returns the random variate generator with cache corresponding to the period p. If caching
is disabled (the default), this method throws an IllegalStateException.

Parameter

p index of the period.

Returns the corresponding random variate generator with cache.

Throws

ArrayIndexOutOfBoundsException if p is out of bounds.

IllegalStateException if caching is disabled.

public void setGenerator (int p, RandomVariateGen gen)

Sets the random variate generator for period p to gen.

Parameters

p the period index.

gen the new random variate generator.

Throws

ArrayIndexOutOfBoundsException if p is out of bounds.

public void initCache()

Resets the cache of this generator, if caching is enabled. If caching is disabled, this method
does nothing. When the cache is reset, cached values are returned upon calls to next-
Double(), until the cache is exhausted. When there is no more cached value, random
variates are computed as usual.

public void clearCache()

Clears the values cached by this generator. If caching is disabled, this method does nothing.

public int[] getCacheIndices()

Returns an array containing the cache indices of each per-period generator.

Returns the array of cache indices.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGenWithCache.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html#nextDouble(())
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html#nextDouble(())

March 4, 2014 MultiPeriodGen 25

Throws

IllegalStateException if caching is disabled.

public void setCacheIndices (int[] ind)

Sets the array of cache indices to ind.

Parameter

ind the new array of cache indices.

Throws

NullPointerException if ind is null.

IllegalArgumentException if ind has incorrect size.

IllegalStateException if caching is disabled.

public DoubleArrayList[] getCachedValues()

Returns an array of array lists containing the values cached by each period-specific generator.

Returns the array of cached values.

public void setCachedValues (DoubleArrayList[] values)

Sets the array list containing the cached values to values[g] for each period-specific gen-
erator g. This resets the cache index to the size of the given array for each generator.

Parameter

values the array list of cached values.

Throws

NullPointerException if values is null.

public TimeUnit getSourceTimeUnit()

Returns the time unit in which the values coming from the probability distribution are
expressed. If the source unit is null, no conversion of the generated values is performed.
By default, this returns null.

Returns the source time unit.

public void setSourceTimeUnit (TimeUnit unit)

Sets the source time unit to unit.

Parameter

unit the source time unit.

http://acs.lbl.gov/software/colt/api/cern/colt/list/DoubleArrayList.html
http://acs.lbl.gov/software/colt/api/cern/colt/list/DoubleArrayList.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/util/TimeUnit.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/util/TimeUnit.html

26 MultiPeriodGen March 4, 2014

See also getSourceTimeUnit()

public TimeUnit getTargetTimeUnit()

Returns the time unit in which the values returned by nextDouble() must be expressed. If
the target unit is null, no conversion of the generated values is performed. By default, this
returns null.

Returns the target time unit.

public void setTargetTimeUnit (TimeUnit unit)

Sets the target time unit to unit.

Parameter

unit the target time unit.

See also getTargetTimeUnit()

public static double getMean (RandomVariateGen rvg)

Returns the mean of the distribution for a random variate generator, taking the shift into ac-
count. This method first calls Distribution.getMean() on the distribution associated with
the generator. If rvg is an instance of RandomVariateGenWithShift or RandomVariate-
GenIntWithShift, it then subtracts the associated shift.

Parameter

rvg the random variate generator.

Returns the possibly shifted mean.

public double getMean (int p)

Returns the mean for period p.

Parameter

p the index of the period.

Returns the mean.

public double getVariance (int p)

Returns the variance for the period p.

Parameter

p the index of the period.

Returns the variance.

public double getMult()

Returns the multiplier applied to each generated random variate. The default multiplier is
1.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/util/TimeUnit.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html#nextDouble(())
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/util/TimeUnit.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/probdist/Distribution.html#getMean(())

March 4, 2014 MultiPeriodGen 27

Returns the applied multiplier.

public void setMult (double mult)

Sets the multiplier applied to each generated random variate to mult.

Parameter

mult the new multiplier.

public RandomStream getStream()

Returns the random stream used during the current period.

public Distribution getDistribution()

Returns the distribution used during the current period.

public double nextDouble (Contact contact)

Ignores the given contact and calls nextDouble().

public static MultiPeriodGen createConstant (PeriodChangeEvent pce, double[]

values)

Constructs and returns a multiple-periods random variate generator using the constant dis-
tribution with value values[p] for period p as defined by pce.

Parameters

pce the period-change event.

values the values of the constant.

Returns the constructed multiple-periods generator.

Throws

IllegalArgumentException if the length of array is less than the number of periods.

public static MultiPeriodGen createExponential (PeriodChangeEvent pce,

RandomStream stream,

double[] lambdas)

Constructs and returns a multiple-periods random variate generator using the exponential
distribution with rate lambdas[p] for period p as defined by pce. The random stream
stream is used for all the periods.

Parameters

pce the period-change event.

stream the random stream.

lambdas the rates for the exponential variates.

Returns the constructed multiple-periods generator.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/probdist/Distribution.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html#nextDouble(())
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

28 MultiPeriodGen March 4, 2014

Throws

IllegalArgumentException if the length of array is less than the number of periods.

public static MultiPeriodGen createGamma (PeriodChangeEvent pce,

RandomStream stream, double[]

alphas, double[] lambdas)

Constructs and returns a multiple-periods random variate generator using the gamma dis-
tribution with parameters alphas[p] and lambdas[p] for period p as defined by pce. The
random stream stream is used for all the periods. The underlying gamma generators use
acceptance-rejection rather than inversion for efficiency.

Parameters

pce the period-change event.

stream the random stream.

alphas the alpha parameters for the gamma variates.

lambdas the lambda parameters for the gamma variates.

Returns the constructed multiple-periods generator.

Throws

IllegalArgumentException if the length of the arrays is less than the number of periods,
or the two arrays have different lengths.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 4, 2014 29

ValueGenerator

Represents a value generator for random variates used for simulating contact centers. Imple-
mentations of this interface are linked to contact center objects and usually uses a random
variate generator to obtain some continuous variates. The generator used or some adjust-
ments made to the value can depend on the concerned contact, the object containing this
value generator, the simulation time, etc. This interface defines a method similar to Random-

VariateGen.nextDouble() but taking a Contact object as an argument. This way, random
values can depend on the particular contact.

package umontreal.iro.lecuyer.contactcenters;

public interface ValueGenerator extends Initializable

Methods

public double nextDouble (Contact contact)

Generates and returns a new value for the contact contact. If contact is null and this is
not allowed by the implementation, this method should throw a NullPointerException.

Parameter

contact the contact being concerned.

Returns the generated value.

Throws

NullPointerException if contact is illegally null.

public void init()

Initializes the generator at the beginning of the simulation.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html#nextDouble(())
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html#nextDouble(())
http://docs.oracle.com/javase/6/docs/api/java/lang/NullPointerException.html

30 March 4, 2014

ConstantValueGenerator

Implements the ValueGenerator interface for a constant and possibly non-stationary value.
During each period of the simulation, the generated value is constant for each contact type.
When a new period begins, the constant value can be changed.

This implementation only takes contact type identifiers (Contact.getTypeId()) and cur-
rent period (PeriodChangeEvent.getCurrentPeriod()) into account for generating values.

package umontreal.iro.lecuyer.contactcenters;

public class ConstantValueGenerator implements ValueGenerator

Constructors

public ConstantValueGenerator (int numTypes, double val)

Constructs a new constant stationary value generator supporting numTypes contact types,
and with value val for each contact type.

Parameters

numTypes the number of supported contact types.

val the value that will be returned by nextDouble (Contact).

public ConstantValueGenerator (double[] vals)

Constructs a new constant stationary value generator with value vals[k] for contact type
k.

Parameter

vals the values for each contact type.

public ConstantValueGenerator (PeriodChangeEvent pce, int numTypes, double[]

vals)

Constructs a new constant value generator with period-change event pce, value vals[p] for
period p, and supporting numTypes contact types.

Parameters

pce the associated period-change event.

numTypes the number of supported contact types.

vals the generated value for each period.

March 4, 2014 ConstantValueGenerator 31

Throws

IllegalArgumentException if a value is not specified for each period.

public ConstantValueGenerator (PeriodChangeEvent pce, double[][] vals)

Constructs a new constant value generator with values vals and period-change event pce.
The array element vals[p][k] gives the value for period p, contact type k.

Parameters

pce the associated period-change event.

vals the array of values.

Throws

IllegalArgumentException if an array of values is not specified for each period.

Methods

public double[][] getValues()

Returns the values used by this generator. The format of the array is the same as in the
last constructor.

Returns the associated values.

public void setValues (double[][] vals)

Sets the values for this generator to vals. This method can be used to change the number
of supported contact types, but it cannot be used to change the number of periods.

Parameter

vals the new values for this generator.

Throws

IllegalArgumentException if the length of the given array is incorrect.

public double nextDouble (Contact contact)

Returns the value of the constant corresponding to the type of contact, and the current
period. If the contact type identifier is greater than or equal to the number of supported
contact types, or a type smaller than zero, an exception is thrown.

32 March 4, 2014

RandomValueGenerator

Implements the ValueGenerator interface when the values come from a continuous and
possibly non-stationary distribution. For each period and contact type, a different random
variate generator can be used to get a value. This class can be instantiated the same
way a ConstantValueGenerator is constructed, replacing constants with random variate
generators.

package umontreal.iro.lecuyer.contactcenters;

public class RandomValueGenerator implements ValueGenerator

Constructors

public RandomValueGenerator (int numTypes, RandomVariateGen gen)

Constructs a new random stationary value generator with generator gen for each contact
type, and supporting numTypes contact types.

Parameters

numTypes the number of supported contact types.

gen the random variate generator used for all contact types.

public RandomValueGenerator (RandomVariateGen[] gens)

Constructs a new random stationary value generator with generator gens[k] for contact
type k.

Parameter

gens the random variate generators used by this object.

public RandomValueGenerator (PeriodChangeEvent pce, int numTypes,

RandomVariateGen[] gens)

Constructs a new random value generator with period-change event pce, generator gens[p]
for period p, and supporting numTypes contact types.

Parameters

pce the associated period-change event.

numTypes the number of supported contact types.

gens the array containing a generator for each period.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html

March 4, 2014 RandomValueGenerator 33

Throws

IllegalArgumentException if a generator is not specified for each period.

public RandomValueGenerator (PeriodChangeEvent pce, RandomVariateGen[][]

gens)

Constructs a new random value generator with period-change event pce and random vari-
ate generators gens. For the period p and contact type k, the random variate generator
gens[p][k] is used.

Parameters

pce the associated period-change event.

gens the array of generators for each period and contact type.

Throws

IllegalArgumentException if an array of generators is not specified for each period.

Methods

public RandomVariateGen[][] getRandomVariateGens()

Returns the array of random variate generators associated with this object. The format of
this array is the same as the array passed to the last constructor.

Returns the random variate generators for this object.

public void setRandomVariateGens (RandomVariateGen[][] gens)

Sets the random variate generators for this object to gens. This method can be used to
change the number of supported contact types, but it cannot be used to change the number
of periods.

Parameter

gens the new random variate generators for this object.

Throws

IllegalArgumentException if the length of the given array is incorrect.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html

34 March 4, 2014

MinValueGenerator

Value generator for the minimum of values. This value generator defines an internal ar-
ray of value generators used by the nextDouble (Contact) method. When nextDouble

(Contact) is called, a value is generated using all registered value generators and the mini-
mum value, generated by v[j∗], is returned. It is also possible to get the index j∗ of the value
generator having returned the minimum as well as all the generated values. This class is
used by waiting queues and agent groups to generate the maximal queue times and service
times.

package umontreal.iro.lecuyer.contactcenters;

public class MinValueGenerator implements ValueGenerator

Constructors

public MinValueGenerator()

Constructs a minimum value generator with no registered internal value generator.

public MinValueGenerator (int initialLength)

Constructs a minimum value generator with an internal array of value generators containing
initialLength elements.

Parameter

initialLength the number of elements in the internal array.

Methods

public void compact()

Recreates the internal array of value generators for its length to correspond to getMax-
VType().

public int getMaxVType()

Returns the maximum index (non-inclusive) for which getValueGenerator (int) returns
a non-null value.

Returns the highest index of registered value generators.

public ValueGenerator getValueGenerator (int vType)

Returns the value generator corresponding to value type vType.

Parameter

vType the queried value type.

March 4, 2014 MinValueGenerator 35

Returns the associated value generator.

public void setValueGenerator (int vType, ValueGenerator vgen)

Sets the value generator corresponding to value type vType to vgen.

Since the value generators are stored in an internal array, it is recommended to use small
value types. This will avoid the creation of large arrays of null’s.

Parameters

vType the affected value type.

vgen the new value generator.

public boolean isKeepingValues()

Determines if the value generator is keeping all the generated values used to compute the
last minimum.

Returns the generated values keeping indicator.

public void setKeepingValues (boolean k)

Sets the keeping-values indicator to k.

Parameter

k the new keeping-values indicator.

public void init()

Initializes all the associated value generators.

public double nextDouble (Contact contact)

Generates and returns a new value for the contact contact. For each associated value
generator, this method calls nextDouble and returns the minimal value. If there is no
associated value generator, Double.NaN is returned.

Parameter

contact the contact for which a value is generated.

Returns the generated value.

public double getLastValue()

Returns the last value returned by nextDouble (Contact).

Returns the last generated value.

public int getLastVType()

Returns the value type for the last value. This corresponds to the index of the value gen-
erator, as returned by getValueGenerator (int), having generated the chosen minimal
value.

36 MinValueGenerator March 4, 2014

Returns the index of the minimal value.

public double[] getLastValues()

Returns all the generated values upon the last call to nextDouble (Contact) if isKeeping-
Values() returns true, or throws an IllegalStateException. The length of the returned
array corresponds to getMaxVType().

Returns the generated values.

Throws

IllegalStateException if the object does not keep generated values.

public double getLastValue (int vType)

Returns the value generated by getValueGenerator (vType) upon the last call to next-
Double (Contact) if isKeepingValues() returns true, or throws an IllegalState-
Exception. If the associated value generator is null, Double.NaN is returned.

Parameter

vType the queried value type.

Returns the generated value.

Throws

IllegalStateException if the object does not keep generated values.

ArrayIndexOutOfBoundsException if vType is negative or greater than or equal to get-
MaxVType().

http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html

March 4, 2014 37

ContactCenter
Defines utility methods for contact center simulation. This class provides facilities to initial-
ize the contact center’s objects, and to perform some actions on a group of objects.

package umontreal.iro.lecuyer.contactcenters;

public class ContactCenter

Methods

public static void initElements (Iterable<?> el)
Initializes all elements enumerated by the iterable el. This method calls the init method of
any iterated object which is an instance of Initializable, MeasureMatrix, ListOfStat-
Probes, and MatrixOfStatProbes. For other elements instance of Iterable, this method
is called recursively.

public static void initElements (Object[] el)
Equivalent to initElements (Iterable) for an array of objects.
Parameter

el the array of elements.

public static void initElements (Initializable[] el)
Initializes all elements in el. For each Initializable object in the array, calls the
Initializable.init() method.

public static void initElements (MeasureMatrix[] el)
Initializes all elements in el. For each MeasureMatrix object in the array, calls the Measure-
Matrix.init() method.

public static void initElements (StatProbe[] el)
Initializes all elements in el. For each StatProbe object in the array, calls the StatProbe.
init() method.

public static void initElements (ListOfStatProbes<?>[] el)
Initializes all elements in el. For each ListOfStatProbes object in the array, calls the
ListOfStatProbes.init() method.

public static void initElements (MatrixOfStatProbes<?>[] el)
Initializes all elements in el. For each MatrixOfStatProbes object in the array, calls the
MatrixOfStatProbes.init() method.

public static void toggleElements (Iterable<? extends ToggleElement> el,

boolean enabled)
Toggles the elements to the status enabled. For each ToggleElement object enumerated by
the iterable el, calls the ToggleElement.start() or ToggleElement.stop() methods.

http://docs.oracle.com/javase/6/docs/api/java/lang/Iterable.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/list/ListOfStatProbes.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/list/ListOfStatProbes.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfStatProbes.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Iterable.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/StatProbe.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/StatProbe.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/StatProbe.html#init(())
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/StatProbe.html#init(())
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/list/ListOfStatProbes.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/list/ListOfStatProbes.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/list/ListOfStatProbes.html#init(())
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfStatProbes.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfStatProbes.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfStatProbes.html#init(())
http://docs.oracle.com/javase/6/docs/api/java/lang/Iterable.html

38 ContactCenter March 4, 2014

Parameters

el the list of toggle elements.

enabled true if the toggle elements are enabled, false if they are disabled.

public static void toggleElements (ToggleElement[] el, boolean enabled)

Toggles the elements to the status enabled. For each ToggleElement object in the array
el, calls the ToggleElement.start() or ToggleElement.stop() methods.

Parameters

el the array of toggle elements.

enabled true if the toggle elements are enabled, false if they are disabled.

public static void startPeriodChangeEvents (Iterable<? extends

PeriodChangeEvent> pce)

For each period-change event enumerated by the iterable pce, calls the PeriodChangeEvent.
start() method.

Parameter

pce the list of period-change events.

public static void startPeriodChangeEvents (PeriodChangeEvent[] pce)

For each period-change event in the array pce, calls the PeriodChangeEvent.start()
method.

Parameter

pce the array of period-change events.

public static void stopPeriodChangeEvents (Iterable<? extends

PeriodChangeEvent> pce)

For each period-change event enumerated by the iterable pce, calls the PeriodChangeEvent.
stop() method.

Parameter

pce the list of period-change events.

public static void stopPeriodChangeEvents (PeriodChangeEvent[] pce)

For each period-change event in the array pce, calls the PeriodChangeEvent.stop()
method.

Parameter

pce the array of period-change events.

public static void clearWaitingQueues (Iterable<? extends WaitingQueue>

waitingQueues, int dqType)

Clears all waiting queues enumerated by the iterable waitingQueues with dequeue type
dqType. For each WaitingQueue object in the list, calls the WaitingQueue.clear() method
with the given dqType.

http://docs.oracle.com/javase/6/docs/api/java/lang/Iterable.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Iterable.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Iterable.html
http://docs.oracle.com/javase/6/docs/api/java/util/AbstractQueue.html#clear(())

March 4, 2014 ContactCenter 39

Parameters

waitingQueues the list of waiting queues.

dqType the dequeue type being used.

Throws

NullPointerException if the given list is null.

public static void clearWaitingQueues (WaitingQueue[] waitingQueues, int

dqType)

Clears all waiting queues in waitingQueues with dequeue type dqType. For each Waiting-
Queue object in the array, calls the WaitingQueue.clear() method with the given dqType.

Parameters

waitingQueues the array of waiting queues.

dqType the dequeue type being used.

Throws

NullPointerException if the given list is null.

public static void clearWaitingQueues (WaitingQueueSet[] waitingQueues,

int dqType)

Clears all waiting queues in waitingQueues with dequeue type dqType. For each Waiting-
QueueSet object in the array, clears all registered waiting queues with the given dqType.

Parameters

waitingQueues the array of waiting queues.

dqType the dequeue type being used.

Throws

NullPointerException if the given list is null.

public static String toShortString (Named named)

Returns a short string representation of the named object named. If the length of
named.getName() is greater than 0, returns that name. Otherwise, this returns the result
of the toString method defined in Object.

Returns a short string representation of the named object.

http://docs.oracle.com/javase/6/docs/api/java/util/AbstractQueue.html#clear(())
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html

40 March 4, 2014

MatrixUtil
Contains utility methods to add rows or columns to matrices, and to construct a matrix by
repeating a submatrix several times.

package umontreal.iro.lecuyer.contactcenters;

public class MatrixUtil

Methods

public static DoubleMatrix2D getCost (DoubleMatrix2D m, double[] cost)

Converts the matrix m into a matrix of costs using the cost vector cost. The matrix m should
contain counts of events, e.g., the number of arrivals, or the integral over simulation time
of a quantity, e.g., the queue size. Each row corresponds to one count and each column
represents one period. Assuming the cost vector is a row vector in Rd, the method computes
C ∗M , and stores the result in the matrix m. C is a d × d matrix with the costs on its
diagonal, i.e., Ck,k = costs[k], and Ci,j = 0 for i 6= j. M is a d× P matrix stored in m. If
m has d+ 1 rows, the last row of the matrix is filled with the total costs, i.e.,

Md,j =
d−1∑
i=0

Mi,jCi,i

for j = 0, . . . , P − 1.

Parameters

m the matrix of values.

cost the cost vector.

Returns the given matrix m.

Throws

IllegalArgumentException if the length of cost does not correspond to m.rows() or
m.rows() - 1.

public static DoubleMatrix2D addSumRow (DoubleMatrix2D m)

Equivalent to addSumRow (m, false).

Parameter

m the matrix being processed.

Returns the matrix with the added row of sums.

public static DoubleMatrix2D addSumRow (DoubleMatrix2D m, boolean always)

Makes a copy of the matrix m with a new row containing the sum of each column. If m has
a single row and if always is set to false, the matrix is returned unchanged. Otherwise, a
new matrix is created with the additional row of sums. The sums of columns are stored in
the last row of the returned matrix.

http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html

March 4, 2014 MatrixUtil 41

Parameters

m the matrix being processed.

always if true, the row is added even if m has one row.

Returns the matrix with the added row of sums.

public static DoubleMatrix2D addSumColumn (DoubleMatrix2D m)

Equivalent to addSumColumn (m, false).

Parameter

m the matrix being processed.

Returns the matrix with the added column of sums.

public static DoubleMatrix2D addSumColumn (DoubleMatrix2D m, boolean

always)

This method, similar to addSumRow (DoubleMatrix2D, boolean), adds an extra column
to the matrix m for the sum of each column.

Parameters

m the matrix being processed.

always determines if the column is always added.

Returns the matrix with the added column of sums.

public static DoubleMatrix2D repMat (DoubleMatrix2D m, int numRows, int

numCols)

Constructs a matrix by copying m a certain number of times. The new matrix contains
numRows*numCols copies of m tiled in a grid with dimensions numRows×numCols. If numRows
and numCols are both 1, the matrix is returned unchanged.

Parameters

m the matrix to be tiled.

numRows the number of rows containing copies of m.

numCols the number of columns containing copies of m.

Returns the matrix containing copies of m.

http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html

42 March 4, 2014

RandomStreamUtil

Provides utility methods to create and extend arrays of random streams.

package umontreal.iro.lecuyer.contactcenters;

public class RandomStreamUtil

Methods

public static RandomStream[] createRandomStreamArray (RandomStream[]

oldArray, int size,

RandomStreamFactory

rsf)

Creates or extends an array of random streams. This can be useful when reconstructing
a contact center with new parameters, to keep as many random streams as possible for
maximizing random number synchronization.

If oldArray is null, a new array of length size will be allocated and filled with random
streams. If oldArray is not null and its length is greater than or equal to size, it is
returned unchanged. Otherwise, a new array is created, the already constructed random
streams are copied and new ones are constructed to fill the array. The random streams are
created using the given random stream factory. The method returns an array of random
streams with length greater than or equal to size.

Parameters

oldArray the old array of random streams.

size the minimal size of the returned array.

rsf the random stream factory used to create the random streams.

Returns the constructed array of random streams.

public static RandomStream[][] createRandomStreamMatrix

(RandomStream[][] oldMatrix, int rows, int columns, RandomStreamFactory

rsf)

Creates or extends a matrix (i.e., 2D array) of random streams. This can be useful when
reconstructing a contact center with new parameters, to keep as many random streams as
possible for maximizing random number synchronization.

If oldMatrix is null, a new array of length rows will be allocated and filled with arrays of
random streams. If oldMatrix is not null and its length is greater than or equal to rows,
it is returned unchanged. Otherwise, a new array is created, the already constructed arrays
of random streams are copied and new ones are constructed to fill the array. The internal
arrays of random streams are created using createRandomStreamArray (RandomStream[],
int, RandomStreamFactory).

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStreamFactory.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStreamFactory.html

March 4, 2014 RandomStreamUtil 43

Parameters

oldMatrix the old matrix of random streams.

rows the required number of rows.

columns the required number of columns.

rsf the random stream factory used to create streams.

Returns the new matrix of random streams.

44 March 4, 2014

StatUtil

Provides methods to add ratios into lists and matrices of statistical probes as well as a
method to trim arrays of observations in statistical probes in order to save memory.

package umontreal.iro.lecuyer.contactcenters;

public class StatUtil

Methods

public static void addRatio (MatrixOfTallies<?> mt, DoubleMatrix2D x,

DoubleMatrix2D y)

Equivalent to add (mt, x, y, 1.0, Double.NaN).

public static void addRatio (MatrixOfTallies<?> mt, DoubleMatrix2D x,

DoubleMatrix2D y, double mult)

Equivalent to add (mt, x, y, mult, Double.NaN).

public static void addRatio (MatrixOfTallies<?> mt, DoubleMatrix2D x,

DoubleMatrix2D y, double mult, double

zeroOverZero)

For each tally (r, c) in the matrix of tallies mt, adds the ratio mult*x.get (r, c)/y.get
(r, c). If a 0/0 ratio must be added, the value zeroOverZero is used instead of Double.NaN.

Parameters

mt the target matrix of tallies.

x the numerator matrix.

y the denominator matrix.

mult the multiplier of the ratio.

zeroOverZero the value for 0/0.

Throws

IllegalArgumentException if the dimensions of x or y do not correspond to the dimen-
sions of the matrix of tallies.

public static void addRatio (ListOfTallies<?> mt, double[] x, double[] y)

Equivalent to add (mt, x, y, 1.0).

public static void addRatio (ListOfTallies<?> at, double[] x, double[] y,

double mult)

For each tally i in the list of tallies at, adds the ratio mult*x[i]/y[i].

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfTallies.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfTallies.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfTallies.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#NaN
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/list/ListOfTallies.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/list/ListOfTallies.html

March 4, 2014 StatUtil 45

Parameters

at the target list of tallies.

x the numerator array.

y the denominator array.

mult the multiplier of the ratio.

Throws

IllegalArgumentException if the length of x or y do not correspond to the length of the
list of tallies.

public static MatrixOfFunctionOfMultipleMeansTallies<

FunctionOfMultipleMeansTally> createMatrixOfRatioTallies

(MatrixOfTallies<?> upper, MatrixOfTallies<?> lower)

Creates a matrix of ratio tallies from two matrices of tallies. This method takes two matrices
which must have the same dimensions. The ratio tally for row r and column c is constructed
by taking the tallies at corresponding row and column in upper and lower.

Parameters

upper the matrix of upper parts of ratios.

lower the matrix of lower parts of ratios.

Returns the new matrix of ratio tallies.

public static void compactProbes (Iterable<?> probes)

Trims the internal arrays of statistical probes listed in probes to minimize memory utiliza-
tion. For each TallyStore object in probes or in an array or matrix added to probes, calls
TallyStore.getArray().trimToSize().

Parameter

probes the list of statistical probes to process.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfFunctionOfMultipleMeansTallies.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/FunctionOfMultipleMeansTally.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfTallies.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfTallies.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Iterable.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/TallyStore.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/TallyStore.html#getArray(())
http://acs.lbl.gov/software/colt/api/cern/colt/list/DoubleArrayList.html#trimToSize(())

46 March 4, 2014

RepSimCC
Extends RepSim to use measure matrices as counters, to compute observations. This class
defines a list matrices of measures that can be added to. At the beginning of each replication,
the matrices are initialized, and the program updates them. Each column of such matrices
usually corresponds to a period as defined by a period-change event. At the end of the
replication, in the RepSim.addReplicationObs (int) method, values are extracted from
the matrices before they are added to matrices of tallies.

package umontreal.iro.lecuyer.contactcenters;

public abstract class RepSimCC extends RepSim

Constructors

public RepSimCC (int minReps)
Calls super (minReps).

public RepSimCC (Simulator sim, int minReps)
Calls RepSim.RepSim (Simulator, int).

public RepSimCC (int minReps, int maxReps)
Calls super (minReps, maxReps).

public RepSimCC (Simulator sim, int minReps, int maxReps)
Calls RepSim.RepSim (Simulator, int, int).

Methods

public List<MeasureMatrix> getMeasureMatrices()
Returns the matrices of measures registered to this object. These matrices must be capable
of supporting multiple periods. The returned list should contain non-null instances of
MeasureMatrix only.
Returns the list of measure matrices.

public void performReplication (int r)
This method is overridden to initialize the matrices of measures after the simulator is ini-
tialized.

public static DoubleMatrix2D getReplicationValues (MeasureMatrix mat,

DoubleMatrix2D m)
Computes the matrix of observations from the matrix of measures mat, and stores the result
in m. The returned matrix has the same number of rows as the number of measures and the
same number of columns as the number of periods. Element (r, c) of the matrix is given
by mat.getMeasure (r, c).

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simexp/RepSim.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simexp/RepSim.html#addReplicationObs((int))
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simexp/RepSim.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simexp/RepSim.html#RepSim((int))
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simexp/RepSim.html#RepSim((umontreal.iro.lecuyer.simevents.Simulator,%20int))
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simexp/RepSim.html#RepSim((int,%20int))
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simexp/RepSim.html#RepSim((umontreal.iro.lecuyer.simevents.Simulator,%20int,%20int))
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html

March 4, 2014 RepSimCC 47

Parameters

mat the matrix of measures for which observations are queried.

m the matrix of double’s filled with the result.

Returns the given matrix m.

Throws

IllegalArgumentException if the dimensions of the matrix are invalid.

NullPointerException if mat or m are null.

public static DoubleMatrix2D getReplicationValues (MeasureMatrix mat)

Constructs a matrix m with as many rows as the number of measures in mat and as many
columns as the number of periods, calls getReplicationValues (mat, m) to fill the matrix,
and returns it.

Parameter

mat the measure matrix for which observations are queried.

Returns the matrix filled with the result.

Throws

NullPointerException if mat is null.

public static DoubleMatrix2D getReplicationValues (MeasureMatrix mat,

DoubleMatrix2D m,

boolean preliminary,

boolean wrapup, boolean[]

mainPeriods)

Computes the matrix of observations for the measure matrix mat and stores the result in m.
It is assumed that the matrix contains observations for np periods, including a preliminary
and a wrap-up periods. The matrix m must contain observations for main periods only as
well as the time-aggregate observations. If preliminary is set to true, the observations
of the preliminary period will be included in the time-aggregate count. If wrapup is true,
the observations in the wrap-up period will be included. If mainPeriods is null, all main
periods will be included in the aggregate values. Otherwise, the value for (main) period p
will be included in the aggregated sum if and only if mainPeriods[p - 1] is true.

Each column of the matrix corresponds to one period and the last column contains the values
for the whole replication. Each row corresponds to one type of measure.

Parameters

mat the measure matrix for which observations are queried.

m the matrix filled with the result.

preliminary if the preliminary period is included in the last column of the matrix.

wrapup if the wrap-up period is included in the last column of the matrix.

mainPeriods indicates which main periods are included in the aggregate measure.

http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html

48 RepSimCC March 4, 2014

Returns the given matrix m.

Throws

IllegalArgumentException if the dimensions of the matrix are invalid, or if mainPeriods
is non-null and has an invalid length.

NullPointerException if mat or m are null.

public static DoubleMatrix2D getReplicationValues (MeasureMatrix mat,

DoubleMatrix2D m,

boolean preliminary,

boolean wrapup)

Equivalent to getReplicationValues (mat, m, preliminary, wrapup, null).

Parameters

mat the measure matrix for which observations are queried.

m the matrix filled with the result.

preliminary if the preliminary period is included in the last column of the matrix.

wrapup if the wrap-up period is included in the last column of the matrix.

Returns the given matrix m.

Throws

IllegalArgumentException if the dimensions of the matrix are invalid.

NullPointerException if mat or m are null.

public static DoubleMatrix2D getReplicationValues (MeasureMatrix mat,

boolean preliminary,

boolean wrapup, boolean[]

mainPeriods)

Computes the matrix of observations for the measure matrix mat, and returns the result in
a matrix. This method uses getReplicationValues for the computation.

Parameters

mat the measure matrix for which observations are queried.

preliminary if the preliminary period is included in the last column of the matrix.

wrapup if the wrap-up period is included in the last column of the matrix.

mainPeriods indicates which main periods are included in the aggregated measure.

Returns the matrix filled with the result.

http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html

March 4, 2014 RepSimCC 49

Throws

NullPointerException if mat or m are null.

IllegalArgumentException if mainPeriods is not null and has an invalid length.

public static DoubleMatrix2D getReplicationValues (MeasureMatrix mat,

boolean preliminary,

boolean wrapup)

Equivalent to getReplicationValues (mat, preliminary, wrapup, null).

Parameters

mat the measure matrix for which observations are queried.

preliminary if the preliminary period is included in the last column of the matrix.

wrapup if the wrap-up period is included in the last column of the matrix.

Returns the matrix filled with the result.

Throws

NullPointerException if mat or m are null.

public static DoubleMatrix2D timeNormalize (PeriodChangeEvent pce,

DoubleMatrix2D m, double

totalTime)

Normalizes the matrix m using simulation time. Usually, this method receives a matrix
produced by getReplicationValues (MeasureMatrix, DoubleMatrix2D). It assumes that
each row corresponds to a count or an integral and one column corresponds to a main period.
If there is one more column than the number of main periods, the last column corresponds to
values for the whole replication. Each element of the matrix is divided by a simulation time
determined by the period-change event pce. For each column c corresponding to one main
period, each row is divided by the period duration obtained using PeriodChangeEvent.get-
PeriodDuration (c + 1). For the column corresponding to the whole replication, the rows
are divided by the total simulation time totalTime.

Parameters

pce the period-change event defining the periods.

m the matrix being normalized.

totalTime the supplied total simulation time.

Returns the given matrix m.

http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html

50 RepSimCC March 4, 2014

Throws

IllegalArgumentException if the number of columns of m is incorrect.

public static DoubleMatrix2D timeNormalize (PeriodChangeEvent pce,

DoubleMatrix2D m, boolean

preliminary, boolean wrapup,

boolean[] mainPeriods)

Equivalent to timeNormalize (PeriodChangeEvent, DoubleMatrix2D, double) with au-
tomatic computation of total simulation time. The total time is computed by sum-
ming the duration of the periods defined by pce. The parameters preliminary, wrapup
and mainPeriods play the same role as with getReplicationValues (MeasureMatrix,
DoubleMatrix2D).

Parameters

pce the period-change event defining the periods.

m the matrix being normalized.

preliminary determines if the preliminary period is included in the time-aggregate values.

wrapup determines if the wrap-up period is included in the time-aggregate values.

mainPeriods indicates which main periods are included in the aggregated measure.

Returns the given matrix m.

Throws

IllegalArgumentException if the number of columns of m is incorrect.

public static DoubleMatrix2D timeNormalize (PeriodChangeEvent pce,

DoubleMatrix2D m, boolean

preliminary, boolean wrapup)

Equivalent to timeNormalize (pce, m, preliminary, wrapup, null).

Parameters

pce the period change event defining the periods.

m the matrix being normalized.

preliminary determines if the preliminary period is included in the time-aggregate values.

wrapup determines if the wrap-up period is included in the time-aggregate values.

Returns the given matrix m.

Throws

IllegalArgumentException if the number of columns of m is incorrect.

http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html

March 4, 2014 51

BatchMeansSimCC

Extends BatchMeansSim to use matrices of measures for storing the intermediate values Vj’s
of real batches. This class defines a list of measure matrices which is automatically initialized
after the warmup period. When batch aggregation is turned OFF, these matrices contain
a single period and are reinitialized at the beginning of each batch. If batch aggregation is
turned ON, each period in measure matrices correspond to a real batch.

package umontreal.iro.lecuyer.contactcenters;

public abstract class BatchMeansSimCC extends BatchMeansSim

Constructors

public BatchMeansSimCC (int minBatches, double batchSize, double

warmupTime)

Calls super (minBatches, batchSize, warmupTime).

public BatchMeansSimCC (Simulator sim, int minBatches, double batchSize,

double warmupTime)

Calls BatchMeansSim.BatchMeansSim (Simulator, int, double, double).

public BatchMeansSimCC (int minBatches, int maxBatches, double batchSize,

double warmupTime)

Calls super (minBatches, maxBatches, batchSize, warmupTime).

public BatchMeansSimCC (Simulator sim, int minBatches, int maxBatches,

double batchSize, double warmupTime)

Calls BatchMeansSim.BatchMeansSim (Simulator, int, int, double, double).

Methods

public List<MeasureMatrix> getMeasureMatrices()

Returns the matrices of measures registered to this object. These matrices must be capable
of supporting multiple periods. The returned list should contain non-null instances of
MeasureMatrix only.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simexp/BatchMeansSim.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simexp/BatchMeansSim.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simexp/BatchMeansSim.html#BatchMeansSim((int,%20double,%20double))
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simexp/BatchMeansSim.html#BatchMeansSim((umontreal.iro.lecuyer.simevents.Simulator,%20int,%20double,%20double))
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simexp/BatchMeansSim.html#BatchMeansSim((int,%20int,%20double,%20double))
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simexp/BatchMeansSim.html#BatchMeansSim((umontreal.iro.lecuyer.simevents.Simulator,%20int,%20int,%20double,%20double))
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

52 BatchMeansSimCC March 4, 2014

Returns the list of measure matrices.

public void initBatchStat()

Initializes registered matrices of measures if batch aggregation is turned OFF.

public void initRealBatchProbes()

Initializes the matrices of measures.

public void addRealBatchObs()

For each IntegralMeasureMatrix instance in the list returned by getMeasureMatrices(),
calls IntegralMeasureMatrix.newRecord().

public static DoubleMatrix2D getBatchValues (MeasureMatrix mat,

DoubleMatrix2D m, int s, int

h)

Copies the values corresponding to the current effective batch for the measure matrix mat
into the matrix m. The given matrix of measures should be registered to this object for this
method to be used. The Colt matrix m must have one row for each measure, and a single
column. The method returns m after it is filled.

Parameters

mat the measure matrix for which the Colt matrix is required.

m the matrix receiving the results.

s the starting real batch.

h the number of real batches per effective batch.

Throws

IllegalArgumentException if the dimensions of the matrix m are incompatible.

public static DoubleMatrix2D getBatchValues2D (MeasureMatrix mat, int s,

int h)

Constructs a matrix with one row for each measure in mat and a single column, then calls
getBatchValues (MeasureMatrix, DoubleMatrix2D, int, int).

public static DoubleMatrix1D getBatchValues (MeasureMatrix mat,

DoubleMatrix1D m, int s, int

h)

Equivalent to getBatchValues (MeasureMatrix, DoubleMatrix2D, int, int) for a Double-
Matrix1D instance.

public static DoubleMatrix1D getBatchValues1D (MeasureMatrix mat, int s,

int h)

http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix1D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix1D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix1D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix1D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix1D.html

March 4, 2014 BatchMeansSimCC 53

Constructs a matrix with one row for each measure in mat, and calls getBatchValues
(MeasureMatrix, DoubleMatrix1D, int, int).

public static double[] getBatchValues (MeasureMatrix mat, double[] m, int

s, int h)

Equivalent to getBatchValues (MeasureMatrix, DoubleMatrix2D, int, int) for an ar-
ray.

public static double[] getBatchValues (MeasureMatrix mat, int s, int h)

Constructs an array with one element for each measure in mat, and calls getBatchValues
(MeasureMatrix, double[], int, int).

public static DoubleMatrix2D timeNormalize (DoubleMatrix2D m, double l)

Normalizes the rows of the one-column matrix m using the batch length l. Each row of the
matrix is divided by l and the modified matrix is returned.

Parameters

m the matrix being normalized.

l the batch length.

Returns the modified matrix.

public static DoubleMatrix1D timeNormalize (DoubleMatrix1D m, double l)

Equivalent to timeNormalize (DoubleMatrix2D, double) with an instance of Double-
Matrix1D.

public static double[] timeNormalize (double[] m, double l)

Equivalent to timeNormalize (DoubleMatrix2D, double) for an array.

http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix1D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix1D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix1D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix1D.html

54 March 4, 2014

Package umontreal.iro.lecuyer.contactcenters.contact

Manages contact arrivals into the contact center system. Any contact traveling in the system
is represented by an object from the Contact class being defined in this package. This class
defines a number of attributes associated with all contacts, and the user can add custom
attributes by defining a subclass.

Although an object representing a contact can be freely instantiated, it is usually con-
structed by a contact source. Two types of contact sources are available: contact arrival
processes provided by this package, and dialers supported by the umontreal.iro.lecuyer.

contactcenters.dialer package. Arrival processes determine when contact objects need
to be created, according to specific (stochastic) arrival processes. Each concrete arrival pro-
cess must correspond to an algorithm for generating inter-arrival times. These times could
depend on the entire state of the system in a complicated way, but they often depend only
on the simulation time and previous inter-arrival times. For each process, the first arrival
is scheduled when the arrival process is started, often at the beginning of the simulation.
Figure 1 gives a UML diagram for this contact creation facility.

ContactSource

ContactArrivalProcess

Dialer

ContactFactory

NewContactListener

DialerPolicyDialerList

Contact

1,1

1,1

Broadcasts to
0,*

Broadcasts to

0,*

Creates
0,*

0, *

1,1

Figure 1: UML diagram describing the facilities for creating contacts

The factory design pattern is used to allow the sources to construct contacts without
knowing their types explicitly. The ContactFactory interface specifies a method called new-

Instance returning a newly-constructed and configured contact object. A contact source
can create contacts from any class that implements this interface simply by invoking this
newInstance method. Thus, changing the type of contact (and the name of its explicit
constructor) requires no change to the implementation of the contact source.

When a new contact occurs, it is instantiated by the associated factory and broadcast to
the registered new-contact listeners. Then the next arrival is scheduled. Each contact source
is assigned a factory that typically constructs contacts of a single type. All contact sources
can be initialized, started, and stopped.

March 4, 2014 55

Contact

Represents a contact (phone call, fax, e-mail, etc.) into the contact center. A contact
enters the system at a given time, and requires some form of service. If it cannot be served
immediately, it joins a queue or leaves the system. In more complex contact centers, contacts
can be served more than once and can join several queues sequentially. A contact object
holds all the information about a single contact. The arrival time, the total time spent
in queue, the total time spent in service, the last joined queue, and the last serving agent
group can be obtained from any contact object. Information about the complete path of the
contact into the system can also be stored, but this is disabled by default to reduce memory
usage.

For easier indexing in skill-based routers, every contact has a numerical type identifier.
For waiting queues supporting it, a contact object also holds a priority. The Contact class
implements the Comparable interface which allows to define the default priorities when
contacts are in priority queues.

Extra information can be added to a contact object using two different mechanisms:
by adding attributes to the map returned by getAttributes(), or by defining fields in a
subclass. The getAttributes() method returns a Map that can be used to define custom
contact attributes dynamically. This can be used for quick implementation of user-defined
attributes, but it can reduce performance of the application since look-ups in a map are
slower than direct manipulation of fields. Alternatively, this class can be extended to add new
attributes as fields. However, the contact subclass will have to be used for communication
between parts of the program needing the extra information, which involves casts.

By default, no trunk group is associated with contacts. As a result, every contact can
enter the system, since its capacity is infinite. If a contact is associated with a trunk group
using setTrunkGroup (TrunkGroup), a line is allocated by the router at the time of its
arrival. If no line is available in the associated trunk group, the contact is blocked. Otherwise,
it is processed and the channel is released when it exits.

Each contact has an associated simulator which is used to schedule contact-related events
such as abandonment or service termination. This simulator is determined at the time of
construction. If a constructor accepting a Simulator instance is called, the given simulator
is used. Otherwise, the default simulator returned by Simulator.getDefaultSimulator()

is used.

package umontreal.iro.lecuyer.contactcenters.contact;

public class Contact implements Comparable<Contact>, Named, Cloneable

Constructors

public Contact()

Constructs a new contact object with type identifier 0, priority 1, and the default simulator.

http://docs.oracle.com/javase/6/docs/api/java/lang/Comparable.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html#getDefaultSimulator(())
http://docs.oracle.com/javase/6/docs/api/java/lang/Comparable.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html

56 Contact March 4, 2014

public Contact (Simulator sim)

Equivalent to constructor Contact(), with the given simulator sim.

Parameter

sim the simulator attached to the new contact.

Throws

NullPointerException if sim is null.

public Contact (int typeId)

Constructs a new contact with priority 1, type identifier typeId, and the default simulator.

Parameter

typeId type identifier of the new contact.

Throws

IllegalArgumentException if the type identifier is negative.

public Contact (Simulator sim, int typeId)

Equivalent to constructor Contact (int), with the given simulator sim.

Parameters

sim the simulator attached to the new contact.

typeId type identifier of the new contact.

Throws

NullPointerException if sim is null.

IllegalArgumentException if the type identifier is negative.

public Contact (double priority, int typeId)

Constructs a new contact object with a priority priority, type identifier typeId, and the
default simulator. The contact type identifier must be non-negative while the priority can
be any value. The smaller is the value of priority, the greater is the priority of the contact.

Parameters

priority the contact’s priority.

typeId the type identifier of this contact.

Throws

IllegalArgumentException if the type identifier is negative.

public Contact (Simulator sim, double priority, int typeId)

Equivalent to constructor Contact (double, int), with the given simulator sim.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html

March 4, 2014 Contact 57

Parameters

sim the simulator attached to the new contact.

priority the contact’s priority.

typeId type identifier of the new contact.

Throws

NullPointerException if sim is null.

IllegalArgumentException if the type identifier is negative.

Methods

public final Simulator simulator()

Returns a reference to the simulator attached to this contact.

Returns the simulator attached to this contact.

public final void setSimulator (Simulator sim)

Sets the simulator attached to this contact to sim. This method should not be called while
this contact is in a waiting queue, or being served. The main use of this method is for
splitting: a contact is cloned, and a new simulator is assigned to the copy while the original
contact keeps the old simulator.

Parameter

sim the new simulator.

Throws

NullPointerException if sim is null.

public double getArrivalTime()

Returns the contact’s arrival simulation time. This is the simulation time at which the
contact object was constructed.

Returns the arrival simulation time of this contact.

public void setArrivalTime (double arrivalTime)

Sets the arrival time of this contact to arrivalTime. This method should be called before
the contact enters into a waiting queue or an agent group.

Parameter

arrivalTime the new arrival time.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html

58 Contact March 4, 2014

Throws

IllegalArgumentException if arrivalTime is negative.

public double getDefaultPatienceTime()

Returns the default patience time for this contact object. This corresponds to the maximal
queue time before the contact abandons the queue. By default, this is Double.POSITIVE IN-
FINITY, i.e., no abandonment occurs.

Returns the patience time of the contact.

public void setDefaultPatienceTime (double patienceTime)

Sets the default patience time of this contact to patienceTime.

Parameter

patienceTime the new patience time of the contact.

Throws

IllegalArgumentException if the given patience time is negative or NaN.

public ServiceTimes getContactTimes()

Returns the contact times for this contact.

Returns the contact times.

public ServiceTimes getAfterContactTimes()

Returns the after-contact times for this contact.

Returns the after-contact times.

public double getDefaultServiceTime()

Returns the default service time for this contact object. This corresponds to the result of
the sum of getDefaultContactTime(), and getDefaultAfterContactTime().

Returns the service time of the contact.

public void setDefaultServiceTime (double serviceTime)

Sets the default service time of this contact to serviceTime. This method sets the contact
time to serviceTime, and resets the after-contact time to 0.

Parameter

serviceTime the new service time of the contact.

Throws

IllegalArgumentException if the given service time is negative or NaN.

public double getWaitingTimeEstimate()

Returns the estimate waiting time that a call must before begining it service in the call
center.

March 4, 2014 Contact 59

Returns the waiting time estimate for a call when it arrive in the call center.

public void setWaitingTimeEstimate (double waitingTimeEstimate)

Sets the waiting time estimate value for a call arivie in the call center. to waitingTimeEstimate.

Parameter

waitingTimeVQ the new waiting time in virtual queue.

public double getDefaultContactTime()

Returns the default contact time with an agent. By default, this is set to Double.POSI-
TIVE INFINITY.

Returns the default contact time.

public void setDefaultContactTime (double contactTime)

Sets the default contact time to contactTime.

Parameter

contactTime the new contact time.

Throws

IllegalArgumentException if the contact time is negative or NaN.

public double getDefaultAfterContactTime()

Returns the default duration of after-contact work performed by an agent after this contact
is served. By default, this is set to 0.

Returns the default after-contact time.

public void setDefaultAfterContactTime (double afterContactTime)

Sets the default after-contact time to afterContactTime.

Parameter

afterContactTime the new after-contact time.

Throws

IllegalArgumentException if the after-contact time is negative or NaN.

public double getDefaultContactTime (int i)

Returns the default contact time if this contact is served by an agent in group i. If this
contact time was never set, this returns the result of getDefaultContactTime().

Parameter

i the index of the agent group.

60 Contact March 4, 2014

Returns the contact time.

public boolean isSetDefaultContactTime (int i)

Determines if a contact time was set specifically for agent group i, by using setDefault-
ContactTime (int, double).

Parameter

i the tested agent group index.

Returns the result of the test.

public void setDefaultContactTime (int i, double t)

Sets the default contact time for this contact if served by an agent in group i to t. Note
that setting t to Double.NaN unsets the contact time for the specified agent group.

Parameters

i the index of the agent group to set.

t the new contact time.

public void ensureCapacityForDefaultContactTime (int capacity)

Makes sure that the array containing default contact times specific to each agent group
contains at least capacity elements. This method should be called before setDefault-
ContactTime (int, double) to avoid multiple array reallocation.

Parameter

capacity the new capacity.

public double getDefaultAfterContactTime (int i)

Returns the default after-contact time if this contact is served by an agent in group i. If this
after-contact time was never set, this returns the result of getDefaultAfterContactTime().

Parameter

i the index of the agent group.

Returns the after-contact time.

public boolean isSetDefaultAfterContactTime (int i)

Determines if an after-contact time was set specifically for agent group i, by using set-
DefaultAfterContactTime (int, double).

Parameter

i the tested agent group index.

http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#NaN

March 4, 2014 Contact 61

Returns the result of the test.

public void setDefaultAfterContactTime (int i, double t)

Sets the default after-contact time for this contact to t, if served by an agent in group
i. Note that setting t to Double.NaN unsets the after-contact time for the specified agent
group.

Parameters

i the index of the agent group to set.

t the new after-contact time.

public void ensureCapacityForDefaultAfterContactTime (int capacity)

Makes sure that the array containing default after-contact times specific to each agent group
contains at least capacity elements. This method should be called before setDefault-
AfterContactTime (int, double) to avoid multiple array reallocation.

Parameter

capacity the new capacity.

public double getDefaultServiceTime (int i)

Returns the default service time for this contact if served by an agent in group i. This returns
the sum of getDefaultContactTime (int) and getDefaultAfterContactTime (int).

Parameter

i the tested agent group.

Returns the default service time.

public List<ContactStepInfo> getSteps()

Returns the list containing the steps in the life cycle of this contact. This list should contain
ContactStepInfo implementations only. If steps tracing was not enabled for this contact,
this returns null.

Returns the list of contact steps, or null if steps tracing is disabled.

public void enableStepsTracing()

Enables steps tracing for this contact object. By default, steps tracing is disabled for better
performance and memory usage. This method should be called as soon as the contact is
constructed to avoid any loss of information.

public double getPriority()

Returns the priority for this contact. The priority is a number which indicates the level of
emergency of the contact. A low value represents a high priority.

http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#NaN
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

62 Contact March 4, 2014

Returns the contact’s priority.

public void setPriority (double newPriority)

Changes the contact’s priority to newPriority. This method should not be called when a
contact is in a priority queue.

Parameter

newPriority the new contact’s priority.

public double getTotalQueueTime()

Returns the total time the contact has spent waiting in queues. This returns the cumulative
waiting time, for all waiting queues visited by the contact.

Returns the contact’s queue time.

public void addToTotalQueueTime (double delta)

Adds delta to the currently recorded total queue time returned by getTotalQueueTime().
This method can be used, e.g., to subtract time passed in a virtual queue from the queue
time of a contact.

Parameter

delta the amount to add.

public WaitingQueue getLastWaitingQueue()

Returns the last waiting queue this contact entered in. If the contact was never queued, this
returns null.

Returns the last waiting queue of the contact.

public double getTotalServiceTime()

Returns the total time this contact has spent being served by agents. This returns the
cumulative contact time (not after-contact time) for all agents visited by the contact.

Returns the contact’s service time.

public void addToTotalServiceTime (double delta)

Adds delta to the currently recorded total service time returned by getTotalService-
Time() for this contact.

Parameter

delta the amount to add.

public AgentGroup getLastAgentGroup()

Returns the last agent group who began serving this contact. If the contact was never served,
this returns null.

March 4, 2014 Contact 63

Returns the last agent group serving the contact.

public int getTypeId()

Returns the type identifier for this contact object.

Returns the contact’s type identifier.

public void setTypeId (int newTypeId)

Changes the type identifier for this contact object to newTypeId. The type identifier of a
contact should not change when it is in a waiting queue or served by an agent.

Parameter

newTypeId the contact’s new type identifier.

Throws

IllegalArgumentException if the type identifier is smaller than 0.

public Map<Object, Object> getAttributes()

Returns the map containing the attributes for this contact. Attributes can be used to
add user-defined information to contact objects at runtime, without creating a subclass.
However, for maximal efficiency, it is recommended to create a subclass of Contact instead
of using attributes.

Returns the map containing the attributes for this object.

public ContactSource getSource()

Returns the contact’s primary source which has produced this contact object. If no source
has created this contact, this returns null. If a contact results from a call back managed by
a dialer, this returns the preceding arrival process which created the contact, not the dialer
managing the call back.

Returns the source having created this contact.

public void setSource (ContactSource src)

Sets the source of this contact to src. Once a non-null source was given, it cannot be
changed. If one tries to change the contact source, an IllegalStateException is thrown.

Parameter

src the new contact source.

Throws

IllegalStateException if one tries to change the contact source.

public TrunkGroup getTrunkGroup()

Returns the trunk group this contact will take a trunk from. By default, this returns null.

http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html

64 Contact March 4, 2014

Returns the associated trunk group.

public void setTrunkGroup (TrunkGroup tg)

Sets the trunk group for this contact to tg. This method does not allocate a trunk in the
group; this task is performed by the router.

Parameter

tg the new trunk group.

public Router getRouter()

Returns a reference to the router currently managing this contact, or null if the contact is
not currently in a router.

Returns the router taking care of this contact.

public void setRouter (Router router)

This should only be called by the router. Associates the router router to this contact.

Parameter

router the new router.

public boolean hasExited()

Determines if the contact has exited the system. If a contact has exited the system, it will
not be admitted into a router for further processing. This is used to prevent contacts from
incorrectly entering in the router several times.

Returns the exited indicator.

public void setExited (boolean b)

Sets the exited indicator to b.

Parameter

b the exited indicator.

public void enqueued (DequeueEvent ev)

This method is called by a waiting queue object when a contact is put in queue, the dequeue
event ev representing the queued contact.

Parameter

ev the dequeue event associated with the contact.

public void dequeued (DequeueEvent ev)

This method is called when a contact leaves a queue, the dequeue event ev representing the
queued contact.

March 4, 2014 Contact 65

Parameter

ev the dequeue event associated with the contact.

public void blocked (int bType)

This method is called when the contact is blocked by its current router with blocking type
bType. The getRouter() method can be used to access the reference to the router which
blocked this contact while bType indicates the reason why the contact was blocked.

Parameter

bType the contact blocking type.

public void beginService (EndServiceEvent ev)

This method is called when the service of this contact by an agent begins, the end-service
event ev representing the contact being served.

Parameter

ev the event occurring at the end of the service.

public void endContact (EndServiceEvent ev)

This method is called when the communication between this contact and an agent is ter-
minated. The end-service event ev can be used to obtain information about the end of
communication.

Parameter

ev the end-service event associated with the contact.

public void endService (EndServiceEvent ev)

This method is called when the service of this contact (communication and after-contact
work) was terminated, ev containing information about the served contact.

Parameter

ev the end-service event associated with the contact.

public int getNumWaitingQueues()

Returns the number of waiting queues this contact is waiting in simultaneously, at the
current simulation time.

Returns the number of waiting queues this contact is waiting in.

public int getNumAgentGroups()

Returns the number of agent groups serving this contact simultaneously at the current
simulation time.

66 Contact March 4, 2014

Returns the number of agent groups serving this contact simultaneously.

public int compareTo (Contact otherContact)

Compares this contact with otherContact. By default, the contacts are ordered in ascending
order of priority. The lower the priority value, the more important the contact will be. If
two compared contacts share the same priority, they are ordered using their arrival times.

Parameter

otherContact the other contact this contact is compared to.

Returns a value smaller than 0 if this contact is greater than the other object, 0 if it is
equal, or a value greater than 0 if it is smaller.

public Contact clone()

Returns a copy of this contact object. In contrast with the original contact object, the
returned copy is not in any waiting queue, router, or agent group. The map containing the
attributes, if getAttributes() returns a non-null value, is cloned, but the elements in the
map are not cloned. If contact steps tracing is enabled, the list of steps as well as the step
objects are cloned.

Returns the copy of the contact.

March 4, 2014 67

ServiceTimes
Stores service times for a contact. By default, there are two types of service times: contact
times and after-contact times. However, a model can define additional types of service
times. For each of these types, one may generate a default service time v which applies
for all agents, one service time vi for each agent group i. This class can be used to store
and retrieve such service times. For greater efficiency, it is recommended to call method
ensureCapacityForServiceTime before using setServiceTime in order to avoid multiple
array reallocations.

package umontreal.iro.lecuyer.contactcenters.contact;

public class ServiceTimes implements Cloneable

Constructor

public ServiceTimes (double serviceTime)

Constructs a new container for service times using the default service time serviceTime. It
is used when no service time is given for a specific agent group.

Parameter

serviceTime the default service time v.

Throws

IllegalArgumentException if the given service time is negative or NaN.

Methods

public double getServiceTime()

Returns the default service time v for this object.

Returns the default service time.

public void setServiceTime (double serviceTime)

Sets the default service time v of this object to serviceTime.

Parameter

serviceTime the new default service time.

Throws

IllegalArgumentException if the given service time is negative or NaN.

public double getServiceTime (int i)

Returns the service time vi for contacts served by an agent in group i. If this service time
was never set, i.e., if isSetServiceTime (int) returns false, this returns the result of
getServiceTime().

http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html

68 ServiceTimes March 4, 2014

Parameter

i the index of the agent group.

Returns the service time vi, or v if vi is not set.

public double[] getServiceTimes()

Returns the array of service times for all groups.

Returns the service times of all groups

public boolean isSetServiceTime (int i)

Determines if a service time was set specifically for agent group i, by using setServiceTime
(int, double).

Parameter

i the tested agent group index.

Returns the result of the test.

public void setServiceTime (int i, double t)

Sets the service time vi for contacts served by an agent in group i to t. Note that setting t
to Double.NaN unsets the service time for the specified agent group.

Parameters

i the index of the agent group to set.

t the new service time.

Throws

IllegalArgumentException if t is negative.

public void ensureCapacityForServiceTime (int capacity)

Makes sure that the length of the array containing the vi’s is at least capacity for the
number of groups. This method should be called before setServiceTime (int, double)
to avoid multiple array reallocations.

Parameter

capacity the new capacity for the groups

public void set (ServiceTimes st)

Replaces the service times v and vi’s stored in this object with the values obtained from st.

Parameter

st the input service times.

public void add (ServiceTimes st)

Adds the service times stored in st to the corresponding service times in this object. Let
v and vi for i = 0, . . ., be the service times in this object, and w and wi, the service times
in st. This method replaces v with v + w; and vi with vi + wi for any i such that vi or wi
exists. When vi or wi does not exists, v or w is used.

http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#NaN

March 4, 2014 ServiceTimes 69

Parameter

st the service times to add to this object.

public void mult (double mult)

Multiplies each service time v and vi stored in this object by the given constant mult.

Parameter

mult the multiplier for service times.

Throws

IllegalArgumentException if mult is negative.

public ServiceTimes clone()

Clones this object, and its internal arrays of service times.

70 March 4, 2014

ContactFactory

Allows contact sources to create contact objects of user-defined classes. When the Contact

class is extended to add user-defined attributes, a contact factory must also be created to
allow contact sources to instantiate objects derived from the Contact subclass. To construct
a new contact factory, the user simply implements this interface to provide a newInstance()

method the contact sources call to get contacts.

package umontreal.iro.lecuyer.contactcenters.contact;

public interface ContactFactory

Method

public Contact newInstance()

Constructs and returns a new Contact object. If a contact cannot be instantiated, a
ContactInstantiationException is thrown.

Returns the new contact object.

Throws

ContactInstantiationException if a contact cannot be instantiated.

March 4, 2014 71

SimpleContactFactory

This implements the ContactFactory interface to instantiate Contact objects with fixed
parameters.

package umontreal.iro.lecuyer.contactcenters.contact;

public class SimpleContactFactory implements ContactFactory

Constructors

public SimpleContactFactory()

Constructs a new contact factory which will create contact objects with priority 1 and type
ID 0.

public SimpleContactFactory (Simulator sim)

Equivalent to SimpleContactFactory(), using the given simulator sim.

public SimpleContactFactory (int typeId)

Constructs a new contact factory which will create contact objects with priority 1 and type
ID typeId.

Parameter

typeId the type ID of the contacts.

public SimpleContactFactory (Simulator sim, int typeId)

Equivalent to SimpleContactFactory (int), using the given simulator sim.

public SimpleContactFactory (double priority, int typeId, boolean tracing)

Constructs a new contact factory which will create contact objects with priority priority
and type ID typeId. If tracing is true, contact objects with steps tracing enabled will be
created.

Parameters

priority the priority of the contact.

typeId the type ID of the contacts.

tracing the contact steps tracing indicator.

public SimpleContactFactory (Simulator sim, double priority, int typeId,

boolean tracing)

Equivalent to SimpleContactFactory (double, int, boolean), using the given simulator
sim.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html

72 SimpleContactFactory March 4, 2014

Methods

public Simulator simulator()

Returns the simulator associated with this contact factory. This simulator is associated with
every contact instantiated by the factory.

Returns the associated simulator.

public void setSimulator (Simulator sim)

Sets the simulator associated with this contact factory to sim.

Parameter

sim the new associated simulator.

public double getPriority()

Returns the priority of the created and reused contact objects.

Returns the priority of the generated contact.

public int getTypeId()

Returns the type ID of the created and reused contact objects.

Returns the type ID of the generated contact.

public boolean getTracing()

Returns true if the created contacts will support steps tracing.

Returns the contact steps tracing indicator.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html

March 4, 2014 73

SingleTypeContactFactory

Represents a contact factory used to create contacts of a single type. This factory also
associates default patience, contact, and after-contact times to the constructed contacts. All
random variates are generated at the time the contact is created.

package umontreal.iro.lecuyer.contactcenters.contact;

public class SingleTypeContactFactory implements ContactFactory

Constructors

public SingleTypeContactFactory (int type, ValueGenerator probBalkGen,

RandomStream streamBalk, RandomVariateGen

pgen, RandomVariateGen cgen,

RandomVariateGen[] cgenGroups,

RandomVariateGen acgen, RandomVariateGen[]

acgenGroups)

Constructs a new contact factory constructing contacts of type type. The probBalkGen
value generator is used to generate probabilities of balking while streamBalk is used to
determine if the contact balks if not served immediately. The generators pgen, cgen, and
acgen are used to generate patience times for contacts that do not balk, contact times, and
after-contact times. cgenGroups and acgenGroups can be used to generate contact and
after contact times used if the contact is served by a specific agent group.

If probBalkGen or streamBalk are null, the probability of balking will always be 0. If pgen
is null, the patience time will always be infinite. The default contact time when the given
generator is null is infinite while the default after-contact time is 0.

The constructed call factory assigns the default simulator returned by Simulator.get-
DefaultSimulator() to each new contact.

Parameters

type the contact type identifier of all new contacts.

probBalkGen the generator for balking probabilities.

streamBalk the random stream for balking.

pgen the patience time generator.

cgen the default contact time generator.

cgenGroups the agent-group specific contact time generators.

acgen the default after-contact time generator.

acgenGroups the agent-group specific after-contact time generators.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html#getDefaultSimulator(())
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html#getDefaultSimulator(())

74 SingleTypeContactFactory March 4, 2014

public SingleTypeContactFactory (Simulator sim, int type, ValueGenerator

probBalkGen, RandomStream streamBalk,

RandomVariateGen pgen, RandomVariateGen

cgen, RandomVariateGen[] cgenGroups,

RandomVariateGen acgen, RandomVariateGen[]

acgenGroups)

Equivalent to SingleTypeContactFactory (int, ValueGenerator, RandomStream, Random-
VariateGen, RandomVariateGen, RandomVariateGen[], RandomVariateGen, RandomVariate-
Gen[]), using the given simulator sim.

Methods

public Simulator simulator()

Returns the simulator associated with this contact factory. This simulator is associated with
every contact instantiated by the factory.

Returns the associated simulator.

public void setSimulator (Simulator sim)

Sets the simulator associated with this contact factory to sim.

Parameter

sim the new associated simulator.

public Contact newInstance()

Creates a new instance of class Contact, and initializes it by calling the setRandomVariables
(Contact) method.

public void setRandomVariables (Contact contact)

Generates the random variates related to a contact, and assigns the generated value to the
given contact object.

Parameter

contact the contact object to set up.

public RandomStream getStreamBalk()

Returns the random stream used for balking.

Returns the random stream used for balking.

public void setStreamBalk (RandomStream streamBalk)

Sets the random stream used for balking to streamBalk.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 4, 2014 SingleTypeContactFactory 75

Parameter

streamBalk the new random stream for balking.

public ValueGenerator getProbBalkGenerator()

Returns a reference to the value generator used for generating probabilities of balking.

public void setProbBalkGenerator (ValueGenerator probBalkGen)

Sets the value generator for probability of balking to probBalkGen.

public RandomVariateGen getPatienceTimeGen()

Returns the random-variate generator for patience times.

Returns the random variate generator for patience times.

public void setPatienceTimeGen (RandomVariateGen pgen)

Sets the random variate generator for patience times to pgen.

Parameter

pgen the new random variate generator for patience times.

public RandomVariateGen getContactTimeGen()

Returns the random-variate generator for default contact times. This generates the con-
tact times used when no contact time specific to the agent group performing the service is
available.

Returns the random variate generator for contact times.

public void setContactTimeGen (RandomVariateGen cgen)

Sets the random variate generator for default contact times to cgen.

Parameter

cgen the new random variate generator for contact times.

public RandomVariateGen getAfterContactTimeGen()

Returns the random-variate generator for default after-contact times. This generates the
after-contact times used when no after-contact time specific to the agent group performing
the service is available.

Returns the random variate generator for default after-contact times.

public void setAfterContactTimeGen (RandomVariateGen acgen)

Sets the random variate generator for default after-contact times to acgen.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html

76 SingleTypeContactFactory March 4, 2014

Parameter

acgen the new random variate generator for default after-contact times.

public RandomVariateGen[] getContactTimeGenGroups()

Returns the random variate generators for contact times when served by agents in specific
groups.

Returns the contact time generators.

public RandomVariateGen getContactTimeGen (int i)

Returns the random variate generator for contacts served by agents in group i.

Parameter

i the agent group index.

Returns the contact time generator.

public void setContactTimeGenGroups (RandomVariateGen[] cgenGroups)

Sets the contact-time generators for contacts served by specific agent groups to cgenGroups.

Parameter

cgenGroups the new contact-time generators.

public RandomVariateGen[] getAfterContactTimeGenGroups()

Returns the random variate generators for after-contact times when served by agents in
specific groups.

Returns the after-contact time generators.

public RandomVariateGen getAfterContactTimeGen (int i)

Returns the random variate generator for contacts served by agents in group i.

Parameter

i the agent group index.

Returns the after-contact time generator.

public void setAfterContactTimeGenGroups (RandomVariateGen[] acgenGroups)

Sets the contact-time generators for contacts served by specific agent groups to cgenGroups.

Parameter

acgenGroups the new contact-time generators.

public double getMeanContactTime (int i)

Returns the mean contact time for a new contact served by an agent in group i.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html

March 4, 2014 SingleTypeContactFactory 77

Parameter

i the agent group identifier.

Returns the mean contact time.

public double getMeanAfterContactTime (int i)

Returns the mean after-contact time for a new contact served by an agent in group i.

Parameter

i the agent group identifier.

Returns the mean contact time.

public int getTypeId()

Returns the type identifier for contacts returned by this factory.

Returns the type identifier of constructed contacts.

public void setTypeId (int type)

Sets the type identifier of constructed contacts to type.

Parameter

type the type identifier of constructed contacts.

78 March 4, 2014

RandomTypeContactFactory

Represents a contact factory that can create contacts of random types. Any instance of
this class encapsulates an array of contact factories, and a probability of selection for each
factory. Each time a new contact is needed, an internal factory is selected randomly based
on the selection probabilities, and used to instantiate the contact.

package umontreal.iro.lecuyer.contactcenters.contact;

public class RandomTypeContactFactory implements ContactFactory

Constructor

public RandomTypeContactFactory (ContactFactory[] factories, double[] prob,

RandomStream stream)

Constructs a random-type contact factory selecting contact factories from the array factories,
with probabilities given by prob, and using the random stream stream. Contact factory
factories[k] is selected with probability prob[k], for k=0,...,factories.length-1. If
the values in prob do not sum to 1, they are normalized by dividing by their sum.

Parameters

factories the array of contact factories.

prob the array of probabilities of selection.

stream the random stream.

Throws

NullPointerException if any of the above argument is null, or if at least one given
contact factory is null.

IllegalArgumentException if factories and prob do not share the same length, or if
prob contains at least one negative value.

Methods

public ContactFactory[] getContactFactories()

Returns an array giving each internal contact factory that can be selected.

Returns the array of contact factories.

public double[] getProbabilities()

Returns an array giving the probability of selection for each internal contact factory.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 4, 2014 RandomTypeContactFactory 79

Returns the array containing probabilities of selection.

public RandomStream getStream()

Returns the random stream used for performing the selection.

Returns the random stream for selection.

public void setStream (RandomStream stream)

Sets the random stream for performing further selections to stream.

Parameter

stream the new random stream for selection.

Throws

NullPointerException if stream is null.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

80 March 4, 2014

ContactInstantiationException

This exception is thrown when a contact factory cannot instantiate a contact on a call to its
ContactFactory.newInstance() method.

package umontreal.iro.lecuyer.contactcenters.contact;

public class ContactInstantiationException extends RuntimeException

Constructors

public ContactInstantiationException (ContactFactory factory)

Constructs a new contact instantiation exception with no message, no cause, and thrown by
the given factory.

Parameter

factory the contact factory having thrown the exception.

public ContactInstantiationException (ContactFactory factory, String

message)

Constructs a new contact instantiation exception with the given message, no cause, and
concerning factory.

Parameters

factory the contact factory concerned by the exception.

message the error message describing the exception.

public ContactInstantiationException (ContactFactory factory, Throwable

cause)

Constructs a new contact instantiation exception with no message, the given cause, and
concerning factory.

Parameters

factory the contact factory concerned by the exception.

cause the cause of the exception.

public ContactInstantiationException (ContactFactory factory, String

message, Throwable cause)

Constructs a new contact instantiation exception with the given message, the supplied
cause, and concerning factory.

http://docs.oracle.com/javase/6/docs/api/java/lang/RuntimeException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Throwable.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Throwable.html

March 4, 2014 ContactInstantiationException 81

Parameters

factory the contact factory concerned by the exception.

message the error message describing the exception.

cause the cause of the exception.

Methods

public ContactFactory getContactFactory()

Returns the contact factory concerned by this exception.

Returns the contact factory concerned by this exception.

public String toString()

Returns a short description of the exception. If getContactFactory() returns null, this
calls super.toString. Otherwise, the result is the concatenation of the strings:

• The name of the actual class of the exception

• ": For contact factory "

• the result of getContactFactory().toString()

• If Throwable.getMessage() is non-null

– ", "

– The result of Throwable.getMessage()

Returns a string representation of the exception.

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Throwable.html#getMessage(())
http://docs.oracle.com/javase/6/docs/api/java/lang/Throwable.html#getMessage(())

82 March 4, 2014

NewContactListener

Defines a new-contact listener that receives incoming contacts for further processing. This
interface is mainly used to link the contact arrival processes to routers or dialer lists. It can
also be used for counting the number of arrivals, for statistical collecting.

package umontreal.iro.lecuyer.contactcenters.contact;

public interface NewContactListener

Method

public void newContact (Contact contact)

Notifies the listener about a new contact contact. The given contact object can be assumed
non-null, and may be stored or processed in any needed ways.

Parameter

contact the new contact.

March 4, 2014 83

ContactSumMatrix

This sum matrix can be used to compute contact-related observations. It defines one measure
type for each contact type as well as one aggregate measure. When the supported number
of contact types is 1, it computes the aggregate sum only. When the supported number
of contact types is greater than 1, it computes a sum specific for each type as well as the
aggregate sum. If one does not require the sum row, one can use a SumMatrix instead.

package umontreal.iro.lecuyer.contactcenters.contact;

public class ContactSumMatrix extends SumMatrix

Constructors

public ContactSumMatrix (int numTypes)

Constructs a new contact sum matrix for numTypes contact types and one period.

Parameter

numTypes the number of contact types.

Throws

IllegalArgumentException if the number of contact types is negative or 0.

public ContactSumMatrix (PeriodChangeEvent pce, int numTypes)

Constructs a new contact sum matrix with period change event pce and for numTypes
contact types. The number of periods is determined by using PeriodChangeEvent.getNum-
Periods().

Parameters

pce the period change event.

numTypes the number of contact types.

Throws

IllegalArgumentException if the number of contact types is negative or 0.

NullPointerException if pce is null.

public ContactSumMatrix (int numTypes, int numPeriods)

Constructs a new contact sum matrix for numTypes contact types and numPeriods periods.

Parameters

numTypes the number of contact types.

numPeriods the number of periods.

84 ContactSumMatrix March 4, 2014

Throws

IllegalArgumentException if the number of contact types or periods is negative or 0.

Methods

public void add (Contact contact, double x)

Equivalent to add (contact.getTypeId(), period, x) where period is the period at
which the contact arrived. If no period change event was associated with this object, the
period is always 0.

Parameters

contact the contact to which the observation is related.

x the value being added.

Throws

NullPointerException if contact is null.

public void add (Contact contact, int period, double x)

Equivalent to add (contact.getTypeId(), period, x).

Parameters

contact the contact to which the observation is related.

period the period the observation is added to.

x the value being added.

Throws

NullPointerException if contact is null.

public void add (int type, int period, double x)

Adds a new observation x for contact type type in the period period. If the object supports
only one contact type, this will add one observation in the measure 0 of the matrix, inde-
pendently of the contact type identifier. Otherwise, an observation is added in the measure
corresponding the contact type as well as in the last measure for the aggregate sum. Even
if the contact type identifier cannot be mapped to a valid measure index, the observation is
added to the last row.

Parameters

type the contact type of the new observation.

period the period of the new observation.

x the value being added.

Throws

ArrayIndexOutOfBoundsException if type or period are negative or greater than or equal
to the number of supported contact types or periods.

March 4, 2014 85

ContactStepInfo

Represents an information object about a single step (end of service, exit of waiting queue,
etc.) in the life cycle of a contact in the contact center. Implementations of this interface
are used when the steps of contacts are traced.

package umontreal.iro.lecuyer.contactcenters.contact;

public interface ContactStepInfo

Methods

public Contact getContact()

Returns the contact concerned by this step.

Returns the concerned contact.

public double getStartingTime()

Returns the simulation time at which this step started.

Returns the start time of the step.

public double getEndingTime()

Returns the simulation time at which this step ended.

Returns the end time of the step.

public ContactStepInfo clone (Contact clonedContact)

Makes a copy of this data object that will be associated with the cloned contact clonedContact.
This method is intended to be used in Contact.clone().

Parameter

clonedContact the contact being cloned.

Returns the clone of this data object.

86 March 4, 2014

TrunkGroup

Represents a group of trunks, i.e., phone lines or more generally communication channels,
in a contact center. After a contact is constructed, it can be assigned a trunk group us-
ing Contact.setTrunkGroup (TrunkGroup). When the contact enters the router, a line is
allocated. The contact is blocked if a line is not available.

package umontreal.iro.lecuyer.contactcenters.contact;

public class TrunkGroup implements Initializable, Named

Constructor

public TrunkGroup (int capacity)

Constructs a new trunk group with capacity capacity. The capacity corresponds to the
maximum number of allocated lines at any simulation time.

Parameter

capacity the total number of lines in the trunk group.

Throws

IllegalArgumentException if the capacity is negative.

Methods

public int getCapacity()

Returns the current capacity of this trunk group.

Returns the current capacity.

public void setCapacity (int capacity)

Changes the capacity to capacity. If the given capacity is negative or smaller than the
current number of allocated lines, an IllegalArgumentException is thrown.

Parameter

capacity the new capacity.

Throws

IllegalArgumentException if capacity is too small or negative.

public int lines()

Returns the current number of allocated lines.

http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalArgumentException.html

March 4, 2014 TrunkGroup 87

Returns the current number of lines.

public void init()

Resets this trunk group, releasing all allocated lines. If statistical collecting is enabled, this
also calls initStat().

public void initStat()

Initializes the two statistical collectors for the number of lines and the capacity. If statistical
collecting is disabled, this throws an IllegalStateException.

Throws

IllegalStateException if statistical collecting is disabled.

public boolean take (Contact contact)

Indicates that the contact contact enters the system and takes one line from this trunk
group. If all lines are busy, this returns false. Otherwise, this returns true.

Parameter

contact the contact allocating the line.

Returns the success indicator.

public void release (Contact contact)

Releases the trunk line allocated by the contact contact.

Parameter

contact the contact releasing the line.

public boolean isStatCollecting()

Determines if this trunk group is collecting statistics about the number of allocated lines
and its capacity. By default, statistical collecting is turned OFF.

Returns the statistical collecting indicator.

public void setStatCollecting (boolean b)

Sets the statistical collecting to b. If b is true, the collecting is turned ON. Otherwise, it is
turned OFF.

Parameter

b the statistical collecting indicator.

public void setStatCollecting (Simulator sim)

Enables statistical collecting, but associates the given simulator to the internal accumulates.

http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html

88 TrunkGroup March 4, 2014

Parameter

sim the simulator associated to the internal accumulates.

public void setStatCollectiong (Simulator sim)

Enables statistical collecting, and attach the simulator sim to the internal accumulates. The
given simulator is used to determine the simulation time when the values of the probes are
updated.

Parameter

sim the given simulator.

public Accumulate getStatCapacity()

Returns the statistical collector for the capacity of this trunk group through simulation
time. The returned value is non-null only if setStatCollecting (boolean) was called
with true.

Returns the statistical collector for the capacity of this trunk group.

public Accumulate getStatLines()

Returns the statistical collector for the number of allocated lines through simulation time.
The returned value is non-null only if setStatCollecting (boolean) was called with
true.

Returns the statistical collector for the number of allocated lines.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Accumulate.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Accumulate.html

March 4, 2014 89

ContactSource

Represents a contact source which produces contacts during a simulation. Before any simu-
lation replication, any contact source needs to be initialized. Since initialization disables the
source, the source must be enabled to produce contacts. When a contact is produced, the
contact source should instantiate a Contact object using a user-specified ContactFactory

implementation, or pick an instance from an internal list. It should then notify the new
contact to any registered NewContactListener implementation.

package umontreal.iro.lecuyer.contactcenters.contact;

public interface ContactSource extends ToggleElement, Initializable, Named

Methods

public void init()

Initializes the contact source for a new replication of a simulation. This method should
disable the contact source if it is enabled, and cancel any scheduled event. One can assume
this method will be called before any simulation replication starts.

public void addNewContactListener (NewContactListener listener)

Adds the listener listener to be notified when a new contact is produced. If the listener
was already registered, nothing happens, because the listener cannot be notified more than
once.

Parameter

listener the new-contact listener being added.

Throws

NullPointerException if listener is null.

public void removeNewContactListener (NewContactListener listener)

Removes the new-contact listener listener from the list associated with this contact source.
If the listener was not previously registered with this contact source, nothing happens.

Parameter

listener the new-contact listener being removed.

public void clearNewContactListeners()

Clears the list of new-contact listeners associated with this contact source.

public List<NewContactListener> getNewContactListeners()

Returns an unmodifiable list containing all the new-contact listeners registered with this
contact source.

http://docs.oracle.com/javase/6/docs/api/java/util/List.html

90 ContactSource March 4, 2014

Returns the list of all registered new-contact listeners.

public Simulator simulator()

Returns a reference to the simulator associated with this contact source. The simulator is
used to schedule any event required by the contact source to produce contacts.

Any implementation of this interface should provide a constructor accepting the simulator
as an argument. Constructors not receiving a simulator should use the default simulator
returned by Simulator.getDefaultSimulator().

Returns the associated simulator.

public void setSimulator (Simulator sim)

Sets the simulator attached to this contact source to sim. This method should not be called
while the contact source is started.

Parameter

sim the new simulator.

Throws

NullPointerException if sim is null.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html#getDefaultSimulator(())
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html

March 4, 2014 91

ContactArrivalProcess

Represents a contact arrival process modeling the arrival of inbound contacts. Such a pro-
cess schedules an event for each new contact, and broadcasts the arrival to any registered
new-contact listeners. More specifically, a single simulation event manages arrivals as fol-
lows: upon an arrival, a new contact is instantiated using the associated contact factory,
the contact is broadcast to any registered listener, and the next arrival is scheduled. The
interarrival times are computed using the nextTime() method which needs to be imple-
mented in a concrete subclass. This abstract class also takes care of new-contact listeners
registration and notification. Subclasses only needs to define nextTime() and optionally
init() which initializes the arrival process at the beginning of the simulation. It is also
possible to access the scheduled new-contact event to reschedule or cancel it as needed. Im-
plementing getArrivalRate (int), and getExpectedArrivalRate (int) is recommended
to allow programs to get the arrival rate and expected arrival rate.

Each arrival process has an associated simulator which is an instance of the Simulator

class. This simulator is used to schedule the event managing the arrival process. It is also
assumed that the user-defined contact factory attaches this simulator to each new contact.
Failing to meet this condition might lead to unexpected behavior, and will trigger a failed
assertion if assertion checking is turned on during execution.

The arrival process can be inflated or deflated by a busyness factor denoted B, a random
variable with mean 1, and usually generated once for a day. Any arrival process can be
defined as {N(t), t ≥ 0}, where N(t) is the number of arrivals during the time interval [0, t).
The process affected by the busyness, {Ñ(t), t ≥ 0}, is given by taking Ñ(t) = round(BN(t)),
where round(·) rounds its argument to the nearest integer. The exact way to take account
of the busyness factor depends on the specific arrival process. For example, for Poisson
processes, the busyness is used to inflate or deflate the λ arrival rate.

The busyness factor must be set externally, because the value of B for this arrival process
is often correlated with B for other arrival processes. The recommended way to set B is using
init (double). The current value of B might be obtained using getBusynessFactor().
By default, it is assumed that E[B] = 1. If this is not true for a particular model, one should
call setExpectedBusynessFactor (double) to set the expectation of the factor.

Note: the NewContactListener implementations are notified in the order of the list
returned by getNewContactListeners(), and a new-contact listener modifying the list of
listeners by using addNewContactListener (NewContactListener) or removeNewContact-
Listener (NewContactListener) could result in unpredictable behavior.

package umontreal.iro.lecuyer.contactcenters.contact;

public abstract class ContactArrivalProcess implements ContactSource

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html

92 ContactArrivalProcess March 4, 2014

Field

protected final Event contactEvent

Event representing the arrival of a new contact. Subclasses can cancel or reschedule this
event to adjust it when a parameter change occurs.

Constructors

public ContactArrivalProcess (ContactFactory factory)

Constructs a new contact arrival process creating contacts using the given factory.

Parameter

factory the factory creating contacts for this arrival process.

Throws

NullPointerException if factory is null.

public ContactArrivalProcess (Simulator sim, ContactFactory factory)

Equivalent to ContactArrivalProcess (ContactFactory), with a user-defined simulator
sim.

Parameters

sim the simulator attached to this arrival process.

factory the factory creating contacts for this arrival process.

Throws

NullPointerException if sim or factory are null.

Methods

public abstract double nextTime()

Computes and returns the time before the next contact arrival is simulated by this object. If
this method returns Double.POSITIVE INFINITY, no more arrival events will be scheduled
until the arrival process is reinitialized.

Returns the time before the next arrival.

public double getBusynessFactor()

Returns the currently used busyness factor B, which must be greater than or equal to 0,
and defaults to 1.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Event.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html

March 4, 2014 ContactArrivalProcess 93

Returns the current busyness factor.

public void setBusynessFactor (double b)

Sets the busyness factor to b. This method should be called before init() is called, or one
should use init (double).

Parameter

b the new busyness factor.

Throws

IllegalArgumentException if b is negative.

public double getExpectedBusynessFactor()

Returns the expected value of the busyness factor for this arrival process.

Returns the expected value of the busyness factor.

public void setExpectedBusynessFactor (double bMean)

Sets the expected busyness factor for this arrival process to bMean.

Parameter

bMean the new value of the expectation.

Throws

IllegalArgumentException if bMean is negative.

public void init (double b)

Initializes this process with a specific busyness factor B = b. By default, this method simply
calls setBusynessFactor (double) followed by init().

Parameter

b the value of the busyness factor.

Throws

IllegalArgumentException if b ≤ 0.

public void init()

Initializes the new arrival process. If this method is overridden by a subclass, it is important
to call super.init() in order to ensure that everything is initialized correctly.

public ContactFactory getContactFactory()

Returns a reference to the associated contact factory. This factory is used to instantiate
contact objects.

94 ContactArrivalProcess March 4, 2014

Returns the associated contact factory.

public void setContactFactory (ContactFactory factory)

Sets the contact factory to factory. This new contact factory will be used to instantiate
future contact objects.

Parameter

factory the new contact factory.

Throws

NullPointerException if the given contact factory is null.

public void startStationary()

Setup the arrival process to be stationary, and starts it using the start() method. When
an arrival process is started using this method, its parameters do not evolve with time. This
can be useful, e.g., to simulate a single period as if it was infinite in the model. If the arrival
process does not support stationary mode, this method throws an unsupported-operation
exception. The default behavior of this method is to throw this exception.

public void start (double delay)

Starts this arrival process and schedules the first arrival to happen after delay simulation
time units, independently of how nextTime() is implemented. If delay is set to Double.
POSITIVE INFINITY, no arrival is scheduled. Any subsequent inter-arrival times will be
generated with nextTime() as usual.

Parameter

delay the first inter-arrival time.

public double getNextArrivalTime()

Returns the simulation time of the next arrival currently scheduled by this arrival process.
If the arrival process is stopped or no arrival is scheduled, this returns a negative number.

Returns the arrival time of the next contact.

public double getArrivalRate (int p)

Determines the arrival rate in period p for this arrival process. The arrival rate corresponds
to the expected number of arrivals per simulation time unit during the specified period; one
must multiply the rate by the period duration to get the expected number of arrivals during
the period.

If arrival rate is random, this returns the arrival rate for the current replication. One
should use getExpectedArrivalRate (int) or getExpectedArrivalRateB (int) to get
the expected arrival rate.

If the arrival rate is not available, throws an UnsupportedOperationException.

Parameter

p the queried period index.

http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#POSITIVE_INFINITY
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#POSITIVE_INFINITY
http://docs.oracle.com/javase/6/docs/api/java/lang/UnsupportedOperationException.html

March 4, 2014 ContactArrivalProcess 95

Returns the arrival rate in that period.

public void getArrivalRates (double[] rates)

Fills the given array rates with the arrival rate for each period. After this method returns,
element rates[p] corresponds to the value returned by getArrivalRate (p).

Parameter

rates the array filled with rates.

public double getExpectedArrivalRate (int p)

Determines the expected arrival rate in period p for this arrival process assuming that the
expected value of the busyness factor is 1. The arrival rate corresponds to the expected
number of arrivals per simulation time unit during the specified period; one must multiply
the rate by the period duration to get the expected number of arrivals during the period. If
arrival rates are deterministic, this returns the same value as getArrivalRate (int).

If E[B] 6= 1, one should use getExpectedArrivalRateB (int) which takes the expectation
of the busyness factor into account.

If the expected arrival rate is not available, throws an UnsupportedOperationException.
This is the default behavior of this method if not overridden by a subclass.

Parameter

p the queried period index.

Returns the expected arrival rate in that period.

public void getExpectedArrivalRates (double[] rates)

Fills the given array rates with the expected arrival rate for each period. After this method
returns, element rates[p] corresponds to the value returned by getExpectedArrivalRate
(p).

Parameter

rates the array filled with rates.

public double getExpectedArrivalRateB (int p)

Returns the expected arrival rate considering the current expected busyness factor. This
corresponds to the product of the value returned by getExpectedArrivalRate (int), and
the value returned by getExpectedBusynessFactor().

Parameter

p the tested period.

Returns the tested arrival rate.

public void getExpectedArrivalRatesB (double[] rates)

Fills the given array rates with the expected arrival rate for each period. After this method
returns, element rates[p] corresponds to the value returned by getExpectedArrivalRateB
(p).

http://docs.oracle.com/javase/6/docs/api/java/lang/UnsupportedOperationException.html

96 ContactArrivalProcess March 4, 2014

Parameter

rates the array filled with rates.

public double getArrivalRate (double st, double et)

Determines the mean arrival rate in time interval [s, e]. The arrival rate corresponds to the
expected number of arrivals per simulation time unit during the specified interval; one must
multiply the rate by the interval length to get the expected number of arrivals during the
interval. If λ(t) is the arrival rate at time t, this method returns the result of∫ e

s
λ(t)dt/(e− s).

If arrival rate is random, this returns the arrival rate for the current replication. One
should use getExpectedArrivalRate (double, double) or getExpectedArrivalRateB
(double, double) to get the expected arrival rate.

This method returns 0 if e ≤ s.

If the arrival rate is not available, throws an UnsupportedOperationException. This is the
default behavior of this method if not overridden by a subclass.

Parameters

st the starting time s.

et the ending time e.

Returns the arrival rate in the given time interval.

public double getExpectedArrivalRate (double st, double et)

Determines the expected mean arrival rate in time interval [s, e] for this arrival process
assuming that the expected value of the busyness factor is 1. The arrival rate corresponds
to the expected number of arrivals per simulation time unit during the specified interval; one
must multiply the rate by the interval length to get the expected number of arrivals during
the interval. If arrival rates are deterministic, this returns the same value as getArrivalRate
(double, double). If λ(t) is the arrival rate at time t, this method returns∫ e

s
E[λ(t)]dt/(e− s).

If E[B] 6= 1, one should use getExpectedArrivalRateB (double, double) which takes the
expectation of the busyness factor into account.

This method returns 0 if e ≤ s.

If the expected arrival rate is not available, throws an UnsupportedOperationException.
This is the default behavior of this method if not overridden by a subclass.

Parameters

st the starting time s.

et the ending time e.

http://docs.oracle.com/javase/6/docs/api/java/lang/UnsupportedOperationException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/UnsupportedOperationException.html

March 4, 2014 ContactArrivalProcess 97

Returns the expected arrival rate in the given time interval.

public double getExpectedArrivalRateB (double st, double et)

Returns the expected mean arrival rate considering the current expected busyness fac-
tor. This corresponds to the product of the value returned by getExpectedArrivalRate
(double, double), and the value returned by getExpectedBusynessFactor().

Parameters

st the starting time s.

et the ending time e.

Returns the expected arrival rate in the given time interval.

public void notifyNewContact (Contact contact)

Notifies the contact contact to every registered listener.

Parameter

contact the contact to be notified.

98 March 4, 2014

StationaryContactArrivalProcess

Defines a contact arrival process with inter-arrival times following a stationary distribution.
When an inter-arrival time is required, a random variate generator is used to get a random
value.

package umontreal.iro.lecuyer.contactcenters.contact;

public class StationaryContactArrivalProcess extends ContactArrivalProcess

Constructors

public StationaryContactArrivalProcess (ContactFactory factory,

RandomVariateGen timesGen)

Constructs a new contact arrival process creating contacts using the given factory and
using timesGen to generate the inter-arrival times.

Parameters

factory the factory creating contacts for this arrival process.

timesGen the random variate generator used to generate times between arrivals.

public StationaryContactArrivalProcess (Simulator sim, ContactFactory

factory, RandomVariateGen timesGen)

Equivalent to StationaryContactArrivalProcess (ContactFactory, RandomVariateGen),
using the given simulator sim.

Methods

public RandomVariateGen getTimesGen()

Returns the random variate generator used to generate the times between each arrival.

Returns the random variate generator associated with this object.

public void setTimesGen (RandomVariateGen timesGen)

Sets the random variate generator for inter-arrival times to timesGen.

Parameter

timesGen the new random variate generator.

Throws

NullPointerException if timesGen is null.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html

March 4, 2014 99

PoissonArrivalProcess

Represents a Poisson-based contact arrival process. This base class implements a Poisson
arrival process with (piecewise-)constant arrival rates: when an inter-arrival time is required,
it is generated from the exponential distribution with rate Bλ. By default, the arrival rate
is constant, but it may be changed at any time during the simulation. When the arrival
rate changes, the currently scheduled arrival is adjusted automatically to reflect the change.
This class can be used as a basis each time the rate function λ(t) of a Poisson process is
piecewise-constant over the simulation time t.

package umontreal.iro.lecuyer.contactcenters.contact;

public class PoissonArrivalProcess extends ContactArrivalProcess

Constructors

public PoissonArrivalProcess (ContactFactory factory, double lambda,

RandomStream stream)

Constructs a new Poisson arrival process instantiating new contacts using factory. The
parameter λ is initialized with lambda and the random number stream stream is used to
generate the needed uniforms.

Parameters

factory the factory instantiating contacts.

lambda the initial value of λ(t).

stream random number stream.

Throws

IllegalArgumentException if lambda < 0.

NullPointerException if factory or stream are null.

public PoissonArrivalProcess (Simulator sim, ContactFactory factory,

double lambda, RandomStream stream)

Equivalent to PoissonArrivalProcess (ContactFactory, double, RandomStream), with
the given simulator sim.

Methods

public double getLambda()

Returns the current value of the arrival rate λ.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

100 PoissonArrivalProcess March 4, 2014

Returns the current value of λ.

public void setLambda (double newLambda)

Changes the value of λ to newLambda. This adjusts the time of the next arrival if necessary.
If newLambda is set to 0, the currently scheduled arrival, if any, is cancelled and the Poisson
process is stopped. The Poisson process can be restarted by setting a new non-zero λ value.

Parameter

newLambda the new value of λ.

Throws

IllegalArgumentException if newLambda < 0.

public RandomStream getStream()

Returns the random number stream used to generate the uniforms for inter-arrival times.

Returns the random number stream for the uniforms.

public void setStream (RandomStream stream)

Sets the random number stream used to generate the uniforms for the inter-arrival times to
stream.

Parameter

stream the new random number stream.

Throws

NullPointerException if stream is null.

public boolean isCaching()

Determines if the generated inter-arrival times are cached for more efficiency. When caching
is enabled, the arrival process records every standardized inter-arrival time generated. These
random times follow the exponential distribution with λ = 1, and are divided by the ar-
rival rate in use. Therefore, the cache can be used even if the arrival rate changes. The
initCache() method must be called to start reusing cached values. This avoids some com-
putations and increases the performance, at the expense of memory. This is useful when
comparing several contact centers with common random numbers. By default, this caching
is disabled for more efficient memory usage.

Returns the caching indicator for this arrival process.

public void setCaching (boolean caching)

Sets the caching indicator to caching for this Poisson process.

Parameter

caching the new value of the caching indicator.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 4, 2014 PoissonArrivalProcess 101

See also isCaching()

public void initCache()

Resets the random variate generator cache to get the generated inter-arrival times. This
method has no effect if caching is disabled.

See also isCaching()

public void clearCache()

Clears the cached inter-arrival times for this Poisson arrival process. This has some effect
only if caching is enabled.

See also isCaching()

public RandomVariateGenWithCache getGenWithCache()

Returns the random variate generator for the exponential arrival times used when caching
is enabled. If caching is disabled, the method throws an IllegalStateException.

Returns the random variate generator.

Throws

IllegalStateException if caching is disabled.

public void startStationary()

This method calls ContactArrivalProcess.start() assuming that the λ arrival rate will
not change during simulation. Subclasses violating this assumption should override this
method.

public static double[] getMLE (int[][] arrivals, int numObs, int

numPeriods)

Estimates the parameters of a Poisson arrival process with arrival rate λ from the number
of arrivals in the array arrivals. Element arrivals[i][p] corresponds to the number of
arrivals on day i during period p, where i = 0, . . . , n − 1, p = 0, . . . , P − 1, n = numObs,
and P = numPeriods. This method sums the number of arrivals on every period for each
day and uses the resulting array of numObs observations to estimate a Poisson arrival rate.
This returns an array containing the estimated λ̂, which estimates the expected number of
arrivals during one day.

Parameters

arrivals the number of arrivals during each day and period.

numObs the number of days.

numPeriods the number of periods.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGenWithCache.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html

102 PoissonArrivalProcess March 4, 2014

Returns the estimated arrival rates.

public static PoissonArrivalProcess getInstanceFromMLE (ContactFactory

factory,

RandomStream

stream, double

dayLength, int[][]

arrivals, int

numObs, int

numPeriods)

Constructs a new arrival process with arrival rate estimated by the maximum likelihood
method based on the numObs observations in array arrivals. Element arrivals[i][p]
corresponds to the number of arrivals on day i during period p, where i = 0, . . . , n − 1,
p = 0, . . . , P − 1, n = numObs, and P = numPeriods. The estimated arrival rate, which
approximates the expected number of arrivals during a day, is divided by dayLength to be
relative to one time unit.

Parameters

factory the contact factory used to create contacts.

stream the random stream to generate arrival times.

dayLength the duration of the day, in simulation time units.

arrivals the number of arrivals.

numObs the number of days.

numPeriods the number of periods.

Returns the constructed arrival process.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 4, 2014 103

PiecewiseConstantPoissonArrivalProcess

Represents a non-homogeneous Poisson arrival process with piecewise-constant arrival rates.
Each inter-arrival time is an exponential variate with rate λ(t), where λ(t) = Bλp(t) is a
piecewise-constant function over simulation time. The function p(t) gives the period corre-
sponding to simulation time t whereas λp is the base arrival rate for the Poisson process,
during period p. This class uses the PoissonArrivalProcess base class to generate inter-
arrival times and to adjust the arrival time when the rate changes. If a single period p is
simulated as if it was infinite in the model, the arrival rate is fixed to λp.

package umontreal.iro.lecuyer.contactcenters.contact;

public class PiecewiseConstantPoissonArrivalProcess extends

PoissonArrivalProcess

implements PeriodChangeListener

Field

public static double s_bgammaParam

Contains the parameter for the gamma-distributed busyness factor given by methods for
parameter estimation. This is the alpha parameter of the gamma distribution for busyness.
ATTENTION: variable de travail; utiliser tout de suite apres getMLENegMulti

Constructors

public PiecewiseConstantPoissonArrivalProcess (PeriodChangeEvent pce,

ContactFactory factory,

double[] lambdas,

RandomStream stream)

Constructs a new Poisson arrival process with piecewise-constant arrival rates instantiating
new contacts using factory. The parameter λ is initialized with Blambdas[0], and is
updated at the beginning of each period with a value from lambdas. The random number
stream stream is used to generate the needed uniforms. The newly-constructed arrival
process is added to the period-change event pce for the arrival rate to be automatically
updated.

Parameters

pce the period-change event associated with this object.

factory the factory instantiating contacts.

lambdas the base arrival rates.

stream the random number generator for inter-arrival times.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

104 PiecewiseConstantPoissonArrivalProcess March 4, 2014

Throws

IllegalArgumentException if there is not one rate per period.

NullPointerException if any argument is null.

public PiecewiseConstantPoissonArrivalProcess (PeriodChangeEvent pce,

ContactFactory factory,

double[] lambdas,

RandomStream stream,

RandomVariateGen bgen)

Similar to (PeriodChangeEvent, ContactFactory, double[], RandomStream), but with
busyness generator bgen. It generates a busyness factor multiplying the base rate.

Parameters

pce the period-change event associated with this object.

factory the factory instantiating contacts.

lambdas the base arrival rates.

stream the random number generator for inter-arrival times.

bgen random number generator for busyness

Throws

IllegalArgumentException if there is not one rate per period.

NullPointerException if any argument is null.

Methods

public static void setNumMC (int n)

Sets the number of Monte Carlo samples to n. This is the number of MC samples used in
the getMLE method in subclasses.

Parameter

n

public static int getNumMC()

Sets the number of Monte Carlo samples to n. This is the number of MC samples used in
the getMLE method in subclasses.

public boolean isNormalizing()

Determines if the base arrival rates are normalized with period duration. When normaliza-
tion is enabled, for period p, the effective base arrival rate is getLambda (p)/getPeriod-
ChangeEvent().getPeriodDuration (p). No normalization is applied for the wrap-up pe-
riod, because its duration is unknown when it starts. If normalization is disabled (the
default), the base arrival rates are used as specified.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html

March 4, 2014 PiecewiseConstantPoissonArrivalProcess 105

Returns if the arrival process normalizes base arrival rates.

public void setNormalizing (boolean b)

Sets the arrival rates normalization indicator to b.

Parameter

b the new arrival rate normalization indicator.

See also isNormalizing()

public PeriodChangeEvent getPeriodChangeEvent()

Returns the period-change event associated with this object.

Returns the associated period-change event.

public void startStationary()

This method checks that the associated period-change event is locked to a fixed period,
and calls ContactArrivalProcess.start() if this is the case. Otherwise, it throws an
unsupported-operation exception since the arrival rate can change with the current period.

public double[] getLambdas()

Returns the current value of lambdas.

Returns the current base rates for the process.

public void setLambdas (double[] lambdas)

Sets the base arrival rates to lambdas.

Parameter

lambdas the new base arrival rates.

Throws

NullPointerException if the given array is null.

IllegalArgumentException if the length of the array is smaller than the number of peri-
ods.

public static double[] getMLE (int[][] arrivals, int numObs, int

numPeriods)

Estimates the parameters of a Poisson arrival process with piecewise-constant arrival rate
from the number of arrivals in the array arrivals, and returns an array giving the estimated
arrival rate for each main period. Element arrivals[i][p] corresponds to the number of
arrivals on day i during main period p, where i = 0, . . . , n−1, p = 0, . . . , P −1, n = numObs,
and P = numPeriods. This method estimates the expected number of arrivals during main
period p, noted λp, independently for each main period, assuming that the number of arrivals
in that period follows the Poisson distribution. The returned array contains the estimated
arrival rate for each of the P periods, noted λ1, . . . , λP .

106 PiecewiseConstantPoissonArrivalProcess March 4, 2014

Parameters

arrivals the number of arrivals during each day and period.

numObs the number of days.

numPeriods the number of periods.

Returns the estimated arrival rates.

public static void setVarianceEpsilon (double eps)

Sets the lower limit for the variance of the busyness distribution. When the variance would
be smaller than eps, the parameter of the busyness distribution is reset so that variance =
eps.

public static double getVarianceEpsilon()

Returns the value of varianceEpsilon.

Returns the lower bound of the variance for busyness

public static double[] getMLENegMulti (int[][] arrivals, int numObs, int

numPeriods)

Estimates the parameters of a Poisson arrival process with piecewise-constant arrival rate
multiplied by a day-specific busyness factor following the gamma(α0, α0) distribution from
the number of arrivals in the array arrivals. Element arrivals[i][p] corresponds to
the number of arrivals of this type on day i during main period p, where i = 0, . . . , n − 1,
p = 0, . . . , P − 1, n = numObs, and P = numPeriods. This returns an array with the
estimated arrival rates and stores the gamma busyness parameter in s bgammaParam. This
method assumes that the number of arrivals during main periods, represented by the vector
A1, . . . , AP , follows the negative multinomial distribution with parameters (α0, ρ1, . . . , ρP)
where ρp = λp/(α0 +

∑P
k=1 λk) for p = 1, . . . , P . After α0, ρ1, . . . , ρP are estimated using

maximum likelihood, arrival rate for any main period p = 1, . . . , P can be obtained using
λp = α0ρp/ρ0, where ρ0 = 1−

∑P
k=1 ρk. This method thus returns the array with λ1, . . . , λP .

Parameters

arrivals the number of arrivals during each day and period.

numObs the number of days.

numPeriods the number of periods.

Returns the estimated arrival rates.

public static PiecewiseConstantPoissonArrivalProcess getInstanceFromMLE

(PeriodChangeEvent pce, ContactFactory factory, RandomStream stream, int[][]

arrivals, int numObs, int numPeriods, boolean withGammaBusyness)

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 4, 2014 PiecewiseConstantPoissonArrivalProcess 107

Constructs a new arrival process with arrival rates estimated by the maximum likelihood
method based on the numObs observations in array arrivals. Element arrivals[i][p]
corresponds to the number of arrivals on day i during period p, where i = 0, . . . , n − 1,
p = 0, . . . , P − 1, n = numObs, and P = numPeriods. If withGammaBusyness is true,
the number of arrivals is considered to follow the negative multinomial distribution, and
the α0 parameter for the gamma-distributed busyness factor is stored in s bgammaParam.
Otherwise, the periods are considered independent, and the number of arrivals during a
period is considered to follow the Poisson distribution. The expected number of arrivals
used during the preliminary period is equal to the expectation estimated for the first main
period while the arrival rate during the wrap-up period is always 0.

Parameters

pce the period-change event marking the end of periods.

factory the contact factory used to create contacts.

stream the random stream to generate arrival times.

arrivals the number of arrivals.

numObs the number of days.

numPeriods the number of periods.

withGammaBusyness determines if the α0 parameter is estimated in addition to the arrival
rates.

Returns the constructed arrival process.

108 March 4, 2014

PoissonArrivalProcessWithTimeIntervals

Represents a Poisson arrival process with piecewise-constant arrival rates that can change at
arbitrary moments during the simulation. This process is similar to PiecewiseConstant-

PoissonArrivalProcess, except the times arrival rates change do not need to correspond
to main periods. More specifically, let t0 < · · · < tL be an increasing sequence of simulation
times, and let Bλj, for j = 0, . . . , L − 1, be the arrival rate during time interval [tj, tj+1).
The arrival rate is 0 for t < t0 and t ≥ tL.

package umontreal.iro.lecuyer.contactcenters.contact;

public class PoissonArrivalProcessWithTimeIntervals extends

PoissonArrivalProcess

Constructors

public PoissonArrivalProcessWithTimeIntervals (ContactFactory factory,

double[] times, double[]

lambdas, RandomStream

stream)

Calls PoissonArrivalProcessWithTimeIntervals (Simulator.getDefaultSimulator(),
factory, times, lambdas, stream).

public PoissonArrivalProcessWithTimeIntervals (Simulator sim,

ContactFactory factory,

double[] times, double[]

lambdas, RandomStream

stream)

Constructs a new arrival process using the simulator sim, the contact factory factory for
creating contacts, times t0, . . . , tL in array times, and arrival rates in array lambdas. Inter-
arrival times are generated using the random stream stream.

Parameters

sim the simulator used to schedule events.

factory the factory creating contacts for this arrival process.

times the sequence of times at which arrival rate changes.

lambdas the arrival rates.

stream the random stream for inter-arrival times.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 4, 2014 PoissonArrivalProcessWithTimeIntervals 109

Throws

NullPointerException if any argument is null.

IllegalArgumentException if lambdas.length is smaller than 1, or if times.length
does not correspond to lambdas.length plus 1, or if times is not an increasing sequence
of numbers.

Methods

public boolean isNormalizing()

Determines if the base arrival rates are normalized with length of intervals. When normal-
ization is enabled, for interval tj+1 − tj , the effective base arrival rate is λj/(tj+1 − tj). If
normalization is disabled (the default), the base arrival rates are used as specified.

Returns if the arrival process normalizes base arrival rates.

public void setNormalizing (boolean b)

Sets the arrival rates normalization indicator to b.

Parameter

b the new arrival rate normalization indicator.

See also isNormalizing()

public double[] getTimes()

Returns the array of times containing t0, . . . , tL.

Returns the array of times.

public double[] getArrivalRatesInt()

Similar to ContactArrivalProcess.getArrivalRates (double[]), for the arrival rates
per interval.

public double[] getExpectedArrivalRatesInt()

Similar to ContactArrivalProcess.getExpectedArrivalRates (double[]), for the ar-
rival rates per interval.

public double[] getExpectedArrivalRatesBInt()

Similar to ContactArrivalProcess.getExpectedArrivalRatesB (double[]), for the ar-
rival rates per interval.

110 March 4, 2014

PoissonGammaArrivalProcess

Represents a doubly-stochastic Poisson process with piecewise-constant randomized arrival
rates [11]. The base arrival rates λp are constant during each period, but they are not
deterministic: for period p, the base rate of the Poisson process is defined as λp times a
gamma random variable with shape and scale parameters αG,p, and mean 1. However, if αG,p

or λp are 0, the resulting arrival rate during period p is always set to 0. As with the Poisson
process with deterministic arrival rates, the generated base arrival rates are multiplied by a
global busyness factor B for the day, and also by a busyness factor Bp specific to each period
of the day in order to get the arrival rates. Because the values of λ(t) are generated once
for a replication, in the init() method, not calling this method before the simulation starts
could lead to unpredictable arrival rates.

package umontreal.iro.lecuyer.contactcenters.contact;

public class PoissonGammaArrivalProcess extends

PiecewiseConstantPoissonArrivalProcess

Constructor

public PoissonGammaArrivalProcess (PeriodChangeEvent pce, ContactFactory

factory, double[] galphas, double[]

glambdas, RandomStream stream,

RandomStream streamBusyness)

Constructs a new Poisson-gamma arrival process using factory to instantiate contacts. For
each period p, the parameters of the gamma rate are given in galphas[p] and glambdas[p].
The random stream stream is used to generate the uniforms for the exponential times
whereas the stream streamBusyness is used to generate the busyness factors for each period
of the day.

Parameters

pce the period-change event associated with this object.

factory the factory creating contacts for this generator.

galphas the αG,p parameters for the gamma variates for busyness.

glambdas the λp arrival rates.

stream random number stream for the exponential variates.

streamBusyness random number stream for the gamma rate values.

Throws

IllegalArgumentException if there is not one rate for each period.

NullPointerException if any argument is null.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 4, 2014 PoissonGammaArrivalProcess 111

Methods

public double[] getGammaAlphas()

Returns the parameters αG,p of the gamma distribution for busyness.

Returns the αG,p parameters.

public double[] getGammaLambdas()

Returns the λp parameters for the rates.

Returns the λp parameters.

public void setGammaParams (double[] galphas, double[] glambdas)

Sets the αG,p and λp parameters for the busyness and the arrival rates to galphas and
glambdas, respectively.

Parameters

galphas the new αG,p parameters.

glambdas the new λp rates.

Throws

NullPointerException if the given arrays are null.

IllegalArgumentException if the length of the given arrays does not correspond to at
least the number of periods.

public RandomStream getBusynessStream()

Returns the random stream used to generate the busyness factors for this arrival process.

Returns the random stream for the values of the busyness factors.

public void setBusynessStream (RandomStream streamBusyness)

Changes the random stream used to generate the busyness factors for this arrival process.

Parameter

streamBusyness random number stream for the busyness factors.

Throws

NullPointerException if the parameter is null.

public static double[] getMLE (int[][] arrivals, int numObs, int

numPeriods)

Estimates the parameters of a Poisson-gamma arrival process from the number of arrivals
in the array arrivals. Element arrivals[i][p] corresponds to the number of arrivals on
day i during period p, where i = 0, . . . , n − 1, and p = 0, . . . , P − 1, with n = numObs,
and P = numPeriods. This method estimates αG,p and λp independently for each period,
assuming that the number of arrivals in that period follows the negative binomial distribution
with first parameter αG,p. The returned array contains (αG,0, λ0, . . . , αG,P−1, λP−1).

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

112 PoissonGammaArrivalProcess March 4, 2014

Parameters

arrivals the number of arrivals during each day and period.

numObs the number of days.

numPeriods the number of periods.

Returns the estimated αj and λj parameters.

public static PoissonGammaArrivalProcess getInstanceFromMLE

(PeriodChangeEvent pce, ContactFactory factory, RandomStream stream,

RandomStream streamBusyness, int[][] arrivals, int numObs, int numPeriods)

Constructs a new arrival process with gamma arrival rates estimated by the maximum likeli-
hood method based on the numObs observations in array arrivals. Element arrivals[i][p]
corresponds to the number of arrivals on day i during period p, where i = 0, . . . , n − 1,
p = 0, . . . , P − 1, with n = numObs, and P = numPeriods. The parameters of the gamma-
distributed arrival rates during the main periods are estimated using getMLE (int[][],
int, int). For the preliminary period, the parameters of the first main period are used.
For the wrap-up periods, both parameters are set to 0; as a result, the arrival rate is always
0 during the wrap-up period.

Parameters

pce the period-change event marking the end of periods.

factory the contact factory used to create contacts.

stream random stream to generate arrival times.

streamBusyness random stream to generate busyness factors.

arrivals the number of arrivals.

numObs the number of days.

numPeriods the number of periods.

Returns the constructed arrival process.

public static double[] getMLEBB (int[][] arrivals, int numObs, int

numPeriods, int numMC,

ArrivalProcessParams arrPar)

Estimates the parameters of a Poisson-gamma arrival process for the case of a global busyness
factor for the day, and specific busyness factors for each period of the day, from the number
of arrivals in the array arrivals. Element arrivals[i][p] corresponds to the number
of arrivals on day i during period p, where i = 0, . . . , n − 1, and p = 0, . . . , P − 1, with
n = numObs, and P = numPeriods. This method estimates and returns the parameters of
the gamma distribution αG,p and the average rate λp for each period. The returned array
contains (αG,0, λ0, . . . , αG,P−1, λP−1). The global busyness factor is also estimated. This is
the case where the arrivals are determined from B ∗Bj ∗ λj .

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 4, 2014 PoissonGammaArrivalProcess 113

Parameters

arrivals the number of arrivals during each day and period.

numObs the number of days.

numPeriods the number of periods.

numMC the number of MonteCarlo samples used in the estimation.

arrPar other parameters of the arrival process.

Returns the estimated gamma and lambda parameters of this process.

114 March 4, 2014

PoissonGammaNortaRatesArrivalProcess

Represents a doubly-stochastic Gamma-Poisson process with piecewise-constant randomized
correlated arrival rates. The base arrival rates λp are constant during each period, but they
are not deterministic: for period p, the base rate of the Poisson process is defined as a
correlated gamma random variable. The marginal distribution of the rate is gamma with
shape parameter αG,p, and scale parameter λG,p (mean αG,p/λG,p). The correlation structure
is modelled using Normal copula model with positive definite correlation matrix Σ having
elements in [−1, 1]. If αG,p or λG,p are 0, the resulting arrival rate during period p is always
0. As with the Poisson process with deterministic arrival rates, the generated base arrival
rates are multiplied by a busyness factor B to get the arrival rates. Because the values of
λ(t) are generated once for a replication, in the init() method, not calling this method
before the simulation starts could lead to unpredictable arrival rates.

package umontreal.iro.lecuyer.contactcenters.contact;

public class PoissonGammaNortaRatesArrivalProcess extends

PiecewiseConstantPoissonArrivalProcess

Constructor

public PoissonGammaNortaRatesArrivalProcess (PeriodChangeEvent pce,

ContactFactory factory,

double[] galphas, double[]

glambdas, double[][] CorrMtx,

RandomStream stream,

RandomStream busynessStream)

Constructs a new Poisson-gamma arrival process using factory to instantiate contacts. For
each period p, the parameters of the gamma rate are given in galphas[p] and glambdas[p].
The random stream stream is used to generate the uniforms for the exponential times
whereas the stream busynessStream is used to generate the gamma rates.

Parameters

pce the period-change event associated with this object.

factory the factory creating contacts for this generator.

galphas the αG,p parameters of the gamma variates.

glambdas the λG,p parameters of the gamma variates.

CorrMtx the correlation matrix of the Normal copula model for rates.

stream random number stream for the exponential variates.

busynessStream random number stream for the busyness factor.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 4, 2014 PoissonGammaNortaRatesArrivalProcess 115

Throws

IllegalArgumentException if there is not one rate for each period.

NullPointerException if any argument is null.

Methods

public double[] getGammaAlphas()

Returns the parameters αG,p for the gamma rates.

Returns the αG,p parameters for this object.

public double[] getGammaLambdas()

Returns the λp parameters for the arrivals rates.

Returns the λp parameters.

public void setGammaParams (double[] galphas, double[] glambdas)

Sets the αG,p and λp parameters for the gamma arrival rates to galphas and glambdas,
respectively.

Parameters

galphas the new αG,p parameters.

glambdas the new λp parameters.

Throws

NullPointerException if the given arrays are null.

IllegalArgumentException if the length of the given arrays does not correspond to at
least the number of periods.

public double[][] getSigma()

Returns the correlation matrix associated with this arrival process.

Returns the associated correlation matrix.

public void setSigma (double[][] CorrMtx)

Sets the associated correlation matrix to CorrMtx.

Parameter

CorrMtx the new sigma correlation matrix.

116 PoissonGammaNortaRatesArrivalProcess March 4, 2014

Throws

NullPointerException if CorrMtx is null.

IllegalArgumentException if CorrMtx is not a P × P symmetric and positive-definite
matrix.

public RandomStream getBusynessStream()

Returns the random stream used to generate the busyness factors for the Poisson arrival
process.

Returns the random stream for the values of λp.

public void setBusynessStream (RandomStream busynessStream)

Changes the random stream used to generate the busyness factors for the Poisson arrival
process.

Parameter

busynessStream random number generator for the λp values.

Throws

NullPointerException if the parameter is null.

public static double[] getMLE (int[][] arrivals, int numObs, int

numPeriods, int numMC, CorrelationFit fit,

double[][] corr)

Estimates the parameters of a Poisson-gamma-norta-rates arrival process from the number
of arrivals in the array arrivals. Element arrivals[i][p] corresponds to the number
of arrivals on day i during period p, where i = 0, . . . , n − 1, and p = 0, . . . , P − 1, with
n = numObs, and P = numPeriods. This method estimates and returns the parameters
of the gamma distribution αG,p and the average rate λp for each period. The returned
array contains (αG,0, λ0, . . . , αG,P−1, λP−1). It also estimates the correlation matrix using
algorithm fit, and returns it in corr. The memory for the numPeriods x numPeriods
elements of matrix corr must be reserved outside this method before calling it.

Parameters

arrivals the number of arrivals during each day and period.

numObs the number of days.

numPeriods the number of periods.

numMC the number of MonteCarlo samples used in the estimation.

fit type of fit used to compute the correlation matrix.

corr the estimated correlation matrix is returned in corr.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 4, 2014 PoissonGammaNortaRatesArrivalProcess 117

Returns the estimated gamma and lambda parameters of this process.

public static PoissonGammaNortaRatesArrivalProcess getInstanceFromMLE

(PeriodChangeEvent pce, ContactFactory factory, RandomStream stream,

RandomStream busynessStreams, int[][] arrivals, int numObs, int

numPeriods, int numMC, CorrelationFit fit)

Constructs a new arrival process with gamma arrival rates estimated by the maximum likeli-
hood method based on the numObs observations in array arrivals. Element arrivals[i][p]
corresponds to the number of arrivals on day i during period p, where i = 0, . . . , n − 1,
p = 0, . . . , P − 1, n = numObs, and P = numPeriods. The parameters of the gamma-
distributed arrival rates during the main periods are estimated using getMLE (int[][],
int, int, int, CorrelationFit, double[][]). For the preliminary period, the param-
eters of the first main period are used. For the wrap-up periods, both parameters are set to
0; as a result, the arrival rate is always 0 during the wrap-up period.

Parameters

pce the period-change event marking the end of periods.

factory the contact factory used to create contacts.

stream the random stream to generate arrival times.

busynessStreams the random stream to generate busyness factors.

arrivals the number of arrivals.

numObs the number of days.

numPeriods the number of periods.

numMC the number of MonteCarlo samples used in the estimation.

fit type of fit used to compute the correlation matrix.

Returns the constructed arrival process.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

118 March 4, 2014

GammaParameterEstimator

This class implements the parameter estimation for the doubly Gamma-Poisson process. The
rate Ti,j of this process consists of three multiplicative contributions: (i) the deterministic
piece-wise constant rate λi, (ii) the busyness factor for the day, βj, (iii) the business factor for
the sub-period of the day, Bi,j. The input data are counts observed for I sub-periods of the
day during J days. We assume that the rate follows Ti,j = λiβjBi,j,∀i = 1 . . . I, j = 1 . . . J
and input data Yi,j ∼ Poisson(Ti,j) follow the Poisson distribution conditional on the rates.
The busyness factor for the day follows Gamma distribution with parameters Q and Q. The
busyness factor follows the Gamma distribution with parameters R and R. The busyness
factors are assumed to be independent across days and sub-intervals of the day. The class im-
plements two estimators of the process parameters: the Moment Matching Estimator (MME)
in the method getMMEdoublyGamma() and the Maximum Likelihood Estimator (MLE) in the
method getMLEdoublyGamma(). The MME is a suboptimal, but simple and fast estimator
based on matching the theoretical means, variances and covariances of the process with their
empirical counterparts. The MLE is a statistically optimal estimator with greater accuracy
than the MME, but it is less computationally efficient. The MLE is implemented using the
stochastic trust-region Gauss-Newton algorithm. The MLE estimator first calls the MME es-
timator and uses it as a starting point for the optimization. The startGradUncTrustRegion
(double[]) method uses common random numbers to track changes in the cost function
and call of this method with option ”CostOnly” must, in general, be always preceded by the
call of this method without this option in order to provide meaningful results.

package umontreal.iro.lecuyer.contactcenters.contact;

public class GammaParameterEstimator

Constructors

public GammaParameterEstimator (int[][] data, int N, int P)

Constructs a new estimator object with a given set of input data

Parameters

data the matrix of input data Yi,j with N rows corresponding to N observations and P
columns corresponding to P sub-periods in the day.

N the number of observations

P the number of sub-periods in the day

public GammaParameterEstimator (int[][] data, int N, int P, int M)

Constructs a new estimator object with a given set of input data and default seed for the
Gamma random variable generators.

March 4, 2014 GammaParameterEstimator 119

Parameters

data the matrix of input data Yi,j with N rows corresponding to N observations and P
columns corresponding to P sub-periods in the day.

N the number of observations

P the number of sub-periods in the day

M the number of Monte-Carlo samples used in the evaluation of stochastic derivatives and
the cost function

public GammaParameterEstimator (int[][] data, int N, int P, int M, long[]

Seed)

Constructs a new estimator object with a given set of input data and a user defined seed for
the Gamma random variable generators.

Parameters

data the matrix of input data Yi,j with N rows corresponding to N observations and P
columns corresponding to P sub-periods in the day.

N the number of observations

P the number of sub-periods in the day

M the number of Monte-Carlo samples used in the evaluation of stochastic derivatives and
the cost function

Seed is the vector of 6 integers. The first 3 values of the seed must all be less than m1 =
4294967087, and not all 0; and the last 3 values must all be less than m2 = 4294944443,
and not all 0.

Methods

public double[] getMMEdoublyGamma()

Estimates the parameters of a doubly Gamma Poisson-Gamma arrival process that has both
busyness factor for the day and the busyness factor for the sub-period of the day, both fol-
lowing the Gamma distribution, from the number of arrivals in the array arrivals using
method of moments. The day-specific busyness factor follows the Gamma(Q,Q) distribu-
tion, the sub-period-specific busyness factor follows the gamma(R,R) distribution. Element
arrivals[i][p] corresponds to the number of arrivals on day i during period p, where
i = 0, . . . , n − 1, and p = 0, . . . , P − 1, n = numObs, and P = numPeriods. If we fol-
low the notation introduced for PoissonGammaArrivalProcess, then this method estimates
αG,p, λG,p and the daily gamma busyness parameter. It is assumed that αG,p is a vector of
distinct values while all the entries of λG,p are the same and equal to R. The estimation
is based on matching the empirical first and second order moments of the distribution of
counts (mean, variance and covariance) with the analytical moments of the doubly Gamma
Poisson-Gamma arrival process distribution. The returned array of 2P +1 elements contains
(αG,0, λG,0, . . . , αG,P−1, λG,P−1), β0.

120 GammaParameterEstimator March 4, 2014

Returns the estimated gamma parameters.

public double[] getMMEdoublyGammaGeneral()

Estimates the parameters of a doubly Gamma Poisson-Gamma arrival process that has both
busyness factor for the day and the busyness factor for the sub-period of the day, both fol-
lowing the Gamma distribution, from the number of arrivals in the array arrivals using
method of moments. The day-specific busyness factor follows the Gamma(Q,Q) distribu-
tion, the sub-period-specific busyness factor follows the gamma(R,R) distribution. Element
arrivals[i][p] corresponds to the number of arrivals on day i during period p, where
i = 0, . . . , n − 1, and p = 0, . . . , P − 1, n = numObs, and P = numPeriods. If we follow
the notation introduced for PoissonGammaArrivalProcess, then this method estimates αG,p,
λG,p and the daily gamma busyness parameter. It is assumed that αG,p and λG,p are vectors
of distinct values. The estimation is based on matching the empirical first and second order
moments of the distribution of counts (mean, variance and covariance) with the analytical
moments of the doubly Gamma Poisson-Gamma arrival process distribution. The returned
array of 2P + 1 elements contains (αG,0, λG,0, . . . , αG,P−1, λG,P−1), β0.

Returns the estimated gamma parameters.

public double[] getMLEdoublyGamma()

Estimates the parameters of a doubly Gamma Poisson-Gamma arrival process that has
both busyness factor for the day and the busyness factor for the sub-period of the day,
both following the Gamma distribution, from the number of arrivals in the array arrivals
using maximum likelihood approach. It uses the trust region Gauss-Newton optimizer im-
plemented in startGradUncTrustRegion (double[]) and the stochastic approximation of
the likelihood function and its derivatives implemented in getLikelihoodDerivatives-
DoublyGamma (double[], double, double, String) in order to obtain the MLE. Before
launching the Gauss-Newton optimizer, this algorithm calls the getMMEdoublyGamma() in or-
der to get good initialization for the values of parameters. The output is formatted the same
way as it is done for the getMMEdoublyGamma(). If we follow the notation introduced for
PoissonGammaArrivalProcess, then this method estimates αG,p, λG,p and the daily gamma
busyness parameter. It is assumed that αG,p is a vector of distinct values while all the entries
of λG,p are the same and equal to R. Thus the returned array of 2P + 1 elements contains
(αG,0, . . . , αG,P−1, λG,0, . . . , λG,P−1, β0.

Returns the estimated gamma parameters.

public double[] getMLEdoublyGammaSpline()

Estimates the parameters of a doubly Gamma Poisson-Gamma arrival process that has
both busyness factor for the day and the busyness factor for the sub-period of the day,
both following the Gamma distribution, from the number of arrivals in the array arrivals
using maximum likelihood approach. It uses the trust region Gauss-Newton optimizer im-
plemented in startGradUncTrustRegion (double[]) and the stochastic approximation of
the likelihood function and its derivatives implemented in getLikelihoodDerivatives-
DoublyGamma (double[], double, double, String) in order to obtain the MLE. Before
launching the Gauss-Newton optimizer, this algorithm calls the getMMEdoublyGamma() in or-
der to get good initialization for the values of parameters. The output is formatted the same

March 4, 2014 GammaParameterEstimator 121

way as it is done for the getMMEdoublyGamma(). If we follow the notation introduced for
PoissonGammaArrivalProcess, then this method estimates αG,p, λG,p and the daily gamma
busyness parameter. It is assumed that αG,p is a vector of distinct values while all the entries
of λG,p are the same and equal to R. Thus the returned array of 2P + 1 elements contains
(αG,0, . . . , αG,P−1, λG,0, . . . , λG,P−1, β0.

Returns the estimated gamma parameters.

public double[] getLikelihoodDerivativesDoublyGamma (double[] Lam, double

R, double Q, String

OutType)

Calculates the values of the log-likelihood function and its derivatives for the doubly Gamma-
Poisson arrival process model. Element arrivals[i][p] corresponds to the number of
arrivals on day i during period p, where i = 0, . . . , I − 1, and p = 0, . . . , P − 1, I = numObs,
and P = numPeriods.

For the doubly Gamma-Poisson arrival process model the log-likelihood function does not
admit any closed form as it contains an integral over βj , the daily busyness factor. The
integral cannot be treated analytically. This integral is thus treated numerically via the
Monte-Carlo approach. The Monte-Calro approach uses numSamples samples for the eval-
uation of the integral. The Gamma distribution with both parameters equal to Q is taken
as the proposal distribution. The cost function and all the derivatives are thus approxi-
mated stochastically. There is an option to return only the value of the cost function (the
log-likelihood function) by assigning to OutType the string ”CostOnly”. In this case the
algorithm uses the random numbers common with the ones that were used to evaluate the
derivatives last time the function was called. The importance sampling is used to compen-
sate for possible change of integration measure (that may arise due to change in the value
of Q between calls). This feature is used by the trust region algorithm for determining the
quality of the trust region and for regulating the step size of the optimization. The common
random numbers approach reduces the effects of noise on the step size regulation.

The returned array of 2 ∗ (P + 2) + 1 elements contains

1) The value of the cost function
2) P values of first order derivatives for deterministic rates
3) Derivative with respect to R, sub-period Gamma rate
4) Derivative with respect to Q, daily Gamma rate
5) P values of second order derivatives for deterministic rates
6) Second order derivative with respect to R, sub-period Gamma rate
7) Second order derivative with respect to Q, daily Gamma rate

Parameters

Lam initial values of base rates.

R initial value of the Gamma distribution parameter for the sub-period of the day business
factor.

Q initial value of the Gamma distribution parameter for the daily business factor.

OutType the string controlling output options

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

122 GammaParameterEstimator March 4, 2014

Returns the values of the log-likelihood function and its first and second order derivatives.

public double[][] getLikelihoodDerivativesDoublyGammaSpline

(double[] Lam, double[] R, double Q, String OutType)

Calculates the values of the log-likelihood function and its derivatives for the doubly Gamma-
Poisson arrival process model. Element arrivals[i][p] corresponds to the number of
arrivals on day i during period p, where i = 0, . . . , I − 1, and p = 0, . . . , P − 1, I = numObs,
and P = numPeriods.

For the doubly Gamma-Poisson arrival process model the log-likelihood function does not
admit any closed form as it contains an integral over βj , the daily busyness factor. The
integral cannot be treated analytically. This integral is thus treated numerically via the
Monte-Carlo approach. The Monte-Calro approach uses numSamples samples for the eval-
uation of the integral. The Gamma distribution with both parameters equal to Q is taken
as the proposal distribution. The cost function and all the derivatives are thus approxi-
mated stochastically. There is an option to return only the value of the cost function (the
log-likelihood function) by assigning to OutType the string ”CostOnly”. In this case the
algorithm uses the random numbers common with the ones that were used to evaluate the
derivatives last time the function was called. The importance sampling is used to compen-
sate for possible change of integration measure (that may arise due to change in the value
of Q between calls). This feature is used by the trust region algorithm for determining the
quality of the trust region and for regulating the step size of the optimization. The common
random numbers approach reduces the effects of noise on the step size regulation.

The returned 2D array Output of P × 7 elements contains

1) Output[0][0] The value of the cost function
2) Output[:][1] (second column) P values of first order derivatives with respect to deterministic rates
3) Output[:][2] P values of second order derivatives with respect to deterministic rates
4) Output[:][3] P values of first order derivatives with respect to R_p, sub-period Gamma rate
5) Output[:][4] P values of second order derivatives with respect to R_p, sub-period Gamma rate
6) Output[0][5] Derivative with respect to Q, daily Gamma rate
7) Output[0][6] Second order derivative with respect to Q, daily Gamma rate

Parameters

Lam initial values of base rates.

R initial value of the Gamma distribution parameter for the sub-period of the day business
factor.

Q initial value of the Gamma distribution parameter for the daily business factor.

OutType the string controlling output options

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

March 4, 2014 GammaParameterEstimator 123

Returns the 2D array containing values of the log-likelihood function and its first and
second order derivatives.

public double[] startGradUncTrustRegionSpline (double[] SolInit)

Implements the trust region Gauss-Newton maximizer of the likelihood of the doubly
Gamma-Poisson process. In this algorithm the expressions for the second order deriva-
tives (or their approximations having reduced number of terms) are used as pre-scalers for
the gradients. Moreover, there is also a set of step size regulators that reflect the size of
the trust region, the region in which we believe our model of the cost function (the locally
linear model based on the first order Taylor expansion of the cost function) is correct. Step
size regulators determine the magnitude of the step at each optimization iteration. We have
three step size regulators: for the rates λi, for R and for Q. By choosing three different
step size regulators for each group of parameters we make sure that we can choose optimal
gradient scaling for each group of parameters. This compensates for the fact that the second
order derivatives (or their approximations) provide suboptimal scaling of the gradient by
either over- or underestimating the necessary scale of gradient step. The factor by which the
scaling is under- or overestimated is typically different for different groups of parameters.
Finally, because our optimization uses stochastic approximation of derivatives, there is some
noise in the gradients. To account for this fact we two methods could be used. First option
is the third scaling factor, the noise attenuator eta, which is a positive constant smaller
than one. In the case eta is smaller than 1, only a portion of the gradient is used during
each iteration. As the number of Monte-Carlo samples used to approximate the derivatives
reduces, the (absolute) value of the noise attenuator must also be reduced. The second op-
tion is to use the stochastic approximation approach with the step size reduction sequence
of the form t−α, where t is the iteration number and α is the number between 1/2 and 1.
In our implementation we have parameter pwr with default value 5/6 that determines the
speed of decay of the step sequence and is equivalent to α.

Parameter

SolInit the value of the solution at first iteration

Returns xiter the MLE estimator of the parameters of the doubly Gamma-Poisson pro-
cess

public void setTrustRegionMaxIterations (int Value)

Sets the maximum number of iterations in the trust region optimization algorithm

Parameter

Value maximum number of iterations in the trust region optimization algorithm

public void setTrustRegionQualBounds (double LowQualBound, double

HighQualBound)

Sets the lower and higher bounds on the quality metrics of the trust region. If the quality
metric has value lower than c0 then the size of the trust region (the step size regulator) will
be reduced. If the quality metric has value higher than c1 then the size of the trust region
(the step size regulator) will be increased.

124 GammaParameterEstimator March 4, 2014

Parameters

LowQualBound is the lower bound

HighQualBound is the higher bound

public void setTrustRegionMultipliers (double IncreaseMultiplier, double

DecreaseMultiplier)

Sets the multipliers that control the rate at which the step size regulator is increased (g1)
or decreased (g0). If the quality metric has value lower than c0 then the size of the trust
region (the step size regulator) is multiplied by g0. If the quality metric has value higher
than c1 then the size of the trust region (the step size regulator) will be multiplied by g1.
IncreaseMultiplier must be greater than 1, DecreaseMultiplier must be between 0 and 1.

Parameters

IncreaseMultiplier

DecreaseMultiplier

public void setTrustRegionTol (double Value)

Sets the threshold for the tolerance of the trust region optimization algorithm. If the differ-
ence between the updated and the previous values of the cost function is greater than this
value, algorithm stops and returns current values of parameters as a solution.

Parameter

Value the value of the stopping criterion

public void setTrustRegionNoiseAttenuator (double Value)

Sets the value of the noise attenuator for the trust region approach. The optimization
algorithm is based on stochastic derivatives. Because of this derivatives contain noise and to
reduce its adverse effects we use only portion of the gradient to during each update. As the
number of Monte-Carlo samples used to approximate the derivatives reduces, the (absolute)
value of the noise attenuator must also be reduced.

Parameter

Value the value of the noise attenuator

public void setTrustRegionInitBoundary (double Value)

Sets the initial size of the trust region (initial value of the step size regulator). This value
should be reasonably small to prevent the algorithm from making unreasonably large initial
steps at the beginning, when the optimal scaling for the gradients is not known. As the
optimization progresses, the step size regulator grows (if necessary) fast at the geometric
rate and the optimal scaling for the derivatives is quickly learnt.

Parameter

Value the initial value of the step size regulator.

public void setTrustRegionAnnealingPwr (double Value)

Sets the power law in the step size stochastic approximation annealing sequence.

March 4, 2014 GammaParameterEstimator 125

Parameter

Value

public void setSmoothingLambda (double lambda)

Sets the smoothing parameter for the use with the smoothing spline doubly gamma penalized
MLE.

Parameter

lambda smoothing parameter in the interval [0, 1]. When this parameter is equal to 1,
the smoothing spline is not used and shape parameters are assumed to be independent
across sub-periods. Default value 0.95.

public void setMovingWindowSize (int movWindSize)

Sets the number of sub-periods over which to average the MME estimate in getMMEdou-
blyGammaGeneral. Without averaging the MME estimates are too noisy. If we want no
averaging we can set movWindSize=1. Default value 5.

Parameter

movWindSize number of sub-periods over which to average the MME estimate.

public double[][] getOptimizationTrace()

Returns the the matrix of the optimization trace containing the evolution of parameters
during optimization iterations.

public double[] getPolyakAverage()

Calculates the estimates of the parameters based on the stochastic optimization framework
described by B T Polyak and A B Juditsky in ”Acceleration of Stochastic Approximation
by Averaging”, SIAM J Control Optim. 30(4) 838?855. For the proper use of this option
the trust region optimization algorithm must be configured correspondingly. In particular,
recommended settings for parameters are Rinit 0.1, eta 0.3 and 5/6.

Returns The average of the optimization trace over iterations.

public void estimateNortaRateParamsStochasticRootFinding

()

Estimates the parameters of the Gamma-Poisson NORTA model for rates using stochastic
root finding approach. It stores the estimated Gaussian copula correlation matrix in yGauss-
Corr, the estimated base rates in Qout and the parameter of the Gamma distribution in
LamOut. These quantities can be accessed using methods getNortaRateGaussCorr(), get-
NortaRateGammaShape() and getNortaRateGammaScale(). The parameters of the Gamma
distribution are estimated using method getNegBinMLE (int[], double). The entries of
the copula correlation matrix are estimated using method getNortaRhoStochasticRoot-
Finding (double, double[][], double).

public double[] getNegBinMLE (int[] X, double tole)

Calculates the MLEs of parameters of the negative binomial distribution.

126 GammaParameterEstimator March 4, 2014

Parameters

X vector of observed counts

tole parameter search tolerance for the binary search

Returns Array of size 2 containing MLEs of the parameters of the negative binomial
distribution. First element of the array is the MLE of the number of failures. Second
element of the returned array is the MLE of the success probability.

public double getLogNegBinDer (int[] X, double Xmean, double r)

Calculates the derivative of the log-likelihood function for the Negative binomial distribution.

Parameters

X data values

Xmean mean of the data values

r parameter of the negative binomial distribution (number of failures)

Returns derivative of the log-likelihood function for the Negative binomial distribution
with respect to parameter r.

public double getNortaRhoStochasticRootFinding (double rhoTarget, double[][]

NegBinParams, double

rhoInit)

Solves the problem of fitting the NORTA correlation coefficient to the empirical Spearman
correlation coefficient of counts in the Gamma-Poisson copula model using stochastic root
finding approach.

Parameters

rhoTarget the empirically observed Spearman correlation coefficient of counts in the
Gamma-Poisson copula model

NegBinParams estimated parameters of the marginal distribution, which is Negative Bino-
mial in the case of Gamma-Poisson copula model

rhoInit initial value of the NORTA correlation coefficient. Typically, rhoInit = rhoTarget

Returns Fitted NORTA correlation coefficient

public double[] getNortaRateGammaShape()

Returns the estimated vector of αG parameters of the Gamma distribution in the compound
Gamma-Poisson NORTA model for rates. The definition of vector αG follows that introduced
in PiecewiseConstantPoissonArrivalProcess so that the base rate in subperiod p is equal
to αG,p/λG,p.

March 4, 2014 GammaParameterEstimator 127

Returns the estimated vector of αG

public double[] getNortaRateGammaScale()

Returns the estimated vector of λG parameters of the Gamma distribution in the compound
Gamma-Poisson NORTA model for rates. The definition of vector λG follows that introduced
in PiecewiseConstantPoissonArrivalProcess so that the base rate in subperiod p is equal
to αG,p/λG,p.

Returns the estimated vector of λG

public double[][] getNortaRateGaussCorr()

Returns the estimated copula correlation matrix for the Gamma-Poisson NORTA model for
rates.

Returns the estimated copula correlation matrix

public double[][] getNortaRateGaussCorrCorrected()

Returns the estimated and corrected copula correlation matrix for the Gamma-Poisson
NORTA model for rates. The estimated correlation matrix, which is not necessarily pos-
itive definite is transformed into a positive definite matrix using the POSDEF algorithm
described in [6].

Returns the estimated and corrected copula correlation matrix

public double getNortaRateGaussCorrFitMarkovSingleRho()

Fits the single ρ Markov linear model rj = bj to the estimated copula correlation matrix for
the Gamma-Poisson NORTA model for rates.

Returns b

public double[] getNortaRateGaussCorrFitGeneralLinear()

Fits the general linear model rj = abj + c to the estimated copula correlation matrix for the
Gamma-Poisson NORTA model for rates. Returns a vector of length 3 with parameters a,
b and c.

Returns vector [a, b and c]

128 March 4, 2014

DirichletCompoundArrivalProcess

Represents a generalization of the non-homogeneous Poisson process where the arrival rates
are generated from a Dirichlet compound negative multinomial distribution [16]. As proven in
[3], if the arrival rate of a Poisson process is a piecewise-constant function of the simulation
time given by λ(t) = Bλp(t), B being a gamma-distributed busyness factor with shape
parameter γ, the distribution of the vector (A1, . . . , AP) giving the number of arrivals in
each main period is the negative multinomial with parameters (γ, ρ1, . . . , ρP+1) [10, page
292], where

ρp =
λp

1 +
∑P

j=1 λj
, (1)

for p = 1, . . . , P , and ρP+1 = 1−
∑P

j=1 ρj.

This arrival process generalizes the previous process by modeling A = (A1, . . . , AP) with
a Dirichlet compound negative multinomial distribution [16] instead of a negative multi-
nomial. In this model, the user specifies γ as well as α1, . . . , αP+1. At the beginning of
each replication, when base arrival rates are needed, the vector (ρ1, . . . , ρP+1) is generated
from the Dirichlet distribution with parameters (α1, . . . , αP+1), and the base arrival rates
λ1, . . . , λP are determined by solving (1). This results in λp = ρp/ρP+1. During preliminary
and wrap-up periods, the base arrival rate is set to 0.

The inter-arrival times are generated using the rates Bλp, where B is a busyness given by
the user. Note that this variability factor should be gamma-distributed with shape parameter
γ and scale parameter 1 to remain consistent with the Dirichlet compound model.

package umontreal.iro.lecuyer.contactcenters.contact;

public class DirichletCompoundArrivalProcess extends

PiecewiseConstantPoissonArrivalProcess

Constructor

public DirichletCompoundArrivalProcess (PeriodChangeEvent pce,

ContactFactory factory, double[]

alphas, RandomStream stream,

RandomStream streamRates)

Constructs a new Dirichlet compound Poisson arrival process. The constructed process
uses the period-change event pce, creates contacts using the factory factory, and uses
the Dirichlet parameters alphas. The random stream stream is used for the uniforms for
inter-arrival times, and streamRates is used for Dirichlet.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 4, 2014 DirichletCompoundArrivalProcess 129

Parameters

pce the period-change event associated with this object.

factory the factory creating contacts for this generator.

alphas the values of the αp parameters.

stream the random number stream for the exponential variates.

streamRates the random number stream for the Dirichlet compound arrival rates.

Throws

IllegalArgumentException if the number of main periods is not alphas.length - 1, or
if one αp value is negative or 0.

NullPointerException if any argument is null.

Methods

public double getAlpha (int p)

Returns the value of the αp parameter for the Dirichlet distribution.

Parameter

p the index of the parameter.

Returns the value of the parameter.

public void setAlphas (double[] alphas)

Sets the Dirichlet parameters αp for this object.

Parameter

alphas a new vector of parameters.

Throws

IllegalArgumentException if the length of alphas is smaller than P + 1, where P is the
number of main periods, or if one or more αp values are negative or 0.

public RandomStream getRateStream()

Returns the random stream used to generate the rates for the Poisson arrival process.

Returns the random stream for the values of λp.

public void setRateStream (RandomStream streamRates)

Changes the random stream used to generate the rates for the Poisson arrival process to
streamRates.

Parameter

streamRates the random number generator for the λp values.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

130 DirichletCompoundArrivalProcess March 4, 2014

Throws

NullPointerException if the parameter is null.

public static double[] getMLE (int[][] arrivals, int numObs, int

numPeriods)

Estimates the parameters of a Dirichlet compound negative multinomial arrival process
with a busyness factor following the gamma(γ, 1) distribution from the number of arrivals
in the array arrivals. Element arrivals[i][p] corresponds to the number of arrivals
on day i during period p, where i = 0, . . . , n − 1, and p = 0, . . . , P − 1, n = numObs,
and P = numPeriods. This returns the αp Dirichlet parameters, for P = 0, . . . , P , and
stores the gamma busyness parameter in PiecewiseConstantPoissonArrivalProcess.s
bgammaParam.

Parameters

arrivals the number of arrivals during each day and period.

numObs the number of days.

numPeriods the number of periods.

Returns the estimated Dirichlet parameters.

public static DirichletCompoundArrivalProcess getInstanceFromMLE

(PeriodChangeEvent pce, ContactFactory factory, RandomStream stream,

RandomStream streamRates, int[][] arrivals, int numObs, int numPeriods)

Constructs a new arrival process with parameters estimated by the maximum likelihood
method based on the numObs observations in array arrivals. Element arrivals[i][p]
corresponds to the number of arrivals on day i during period p, where i = 0, . . . , n − 1,
p = 0, . . . , P − 1, n = numObs, and P = numPeriods. The number of arrivals is considered
to follow the Dirichlet compound negative multinomial distribution, and the γ parameter
for the gamma busyness factor is stored in PiecewiseConstantPoissonArrivalProcess.
s bgammaParam.

Parameters

pce the period-change event marking the end of periods.

factory the contact factory used to create contacts.

stream the random stream to generate arrival times.

streamRates the random stream to generate Dirichlet vectors from.

arrivals the number of arrivals.

numObs the number of days.

numPeriods the number of periods.

Returns the constructed arrival process.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 4, 2014 131

PoissonUniformArrivalProcess

This arrival process can be used when the number of arrivals per period Ap is known (when
B = 1). By default, for each period p, A∗p = round(BAp) uniforms are generated and sorted
in increasing order to get the inter-arrival times, supposing we have a Poisson process with
stationary increments. Because this algorithm requires the duration of each period, arrivals
are not allowed during the wrap-up period, which has a random duration not known at the
time arrivals are generated. The algorithm for generating arrival times can be customized
by overriding computeArrivalTimes(). The number of arrivals, constant by default, can
also be changed between replications.

package umontreal.iro.lecuyer.contactcenters.contact;

public class PoissonUniformArrivalProcess extends ContactArrivalProcess

Field

protected DoubleArrayList times

Array list containing the arrival times of contacts.

Constructor

public PoissonUniformArrivalProcess (PeriodChangeEvent pce, ContactFactory

factory, int[] arrivals, RandomStream

stream)

Constructs a new arrival process with known number of arrivals in each period. The con-
structed process uses period-change event pce, contact factory factory, mean number of
arrivals arrivals[p] in period p, and random number stream stream to generate random
values.

Parameters

pce the period-change event defining the periods.

factory the contact factory used to create contacts.

arrivals the mean number of arrivals in each period.

stream the random number stream for the uniforms.

Throws

IllegalArgumentException if there is not a mean number of arrivals for each period.

NullPointerException if any argument is null.

http://acs.lbl.gov/software/colt/api/cern/colt/list/DoubleArrayList.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

132 PoissonUniformArrivalProcess March 4, 2014

Methods

public RandomStream getStream()

Returns the random number stream used to generate uniforms.

Returns the associated random number stream.

public void setStream (RandomStream stream)

Sets the random number stream to stream for generating uniforms.

Parameter

stream the new random number stream.

Throws

NullPointerException if stream is null.

public PeriodChangeEvent getPeriodChangeEvent()

Returns the period-change event associated with this object.

Returns the associated period-change event.

public double getArrivalRate (double st, double et)

Computes the arrival rate using the period-change event returned by getPeriodChange-
Event() to determine the boundaries of periods, and the arrival rates returned by get-
ArrivalRate (int).

public double getExpectedArrivalRate (double st, double et)

Computes the expected arrival rate using the period-change event returned by getPeriod-
ChangeEvent() to determine the boundaries of periods, and the expected arrival rates re-
turned by getExpectedArrivalRate (int).

public int[] getArrivals()

Returns the number of arrivals for each period.

Returns the array of number of arrivals.

public void setArrivals (int[] arrivals)

Sets the number of arrivals in each period to arrivals.

Parameter

arrivals the number of arrivals.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 4, 2014 PoissonUniformArrivalProcess 133

Throws

NullPointerException if the array is null.

IllegalArgumentException if the length of the given array does not correspond to the
number of periods as defined by getPeriodChangeEvent().

protected void computeArrivalTimes()

This is called by init() to compute the arrival times based on the number of arrivals in each
period. The arrival times must be stored in the array list times, which is empty at the time
the method is called. The arrival times in the list are assumed to be sorted in increasing
order after the method returns. The method should use the random stream returned by
getStream() to generate the random numbers.

By default, for each period p = 0, . . . , P (preliminary and main periods), this generates A∗p
uniforms in [tp−1, tp), where t−1 = 0, Ap is the expected number of arrivals in period p, and
tp is the ending time of period p. The generated arrival times are then sorted. If B = 1,
A∗p = Ap, otherwise A∗p = round(ApB).

134 March 4, 2014

FixedCountsArrivalProcess

Represents an arrival process in which the numbers of arrivals per-period Cp (the counts)
are given (in a file or directly). A0 and AP+1, the number of arrivals during the preliminary
and the wrap-up periods, respectively, are always 0 for this process. The busyness factor is
always 1.

package umontreal.iro.lecuyer.contactcenters.contact;

public class FixedCountsArrivalProcess extends PoissonUniformArrivalProcess

Constructor

public FixedCountsArrivalProcess (PeriodChangeEvent pce, ContactFactory

factory, int[] counts, RandomStream

stream)

Constructs a new Poisson arrival process conditional on the number of arrivals being given
in each period. With period-change event pce, contact factory factory, number of arrivals
in each period arrivals, and random number stream stream.

Parameters

pce the period-change event defining the periods.

factory the contact factory instantiating contacts.

counts the number of arrivals in each period.

stream the random number stream for uniform arrival times.

Throws

NullPointerException if one argument is null.

IllegalArgumentException if the length of arrivals do not correspond to number of
main periods P .

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 4, 2014 135

DirichletArrivalProcess
Represents an arrival process where the number of arrivals are spread in periods using a
Dirichlet distribution [3]. Let’s define the vector of ratios

Q ≡ (Q1, . . . ,QP) = (A1/A, . . . , AP/A),

where Ap denotes the number of arrivals during main period p and

A =
P∑
p=1

Ap

is the total number of arrivals. The number of arrivals during the preliminary and the
wrap-up periods, A0 and AP+1 respectively, are always 0 for this process.

At the beginning of each replication, A is generated from a probability distribution such
as gamma. A vector Q is then generated from a Dirichlet distribution [10] with parameters
(α1, . . . , αP). Each component of Q is multiplied with A to get Ã before the vector A is
obtained by rounding each component of Ã to the nearest integer.

Since per-period numbers of arrivals are generated directly rather than through arrival
rates, this process does not arise as a Poisson arrival process. However, inter-arrival times
are generated as if the A∗p = round(BAp) were Poisson variates. As a result, for each main
period, the arrival process generates A∗p uniforms ranging from the beginning to the end of
the period, and the uniforms are sorted to get inter-arrival times.

package umontreal.iro.lecuyer.contactcenters.contact;

public class DirichletArrivalProcess extends PoissonUniformArrivalProcess

Constructor

public DirichletArrivalProcess (PeriodChangeEvent pce, ContactFactory

factory, double[] alphas, RandomStream

stream, RandomVariateGen agen)

Constructs a new Dirichlet arrival process with period-change event pce, contact factory
factory, Dirichlet parameters alphas, random number stream stream, and generator agen
for the number of arrivals.

Parameters

pce the period change event.

factory the contact factory instantiating contacts.

alphas the parameters of the Dirichlet distribution.

stream the random number stream for Dirichlet vectors and uniform arrival times.

agen the random variate generator for the number of arrivals.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html

136 DirichletArrivalProcess March 4, 2014

Throws

IllegalArgumentException if there is not an α value for each main period, or if one α
value is negative or 0.

NullPointerException if one argument is null.

Methods

public RandomVariateGen getNumArrivalsGenerator()

Returns the random variate generator used for the total number of arrivals A.

Returns the random variate generator for the total number of arrivals.

public void setNumArrivalsGenerator (RandomVariateGen agen)

Changes the random variate generator for the number of arrivals to agen.

Parameter

agen the new random variate generator for the number of arrivals.

Throws

NullPointerException if the parameter is null.

public double getAlpha (int p)

Returns the value of the αp parameter for the Dirichlet distribution.

Parameter

p the index of the parameter.

Returns the value of the parameter.

public void setAlphas (double[] alphas)

Sets the Dirichlet parameters αp for this object.

Parameter

alphas a new vector of parameters.

Throws

IllegalArgumentException if the length of alphas does not correspond to the number
of main periods or if one of the α parameter is negative or 0.

NullPointerException if alphas is null.

public void initWithFixedA (double a)

Initializes the number of arrivals with a fixed A a.

Parameter

a the total number of arrivals.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html

March 4, 2014 DirichletArrivalProcess 137

Throws

IllegalArgumentException if a is negative or 0.

public static double[] getMLE (int[][] arrivals, int numObs, int

numPeriods)

Estimates the Dirichlet parameters of an arrival process from the number of arrivals in
the array arrivals. Element arrivals[i][p] corresponds to the number of arrivals on
day i during period p, where i = 0, . . . , n − 1, and p = 0, . . . , P − 1, n = numObs, and
P = numPeriods. This method computes ρi,p = Xi,p/Yi where Xi,p is the number of arrivals
on day i during period p, and Yi is the total number of arrivals during day i. The returned
array contains the Dirichlet parameters α̂0, . . . , α̂P−1 estimated by assuming that the ratios
ρi,p follow the Dirichlet distribution.

Parameters

arrivals the number of arrivals during each day and period.

numObs the number of days.

numPeriods the number of periods.

Returns the estimated Dirichlet parameters.

public static DirichletArrivalProcess getInstanceFromMLE

(PeriodChangeEvent pce, ContactFactory factory, RandomStream stream,

RandomVariateGen agen, int[][] arrivals, int numObs, int numPeriods)

Constructs a new arrival process with Dirichlet parameters estimated by the maximum likeli-
hood method based on the numObs observations in array arrivals. Element arrivals[i][p]
corresponds to the number of arrivals on day i during period p, where i = 0, . . . , n − 1,
p = 0, . . . , P − 1, n = numObs, and P = numPeriods. The created arrival process uses the
random variate generator agen to generate the total number of arrivals for each day while
the Dirichlet parameters are estimated using getMLE (int[][], int, int).

Parameters

pce the period-change event marking the end of periods.

factory the contact factory used to create contacts.

stream the random stream to generate arrival times.

agen the random variate generator for A.

arrivals the number of arrivals.

numObs the number of days.

numPeriods the number of periods. parameter is estimated in addition to the arrival rates.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html

138 DirichletArrivalProcess March 4, 2014

Returns the constructed arrival process.

public static DirichletArrivalProcess getInstanceFromMLE

(PeriodChangeEvent pce, ContactFactory factory, RandomStream stream,

RandomStream streamArr, Class<? extends Distribution> aDistClass, int[][]

arrivals, int numObs, int numPeriods)

Similar to getInstanceFromMLE (PeriodChangeEvent, ContactFactory, RandomStream,
RandomVariateGen, int[][], int, int), but also estimates the parameters for A. This
method accepts a class object aDistClass which is the guessed probability distribution of
A. It uses DistributionFactory to get an instance of the distribution (with estimated
parameters), and constructs the arrival process by using this distribution, and the Dirichlet
parameters estimated by getMLE (int[][], int, int).

Parameters

pce the period-change event marking the end of periods.

factory the contact factory used to create contacts.

stream the random stream to generate arrival times.

streamArr the random stream for A.

aDistClass the class of the probability distribution of A.

arrivals the number of arrivals.

numObs the number of days.

numPeriods the number of periods. parameter is estimated in addition to the arrival rates.

Returns the constructed arrival process.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/probdist/Distribution.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/probdist/DistributionFactory.html

March 4, 2014 139

NORTADrivenArrivalProcess

Represents an arrival process in which the numbers of arrivals per-period are correlated
negative binomial random variables, generated using the NORTA method. To generate the
number of arrivals, the process first obtains a vector X = (X1, . . . , XP) from the multivariate
normal distribution with mean vector 0 and covariance matrix Σ. Assuming that Σ is a
correlation matrix, i.e., each element is in [−1, 1] and 1’s are on its diagonal, the vector of
uniforms U = (Φ(X1), . . . ,Φ(XP)) is obtained, where Φ(x) is the distribution function of a
standard normal variable. For main period p, the marginal probability distribution for Ap is
assumed to be negative binomial with parameters γp and ρp, γp being a positive number and
0 < ρp < 1. A0 and AP+1, the number of arrivals during the preliminary and the wrap-up
periods, respectively, are always 0 for this process.

Since the numbers of arrivals per-period are generated directly, this process does not
arise as a Poisson arrival process. However, inter-arrival times are generated as if A∗p =
round(BAp) was a Poisson variate. As a result, for each main period, the arrival process
generates A∗p uniforms ranging from the beginning to the end of the period, and the uniforms
are sorted to get inter-arrival times.

package umontreal.iro.lecuyer.contactcenters.contact;

public class NORTADrivenArrivalProcess extends PoissonUniformArrivalProcess

Constructor

public NORTADrivenArrivalProcess (PeriodChangeEvent pce, ContactFactory

factory, DoubleMatrix2D sigma, double[]

gammas, double[] probs, RandomStream

stream)

Constructs a new NORTA-driven arrival process with period-change event pce, contact
factory factory, correlation matrix sigma, negative binomial parameters (gammas[p],
probs[p]), and random number stream stream.

Parameters

pce the period-change event defining the periods.

factory the contact factory instantiating contacts.

sigma the correlation matrix.

gammas the γ parameters for negative binomials.

probs the ρ parameters for negative binomials.

stream the random number stream for correlated negative binomial vectors and uniform
arrival times.

http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

140 NORTADrivenArrivalProcess March 4, 2014

Throws

NullPointerException if one argument is null.

IllegalArgumentException if the dimensions of the correlation matrix does not corre-
spond to P × P , or the length of ns or probs do not correspond to number of main
periods P .

Methods

public DoubleMatrix2D getSigma()

Returns the correlation matrix associated with this arrival process.

Returns the associated correlation matrix.

public void setSigma (DoubleMatrix2D sigma)

Sets the associated correlation matrix to sigma.

Parameter

sigma the new correlation matrix.

Throws

NullPointerException if sigma is null.

IllegalArgumentException if sigma is not a P × P symmetric and positive-definite ma-
trix.

public double getNegBinGamma (int p)

Returns the value of γp, the negative binomial double-precision parameter associated with
main period p.

Parameter

p the main period index.

Returns the value of γp.

Throws

ArrayIndexOutOfBoundsException if p is negative or greater than or equal to P .

public double getNegBinP (int p)

Returns the value of ρp, the negative binomial double-precision parameter associated with
main period p.

Parameter

p the main period index.

Returns the value of ρp.

http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html

March 4, 2014 NORTADrivenArrivalProcess 141

Throws

ArrayIndexOutOfBoundsException if p is negative or greater than or equal to P .

public void setNegBinParams (int p, double gammap, double rhop)

Sets the parameters for the negative binomial of period p to γp and ρp.

Parameters

p the index of the main period.

gammap the new value of γp.

rhop the new value of ρp.

Throws

ArrayIndexOutOfBoundsException if p is negative or greater than or equal to P .

IllegalArgumentException if the negative binomial parameters are invalid.

142 March 4, 2014

CorrelationMatrixCorrector

Implements the algorithm POSDEF that transforms the approximate correlation matrix
that may contain negative eigenvalues to the valid positive definite correlation matrix. The
algorithm is described in Davenport, J. M. and Iman, R. L. (1982). An iterative algorithm
to produce a positive definite correlation matrix from an approximate correlation matrix.
Technical report, Sandia National Laboratories, Albuquerque, New Mexico. If the POSDEF
algorithm fails to converge this implementation uses diagonal loading algorithm. In this case
it returns the original matrix plus scaled identity matrix. The returned matrix is scaled so
that the diagonal entries are equal to 1.

package umontreal.iro.lecuyer.contactcenters.contact;

public class CorrelationMatrixCorrector

Constructors

public CorrelationMatrixCorrector (int maxit, double epsilon, double[][]

Rin)

Constructs CorrelationMatrixCorrector object from the correlations matrix Rin. Sets max-
imum number of iterations equal to maxit and the number, which is used to substitute the
negative eigenvalues, equal to epsilon. The correlation matrix Rin must be symmetric.

Parameters

maxit Maximum number of iterations

epsilon Number used to replace the negative eigenvalues

Rin Input correlation matrix

public CorrelationMatrixCorrector (double[][] Rin)

Constructs CorrelationMatrixCorrector object from the correlations matrix Rin. Sets maxit
and epsilon to default values of 100 and 1e-3 respectively.

Parameter

Rin the input correlation matrix

Methods

public double[][] getRout()

Returns the corrected positive definite correlation matrix.

March 4, 2014 CorrelationMatrixCorrector 143

Returns the positive definite correlation matrix

public double getEpsilon()

Returns the number, which is used to substitute for the negative eigenvalues.

Returns value replacing negative eigenvalues

public int getMaxit()

Returns the maximum number of iterations in the algorithm.

Returns maximum number of iterations

public void setMaxit (int maxit)

Sets the maximum number of iterations in the algorithm.

Parameter

maxit The maximum number of iterations in the algorithm.

public void setEpsilon (double epsilon)

Sets the number, which is used to substitute the negative eigenvalues in the POSDEF algo-
rithm

Parameter

epsilon The positive number, which is used to substitute the negative eigenvalues in the
POSDEF algorithm

public void setEpsilonLoading (double epsilonLoading)

Sets the number, which is used to scale the identity matrix in the diagonal loading algorithm

Parameter

epsilonLoading The positive number, which is used to scale the identity matrix in the
diagonal loading algorithm

public double[][] calcCorrectedR()

Calculate the corrected correlation matrix according to the posdef algorithm proposed by
Davenport and Iman.

Returns Corrected correlation matrix in 2D double array.

144 March 4, 2014

CorrelationMtxFitting

Fits the parametric model for the correlation matrix using method of least squares. Two
models are implemented: (i) general linear model rj = abj + c, (ii) single rho Markov model
rj = bj. Method fitMarkovGeneralLinear() implements fitting of model (i), method fit-

MarkovSingleRho() implements fitting of model (ii). The optimization of parameter b is
performed using exhaustive grid search with step step in the range [-1+delta, 1-delta].
For model (i) parameters a and c have closed form expressions in terms of the entries of
correlation matrix and parameter b.

package umontreal.iro.lecuyer.contactcenters.contact;

public class CorrelationMtxFitting

Methods

public void setDelta (double delta)

Sets the limits in which exhaustive grid search for the optimization of parameter b is per-
formed. The search is performed in the interval [-1+delta, 1-delta].

Parameter

delta Exhaustive grid search boundary offset

public void setStep (double step)

Sets the exhaustive grid search grid size for the optimization of parameter b.

Parameter

step Exhaustive grid search grid size

public double[] fitMarkovGeneralLinear()

Fits general linear model rj = abj + c. Returns vector of length 3 with parameters a, b and
c.

Returns vector of [a, b and c].

public double fitMarkovSingleRho()

Fits the Markov model with single correlation coefficient of the form ρj = bj .

Returns parameter b.

March 4, 2014 145

PoissonArrivalProcessWithInversion

Defines a Poisson arrival process with arrival rate Bλ(t) at time t and generated by inversion.
If

BΛ(t) =

∫ t

0

Bλ(s)ds

is the cumulative arrival rate of the Poisson process, and M(t) = N(Λ−1(t)/B), {M(t), t ≥
0} is a standard Poisson process, i.e., homogeneous with arrival rate 1. If Λ−1(t) can be
computed easily, this class generates arrival times by inversion as follows: generate the
arrival times X0, X1, . . . for a standard Poisson process and let Tj = Λ−1(Xj)/B be the
arrival times of the non-homogeneous Poisson process.

package umontreal.iro.lecuyer.contactcenters.contact;

public class PoissonArrivalProcessWithInversion extends PoissonArrivalProcess

Constructors

public PoissonArrivalProcessWithInversion (ContactFactory factory,

RandomStream stream,

MathFunction cLambda,

MathFunction invLambda)

Constructs a new transformed Poisson arrival process using contact factory factory for
creating contacts, random stream stream for generating uniforms, cLambda for the Λ(t)
function, and invLambda for the Λ−1(t) function.

Parameters

factory the contact factory used to create contacts.

stream the random stream used to generate uniforms.

cLambda the function defining Λ(t).

invLambda the function defining Λ−1(t).

Throws

NullPointerException if any argument is null.

public PoissonArrivalProcessWithInversion (Simulator sim, ContactFactory

factory, RandomStream stream,

MathFunction cLambda,

MathFunction invLambda)

Equivalent to PoissonArrivalProcessWithInversion (ContactFactory, RandomStream,
MathFunction, MathFunction), using the given simulator sim.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/functions/MathFunction.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/functions/MathFunction.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/functions/MathFunction.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/functions/MathFunction.html

146 PoissonArrivalProcessWithInversion March 4, 2014

public PoissonArrivalProcessWithInversion (ContactFactory factory,

RandomStream stream,

MathFunction cLambda)
Similar to PoissonArrivalProcessWithInversion (factory, stream, cLambda, f), where
f is a function performing the inversion of cLambda using the Brent-Decker root finding algo-
rithm. This can be used when the Λ−1(t) function is unavailable, and Λ(t) can be computed
efficiently. However, the generated inversion function can be slow to compute.
Parameters

factory the contact factory used to create contacts.

stream the random stream used to generate uniforms.

cLambda the function defining Λ(t).
Throws

NullPointerException if any argument is null.

public PoissonArrivalProcessWithInversion (Simulator sim, ContactFactory

factory, RandomStream stream,

MathFunction cLambda)
Equivalent to PoissonArrivalProcessWithInversion (ContactFactory, RandomStream,
MathFunction), using the given simulator sim.

Methods

public MathFunction getCumulativeLambdaFunction()
Returns the function Λ(t) in use.
Returns the Λ(t) function.

public void setCumulativeLambdaFunction (MathFunction cLambda)
Sets the Λ(t) function to cLambda.
Parameter

cLambda the new Λ(t) function.
Throws

NullPointerException if cLambda is null.

public MathFunction getInvertedLambdaFunction()
Returns the function Λ−1(t) in use.
Returns the Λ−1(t) function.

public void setInvertedLambdaFunction (MathFunction invLambda)
Sets the Λ−1(t) function to invLambda. If invLambda is null, the method sets the current
Λ−1(t) to the default inversion function, which uses the Brent-Decker root finder.
Parameter

invLambda the new Λ−1(t) function.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/functions/MathFunction.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/functions/MathFunction.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/functions/MathFunction.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/functions/MathFunction.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/functions/MathFunction.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/functions/MathFunction.html

March 4, 2014 147

PoissonArrivalProcessWithThinning
Defines a Poisson arrival process with arrival rate Bλ(t) ≤ Bλ̄ for time t, and generated
using the thinning method. This arrival process generates pseudo-arrivals as a homogeneous
Poisson process with rate Bλ̄. A pseudo-arrival at time t is accepted, i.e., becomes an arrival,
with probability λ(t)/λ̄, and rejected with probability 1− λ(t)/λ̄.

package umontreal.iro.lecuyer.contactcenters.contact;

public class PoissonArrivalProcessWithThinning extends PoissonArrivalProcess

Constructors

public PoissonArrivalProcessWithThinning (ContactFactory factory,

RandomStream stream,

RandomStream uStream,

MathFunction lambda, double

lambdaMax, double maxTime)

Constructs a new thinned Poisson arrival process using factory to generate contacts, stream
to generate pseudo-arrivals, uStream to test for acceptance or rejection, lambda for λ(t), and
lambdaMax for λ̄.

Parameters

factory the contact factory used to construct contacts.

stream the random stream for pseudo-arrivals.

uStream the random stream for tests of acceptance.

lambda the function λ(t).

lambdaMax the value of λ̄.

maxTime the smallest time T for which λ(t) = 0 for any t ≥ T .

Throws

NullPointerException if any argument is null.

IllegalArgumentException if lambdaMax is negative, infinite, or NaN, or if maxTime is
negative.

public PoissonArrivalProcessWithThinning (Simulator sim, ContactFactory

factory, RandomStream stream,

RandomStream uStream,

MathFunction lambda, double

lambdaMax, double maxTime)

Equivalent to PoissonArrivalProcessWithThinning (ContactFactory, RandomStream,
RandomStream, MathFunction, double, double), using the given simulator sim.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/functions/MathFunction.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/functions/MathFunction.html

148 PoissonArrivalProcessWithThinning March 4, 2014

Methods

public MathFunction getLambdaFunction()
Returns the λ(t) function.
Returns the λ(t) function.

public void setLambdaFunction (MathFunction lambda)
Sets the λ(t) function to lambda.
Parameter

lambda the new λ(t) function.
Throws

NullPointerException if lambda is null.

public double getLambda()
Returns the value of λ̄.

public void setLambda (double lambda)
Sets the value of λ̄ to lambda.
Throws

IllegalArgumentException if lambdaMax is negative, infinite, or NaN.

public RandomStream getRejectionStream()
Returns the random stream for tests of acceptance.
Returns the random stream for tests of acceptance.

public void setRejectionStream (RandomStream uStream)
Sets the random stream for tests of acceptance to uStream.
Parameter

uStream the new random stream for tests of acceptance.
Throws

NullPointerException if uStream is null.

public double getMaximalTime()
Returns the smallest time T for which λ(t) = 0 for all t ≥ T . This corresponds to the
maximal time an arrival can occur.
Returns the maximal time.

public void setMaximalTime (double maxTime)
Sets the maximal time T to maxTime.
Parameter

maxTime the new maximal time T .
Throws

IllegalArgumentException if maxTime is negative.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/functions/MathFunction.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/functions/MathFunction.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 4, 2014 149

Package umontreal.iro.lecuyer.contactcenters.queue

Manages waiting queues for storing contacts not being served immediately. A waiting
queue represents a data structure organizing waiting contacts while supporting abandon-
ment. Three types of data structures are available for waiting queues, each implemented in
concrete subclasses of WaitingQueue: a list, a sorted set, or a heap.

The StandardWaitingQueue uses a List for First In First Out (FIFO) or Last In First
Out (LIFO) queues. Queued contacts are ordered based on their arrival times, and can be
easily enumerated. When the number of priorities is finite and small, priority queues can be
implemented efficiently by combining several standard waiting queues.

General priority queues are implemented by QueueWaitingQueue, which uses a heap
implemented by the Queue interface. By default, contacts are ordered using their arrival
times and their priorities, but the user may supply its own Comparator to change this order.
Heaps are very efficient for inserting new contacts or removing the first contact, but queued
contacts are not enumerated in any particular order.

The most generic waiting queue, PriorityWaitingQueue, uses a SortedSet to store
contacts. As with the heap-based queue, the user can supply its own Comparator to or-
der contacts. Contacts are also enumerated in the order defined by the comparator used.
However, the operations on the sorted set are slower than the operations on a list or a heap.

This package also provides support classes to obtain maximal queue times and to compute
the integral of the queue size over simulation time.

http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/Queue.html
http://docs.oracle.com/javase/6/docs/api/java/util/Comparator.html
http://docs.oracle.com/javase/6/docs/api/java/util/SortedSet.html
http://docs.oracle.com/javase/6/docs/api/java/util/Comparator.html

150 March 4, 2014

WaitingQueue

Represents a waiting queue where contacts are added if they cannot be served immedi-
ately. The queue contains DequeueEvent objects being scheduled to happen at the time
of automatic removal, e.g., abandonment, disconnection, etc. These dequeue events, which
encapsulate contacts, are used to support abandonment as well as other types of exits of
queue. When a contact is added at the end of the queue using the add (Contact) method,
its dequeue event is constructed, and scheduled if a maximal queue time is available. If the
dequeue event occurs, the associated queued contact is removed from the queue. Queued
contacts can also be removed manually using the removeFirst (int) or removeLast (int)

methods (this cancels the appropriate dequeue event), or visited by an iterator returned by
iterator (int). An iterator is useful to enumerate queued contacts, and to remove arbi-
trary ones.

All registered waiting-queue listeners are notified about added and removed contacts.
The reason of the removal is available for listeners through an integer called the dequeue
type, encapsulated in the dequeue event. For example, this permits statistical collectors to
distinguish abandonment from disconnection.

This abstract class does not implement a data structure for storing queued contacts.
The subclasses StandardWaitingQueue, QueueWaitingQueue, and PriorityWaitingQueue

implement such data structures.

Note: the WaitingQueueListener implementations are notified in the order of the list
returned by getWaitingQueueListeners(), and a waiting-queue listener modifying the
list of listeners by using addWaitingQueueListener (WaitingQueueListener) or remove-
WaitingQueueListener (WaitingQueueListener) could result in unpredictable behavior.

package umontreal.iro.lecuyer.contactcenters.queue;

public abstract class WaitingQueue extends AbstractQueue<DequeueEvent>

implements Initializable, Named

Field

protected int dqTypeRet

Contains the dequeue type generated by getMaximalQueueTime (DequeueEvent).

Constructor

public WaitingQueue()

Constructs a new waiting queue.

http://docs.oracle.com/javase/6/docs/api/java/util/AbstractQueue.html

March 4, 2014 WaitingQueue 151

Methods

public void init()

Initializes this waiting queue for a new simulation replication. This removes all the contacts
from the queue without notification of individual contacts to the listeners.

public void clear (int dqType)

Removes all the contacts contained into this waiting queue with dequeue type dqType. In
contrast with init(), any removed contact is notified to the registered listeners.

Parameter

dqType the dequeue type of the removed contacts.

public int size()

Returns the number of contacts in this waiting queue.

Returns the number of contacts in the waiting queue.

public int size (int k)

Returns the number of contacts of type k in this waiting queue.

Parameter

k the tested contact type.

Returns the number of contacts of type k in the queue.

public DequeueEvent add (Contact contact)

Adds the contact contact to the waiting queue and returns a reference to the constructed de-
queue event. The maximal queue time is obtained using getMaximalQueueTime (Dequeue-
Event), and an event is scheduled with its corresponding dequeue type. In case of a zero or
negative maximal queue time, the contact is enqueued then immediately dequeued. Other-
wise, the contact is enqueued and a dequeue event is scheduled if the maximal queue time
is not Double.POSITIVE INFINITY or Double.NaN. The returned event can be used to get
information about the queued contact and to manually remove it from the queue. If it is
directly cancelled, the contact will not leave the queue automatically.

Parameter

contact the contact to be added.

Returns a reference to the dequeue event.

public DequeueEvent add (Contact contact, double enqueueTime, double

maxQueueTime, int dqType)

This is the same as add (Contact), except that the enqueue time, maximal queue time and
dequeue type if the queue time is reached, are specified explicitly.

http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#POSITIVE_INFINITY
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#NaN

152 WaitingQueue March 4, 2014

Parameters

contact the contact being queued.

enqueueTime the time at which the contact joined the queue.

maxQueueTime the maximal queue time.

dqType the dequeue type if the maximal queue time is reached.

Returns the dequeue event representing the queued contact.

public DequeueEvent addFromOldEvent (DequeueEvent oldDequeueEvent)

Adds a contact into the queue by using the information stored in an old dequeue event
oldDequeueEvent. This method extracts the queued contact, the scheduled maximal queue
time, and the scheduled dequeue type from the given event, and uses that information to
call add (Contact, double, double, int).

Parameter

oldDequeueEvent the old dequeue event.

Returns the new dequeue event representing the queued contact.

protected double getMaximalQueueTime (DequeueEvent ev)

Generates and returns the maximal queue time for the queued contact represented by ev.
The method can store a dequeue type in the protected field dqTypeRet if the default value
of 1 is not appropriate.

By default, a MinValueGenerator is used. For each dequeue type q with an associated
value generator, a maximal queue time Vq is generated. The scheduled queue time is Vq∗ =
minq{Vq}, and the dequeue type is q∗.

Parameter

ev the dequeue event representing the queued contact.

Returns the maximal queue time.

public boolean remove (DequeueEvent dqEvent, int dqType)

Removes the contact identified by the dequeue event dqEvent, setting its effective dequeue
type to dqType. Returns true if the removal was successful, false otherwise.

Parameters

dqEvent the dequeue event.

dqType the effective dequeue type.

March 4, 2014 WaitingQueue 153

Returns the success indicator of the operation.

public boolean remove (Contact contact, int dqType)

Removes the contact contact from the waiting queue. with dequeue type dqType. Returns
true if the contact was removed, false otherwise. If a dequeue event was scheduled when
the contact was added, this event is cancelled. This method has to linearly search for the
contact being removed using getDequeueEvent (Contact), which is less efficient than when
a dequeue event is given.

Parameters

contact the contact being removed from the queue.

dqType the effective dequeue type of the contact.

Returns true if the contact was removed, false otherwise.

public DequeueEvent getDequeueEvent (Contact contact)

Returns the dequeue event for the contact contact. If the contact is not in queue, this
returns null. Since this method has to perform a linear search, it is more efficient to keep
the dequeue events returned by add (Contact) when they are needed.

Parameter

contact the queried contact.

Returns the dequeue event for the contact, or null if the contact was not found.

public DequeueEvent getFirst()

Returns the dequeue event representing the first contact in the queue, or throws a NoSuch-
ElementException if the queue is empty.

Returns the dequeue event for the first contact in the queue.

Throws

NoSuchElementException if the queue is empty.

public DequeueEvent getLast()

Returns the dequeue event representing the last contact in the queue, or throws a NoSuch-
ElementException if the queue is empty.

Returns the dequeue event for the last contact in the queue.

Throws

NoSuchElementException if the queue is empty.

public DequeueEvent removeFirst (int dqType)

Removes the first contact in the waiting queue and returns the corresponding dequeue event.
The event is assigned the effective dequeue type dqType. If the queue is empty, a NoSuch-
ElementException is thrown. The getFirst() method is used to get the dequeue event.

http://docs.oracle.com/javase/6/docs/api/java/util/NoSuchElementException.html
http://docs.oracle.com/javase/6/docs/api/java/util/NoSuchElementException.html
http://docs.oracle.com/javase/6/docs/api/java/util/NoSuchElementException.html
http://docs.oracle.com/javase/6/docs/api/java/util/NoSuchElementException.html
http://docs.oracle.com/javase/6/docs/api/java/util/NoSuchElementException.html
http://docs.oracle.com/javase/6/docs/api/java/util/NoSuchElementException.html

154 WaitingQueue March 4, 2014

Parameter

dqType the effective dequeue type.

Returns the dequeue event corresponding to the removed contact.

Throws

NoSuchElementException if the queue is empty.

public DequeueEvent removeLast (int dqType)

Removes the last contact in the waiting queue and returns the corresponding dequeue event.
The event is assigned the effective dequeue type dqType. If the queue is empty, a NoSuch-
ElementException is thrown. The getLast() method is used to get the dequeue event.

Parameter

dqType the effective dequeue type.

Returns the dequeue event corresponding to the removed contact.

Throws

NoSuchElementException if the queue is empty.

public Iterator<DequeueEvent> iterator (int dqType)

Returns an iterator allowing the dequeue events representing contacts in queue to be enu-
merated. The order of the elements depends on the type of waiting queue and the order
of insertion. The objects returned by the iterator’s next() method are instances of the
DequeueEvent class. The optional remove() method is implemented and removes contacts
with dequeue type dqType. If remove() is never called on the returned iterator, dqType is
not used.

Parameter

dqType the dequeue type of any removed contact.

Returns an iterator enumerating the contacts in queue.

public Iterator<DequeueEvent> iterator()

This is similar to iterator (int), except it uses the default dequeue type returned by
getDefaultDequeueType().

Returns the constructed iterator.

public int getDefaultDequeueType()

Returns the default dequeue type used by this object when the user does not specify a
dequeue type explicitly. The initial default dequeue type is 0.

Returns the default dequeue type.

public void setDefaultDequeueType (int dqTypeDefault)

Sets the default dequeue type to dqTypeDefault.

http://docs.oracle.com/javase/6/docs/api/java/util/NoSuchElementException.html
http://docs.oracle.com/javase/6/docs/api/java/util/NoSuchElementException.html
http://docs.oracle.com/javase/6/docs/api/java/util/Iterator.html
http://docs.oracle.com/javase/6/docs/api/java/util/Iterator.html#next(())
http://docs.oracle.com/javase/6/docs/api/java/util/Iterator.html#remove(())
http://docs.oracle.com/javase/6/docs/api/java/util/Iterator.html#remove(())
http://docs.oracle.com/javase/6/docs/api/java/util/Iterator.html

March 4, 2014 WaitingQueue 155

Parameter

dqTypeDefault the new default dequeue type.

public void addWaitingQueueListener (WaitingQueueListener listener)

Adds the new waiting-queue listener listener to this object. If the listener is already added,
nothing happens; it is not added a second time.

Parameter

listener the listener being added.

Throws

NullPointerException if listener is null.

public void removeWaitingQueueListener (WaitingQueueListener listener)

Removes the waiting-queue listener listener from this object. If the listener is not regis-
tered, nothing happens.

Parameter

listener the waiting-queue listener being removed.

public void clearWaitingQueueListeners()

Removes all waiting-queue listeners registered with this waiting queue.

public List<WaitingQueueListener> getWaitingQueueListeners

()

Returns an unmodifiable list containing all the waiting-queue listeners registered with this
waiting queue.

Returns the list of all registered waiting-queue listeners.

protected void notifyInit()

Notifies every registered listener that this waiting queue was initialized.

protected void notifyEnqueued (DequeueEvent ev)

Notifies every registered listener that a contact was enqueued, this event being represented
by ev.

Parameter

ev the dequeue event representing the queued contact.

protected void notifyDequeued (DequeueEvent ev)

Notifies every registered listener that a contact left this queue, this event being represented
by ev.

http://docs.oracle.com/javase/6/docs/api/java/util/List.html

156 WaitingQueue March 4, 2014

Parameter

ev the event representing the contact having left the queue.

public WaitingQueueState save()

Constructs a new WaitingQueueState object holding the current state of this waiting queue,
i.e., every queued contact.

Returns the state of this waiting queue.

public void restore (WaitingQueueState state)

Restores the state of the waiting queue by using the restore method of state.

Parameter

state the saved state of the waiting queue.

public int getId()

Returns the identifier associated with this queue. This identifier, which defaults to -1, can
be used as an index in routers.

Returns the identifier associated with this queue.

public void setId (int id)

Sets the identifier of this queue to id. Once this identifier is set to a positive or 0 value,
it cannot be changed anymore. This method is automatically called by the router when a
waiting queue is connected. If one tries to attach the same queue to different routers, the
queue must have the same index for each of them. For this reason, if one tries to change the
identifier, an IllegalStateException is thrown.

Parameter

id the new identifier associated with the queue.

Throws

IllegalStateException if the identifier was already set.

public ValueGenerator getMaximalQueueTimeGenerator (int dqType)

Returns the maximal queue time generator associated with dequeue type dqType for this
waiting queue. Returns null if no value generator is associated with the given dqType.

Parameter

dqType the queried dequeue type.

Returns the maximal queue time generator of this object.

public void setMaximalQueueTimeGenerator (int dqType, ValueGenerator dqgen)

Changes the maximal queue time generator associated with dequeue type dqType for this
waiting queue to dqgen.

http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html

March 4, 2014 WaitingQueue 157

Parameters

dqType the affected dequeue type.

dqgen the new maximal queue time generator.

Throws

IllegalArgumentException if the given dequeue type is negative.

NullPointerException if dqgen is null.

protected abstract Iterator<DequeueEvent> elementsIterator

()

Returns an iterator capable of traversing, in the correct order, the elements in the waiting
queue’s internal data structure. This is different from the iterator (int) method because
this iterator returns the contacts marked for dequeue as well as the contacts still enqueued.
If the returned iterator does not implement remove(), remove (Contact, int) and get-
DequeueEvent (Contact) will not work properly.

Returns an iterator for the waiting queue elements.

protected abstract void elementsClear()

Clears all elements in the data structure representing the queued contacts.

protected abstract void elementsAdd (DequeueEvent dqEvent)

Adds the new dequeued event dqEvent to the internal data structure representing the waiting
queue.

Parameter

dqEvent the dequeue event being added.

protected abstract boolean elementsIsEmpty()

Determines if the internal waiting queue data structure is empty.

Returns true if the data structure is empty, false otherwise.

protected abstract DequeueEvent elementsGetFirst()

Returns the first element of the waiting queue’s internal data structure, or throws a No-
SuchElementException if no such element exists.

Returns the first element of the data structure.

Throws

NoSuchElementException if the queue’s data structure is empty.

protected abstract DequeueEvent elementsGetLast()

Returns the last element of the waiting queue’s internal data structure, or throws a NoSuch-
ElementException if no such element exists.

http://docs.oracle.com/javase/6/docs/api/java/util/Iterator.html
http://docs.oracle.com/javase/6/docs/api/java/util/Iterator.html#remove(())
http://docs.oracle.com/javase/6/docs/api/java/util/NoSuchElementException.html
http://docs.oracle.com/javase/6/docs/api/java/util/NoSuchElementException.html
http://docs.oracle.com/javase/6/docs/api/java/util/NoSuchElementException.html
http://docs.oracle.com/javase/6/docs/api/java/util/NoSuchElementException.html

158 WaitingQueue March 4, 2014

Returns the last element of the data structure.

Throws

NoSuchElementException if the queue’s data structure is empty.

protected abstract DequeueEvent elementsRemoveFirst()

Removes and returns the first element in the waiting queue’s internal data structure. Throws
a NoSuchElementException if no such element exists.

Returns the removed element.

Throws

NoSuchElementException if the queue’s data structure is empty.

protected abstract DequeueEvent elementsRemoveLast()

Removes and returns the last element in the waiting queue’s internal data structure. Throws
a NoSuchElementException if no such element exists.

Returns the removed element.

Throws

NoSuchElementException if the queue’s data structure is empty.

public Map<Object, Object> getAttributes()

Returns the map containing the attributes for this waiting queue. Attributes can be used to
add user-defined information to waiting queue objects at runtime, without creating a sub-
class. However, for maximal efficiency, it is recommended to create a subclass of Waiting-
Queue instead of using attributes.

Returns the map containing the attributes for this object.

http://docs.oracle.com/javase/6/docs/api/java/util/NoSuchElementException.html
http://docs.oracle.com/javase/6/docs/api/java/util/NoSuchElementException.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html

March 4, 2014 159

DequeueEvent

Represents an event happening when a contact leaves a waiting queue without being explicitly
removed. This event also holds the necessary information about a contact in queue and is
added to the waiting queue’s data structure. When it becomes obsolete, it can be used
to keep track of the queueing step of the concerned contact. For this reason, the event
implements the ContactStepInfo interface.

Note that the natural ordering of dequeue events corresponds to ascending order of au-
tomatic removal from queue, not the order of insertion. This is adapted for insertion of
dequeue events in event lists, not for priority queues. The class DequeueEventComparator

must be used to impose the order of insertion, for priority queues. This comparator is used
when calling the default constructor of PriorityWaitingQueue and QueueWaitingQueue.

package umontreal.iro.lecuyer.contactcenters.queue;

public final class DequeueEvent extends Event

implements ContactStepInfo, Cloneable

Constructor

protected DequeueEvent (WaitingQueue queue, Contact contact, double

enqueueTime)

Constructs a new dequeue event with contact contact entering waiting queue queue at
simulation time enqueueTime.

This constructor is rarely used directly; the recommended way to create dequeue events is
to use WaitingQueue.add (Contact).

Parameters

queue the associated waiting queue.

contact the contact being queued.

enqueueTime the time at which the contact enters the queue.

Methods

public Contact getContact()

Returns a reference to the queued contact.

Returns a reference to the queued contact.

public WaitingQueue getWaitingQueue()

Returns a reference to the waiting queue.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Event.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html

160 DequeueEvent March 4, 2014

Returns a reference to the waiting queue.

public double getEnqueueTime()

Returns the simulation time at which the contact was enqueued.

Returns the contact’s enqueue time.

public double getScheduledQueueTime()

Returns the scheduled queue time for this contact. This corresponds to the maximal time
the contact can spend in queue before being automatically removed, if this event occurs.

Returns the contact’s scheduled queue time.

public int getScheduledDequeueType()

Returns the scheduled dequeue type of the contact if this event occurs. This scheduled
dequeue type can be overridden when a contact is manually removed.

Returns the contact’s scheduled dequeue type.

public void setScheduledDequeueType (int dqType)

Changes the dequeue type of the contact to dqType when the event occurs. If this is called
after the contact was dequeued, an IllegalStateException is thrown.

Parameter

dqType the new type of removal.

Throws

IllegalStateException if the contact was dequeued.

public double getEffectiveQueueTime()

Returns the simulation time the contact has effectively spent in queue.

Returns the effective queue time.

Throws

IllegalStateException if the contact is still in queue.

public int getEffectiveDequeueType()

Returns the effective dequeue type of the contact having waited in this queue. Throws an
IllegalStateException if the contact is still in queue.

Returns the effective dequeue type.

Throws

IllegalStateException if the contact is still in queue.

public boolean remove (int dqType1)

Removes this dequeue event from its associated waiting queue, with dequeue type dqType.
Returns true if and only if the removal was successful. This method calls getWaiting-
Queue() .remove (this, dqType), and returns the result.

http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html

March 4, 2014 DequeueEvent 161

Parameter

dqType1 the dequeue type.

Returns the success indicator of the operation.

public boolean dequeued()

Indicates that the contact has left the queue and that this event is obsolete. If an obsolete
event is scheduled, an IllegalStateException is thrown at the time it happens. The event
can be used as a data structure to keep a trace of the queueing process of the contact.

Returns the dequeue indicator.

public boolean isObsolete()

Determines if this event is obsolete. When calling WaitingQueue.init(), some dequeue
events might still be in the simulator’s event list. One must use this method in actions()
to test if this event is obsolete. If that returns true, one should return immediately.

Returns true for an obsolete event, false otherwise.

public int compareTo (DequeueEvent ev)

Compares this dequeue event with the other event ev. The method extracts the Contact
object from this event and from the ev argument. The Contact.compareTo (Contact)
method is then used to compare objects. A contact that cannot be extracted is assigned the
null value and precedes any non-null contacts.

Parameter

ev the other event being compared.

Returns the result of the comparison.

public DequeueEvent clone()

Returns a copy of this event. This method clones every field of the event, except the waiting
queue which is not cloneable.

public DequeueEvent clone (Contact clonedContact)

Similar to clone(), but initializes the contact of the cloned event with clonedContact
instead of a clone of the contact returned by getContact(). This method can be useful when
cloning a contact c for which c.getSteps() returns a non-empty list containing dequeue
events. In that case, the contact associated with the events included in c.getSteps() must
correspond to c rather than clones of c.

http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Event.html#actions(())

162 March 4, 2014

DequeueEventComparator

Default comparator used to sort dequeue events in a priority queue. The default order
for DequeueEvent is given by the Comparable.compareTo (T) method, which sorts events
according to time of occurrence, i.e., dequeue time. This is adapted for inserting dequeue
events in the event list of the simulator, not in a waiting queue. This comparator can be
used when the waiting queue needs a comparator to establish the order of the elements. This
comparator is not needed for waiting queues using a list, i.e., StandardWaitingQueue.

package umontreal.iro.lecuyer.contactcenters.queue;

public class DequeueEventComparator implements Comparator<DequeueEvent>

Method

public int compare (DequeueEvent e1, DequeueEvent e2)

Compares dequeue event e1 with the other event e2. The method extracts the Contact ob-
jects from the events. The Contact.compareTo (Contact) method is then used to compare
objects. A contact that cannot be extracted is assigned the null value and precedes any
non-null contacts.

Parameters

e1 the first event.

e2 the second event.

Returns the result of the comparison.

http://docs.oracle.com/javase/6/docs/api/java/lang/Comparable.html#compareTo((T))
http://docs.oracle.com/javase/6/docs/api/java/util/Comparator.html

March 4, 2014 163

WaitingQueueSet

Represents a group of waiting queues for which it is possible to get the total size. This can
be used when the total number of contacts in a subset of the contact center’s waiting queues
is needed for statistical collecting or for capacity limitation.

package umontreal.iro.lecuyer.contactcenters.queue;

public class WaitingQueueSet extends AbstractSet<WaitingQueue>

implements Initializable, Named, Cloneable

Methods

public int queueSize()

Returns the total size of the queues currently in this group of waiting queues.

Returns the size of all contained queues.

public boolean add (WaitingQueue queue)

Adds the waiting queue queue to this set of waiting queues.

Parameter

queue the waiting queue being added.

Throws

NullPointerException if queue is null.

public boolean remove (Object queue)

Removes the waiting queue queue from this set of waiting queues.

Parameter

queue the waiting queue being removed.

Throws

NullPointerException if queue is null.

public void clear()

Removes all the waiting queues contained in this set of waiting queues.

public void init()

Initializes all the waiting queues contained in this set.

public void initStat()

Initializes the statistical collector for the size of the queues in this set. If statistical collecting
is turned OFF, this throws an IllegalStateException.

http://docs.oracle.com/javase/6/docs/api/java/util/AbstractSet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html

164 WaitingQueueSet March 4, 2014

Throws

IllegalStateException if statistical collecting is turned OFF.

public boolean isStatCollecting()

Determines if this set of waiting queues is collecting statistics about the total size of the
queues. If this returns true, statistical collecting is turned ON. Otherwise (the default), it
is turned OFF.

Returns the state of statistical collecting.

public void setStatCollecting (boolean b)

Sets the state of statistical collecting to b. If b is true, statistical collecting is turned ON.
The statistical collectors are created or reinitialized. If b is false, statistical collecting is
turned OFF.

Parameter

b the new state of statistical collecting.

public void setStatCollecting (Simulator sim)

Enables statistical collecting, but associates the given simulator to the internal accumulate.

Parameter

sim the simulator associated to the internal accumulate.

public Accumulate getStatQueueSize()

Returns the statistical collector for the size of the queues in the set. This returns a non-null
value only if statistical collecting was turned ON since this object was constructed.

Returns the queue size statistical collector.

public WaitingQueueSet clone()

Constructs and returns a copy of this set of waiting queues. This method clones the internal
set of waiting queues as well as the statistical collectors if they exist. This does not clone
the waiting queues themselves.

Returns a clone of this object.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Accumulate.html

March 4, 2014 165

WaitingQueueListener

Represents a waiting-queue listener which can be notified about events concerning waiting
queues. When an implementation is registered to a waiting queue, it is notified when contacts
are enqueued and dequeued, or when the queue is initialized.

package umontreal.iro.lecuyer.contactcenters.queue;

public interface WaitingQueueListener

Methods

public void enqueued (DequeueEvent ev)

This method is called after a contact was added to a queue. The event ev can be used to
access the available information about the queued contact. When this is called, it should be
possible to use the waiting-queue iterator to find the contact in the queue. However, if the
contact is immediately dequeued, it can be absent from the queue.

Parameter

ev the dequeue event associated with the queued contact.

public void dequeued (DequeueEvent ev)

This method is called when a contact is removed from a waiting queue, ev representing the
corresponding dequeue event.

Parameter

ev the obsolete dequeue event.

public void init (WaitingQueue queue)

This method is called after the WaitingQueue.init() method is called for the waiting queue
queue.

Parameter

queue the queue being initialized.

166 March 4, 2014

StandardWaitingQueue

Extends the WaitingQueue class for a standard waiting queue, without priority. The queue
uses a List to store the dequeue events ordered by insertion times. By default, a doubly-
linked list is used, which implements insertion and removal of the first and last elements in
constant time.

package umontreal.iro.lecuyer.contactcenters.queue;

public final class StandardWaitingQueue extends WaitingQueue

Constructors

public StandardWaitingQueue()

Constructs a new waiting queue using a LinkedList to store the elements.

public StandardWaitingQueue (List<DequeueEvent> list)

Constructs a new waiting queue using the given List implementation to manage the ele-
ments. This list must contain only DequeueEvent objects and it will be cleared before being
used.

Parameter

list the list containing the queued contacts.

http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/LinkedList.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

March 4, 2014 167

PriorityWaitingQueue
Extends the WaitingQueue class for a priority waiting queue. The queue uses a Sorted-

Set to store the dequeue events, and the user can supply a comparator indicating how to
order pairs of elements. By default, the sorted set is implemented using a red black tree [5]
which is a binary tree with automatic balancing for more stable search speed. This class
should be used only when there are many priorities in the system, and queued contacts needs
to be enumerated in a consistent order. If there are only a few degrees of priorities, it is
more efficient to use one standard waiting queue per priority. If contacts do not have to be
enumerated, using a heap is more efficient.

package umontreal.iro.lecuyer.contactcenters.queue;

public final class PriorityWaitingQueue extends WaitingQueue

Constructors

public PriorityWaitingQueue()

Constructs a new waiting queue using a TreeSet to store the elements. Dequeue events are
compared based on their associated contacts, using DequeueEventComparator.

public PriorityWaitingQueue (Comparator<? super DequeueEvent> comparator)

Constructs a new waiting queue using a TreeSet to store the elements, and the given
comparator to determine how to order pairs of elements. The supplied comparator must be
able to compare DequeueEvent objects.

Parameter

comparator the comparator used to sort the elements.

public PriorityWaitingQueue (SortedSet<DequeueEvent> set)

Constructs a new waiting queue using the given SortedSet implementation to manage the
elements. At any given time, this sorted set contains only DequeueEvent objects. If no
comparator is given, dequeue events are compared based on their associated contacts, using
Contact.compareTo (Contact). The given set will be cleared before it is used.

Parameter

set a sorted set object that will contain the dequeue events.

Method

public Comparator<? super DequeueEvent> comparator()

Returns the comparator used to compare the dequeue events, or null if no comparator was
given. This method calls SortedSet.comparator() and returns the result.

Returns the associated comparator or null.

http://docs.oracle.com/javase/6/docs/api/java/util/SortedSet.html
http://docs.oracle.com/javase/6/docs/api/java/util/SortedSet.html
http://docs.oracle.com/javase/6/docs/api/java/util/TreeSet.html
http://docs.oracle.com/javase/6/docs/api/java/util/Comparator.html
http://docs.oracle.com/javase/6/docs/api/java/util/TreeSet.html
http://docs.oracle.com/javase/6/docs/api/java/util/SortedSet.html
http://docs.oracle.com/javase/6/docs/api/java/util/SortedSet.html
http://docs.oracle.com/javase/6/docs/api/java/util/Comparator.html
http://docs.oracle.com/javase/6/docs/api/java/util/SortedSet.html#comparator(())

168 March 4, 2014

QueueWaitingQueue

Represents a waiting queue using a Java Queue implementation as a data structure. For
example, PriorityQueue can be used as a queue to have a heap. This can be more efficient
than using PriorityWaitingQueue, which is backed by a SortedSet, but WaitingQueue.

getLast() and WaitingQueue.removeLast (int) are not supported, because Queue does
not provide any method for getting or removing the last element. Moreover, the iterator
does not enumerate queued contacts in a particular order.

package umontreal.iro.lecuyer.contactcenters.queue;

public class QueueWaitingQueue extends WaitingQueue

Constructors

public QueueWaitingQueue()

Constructs a waiting queue using a priority heap with DequeueEventComparator for dequeue
event.

public QueueWaitingQueue (Comparator<? super DequeueEvent> comparator)

Constructs a new waiting queue using a priority heap with the comparator comparator.

Parameter

comparator the comparator used to compare events.

public QueueWaitingQueue (Queue<DequeueEvent> queue)

Constructs a new waiting queue using the queue queue as a data structure. The given
waiting queue can only contain dequeue events, and is cleared before usage.

Parameter

queue the queue being used.

Throws

NullPointerException if queue is null.

http://docs.oracle.com/javase/6/docs/api/java/util/Queue.html
http://docs.oracle.com/javase/6/docs/api/java/util/PriorityQueue.html
http://docs.oracle.com/javase/6/docs/api/java/util/SortedSet.html
http://docs.oracle.com/javase/6/docs/api/java/util/Queue.html
http://docs.oracle.com/javase/6/docs/api/java/util/Comparator.html
http://docs.oracle.com/javase/6/docs/api/java/util/Queue.html

March 4, 2014 169

QueueSizeStat

Computes statistics for a specific waiting queue. Using accumulates, this class can compute
the integral of the queue size from the last call to init() to the current simulation time.
Optionally, it can also compute the integral of the number of contacts of each type k in
queue.

package umontreal.iro.lecuyer.contactcenters.queue;

public class QueueSizeStat implements Cloneable

Constructors

public QueueSizeStat (WaitingQueue queue)

Constructs a new queue size statistical probe for the waiting queue queue and only computing
aggregate queue size. This is equivalent to QueueSizeStat (queue, 0).

Parameter

queue the observed waiting queue.

public QueueSizeStat (Simulator sim, WaitingQueue queue)

Equivalent to QueueSizeStat (WaitingQueue), using the given simulator sim to construct
accumulates.

public QueueSizeStat (WaitingQueue queue, int numTypes)

Constructs a new queue size statistical probe for the waiting queue queue supporting
numTypes contact types.

Parameters

queue the observed waiting queue.

numTypes the supported number of contact types.

Throws

IllegalArgumentException if the number of contact types is smaller than 0.

public QueueSizeStat (Simulator sim, WaitingQueue queue, int numTypes)

Equivalent ot QueueSizeStat (WaitingQueue, int), using the simulator sim to construct
accumulates.

Methods

public void setSimulator (Simulator sim)

Sets the simulator attached to internal accumulates to sim.

http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html

170 QueueSizeStat March 4, 2014

Parameter

sim the new simulator.

Throws

NullPointerException if sim is null.

public final WaitingQueue getWaitingQueue()

Returns the waiting queue currently associated with this object.

Returns the currently associated waiting queue.

public final void setWaitingQueue (WaitingQueue queue)

Sets the associated waiting queue to queue. If the given queue is null, the statistical
collector is disabled until a non-null waiting queue is given. This can be used during a
replication if the integrals must be computed during some periods only.

Parameter

queue the new associated waiting queue.

public Accumulate getStatQueueSize()

Returns the statistical collector for the queue size over the simulation time.

Returns the queue size statistical collector.

public int getNumContactTypes()

Returns the number of contact types supported by this object.

Returns the number of supported contact types.

public Accumulate getStatQueueSize (int type)

Returns the statistical collector for the number of contacts of type type in the queue.

Parameter

type the target contact type.

Returns the size collector for the target type.

Throws

ArrayIndexOutOfBoundsException if type is negative or greater than or equal to the
number of supported contact types.

public QueueSizeStat clone()

Constructs and returns a clone of this queue-size collector. This method clones the internal
statistical collectors, but the clone has no associated waiting queue. This can be used to
save the state of the statistical collector for future restoration.

Returns a clone of this object.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Accumulate.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Accumulate.html

March 4, 2014 171

QueueSizeStatMeasureMatrix

Queue size statistical collector implementing MeasureMatrix. This class extends QueueSize-
Stat and implements the MeasureMatrix interface and defines measures for queue sizes. If
the object supports K > 1 contact types, the measure 0 ≤ k < K corresponds to the integral
of the number of contacts of type k over the simulation time. The measure K corresponds
to the integral of the queue size over the simulation time. If K = 1, only the integral of the
queue size is computed and stored in measure 0. Since this measure matrix supports only
one period, it must be combined with IntegralMeasureMatrix for the integral of the queue
size to be obtained for each period.

package umontreal.iro.lecuyer.contactcenters.queue;

public class QueueSizeStatMeasureMatrix extends QueueSizeStat

implements MeasureMatrix

Constructors

public QueueSizeStatMeasureMatrix (WaitingQueue queue)

Constructs a new queue size statistical probe for the waiting queue queue and only computing
aggregate queue size. This is equivalent to QueueSizeStat (queue, 0).

Parameter

queue the observed waiting queue.

public QueueSizeStatMeasureMatrix (Simulator sim, WaitingQueue queue)

Equivalent to QueueSizeStatMeasureMatrix (WaitingQueue), using the given simulator
sim to create internal probes.

public QueueSizeStatMeasureMatrix (WaitingQueue queue, int numTypes)

Constructs a new queue size statistical probe for the waiting queue queue supporting
numTypes contact types.

Parameters

queue the observed waiting queue.

numTypes the supported number of contact types.

Throws

IllegalArgumentException if the number of contact types is smaller than 0.

public QueueSizeStatMeasureMatrix (Simulator sim, WaitingQueue queue, int

numTypes)

Equivalent to QueueSizeStatMeasureMatrix (WaitingQueue, int), using the given sim-
ulator sim to create internal probes.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html

172 QueueSizeStatMeasureMatrix March 4, 2014

Methods

public static MeasureSet getQueueSizeIntegralMeasureSet

(MeasureMatrix[] qscalc)

Returns a measure set regrouping the queue size integrals for several waiting queues. Row r
of the resulting matrix corresponds to the queue size integral stored in qscalc[r], and the
last row contains the total queue size.

Parameter

qscalc the queue size matrices.

Returns the queue size integral measure set.

public static MeasureSet getQueueSizeIntegralMeasureSet

(MeasureMatrix[] qscalc, int numTypes)

Returns a measure set regrouping the integrals of the number of contacts of each type in a set
of waiting queues. The row numTypes*q + k contains the integral of the number of contact
of type k stored in qscalc[q] over the simulation time. If the measure set is computing
the sum row (the default), row numTypes*qscalc.length + k corresponds to the integral
of the total number of queued contacts of type k, over the simulation time.

Parameters

qscalc the queue size integral matrices.

numTypes the number of contact types.

Returns the queue size integral measure set.

March 4, 2014 173

ContactPatienceTimeGenerator

Value generator for the patience time of contacts. This implementation simply calls the
Contact.getDefaultPatienceTime() method to get the patience times. For each new
waiting queue, such a value generator is created and used by default.

package umontreal.iro.lecuyer.contactcenters.queue;

public class ContactPatienceTimeGenerator implements ValueGenerator

174 March 4, 2014

WaitingQueueState

Represents the state of a waiting queue. For now, this state is represented by an array of
dequeue events representing queued contacts.

package umontreal.iro.lecuyer.contactcenters.queue;

public class WaitingQueueState

Constructor

protected WaitingQueueState (WaitingQueue queue)

Constructs a new state object by saving the state of the waiting queue queue.

Parameter

queue the queue to be saved.

Method

public DequeueEvent[] getQueuedContacts()

Returns the array containing the queued contacts in the queue at the time the state was
saved.

Returns the state of the queued contacts.

March 4, 2014 175

EnqueueEvent

Represents a simulation event that will put a queued contact back in its original waiting
queue. This is used for state restoration of a waiting queue.

package umontreal.iro.lecuyer.contactcenters.queue;

public class EnqueueEvent extends Event

Constructors

public EnqueueEvent (DequeueEvent oldDequeueEvent)

Constructs a new enqueue event from an old dequeue event using the target queue returned
by DequeueEvent.getWaitingQueue().

Parameter

oldDequeueEvent the old dequeue event to be used.

public EnqueueEvent (WaitingQueue targetQueue, DequeueEvent

oldDequeueEvent)

Constructs a new enqueue event from an old dequeue event that will put a queued contact
into the target waiting queue targetQueue.

Parameters

targetQueue the target waiting queue.

oldDequeueEvent the old dequeue event to be used.

public EnqueueEvent (WaitingQueue targetQueue, Contact contact, double

queueTime, int dqType)

Constructs a new enqueue event that will put a contact contact into the target waiting
queue targetQueue. The maximal queue time of the contact will be queueTime while its
dequeue type is dqType.

Parameters

targetQueue the target waiting queue.

contact the contact being queued.

queueTime the maximal queue time.

dqType the dequeue type.

Throws

NullPointerException if contact or targetQueue are null.

IllegalArgumentException if queueTime is negative.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Event.html

176 EnqueueEvent March 4, 2014

Methods

public WaitingQueue getTargetWaitingQueue()

Returns the waiting queue in which the previously queued contact will be added by this
event.

Returns the target waiting queue.

public Contact getContact()

Returns the contact to be queued when the event occurs.

Returns the contact being queued.

public double getScheduledQueueTime()

Returns the scheduled maximal queue time assigned to the contact when it is queued.

Returns the scheduled maximal queue time.

public int getScheduledDequeueType()

Returns the scheduled dequeue type assigned to the contact when it is queued.

Returns the scheduled dequeue type.

public DequeueEvent getNewDequeueEvent()

Returns the dequeue event representing the contact put back in the waiting queue. This
returns a non-null value only after the execution of the actions() method.

Returns the new dequeue event.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Event.html#actions(())

March 4, 2014 177

Package umontreal.iro.lecuyer.contactcenters.queuemodel

Implements different formulae used to compute the delay probability and the service level,
assuming some queueing model for the arrival and service rates. Examples of models are
the Erlang A, the Erlang B and the Erlang C models. The service level is defined as the
probability Pr{W ≤ awt}, where W is the waiting time and awt is the acceptable waiting
time.

178 March 4, 2014

ErlangC

The Erlang C formula is used to compute the delay probability Pr{W > 0} and also the
service level, defined as Pr{W ≤ awt}, where W is the waiting time and awt the acceptable
waiting time. This formula assumes a M/M/c queueing model such that the arrival and
service rates are exponential. The M/M/c assumes one call type and one agent group. This
queueing model can be analyzed as a stochastic process X(t) ∈ {0, . . . , c + q} representing
the number of calls in the system at time t and where c+ q is maximum number of calls in
the system. The number of servers is c and the capacity of the queue is q. Calls are blocked
when the system is at full, X(t) = c+ q. It assumes no abandonment due to the impatience
of the client.

The rates at each state are :

λk = λ, k = 1, 2, . . . , c+ q − 1

µk =

{
kµ,
cµ,

k = 1, 2, . . . , c− 1
k = c, c+ 1, . . . , c+ q.

package umontreal.iro.lecuyer.contactcenters.queuemodel;

public class ErlangC

Constructors

public ErlangC (double arrivalRate, double serviceRate, int capacity)

Creates a new instance of ErlangC. Set the capacity to Integer.MAX VALUE for infinite queue
capacity.

Parameters

arrivalRate the arrival rate.

serviceRate the service rate.

capacity the capacity of the queue.

public ErlangC (double arrivalRate, double serviceRate)

Creates a new instance of ErlangC assuming an infinite queue capacity.

Parameters

arrivalRate the arrival rate.

serviceRate the service rate.

http://docs.oracle.com/javase/6/docs/api/java/lang/Integer.html#MAX_VALUE

March 4, 2014 ErlangC 179

Methods

public double getProbDelay (int server)

Returns the delay probability : Pr{W > 0}, such that the call will wait.

Parameter

server the number of servers.

Returns the delay probability.

public static double getProbDelay (double arrivalRate, double serviceRate,

int server)

Returns the delay probability : Pr{W > 0}, such that the call will wait. Assumes an infinite
queue.

Parameters

arrivalRate the arrival rate.

serviceRate the service rate.

server the number of servers.

Returns the delay probability.

public static double getProbDelay (double arrivalRate, double serviceRate,

int capacity, int server)

Returns the delay probability : Pr{W > 0}, such that the call will wait.

Parameters

arrivalRate the arrival rate.

serviceRate the service rate.

capacity the capacity of the queue, sets to Integer.MAX VALUE for infinite queue capacity.

server the number of servers.

Returns the delay probability.

public static double[][] getStateProbDist (double arrivalRate, double

serviceRate, int capacity, int

server)

Returns the mass probability distribution of the states (number of calls) in the queueing
system. First element is the state, the second element is the mass probability.

http://docs.oracle.com/javase/6/docs/api/java/lang/Integer.html#MAX_VALUE

180 ErlangC March 4, 2014

Parameters

arrivalRate the arrival rate.

serviceRate the service rate.

capacity the capacity of the queue, it must be finite and greater or equal to 0.

server the number of servers.

Returns the mass probability distribution or null if it cannot be computed. The first
element is the state, the second element is the mass probability. The size of the vector is :
number of server + capacity + 1 (for the empty state).

public double getServiceLevel (int server, double awt)

Returns the service level which is the proportion of calls that have waited less or equal to
awt, Pr{W ≤ awt}. awt must be given in the same unit as the arrival and service rates.

Parameters

server the number of servers.

awt the acceptable waiting time.

Returns the service level.

public static double getServiceLevel (double arrivalRate, double

serviceRate, int server, double awt)

Returns the service level which is the proportion of calls that have waited less or equal to
awt, Pr{W ≤ awt}. awt must be given in the same unit as the arrival and service rates.
This method assumes a queue with an infinite capacity.

Parameters

arrivalRate the arrival rate.

serviceRate the service rate.

server the number of servers.

awt the acceptable waiting time.

Returns the service level.

public static double getServiceLevel (double arrivalRate, double

serviceRate, int capacity, int

server, double awt)

Returns the service level which is the proportion of calls that have waited less or equal to
awt, Pr{W ≤ awt}. awt must be given in the same unit as the arrival and service rates.
Give a capacity of Integer.MAX VALUE for a queue with an infinite capacity.

http://docs.oracle.com/javase/6/docs/api/java/lang/Integer.html#MAX_VALUE

March 4, 2014 ErlangC 181

Parameters

arrivalRate the arrival rate.

serviceRate the service rate.

capacity the capacity of the waiting queue.

server the number of servers.

awt the acceptable waiting time.

Returns the service level.

public int minServer (double awt, double sl)

Returns the minimum number c of servers needed to have a service level of at least sl, that
is : minc≥0{c : Pr{W ≤ awt} ≥ sl}. This function uses a binary search.

Parameters

awt the acceptable waiting time.

sl the target service level, it must be in the interval [0, 1].

Returns the minimum number of servers needed to satisfy a service level of sl.

public static int minServer (double arrivalRate, double serviceRate,

double awt, double sl)

Returns the minimum number c of servers needed to have a service level of at least sl, that
is : minc≥0{c : Pr{W ≤ awt} ≥ sl}. The capacity of the queue is assumed infinite. This
function uses a binary search.

Parameters

arrivalRate the exponential arrival rate.

serviceRate the exponential service rate.

awt the acceptable waiting time.

sl the target service level, it must be in the interval [0, 1].

Returns the minimum number of servers needed to satisfy a service level of sl.

public static int minServer (double arrivalRate, double serviceRate, int

capacity, double awt, double sl)

Returns the minimum number c of servers needed to have a service level of at least sl, that
is : minc≥0{c : Pr{W ≤ awt} ≥ sl}. If the capacity is Integer.MAX VALUE, the capacity of
the queue is assumed infinite. This function uses a binary search.

http://docs.oracle.com/javase/6/docs/api/java/lang/Integer.html#MAX_VALUE

182 ErlangC March 4, 2014

Parameters

arrivalRate the exponential arrival rate.

serviceRate the exponential service rate.

capacity the capacity of the queue.

awt the acceptable waiting time.

sl the target service level, it must be in the interval [0, 1].

Returns the minimum number of servers needed to satisfy a service level of sl.

public double getAverageWaitTime (int server)

Returns the average wait time : E[W].

Parameter

server the number of servers.

Returns the average wait time.

public static double getAverageWaitTime (double arrivalRate, double

serviceRate, int server)

Returns the average wait time : E[W]. It assumes an infinite queue capacity.

Parameters

arrivalRate the arrival rate.

serviceRate the service rate.

server the number of servers.

Returns the average wait time.

public static double getAverageWaitTime (double arrivalRate, double

serviceRate, int capacity, int

server)

Returns the average wait time : E[W].

Parameters

arrivalRate the arrival rate.

serviceRate the service rate.

capacity the capacity of the queue.

server the number of servers.

March 4, 2014 ErlangC 183

Returns the average wait time.

public double getAverageExcessTime (int server, double awt)

Returns the average excess time : E[(W − awt)+]. It corresponds to the average of waiting
time exceeding awt.

Parameters

server the number of servers.

awt the acceptable waiting time.

Returns the average excess time.

public static double getAverageExcessTime (double arrivalRate, double

serviceRate, int server, double

awt)

Returns the average excess time : E[(W − awt)+]. It corresponds to the average of waiting
time exceeding awt. It assumes an infinite queue capacity.

Parameters

arrivalRate the arrival rate.

serviceRate the service rate.

server the number of servers.

awt the acceptable waiting time.

Returns the average excess time.

public static double getAverageExcessTime (double arrivalRate, double

serviceRate, int capacity, int

server, double awt)

Returns the average excess time : E[(W − awt)+]. It corresponds to the average of waiting
time exceeding awt.

Parameters

arrivalRate the arrival rate.

serviceRate the service rate.

capacity the capacity of the queue.

server the number of servers.

awt the acceptable waiting time.

Returns the average excess time.

public static void main (String[] args) throws Exception

Returns the service level and the delay probability of given parameters. Arguments to give
: <arrival rate> <service rate> <number of servers> <awt> [<capacity>]. If the
capacity is omitted, the queue is assumed to have an infinite capacity.

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Exception.html

184 March 4, 2014

Package umontreal.iro.lecuyer.contactcenters.server

Manages the simulation of the contact’s service process. The purpose of the contact center
is to offer some service which is provided by a pool of servers or agents sharing the same
skills.

An agent group i, represented by an instance of AgentGroup, contains Ni(t) ∈ N members
at simulation time t. Among these agents, NI,i(t) are idle, and NB,i(t) are busy. Only
NF,i(t) ≤ NI,i(t) agents are available to serve new contacts.

The service of a contact is divided in two steps. After communicating with a customer
(first step), an agent can perform after-contact work (second step), e.g., update an account,
take some notes, etc. After the first step, the contact may exit the system, or be transferred
to another agent. However, the agent becomes free only after the second step (if any) is over.

By default, for better efficiency, an agent group does not contain an object for each
agent, preventing the simulator from differentiating them. Individual agents can of course be
simulated by creating groups with a single member, but regrouping the agents can be useful
for more efficient routing. The subclass DetailedAgentGroup offers an implementation
where each individual agent is a separate object with its own characteristics. Each such
agent can be added to or removed from a group at any time during a simulation.

This package also provides helper classes to assign service times to contacts and compute
the integrals of the number of agents over simulation time.

March 4, 2014 185

AgentGroup

Represents a group i of agents capable of serving some types of contacts. An instance of this
class keeps counters for the number of agents in a group, and provides logic to manage the
service of contacts. It also defines a list of observers being notified when the agent group
changes.

An agent group contains Ni(t) ∈ N members at simulation time t. Among these agents,
NI,i(t) are idle and NB,i(t) are busy. Since agents terminate their service before they leave,
we can have Ni(t) < NB,i(t), in which case NG,i(t) = NB,i(t) − Ni(t) ghost agents need to
disappear after they finish their work. As a result, the true number of agents in a group i
at time t is given by Ni(t) + NG,i(t). New contacts are not accepted by the group when
Ni(t) ≤ NB,i(t). Since NB,i(t) includes the ghost agents, we have

Ni(t) +NG,i(t) = NB,i(t) +NI,i(t). (2)

Some idle agents may be unavailable to serve contacts at some times during their shift.
They can be taking unplanned breaks, going to the bathroom, etc. These details can be
modeled in the simulation if the appropriate information is available. But in practice they
are often approximated by various models such as an efficiency factor εi ∈ [0, 1], which
corresponds to the fraction of agents being effectively busy or available to serve contacts.
If NB,i(t) = 0, the number of free agents NF,i(t) available to serve contacts is given by
NF,i(t) = round(εiNi(t)) where round(·) rounds its argument to the nearest integer. If
NB,i(t) > 0, the number of busy members of the group, NB,i(t) − NG,i(t), needs to be
subtracted to get NF,i(t). This yields:

round(εiNi(t)) +NG,i(t) = NB,i(t) +NF,i(t). (3)

If εi = 1, NF,i(t) = NI,i(t) and we are back to (2). This elementary efficiency model is
provided because it can be used without simulating individual agents. When agents are
differentiated, other more complex and more realistic models can easily be implemented by
manipulating the state of agents during simulation.

The service of a contact, started by the serve (Contact) method, is divided in two
steps. After communicating with a customer (first step), an agent can perform after-contact
work (second step), e.g., update an account, take some notes, etc. After the first step, the
contact may exit the system, or be transferred to another agent. However, the agent be-
comes free only after the second step (if any) is over. The end of these steps is scheduled
using a simulation event EndServiceEvent that contains additional information about the
service. Service can be terminated automatically through the event or manually through the
endContact (EndServiceEvent, int) and endService (EndServiceEvent, int) meth-
ods of this class. Special indicators called the end-contact type and end-service type tell us
which type of termination has occurred for each step. By default, the two steps of the ser-
vice are terminated automatically after durations obtained using the Contact.getDefault-

ContactTime() and Contact.getDefaultAfterContactTime() methods of the concerned
contact, respectively. These default times can be set to infinity if services need to be termi-
nated manually, conditional on some event. The way times are obtained can also be changed

186 AgentGroup March 4, 2014

by setting value generators using setContactTimeGenerator (int, ValueGenerator), and
setAfterContactTimeGenerator (int, ValueGenerator), or by overriding getContact-

Time (EndServiceEvent) and getAfterContactTime (EndServiceEvent).

Registered agent-group listeners can be notified when Ni(t) changes, when a service
starts, and when it ends.

Note: the AgentGroupListener implementations are notified in the order of the list
returned by getAgentGroupListeners(), and an agent-group listener modifying the list of
listeners by using addAgentGroupListener (AgentGroupListener) or removeAgentGroup-
Listener (AgentGroupListener) could result in unpredictable behavior.

An agent group can also be viewed as a collection of end-service events. For this reason,
this class implements the Collection interface. The collection contains end-service events
corresponding to in-progress services. Its size thus always corresponds to the number of busy
agents.

package umontreal.iro.lecuyer.contactcenters.server;

public class AgentGroup extends AbstractCollection<EndServiceEvent>

implements PeriodChangeListener, Initializable, Named

Fields

protected int ecTypeRet

The end-contact type associated with the contact time returned by getContactTime (End-
ServiceEvent).

protected int esTypeRet

The end-service type associated with the after-contact time returned by getAfterContact-
Time (EndServiceEvent).

Constructors

public AgentGroup (int n)

Constructs a new agent group with n available agents.

Parameter

n the number of agents in the group.

public AgentGroup (PeriodChangeEvent pce, int[] ns)

Constructs a new agent group with the period-change event pce, and ns[p] agents in the
period p. The agent group is automatically added to the period-change event for the number
of agents to be set automatically during the simulation.

http://docs.oracle.com/javase/6/docs/api/java/util/Collection.html
http://docs.oracle.com/javase/6/docs/api/java/util/AbstractCollection.html

March 4, 2014 AgentGroup 187

Parameters

pce the period-change event defining the simulation periods.

ns the number of agents in the group for each period.

Throws

IllegalArgumentException if there is not a number of agent for each period.

Methods

public PeriodChangeEvent getPeriodChangeEvent()

Returns the period-change event associated with this agent group.

Returns the associated period-change event.

public double getEfficiency()

Returns εi, the fraction of free and busy agents available to serve contacts over the total
number of agents. The default efficiency is set to 1.

Returns the agents’ efficiency.

public void setEfficiency (double eff)

Changes the agents’ efficiency to eff. This calls setNumAgents (int) to update the number
of free agents according to the new efficiency factor. If there is no busy agent, the number of
free agents is given by getNumAgents()*eff, rounded to the nearest integer. The efficiency
factor must be in [0, 1], otherwise an exception is thrown.

Parameter

eff the new efficiency.

Throws

IllegalArgumentException if the efficiency factor is smaller than 0 or greater than 1.

public ValueGenerator getContactTimeGenerator (int ecType)

Returns the value generator used to generate contact times for end-contact type ecType.
This returns null if there is no value generator associated with this type of contact termi-
nation. By default, a non-null value is returned for ecType = 0 only.

Parameter

ecType the queried end-contact type.

Returns the value generator associated with this end-contact type.

public ValueGenerator getAfterContactTimeGenerator (int esType)

Returns the value generator used to generate after-contact times for end-service type esType.
This returns null if there is no value generator associated with this type of service termi-
nation.

188 AgentGroup March 4, 2014

Parameter

esType the queried end-service type.

Returns the value generator associated with this end-service type.

public void setContactTimeGenerator (int ecType, ValueGenerator cgen)

Sets the contact time generator for end-contact type ecType to cgen.

Parameters

ecType the affected end-contact type.

cgen the new contact time generator associated with this end-contact type.

Throws

IllegalArgumentException if the end-contact type is negative.

public void setAfterContactTimeGenerator (int esType, ValueGenerator acgen)

Sets the after-contact time generator for end-service type esType to acgen.

Parameters

esType the affected end-service type.

acgen the new after-contact time generator associated with this end-service type.

Throws

IllegalArgumentException if the end-service type is negative.

public void init()

Initializes the agent group for a new simulation replication. It must be called after the
simulator is initialized and before it is started.

public boolean isKeepingEndServiceEvents()

Determines if this object keeps track of the end-service events for contacts in service by an
agent. If this returns true, the events are stored. Otherwise (the default), they are stored
in the SSJ event list only.

Returns the value of the keep end-service events flag.

public void setKeepingEndServiceEvents (boolean keepEsev)

Sets the keep end-service-event indicator to keepEsev.

Parameter

keepEsev the new value of the indicator.

March 4, 2014 AgentGroup 189

See also isKeepingEndServiceEvents()

public Iterator<EndServiceEvent> endServiceEventsIterator

()

Constructs and returns an iterator for the end-service events. If isKeepingEndService-
Events() returns true, the iterator is constructed from the set returned by getEndService-
Events(). Otherwise, an illegal state exception is thrown.

Returns the iterator for end-service events.

public Set<EndServiceEvent> getEndServiceEvents()

Returns a reference to a set containing all the end-service events for this agent group. This
set contains the end-service events for each contact currently served by an agent. As soon
as a contact ends its service (including after-contact work), it is removed from the set. If
the agent group does not keep track of these events (the default), this throws an Illegal-
StateException.

Returns the set of end-service events.

Throws

IllegalStateException if the agent group does not keep end-service events.

public EndServiceEvent serve (Contact contact)

Begins the service of the contact contact and returns the constructed end-service event. If no
agent is available to serve the contact, an IllegalStateException is thrown. Otherwise, a
contact time is obtained using getContactTime (EndServiceEvent). The end-service event
is then constructed and scheduled if the contact time is not infinite. If an infinite contact
time is generated, one must manually abort the communication using endContact (End-
ServiceEvent, int) or schedule the end-service event. When the communication is over,
the same rules are applied for generating the after-contact time using getAfterContact-
Time (EndServiceEvent). When the after-contact time is finite, the end-service event is
scheduled a second time for the service termination.

Parameter

contact the contact to be served.

Returns a reference to the end-service event.

Throws

IllegalStateException if no free agent is available.

public EndServiceEvent serve (Contact contact, double contactTime, int

ecType)

This is similar to serve (Contact), except that the specified contact time and end-contact
type are used instead of generated ones. The after-contact time is generated as in serve
(Contact). The main purpose of this method is for recreating an end-service event based
on saved state information.

http://docs.oracle.com/javase/6/docs/api/java/util/Iterator.html
http://docs.oracle.com/javase/6/docs/api/java/util/Set.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html

190 AgentGroup March 4, 2014

Parameters

contact the contact being served.

contactTime the communication time of the contact with the agent.

ecType the end-contact type.

Returns the end-service event representing the service.

Throws

IllegalStateException if no free agent is available.

public EndServiceEvent serve (Contact contact, double contactTime, int

ecType, double afterContactTime, int esType)

This is similar to serve (Contact) except that the contact and after-contact times are
specified explicitly. The main purpose of this method is for recreating an end-service event
based on saved state information.

Parameters

contact the contact being served.

contactTime the contact time.

ecType the end-contact type.

afterContactTime the after-contact time.

esType the end-service type.

Returns the end-service event representing the service.

Throws

IllegalStateException if no free agent is available.

public EndServiceEvent serve (EndServiceEvent oldEndServiceEvent)

Starts the service of a contact based on information stored in the old end-service event
oldEndServiceEvent. If the event contains information about the effective end-contact
time, i.e., if EndServiceEvent.contactDone() returns true, the method uses the effective
end-contact time and end-contact type, and the scheduled end-service time and end-service
type to start the service. Otherwise, it uses the scheduled end-contact time and end-contact
type only.

Parameter

oldEndServiceEvent the old end-service event.

Returns the new end-service event.

public AgentGroupState save()

Constructs a new AgentGroupState instance holding the state of this agent group. The
method isKeepingEndServiceEvents() must return true for this method to be called,
because the state includes every contact served by agents in this group.

March 4, 2014 AgentGroup 191

Returns the state of this agent group.

public void restore (AgentGroupState state)

Restores the state of this agent group by using the restore method of state.

Parameter

state the saved state of this agent group.

protected double getContactTime (EndServiceEvent es)

Generates and returns the contact time for the service represented by es. The method
returns the generated value and can store an end-contact type indicator in the protected
field ecTypeRet if the default value of 0 is not appropriate.

By default, a MinValueGenerator is used. For each end-contact type c with an associated
value generator, a contact time Cc is generated. The scheduled contact time is Cc∗ =
minc{Cc}, and the end-contact type is c∗.

Parameter

es the end-service event.

Returns the generated contact time.

protected double getAfterContactTime (EndServiceEvent es)

Generates and returns the after-contact time for the service represented by es. The method
returns the generated value and can store an end-service type indicator in the protected field
esTypeRet if the default value of 0 is not appropriate.

By default, a MinValueGenerator is used. For each end-service type c with an associated
value generator, an after-contact time Cc is generated. The scheduled after-contact time is
Cc∗ = minc{Cc}, and the end-service type is c∗.

Parameter

es the end-service event.

Returns the generated after-contact time.

public boolean endContact (EndServiceEvent es, int ecType)

Aborts the communication with a contact identified by the end-service event es, overriding
the event’s end-contact type with ecType. Returns true if the operation was successful,
or false otherwise. Note that the after-contact time is generated and after-contact work
is performed. One must call endService (EndServiceEvent, int) after this method to
completely abort the service.

Parameters

es the end-service event representing the service to be aborted.

ecType the type of communication termination.

192 AgentGroup March 4, 2014

Returns the success indicator of the operation.

public boolean endService (EndServiceEvent es, int esType)

Aborts the service of a contact identified by the end-service event es, overriding the event’s
end-service type with esType. Returns true if the operation was successful, or false oth-
erwise. For this method to return true, the communication between the agent and the
contactor must have ended. One can use endContact (EndServiceEvent, int) to abort
the communication.

Parameters

es the end-service event representing the after-contact work to be aborted.

esType the type of service termination.

Returns the success indicator of the operation.

public int getNumAgents()

Returns the total number of agents in the agent group. It is possible that only a fraction of
these agents can serve contacts.

Returns the total number of agents in the group.

public void setNumAgents (int n)

Changes the number of agents of this group to n. The number of free agents is computed
by multiplying n by the efficiency factor, rounding the result to the nearest integer, and
subtracting the number of busy members of the group.

Parameter

n the total number of agents.

Throws

IllegalArgumentException if the given number of agents is negative.

public int[] getAllNumAgents()

Returns the array containing the number of agents for each period. This method cannot be
used unless the agent group is constructed with a period-change event.

Returns the number of agents for each period.

Throws

IllegalStateException if the per-period numbers of agents are not available.

public int getNumAgents (int p)

Returns the number of agents in period p. This method cannot be used unless the agent
group is constructed with a period-change event.

Parameter

p the period index.

March 4, 2014 AgentGroup 193

Returns the number of agents in the period.

Throws

IllegalStateException if the per-period numbers of agents are not available.

ArrayIndexOutOfBoundsException if the period index is negative or greater than or equal
to the number of periods.

public void setNumAgents (int p, int n)

Sets the number of agents in period p to n. This method cannot be used unless the agent
group is constructed with a period-change event.

Parameters

p the period index.

n the new number of agents.

Throws

IllegalStateException if the per-period numbers of agents are not available.

ArrayIndexOutOfBoundsException if the period index is negative or greater than or equal
to the number of periods.

public void setNumAgents (int[] allNumAgents)

Sets the vector giving the number of agent for each period to allNumAgents.

Parameter

allNumAgents the new vector of agents.

public int getNumGhostAgents()

Returns NG,i(t), the number of agents that should disappear immediately after they have
finished serving a contact. Such ghost agents appear when the total number of agents is set
to be smaller than the number of busy agents.

Returns the number of ghost agents.

public int getNumIdleAgents()

Returns NI,i(t), the number of idle agents in this agent group. Since only a fraction of
these idle agents can serve contacts, the returned value is greater than or equal to getNum-
FreeAgents(). If getEfficiency() returns 1, this returns the same value as getNumFree-
Agents().

Returns the number of idle agents.

public int getNumFreeAgents()

Returns NF,i(t), the total number of agents in the agent group which are available to process
contacts. This number must always be smaller than or equal to the total number of agents.

194 AgentGroup March 4, 2014

Returns the number of free agents in the group.

public int getNumBusyAgents()

Returns NB,i(t), the number of busy agents in the group. At any time during the simulation,
the value returned by this method should be smaller than or equal to the sum of getNum-
Agents() and getNumGhostAgents().

Returns the number of busy agents.

public int getNumBusyAgents (int k)

Returns the number of busy agents serving contacts of type k.

Parameter

k the contact type index.

Returns the number of busy agents serving contacts of type k.

public int getId()

Returns the identifier associated with this agent group. This identifier, which defaults to
-1, can be used as an index in routers.

Returns the identifier associated with this agent group.

public void setId (int id)

Sets the identifier of this agent group to id. Once this identifier is set to a positive or 0
value, it cannot be changed anymore. This method is automatically called by the router
when an agent group is connected. If one tries to attach the same group to different routers,
the group must have the same index for each of them. For this reason, if one tries to change
the identifier, an IllegalStateException is thrown.

Parameter

id the new identifier associated with the agent group.

Throws

IllegalStateException if the identifier was already set.

public void addAgentGroupListener (AgentGroupListener listener)

Adds the agent-group listener listener to this object.

Parameter

listener the agent-group listener being added.

Throws

NullPointerException if listener is null.

public void removeAgentGroupListener (AgentGroupListener listener)

Removes the agent-group listener listener from this object.

http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html

March 4, 2014 AgentGroup 195

Parameter

listener the agent-group listener being removed.

public void clearAgentGroupListeners()

Removes all the agent-group listeners registered with this agent group.

public List<AgentGroupListener> getAgentGroupListeners()

Returns an unmodifiable list containing all the agent-group listeners registered with this
agent group.

Returns the list of all registered agent-group listeners.

protected void notifyInit()

Notifies every registered listener that this agent group has been initialized.

protected void notifyChange()

Notifies every registered listener that the number of agents of this group has changed.

protected void notifyBeginService (EndServiceEvent es)

Notifies every registered listener that a service, represented by es, was started by this agent
group.

Parameter

es the end-service event representing the service.

protected void notifyEndContact (EndServiceEvent es, boolean aborted)

Notifies every registered listener that the communication part of the service represented by
es has ended.

Parameters

es the end-service event.

aborted determines if the service was aborted or terminated normally.

protected void notifyEndService (EndServiceEvent es, boolean aborted)

Notifies every registered listener that the service represented by es is finished.

Parameters

es the end-service vent representing the ended service.

aborted determines if the after-contact work was aborted or terminated normally.

public Map<Object, Object> getAttributes()

Returns the map containing the attributes for this agent group. Attributes can be used to
add user-defined information to agent group objects at runtime, without creating a subclass.
However, for maximal efficiency, it is recommended to create a subclass of AgentGroup
instead of using attributes.

Returns the map containing the attributes for this object.

http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html

196 March 4, 2014

EndServiceEvent

Represents the simulation event for a contact’s end of service. It is constructed and returned
by the AgentGroup.serve (Contact) method and can be used to abort the service of a
contact, dynamically modify its service time, or get information about the service. The event
contains scheduled as well as effective information. A scheduled information is determined at
the time the event is scheduled. For example, the schedule contact time is the contact time
which was generated at the beginning of the service. An effective information is determined
at the time the event occurs, or the service is aborted. It is different from the scheduled
information only when the service is aborted.

package umontreal.iro.lecuyer.contactcenters.server;

public class EndServiceEvent extends Event

implements ContactStepInfo, Cloneable

Constructor

protected EndServiceEvent (AgentGroup group, Contact contact, double

beginServiceTime)

Constructs a new end-service event with contact contact served by an agent in group group,
with service beginning at simulation time beginServiceTime.

This constructor is rarely used directly; the recommended way to create end-service events
is to use AgentGroup.serve (Contact).

Parameters

group the associated agent group.

contact the contact being served.

beginServiceTime the time at which the service begins.

Methods

public Contact getContact()

Returns the contact being served.

Returns the contact being served.

public double getBeginServiceTime()

Returns the simulation time at which the service started.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Event.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html

March 4, 2014 EndServiceEvent 197

Returns the time of beginning of service.

public double getScheduledContactTime()

Returns the scheduled duration of the communication with the contact.

Returns the scheduled contact time.

public double getEffectiveContactTime()

Returns the effective contact time. If the communication is not terminated, this throws an
IllegalStateException.

Returns the effective contact time.

Throws

IllegalStateException if the communication is not terminated.

public double getScheduledAfterContactTime()

Returns the scheduled after-contact time. If the communication is not terminated, an
IllegalStateException is thrown.

Returns the scheduled after-contact time.

Throws

IllegalStateException if the communication is not terminated.

public double getEffectiveAfterContactTime()

Returns the effective after-contact time. If the service is not terminated, this throws an
IllegalStateException.

Returns the effective after-contact time.

Throws

IllegalStateException if the service is not terminated.

public int getScheduledEndContactType()

Returns the type of contact termination that will occur when this event happens for the
first time. This scheduled end-contact type can be overridden by using the AgentGroup.
endContact (EndServiceEvent, int) method.

Returns the scheduled end-contact type.

public int getScheduledEndServiceType()

Returns the type of the service termination that will occur when this event happens for the
second time. This scheduled end-service type can be overridden by using the AgentGroup.
endService (EndServiceEvent, int) method.

http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html

198 EndServiceEvent March 4, 2014

Returns the scheduled end-service type.

public int getEffectiveEndContactType()

Returns the effective type of contact termination. If the communication is not terminated,
this throws an IllegalStateException.

Returns the effective end-contact type.

Throws

IllegalStateException if the communication is not terminated.

public int getEffectiveEndServiceType()

Returns the effective type of the service termination. If the service is not terminated, this
throws an IllegalStateException.

Returns the effective end-service type.

Throws

IllegalStateException if the service is not terminated.

public void setScheduledEndContactType (int ecType)

Changes the type of contact termination that will occur when this event happens to ecType.
If the communication is terminated, this throws an IllegalStateException.

Parameter

ecType the new end-contact type.

Throws

IllegalStateException if the communication is terminated.

public void setScheduledEndServiceType (int esType)

Changes the type of service termination that will occur when this event happens to esType.
If the service is terminated, this throws an IllegalStateException.

Parameter

esType the new end-service type.

Throws

IllegalStateException if the service is terminated.

public AgentGroup getAgentGroup()

Returns the agent group containing the agent serving the contact.

Returns the agent group serving the contact.

public boolean endContact (int ecType1)

Terminates the communication part of the service represented by this event, with end-
contact type ecType, and returns true if and only if the communication part was terminated
successfully. This method calls getAgentGroup() AgentGroup.endContact (EndService-
Event, int), and returns the result.

http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html

March 4, 2014 EndServiceEvent 199

Parameter

ecType1 the end-contact type.

Returns the success indicator of the operation.

public boolean endService (int esType1)

Terminates the after-contact part of the service represented by this event, with end-service
type esType, and returns true if and only if the after-contact part was terminated success-
fully. This method calls getAgentGroup() AgentGroup.endService (EndServiceEvent,
int), and returns the result.

Parameter

esType1 the end-service type.

Returns the success indicator of the operation.

public boolean contactDone()

Determines if the communication is finished between the contact and the agent.

Returns true if the contact was served, false otherwise.

public boolean afterContactDone()

Determines if the after-contact work or service is terminated by the agent.

Returns true if the after-contact work is done, false otherwise.

public boolean wasGhostAgent()

Determines if the agent ending the service of the contact disappears after the service is
completed.

Returns the ghost agent status.

public boolean isObsolete()

Determines if this event is obsolete. When calling AgentGroup.init(), some end-service
events might still be in the simulator’s event list. Since this agent group does not store every
scheduled end-service event by default, one must use this method in actions() to test if
this event is obsolete. If that returns true, one should return immediately.

Returns true for an obsolete event, false otherwise.

public EndServiceEvent clone()

Returns a copy of this event. This method clones every field of the event, except the agent
group which is not cloneable.

public EndServiceEvent clone (Contact clonedContact)

Similar to clone(), but initializes the contact of the cloned event with clonedContact
instead of a clone of the contact returned by getContact(). This method can be useful
when cloning a contact c for which c.getSteps() returns a non-empty list containing end-
service events. In that case, the contact associated with the events included in c.getSteps()
must correspond to c rather than clones of c.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Event.html#actions(())

200 March 4, 2014

DetailedAgentGroup

Extends the AgentGroup class for a detailed agent group, where individual agents can be
differentiated. When serving a contact, a specific agent, represented by an instance of the
class Agent, must be chosen automatically using the longest idle policy, or manually. At any
time during the simulation, agents can be added to or removed from the group. Agents can
also be made available or unavailable to process new contacts.

package umontreal.iro.lecuyer.contactcenters.server;

public class DetailedAgentGroup extends AgentGroup

Constructors

public DetailedAgentGroup (int n)

Constructs a new agent group with n available agents.

Parameter

n the number of agents in the group.

public DetailedAgentGroup (PeriodChangeEvent pce, int[] ns)

Constructs a new agent group with the period-change event pce, and ns[p] agents in the
period p. The agent group is automatically added to the period-change event for the number
of agents to be set automatically during the simulation.

Parameters

pce the period-change event defining the simulation periods.

ns the number of agents in the group for each period.

Throws

IllegalArgumentException if there is not a number of agents for each period.

Methods

public Simulator simulator()

Returns a reference to the simulator used to obtain simulation times at which agents are
added or become free, for computing login and idle times of agents.

Returns the attached simulator.

public void setSimulator (Simulator sim)

Sets the attached simulator of this agent group to sim.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html

March 4, 2014 DetailedAgentGroup 201

Parameter

sim the new attached simulator.

public void setNumAgents (int n)

Sets the number of agents in the agent group to n. When the number of agents is increased,
the createAgent() method is used to create the required new agents. When removing
agents, the method uses the busyness status (busy agents are removed only if there is no
more idle agent), and the login time (the agent with the longest login time is chosen) to
decide which agent to remove. The methods addAgent (Agent) and removeAgent (Agent)
are used to add and remove the agents.

Parameter

n the new number of agents.

Throws

IllegalArgumentException if the number of agents is negative.

public void addAgent (Agent agent)

Adds the agent agent to the agent group. When an agent is a ghost, it can be added back
to its previous group, but it cannot be added to another group until he has terminated his
in-progress service. When an agent is not in any group and not serving any contact, he can
be added to any group.

Parameter

agent the agent being added.

Throws

NullPointerException if agent is null.

IllegalArgumentException if the agent is already in a group.

public void removeAgent (Agent agent)

Removes the agent agent from this agent group. If the agent is serving a contact, it becomes
a ghost until the contact is served.

Parameter

agent the agent being removed.

Throws

NullPointerException if agent is null.

IllegalArgumentException if the removed agent is not in this group.

public boolean isAddingAgent()

Determines if this agent group is currently adding an agent using the addAgent (Agent)
method. This method can be used by AgentGroupListener.agentGroupChange (Agent-
Group) to determine the origin of a change in an observed agent group. If an agent is
added explicitly using addAgent (Agent), this method returns true. Otherwise, the change
originates from a call to setNumAgents (int).

202 DetailedAgentGroup March 4, 2014

Returns the result of the test.

public boolean isRemovingAgent()

Determines if an agent is currently being removed using removeAgent (Agent). This
method can be used by an agent-group listener as described in isAddingAgent().

Returns the result of the test.

public List<Agent> getIdleAgents()

Returns a list containing all the idle agent objects. These idle agents are not necessarily
available to process contacts.

Returns the idle agents.

public List<Agent> getBusyAgents()

Returns a list containing all the busy agent objects which are members of this group. This
excludes ghost agents since they have been removed from the group.

Returns the busy agents.

public List<Agent> getGhostAgents()

Returns a list containing all the ghost agent objects having been members of this agent
group and finishing an in-progress service.

Returns the ghost agents.

public int getNumFreeAgents()

Returns the number of free agents available to process contacts. These are the free agents
for which Agent.isAvailable() returns true.

Returns the number of free agents.

public double getEfficiency()

Returns the current efficiency of this agent group, which is given by the fraction of available
agents (free or busy) over the total number of agents. This efficiency can change when the
agents are added to or removed from the group, or when the availability status of agents
changes.

Returns the efficiency of the agent group.

public void setEfficiency (double eff)

Sets the efficiency of the agents in the group. The method computes a target number
of available agents by multiplying Ni(t) by eff and rounding the result to the nearest
integer. Some agents are then made available or unavailable to meet this target, starting
with free agents, then with busy agents. This method is provided for compatibility with
the AgentGroup base class. The recommended way to change the efficiency is to change
the availability of each individual agent by using Agent.setAvailable (boolean). This
permits the implementation of more complex and realistic models of agents’ availability.

http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

March 4, 2014 DetailedAgentGroup 203

Parameter

eff the new agent group’s efficiency.

Throws

IllegalArgumentException if eff is smaller than 0 or greater than 1.

public Agent getLongestIdleAgent()

Returns the idle agent with the longest idle time in this agent group. If all agents are busy
or unavailable to process new contacts, this returns null.

Returns the idle agent with the longest idle time.

public EndServiceEventDetailed serve (Contact contact)

Begins the service of the contact contact by the agent with the longest idle time in this
group. After the agent is selected, the serve (Contact, Agent) method is called to begin
the service.

Parameter

contact the contact being served.

Returns the end of service event being created.

public EndServiceEventDetailed serve (Contact contact, Agent agent)

Begins the service of the contact contact by the agent agent. Returns the constructed end-
service event. Communication times are generated using getContactTime (EndService-
Event), and after-contact times are obtained using getAfterContactTime (EndService-
Event).

Parameters

contact the contact being served.

agent the agent serving the contact.

Returns the constructed end-service event.

Throws

NullPointerException if an argument is null.

IllegalArgumentException if the given agent is in the wrong agent group.

IllegalStateException if the agent is not available or already serving a contact.

public EndServiceEventDetailed serve (Contact contact, Agent agent, double

contactTime, int ecType)

This is similar to serve (Contact, Agent), except that the specified contact time and end-
contact type are used instead of generated ones. The after-contact time is generated as in
serve (Contact). The main purpose of this method is for recreating an end-service event
based on saved state information.

204 DetailedAgentGroup March 4, 2014

Parameters

contact the contact being served.

agent the agent serving the contact.

contactTime the communication time of the contact with the agent.

ecType the end-contact type.

Returns the end-service event representing the service.

Throws

IllegalStateException if no free agent is available.

public EndServiceEventDetailed serve (Contact contact, Agent agent, double

contactTime, int ecType, double

afterContactTime, int esType)

This is similar to serve (Contact, Agent) except that the contact and after-contact times
are specified explicitly. The main purpose of this method is for recreating an end-service
event based on saved state information.

Parameters

contact the contact being served.

agent the agent serving the contact.

contactTime the contact time.

ecType the end-contact type.

afterContactTime the after-contact time.

esType the end-service type.

Returns the end-service event representing the service.

Throws

IllegalStateException if no free agent is available.

protected double getContactTime (EndServiceEvent es)

By default, this method calls Agent.getContactTime (Contact). If this returns Double.
NaN, the method of the superclass is called.

Parameter

es the end-service event.

Returns the generated contact time.

protected double getAfterContactTime (EndServiceEvent es)

By default, this method calls Agent.getAfterContactTime (Contact). If the called
method returns Double.NaN, the method calls the equivalent method of the superclass.

http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#NaN
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#NaN
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#NaN

March 4, 2014 DetailedAgentGroup 205

Parameter

es the end-service event.

Returns the generated after-contact time.

protected Agent createAgent()

Constructs a new agent object. This method can be overridden to create subclasses of Agent
containing additional information.

Returns the constructed agent object.

206 March 4, 2014

EndServiceEventDetailed

Represents the end-service event for a detailed agent group.

package umontreal.iro.lecuyer.contactcenters.server;

public class EndServiceEventDetailed extends EndServiceEvent

Constructor

protected EndServiceEventDetailed (Contact contact, Agent agent, double

beginServiceTime)

Constructs a new end-service event with contact contact served by agent agent, with service
beginning at beginServiceTime.

This constructor is rarely used directly; the recommended way to create end-service events
is to use DetailedAgentGroup.serve (Contact).

Parameters

contact the contact being served.

agent the agent serving the contact.

beginServiceTime the simulation at which the service begins.

Method

public Agent getAgent()

Returns the agent serving or having served the contact.

Returns the serving agent.

March 4, 2014 207

Agent

Represents an individual agent in a detailed agent group.

Note: the AgentListener implementations are notified in the order of the list returned by
getAgentListeners(), and an agent listener modifying the list of listeners by using add-

AgentListener (AgentListener) or removeAgentListener (AgentListener) could re-
sult in unpredictable behavior.

package umontreal.iro.lecuyer.contactcenters.server;

public class Agent implements Initializable, Named

Fields

protected int ecType

The end-contact type associated with the contact time returned by getContactTime
(Contact).

protected int esType

The end-service type associated with the after-contact time returned by getAfterContact-
Time (Contact).

Methods

public AgentState save()

Constructs and returns a token object containing the state of this agent.

Returns the state of this agent.

public void restore (AgentState state)

Restores the state of this agent by using the given state object state.

Parameter

state the state of the agent.

public void addAgentListener (AgentListener listener)

Adds the agent listener listener to this object.

Parameter

listener the agent listener being added.

208 Agent March 4, 2014

Throws

NullPointerException if listener is null.

public void removeAgentListener (AgentListener listener)

Removes the agent listener listener from this object.

Parameter

listener the agent listener being removed.

public void clearAgentListeners()

Removes all the agent listeners registered with this agent.

public List<AgentListener> getAgentListeners()

Returns an unmodifiable list containing all the agent listeners registered with this agent.

Returns the list of all registered agent listeners.

public EndServiceEventDetailed serve (Contact contact)

Instructs this agent to begin the service of the contact contact, and returns the constructed
end-service event representing the service. This method calls getAgentGroup().serve
(contact, this).

Parameter

contact the contact to be served.

Returns the end-service event representing the service.

public ValueGenerator getContactTimeGenerator (int ecType1)

Returns the value generator used to generate contact times for end-contact type ecType.
This returns null if there is no value generator associated with this type of contact termi-
nation.

Parameter

ecType1 the queried end-contact type.

Returns the value generator associated with this end-contact type.

public ValueGenerator getAfterContactTimeGenerator (int esType1)

Returns the value generator used to generate after-contact times for end-service type esType.
This returns null if there is no value generator associated with this type of service termi-
nation.

Parameter

esType1 the queried end-service type.

http://docs.oracle.com/javase/6/docs/api/java/util/List.html

March 4, 2014 Agent 209

Returns the value generator associated with this end-service type.

public void setContactTimeGenerator (int ecType, ValueGenerator cgen)

Sets the contact time generator for end-contact type ecType to cgen.

Parameters

ecType the affected end-contact type.

cgen the new contact time generator associated with this end-contact type.

Throws

IllegalArgumentException if the end-contact type is negative.

public void setAfterContactTimeGenerator (int esType, ValueGenerator acgen)

Sets the after-contact time generator for end-service type esType to acgen.

Parameters

esType the modified end-service type.

acgen the new after-contact time generator associated with this end-service type.

Throws

IllegalArgumentException if the end-service type is negative.

public void init()

Initializes this agent for a new simulation replication.

public boolean isAvailable()

Determines if the agent is available, or is serving contacts.

Returns the availability status of this agent.

public void setAvailable (boolean avail)

Sets the availability status of this agent to avail. If this method is called with true, the
agent will be capable of processing new contacts (the default). Otherwise, it will not receive
new contacts. This does not affect the contact being served by this agent if it is busy.

Parameter

avail the new availability status of this agent.

public boolean isGhost()

Determines if this agent is a ghost, i.e., if it was removed from an agent group before it has
ended the service of a contact.

Returns true if the agent is a ghost agent, false otherwise.

public boolean isBusy()

Determines if this agent is busy.

210 Agent March 4, 2014

Returns the agent’s busyness indicator.

public EndServiceEventDetailed getEndServiceEvent()

Returns the current end-service event for this agent, or null if the agent is not busy.

Returns the current end-service event, or null.

public double getIdleSimTime()

Returns the last simulation time at which this agent became idle.

Returns the simulation idle time of this agent.

Throws

IllegalStateException if this agent is not idle.

public double getIdleTime()

Returns the time elapsed since the last moment this agent became idle. This corresponds
to the current simulation time minus the result of getIdleSimTime().

Returns the agent’s idle time.

public double getFirstLoginTime()

Returns the first simulation time at which this agent was added to an agent group.

Returns the agent’s first login time.

public double getLastLoginTime()

Returns the last simulation time at which this agent was added to an agent group.

Returns the agent’s last login time.

public DetailedAgentGroup getAgentGroup()

Returns the detailed agent group this agent is part of, or null if the agent is not in a group.

Returns the parent agent group.

protected double getContactTime (Contact contact)

Generates and returns the contact time associated with the contact contact. The method
returns the generated value and can store an end-contact type indicator in the protected
field ecType if the default value of 0 is not appropriate. If this returns Double.NaN, the
contact time will be generated by the parent agent group.

By default, a MinValueGenerator is used. For each end-contact type c with an associated
value generator, a contact time Cc is generated. The scheduled contact time is Cc∗ =
minc{Cc}, and the end-contact type is c∗.

Parameter

contact the contact being served.

http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#NaN

March 4, 2014 Agent 211

Returns the generated contact time.

protected double getAfterContactTime (Contact contact)

Generates and returns the after-contact time associated with the contact contact. The
method returns the generated value and can store an end-service type indicator in the
protected field esType if the default value of 0 is not appropriate. If this returns Double.
NaN, the after-contact time will be generated by the parent agent group.

By default, a MinValueGenerator is used. For each end-service type c with an associated
value generator, an after-contact time Cc is generated. The scheduled after-contact time is
Cc∗ = minc{Cc}, and the end-service type is c∗.

Parameter

contact the contact being served.

Returns the generated after-contact time.

public int getId()

Returns the identifier associated with this agent. This identifier, which defaults to -1, can
be used as an index in routers.

Returns the identifier associated with this agent.

public void setId (int id)

Sets the identifier of this agent to id. Once this identifier is set to a positive or 0 value, it
cannot be changed anymore.

Parameter

id the new identifier associated with the agent.

Throws

IllegalStateException if the identifier was already set.

public Map<Object, Object> getAttributes()

Returns the map containing the attributes for this agent. Attributes can be used to add
user-defined information to agent objects at runtime, without creating a subclass. However,
for maximal efficiency, it is recommended to create a subclass of Agent instead of using
attributes.

Returns the map containing the attributes for this object.

http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#NaN
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#NaN
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html

212 March 4, 2014

AgentGroupSet

Represents a set of agent groups for which it is possible to get the total number of members.

package umontreal.iro.lecuyer.contactcenters.server;

public class AgentGroupSet extends AbstractSet<AgentGroup>

implements Initializable, Named, Cloneable

Methods

public int getNumAgents()

Returns the total number of agents currently in the registered agent groups.

Returns the total number of agents.

public int getNumFreeAgents()

Returns the total number of free agents currently in the set of agent groups.

Returns the total number of free agents.

public int getNumBusyAgents()

Returns the total number of busy agents currently in the set of agent groups.

Returns the total number of busy agents.

public int getNumIdleAgents()

Returns the total number of idle agents currently in the set of agent groups.

Returns the total number of idle agents.

public int getNumGhostAgents()

Returns the total number of ghost agents currently in the set of agent groups.

Returns the total number of ghost agents.

public boolean add (AgentGroup group)

Adds the agent group group to this set of agent groups.

Parameter

group the agent group being added.

Throws

NullPointerException if group is null.

public boolean remove (Object group)

Removes the agent group group from this set of agent groups.

http://docs.oracle.com/javase/6/docs/api/java/util/AbstractSet.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html

March 4, 2014 AgentGroupSet 213

Parameter

group the agent group being removed.

Throws

NullPointerException if group is null.

public void clear()

Removes all the agent groups contained in this set of agent groups.

public void init()

Initializes all the agent groups in this set of agent groups.

public void initStat()

Initializes the statistical collectors for this set of agent groups. If statistical collecting is
turned OFF, this throws an IllegalStateException.

Throws

IllegalStateException if statistical collecting is turned OFF.

public boolean isStatCollecting()

Determines if this set of agent groups is collecting statistics about the number of agents. If
this returns true, statistical collecting is turned ON. Otherwise (the default), it is turned
OFF.

Returns the state of statistical collecting.

public void setStatCollecting (boolean b)

Sets the state of statistical collecting to b. If b is true, statistical collecting is turned ON,
and the statistical collectors are created or reinitialized. If b is false, statistical collecting
is turned OFF.

Parameter

b the new state of statistical collecting.

public void setStatCollecting (Simulator sim)

Enables statistical collecting, and uses the given simulator sim. The simulator is used by
the internal accumulates when the simulation time is required to update probes with new
values.

Parameter

sim the simulator attached to accumulates.

public Accumulate getStatNumAgents()

Returns the statistical collector for the number of agents in the agent groups. This returns a
non-null value only if statistical collecting was turned ON since this object was constructed.

http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Accumulate.html

214 AgentGroupSet March 4, 2014

Returns the statistical collector for the number of agents.

public Accumulate getStatNumFreeAgents()

Returns the statistical collector for the number of free agents in the agent groups. This
returns a non-null value only if statistical collecting was turned ON since this object was
constructed.

Returns the statistical collector for the number of free agents.

public Accumulate getStatNumBusyAgents()

Returns the statistical collector for the number of busy agents in the agent groups. This
returns a non-null value only if statistical collecting was turned ON since this object was
constructed.

Returns the statistical collector for the number of busy agents.

public Accumulate getStatNumIdleAgents()

Returns the statistical collector for the number of idle agents in the agent groups. This
returns a non-null value only if statistical collecting was turned ON since this object was
constructed.

Returns the statistical collector for the number of idle agents.

public Accumulate getStatNumGhostAgents()

Returns the statistical collector for the number of ghost agents in the agent groups. This
returns a non-null value only if statistical collecting was turned ON since this object was
constructed.

Returns the statistical collector for the number of ghost agents.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Accumulate.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Accumulate.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Accumulate.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Accumulate.html

March 4, 2014 215

AgentGroupListener
Represents an agent-group listener which is notified when the number of agents in a group
is modified or when a service starts or ends.

package umontreal.iro.lecuyer.contactcenters.server;

public interface AgentGroupListener

Methods

public void agentGroupChange (AgentGroup group)

This method is called when the number of available or free agents in the agent group group
is changed. This happens when the AgentGroup.setNumAgents (int) method is called, or
when the efficiency is changed. This is also called when DetailedAgentGroup.addAgent
(Agent) or DetailedAgentGroup.removeAgent (Agent) are used.

Parameter

group the agent group being modified.

public void beginService (EndServiceEvent ev)

This method is called after the service of a contact by an agent was started. The end-service
event ev holds all the available information about the service.

Parameter

ev the end-service event associated with the contact being served.

public void endContact (EndServiceEvent ev)

This method is called after the communication of a contact with an agent was terminated,
with ev containing all the information.

Parameter

ev the end-service event associated with the served contact.

public void endService (EndServiceEvent ev)

This method is called after the service of a contact by an agent was terminated. The service
includes the communication as well as the after-contact work.

Parameter

ev the end-service event associated with the served contact.

public void init (AgentGroup group)

This method is called after the AgentGroup.init() method is called for the agent group
group.

Parameter

group the agent group being initialized.

216 March 4, 2014

AgentListener

Represents an agent listener being notified when the state of an individual agent changes.

package umontreal.iro.lecuyer.contactcenters.server;

public interface AgentListener

Methods

public void agentAvailable (Agent agent, boolean avail)

This method is called when the availability status of the agent agent changes to avail.

Parameters

agent the agent being affected.

avail the new availability status.

public void agentAdded (Agent agent, DetailedAgentGroup group)

This method is called when the agent agent is added to the agent group group.

Parameters

agent the agent being added.

group the agent group the agent is added to.

public void agentRemoved (Agent agent, DetailedAgentGroup group)

This method is called when the agent agent is removed from the agent group group.

Parameters

agent the agent being removed.

group the agent group the agent is removed from.

public void init (Agent agent)

This method is called when the Agent.init() method is called.

Parameter

agent the initialized agent.

public void beginService (EndServiceEventDetailed ev)

This method is called after the service of a contact by an agent is started. The end-service
event ev holds all the available information about the service.

March 4, 2014 AgentListener 217

Parameter

ev the end-service event associated with the contact being served by an agent.

public void endContact (EndServiceEventDetailed ev)

This method is called when the communication with a contact is terminated. The end-service
event ev holds all the available information about the service.

Parameter

ev the end-service event associated with the served contact.

public void endService (EndServiceEventDetailed ev)

This method is called after the service of a contact by an agent was terminated. The service
includes the communication and the after-contact work. The end-service event ev holds all
the available information about the service.

Parameter

ev the end-service event associated with the served contact.

218 March 4, 2014

GroupVolumeStat

Computes statistics for a specific agent group. Using accumulates, this class can compute
integrals of Ni(t), NI,i(t), NB,i(t), NG,i(t), and NF,i(t), for agent group i from the last call
to init() to the current simulation time. Optionally, it can also compute the integral for
NB,i,k(t), the number of busy agents in group i serving contacts of type k, for k = 0, . . . , K−1.

package umontreal.iro.lecuyer.contactcenters.server;

public class GroupVolumeStat implements Cloneable

Constructors

public GroupVolumeStat (AgentGroup group)

Constructs a new agent-group volume statistical probe observing the agent group group and
only computing aggregate statistics. This is equivalent to GroupVolumeStat (group, 0).

Parameter

group the observed agent group.

public GroupVolumeStat (AgentGroup group, int numTypes)

Constructs a new agent-group volume statistical probe observing the agent group group,
and supporting numTypes contact types.

Parameters

group the observed agent group.

numTypes the number of contact types.

Throws

IllegalArgumentException if numTypes is negative.

Methods

public void setSimulator (Simulator sim)

Sets the simulator attached to internal accumulates to sim.

Parameter

sim the new simulator.

Throws

NullPointerException if sim is null.

public final AgentGroup getAgentGroup()

Returns the agent group currently associated with this object.

http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html

March 4, 2014 GroupVolumeStat 219

Returns the currently associated agent group.

public final void setAgentGroup (AgentGroup agentGroup)

Sets the associated agent group to agentGroup. If the given group is null, the statistical
collector is disabled until a non-null agent group is given. This can be used during a
replication if the integrals must be computed during some periods only.

Parameter

agentGroup the new associated agent group.

public Accumulate getStatNumAgents()

Returns the statistical probe computing the integral of the total number of agents over the
simulation time.

Returns the statistical probe for the total number of agents.

public Accumulate getStatNumGhostAgents()

Returns the statistical probe computing the integral of the number of ghost agents over the
simulation time.

Returns the statistical probe for the number of ghost agents.

public Accumulate getStatNumIdleAgents()

Returns the statistical probe computing the integral of the number of idle (available and
unavailable) agents over the simulation time.

Returns the statistical probe for the number of idle agents.

public Accumulate getStatNumFreeAgents()

Returns the statistical probe computing the integral of the number of free agents over the
simulation time.

Returns the statistical probe for the number of free agents.

public Accumulate getStatNumBusyAgents()

Returns the statistical probe computing the integral of the number of busy agents over the
simulation time.

Returns the statistical probe for the number of busy agents.

public Accumulate getStatNumBusyAgents (int k)

Returns the statistical probe computing the integral of the number of busy agents serving
contacts of type k, over the simulation time.

Parameter

k the queried contact type.

Returns the service volume statistical probe.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Accumulate.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Accumulate.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Accumulate.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Accumulate.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Accumulate.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Accumulate.html

220 GroupVolumeStat March 4, 2014

Throws

ArrayIndexOutOfBoundsException if k is negative or greater than or equal to the number
of supported contact types.

public int getNumContactTypes()

Returns the number of contact types supported by this object.

Returns the number of supported contact types.

public GroupVolumeStat clone()

Constructs and returns a clone of this agent-group statistical collector. This method clones
the internal statistical collectors, but the clone has no associated agent group. This can be
used to save the state of the statistical collector for future restoration.

Returns a clone of this object.

March 4, 2014 221

GroupVolumeStatMeasureMatrix

Agent group statistical collector implementing MeasureMatrix. This class extends Group-

VolumeStat and implements the MeasureMatrix interface and defines measures for the ser-
vice, idle, working, and total volumes. The service volume corresponds to the integral of
the number of busy agents NB,i(t) obtained by AgentGroup.getNumBusyAgents(). The
idle volume is the integral of the number of idle agents NI,i(t) over the simulation time.
This is obtained using AgentGroup.getNumIdleAgents(). The working volume is the in-
tegral of the number of working agents, NB,i(t) + NF,i(t) over the simulation time, ob-
tained by AgentGroup.getNumBusyAgents(), and AgentGroup.getNumFreeAgents(). The

total volume corresponds to the integral of the number of agents
∫ T

0
(Ni(t) + NG,i(t))dt =∫ T

0
(NB,i(t) + NI,i(t))dt over the simulation time. This quantity is given by the sum of the

accumulates returned by the methods AgentGroup.getNumAgents() and AgentGroup.get-

NumGhostAgents(). These quantities can be used to compute the agent group’s occupancy
ratio, which is the ratio of the service volume and total volume, or the ratio of the service
volume over the working volume.

This class can be given the number of contact typesK to track for computing
∫ T

0
NB,i,k(t) dt.

If K > 1, the measure 0 ≤ k < K represents the integral of the number of busy agents serv-
ing contacts of type k over the simulation time. Measures K through K + 3 represents
respectively the service, idle, working, and total volumes.

When K = 1, the measure 0 corresponds to the service volume, the measure 1, to the
idle volume, and the measure 2 is the working volume, and measure 3 is the total volume.

Since this measure matrix supports only one period, it must be combined with Integral-

MeasureMatrix for one to get the measures for each period.

package umontreal.iro.lecuyer.contactcenters.server;

public class GroupVolumeStatMeasureMatrix extends GroupVolumeStat

implements MeasureMatrix

Constructors

public GroupVolumeStatMeasureMatrix (AgentGroup group)

Constructs a new agent-group volume statistical probe observing the agent group group and
only computing aggregate statistics. This is equivalent to GroupVolumeStat (group, 0).

Parameter

group the observed agent group.

public GroupVolumeStatMeasureMatrix (Simulator sim, AgentGroup group)

Equivalent to GroupVolumeStatMeasureMatrix (AgentGroup), using the given simulator
sim for creating internal probes.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html

222 GroupVolumeStatMeasureMatrix March 4, 2014

public GroupVolumeStatMeasureMatrix (AgentGroup group, int numTypes)

Constructs a new agent-group volume statistical probe observing the agent group group,
and supporting numTypes contact types.

Parameters

group the observed agent group.

numTypes the number of contact types.

Throws

IllegalArgumentException if numTypes is negative.

public GroupVolumeStatMeasureMatrix (Simulator sim, AgentGroup group, int

numTypes)

Equivalent to GroupVolumeStatMeasureMatrix (AgentGroup, int), using the given sim-
ulator sim for creating internal probes.

Methods

public void setNumMeasures (int nm)

Throws an UnsupportedOperationException.

Throws

UnsupportedOperationException if this method is called.

public void setNumPeriods (int np)

Throws an UnsupportedOperationException.

Throws

UnsupportedOperationException if this method is called.

public static MeasureSet getServiceVolumeMeasureSet (MeasureMatrix[] vcalc)

Returns a measure set regrouping the service volumes for several agent groups and computing
the sum. Row r of the resulting matrix corresponds to the service volume stored in vcalc[r],
and the last row contains the sum of the service volumes.

Parameter

vcalc the agent group volume matrices.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://docs.oracle.com/javase/6/docs/api/java/lang/UnsupportedOperationException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/UnsupportedOperationException.html

March 4, 2014 GroupVolumeStatMeasureMatrix 223

Returns the service volume measure set.

public static MeasureSet getServiceVolumeMeasureSet (MeasureMatrix[] vcalc,

int numTypes)

Returns a measure set regrouping the service volumes stored in vcalc for numTypes contact
types. Row numTypes*i + k of the resulting measure set corresponds to the integral of the
number of busy agents in group i serving contacts of type k. If the measure set is computing
the sum row (the default), row numTypes*vcalc.length + k gives the integral of the total
number of agents serving contacts with type k.

Parameters

vcalc the agent group volume matrices.

numTypes the number of contact types.

Returns the service volume measure set.

public static MeasureSet getIdleVolumeMeasureSet (MeasureMatrix[] vcalc)

Returns a measure set regrouping the idle volumes for several agent groups and computing
the sum. Row r of the resulting matrix corresponds to the idle volume stored in vcalc[r],
and the last row contains the sum of the idle volumes.

Parameter

vcalc the agent group volume matrices.

Returns the idle volume measure set.

public static MeasureSet getWorkingVolumeMeasureSet (MeasureMatrix[] vcalc)

Returns a measure set regrouping the working volumes for several agent groups. Row r of
the resulting matrix corresponds to the working volume stored in vcalc[r], and the last
row contains the sum of the working volumes.

Parameter

vcalc the agent group volume matrices.

Returns the working volume measure set.

public static MeasureSet getWorkingVolumeMeasureSet (MeasureMatrix[] vcalc,

int numTypes)

Returns a measure set regrouping the working volumes stored in vcalc, with each working
volume repeated numTypes times. This is used to create a measure set matching with get-
ServiceVolumeMeasureSet (MeasureMatrix[], int) to compute per-contact type agent’s
occupancy ratios. If the measure set is computing the sum rows (the default), the last
numTypes rows contain the sum of the working volumes for all agents.

Parameters

vcalc the agent group volume matrices.

numTypes the number of contact types.

224 GroupVolumeStatMeasureMatrix March 4, 2014

Returns the working volume measure set.

public static MeasureSet getTotalVolumeMeasureSet (MeasureMatrix[] vcalc)

Returns a measure set regrouping the total volumes for several agent groups. Row r of
the resulting matrix corresponds to the total volume stored in vcalc[r], and the last row
contains the sum of the total volumes.

Parameter

vcalc the agent group volume matrices.

Returns the total volume measure set.

public static MeasureSet getTotalVolumeMeasureSet (MeasureMatrix[] vcalc,

int numTypes)

Returns a measure set regrouping the total volumes stored in vcalc, with each total volume
repeated numTypes times. This is used to create a measure set matching with getService-
VolumeMeasureSet (MeasureMatrix[], int) to compute per-contact type agent’s occu-
pancy ratios. If the measure set is computing the sum rows (the default), the last numTypes
rows contain the sum of the total volumes for all agents.

Parameters

vcalc the agent group volume matrices.

numTypes the number of contact types.

Returns the total volume measure set.

March 4, 2014 225

ContactTimeGenerator

Value generator for the communication times of contacts. This implementation simply calls
the Contact.getDefaultContactTime (int) method to get the contact times. For each
new agent group, such a value generator is created and used by default.

package umontreal.iro.lecuyer.contactcenters.server;

public class ContactTimeGenerator implements ValueGenerator

Constructors

public ContactTimeGenerator (AgentGroup group)

Constructs a contact time generator returning the same contact time for each contact type.

Parameter

group the associated agent group.

public ContactTimeGenerator (AgentGroup group, double[] mult)

Constructs a new contact time generator with a different multiplier for each contact type.
When a contact time is required for a contact of type k, the result of Contact.getDefault-
ContactTime() is multiplied by mult[k].

Parameters

group the associated agent group.

mult the vector contact time multipliers.

Methods

public AgentGroup getAgentGroup()

Returns the reference to the associated agent group.

Returns the associated agent group.

public void setAgentGroup (AgentGroup group)

Sets the associated agent group to group.

Parameter

group the new associated agent group.

public double[] getMultipliers()

Returns the vector of multipliers for this contact time generator. For contact type k, the
multiplier of the contact times is given by the element with index k in the array. If this
returns null, contact times all have multiplier 1.

226 ContactTimeGenerator March 4, 2014

Returns the vector of contact times multipliers.

public void setMultipliers (double[] mult)

Sets the contact time multiplier for each contact type to mult.

Parameter

mult the new vector of contact times multipliers.

March 4, 2014 227

AfterContactTimeGenerator

Value generator for the after-contact time of contacts. This implementation simply calls the
Contact.getDefaultAfterContactTime() method to get the after contact times. For each
new agent group, such a value generator is created and used by default.

package umontreal.iro.lecuyer.contactcenters.server;

public class AfterContactTimeGenerator implements ValueGenerator

Constructors

public AfterContactTimeGenerator (AgentGroup group)

Constructs an after-contact time generator returning the same after-contact time for each
contact type.

Parameter

group the associated agent group.

public AfterContactTimeGenerator (AgentGroup group, double[] mult)

Constructs a new after-contact time generator with a different multiplier for each contact
type. When an after-contact time is required for a contact of type k, the result of Contact.
getDefaultAfterContactTime() is multiplied by mult[k].

Parameters

group the associated agent group.

mult the vector of after-contact time multipliers.

Methods

public double[] getMultipliers()

Returns the vector of multipliers for this after-contact time generator. For contact type k,
the multiplier of the after-contact times is given by the element with index k in the array.
If this returns null, after-contact times all have multiplier 1.

Returns the vector of after-contact times multipliers.

public void setMultipliers (double[] mult)

Sets the after-contact time multiplier for each contact type to mult.

228 AfterContactTimeGenerator March 4, 2014

Parameter

mult the new vector of after-contact times multipliers.

public AgentGroup getAgentGroup()

Returns the reference to the associated agent group.

Returns the associated agent group.

public void setAgentGroup (AgentGroup group)

Sets the associated agent group to group.

Parameter

group the new associated agent group.

March 4, 2014 229

AgentGroupState

Represents the state of an agent group, i.e., the contacts being served at a specific simulation
time.

package umontreal.iro.lecuyer.contactcenters.server;

public class AgentGroupState

Constructor

protected AgentGroupState (AgentGroup group)

Constructs a new state object holding the state of the agent group group.

Parameter

group the agent group to be saved.

Methods

public EndServiceEvent[] getContactsInService()

Returns the end-service events representing the contacts being served at the time the state
was saved.

Returns the array of end-service events representing contacts in service.

public double getEfficiency()

Returns the efficiency of the agent group at the time of state saving.

Returns the efficiency at the time the state was saved.

public int getNumAgents()

Returns the number of agents in the agent group at the time of state saving.

Returns the number of agents at the time the state was saved.

public int getNumFreeAgents()

Returns the number of free agents in the agent group at the time of state saving.

Returns the number of free agents at the time the state was saved.

public int getNumGhostAgents()

Returns the number of ghost agents in the agent group at the time of state saving.

Returns the number of ghost agents at the time the state was saved.

230 March 4, 2014

DetailedAgentGroupState

Represents the state of a detailed agent group.

package umontreal.iro.lecuyer.contactcenters.server;

public class DetailedAgentGroupState extends AgentGroupState

Constructor

protected DetailedAgentGroupState (DetailedAgentGroup group)

Constructs a new agent group state object holding state information about the agent group
group.

Parameter

group the agent group to save state.

Methods

public AgentState[] getBusyAgents()

Returns the state information for each busy agent in the group at the time of state saving.

Returns the state information about busy agents.

public AgentState[] getGhostAgents()

Returns the state information for the ghost agents in the group, at time of state saving.

Returns the state information about ghost agents.

public AgentState[] getIdleAgents()

Returns the state information about idle agents in the group, at the time of state saving.

Returns the state information about idle agents.

March 4, 2014 231

AgentState

Represents the state of an agent in a group.

package umontreal.iro.lecuyer.contactcenters.server;

public class AgentState

Methods

public void restore()

Restores the state of the agent attached to this state object.

public Agent getAgent()

Returns the agent for which the state was saved.

Returns the agent for which the state was saved.

public boolean wasAvailable()

Determines the availability status of the agent at the time of state saving.

Returns true if the agent was available for serving contacts at the time of state saving,
false otherwise.

public double getFirstLoginTime()

Returns the first login time of the agent at the time the state was saved.

Returns the first login time of the agent.

public double getIdleSimTime()

Returns the last simulation time the agent became idle, at the time of state saving.

Returns the last idle time of the agent.

232 March 4, 2014

StartServiceEvent

Represents an event that restarts the service of a contact. Service can be restarted in its
communication phase, or in the after-contact work. This is used for state restoration of an
agent group.

package umontreal.iro.lecuyer.contactcenters.server;

public class StartServiceEvent extends Event

Constructors

public StartServiceEvent (EndServiceEvent oldEndServiceEvent)

Constructs a new start-service event that will put the contact in service represented by
oldEndServiceEvent in the target agent group given by EndServiceEvent.getAgent-
Group().

Parameter

oldEndServiceEvent the old end-service event.

public StartServiceEvent (AgentGroup targetGroup, EndServiceEvent

oldEndServiceEvent)

Constructs a new start-service event that will put the contact in service represented by
oldEndServiceEvent in the target agent group targetGroup.

Parameters

targetGroup the target agent group.

oldEndServiceEvent the old end-service event.

public StartServiceEvent (AgentGroup targetGroup, Contact contact, double

contactTime, int ecType)

Constructs an event that will call targetGroup.serve (contact, contactTime, ecType)
when it happens.

Parameters

targetGroup the target agent group.

contact the contact to serve.

contactTime the contact time.

ecType the end-contact type.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Event.html

March 4, 2014 StartServiceEvent 233

Throws

NullPointerException if targetGroup or contact are null.

IllegalArgumentException if contactTime is negative.

public StartServiceEvent (AgentGroup targetGroup, Contact contact, double

contactTime, int ecType, double afterContactTime,

int esType)

Constructs an event that will call targetGroup.serve (contact, contactTime, ecType,
afterContactTime, esType) when it happens.

Parameters

targetGroup the target agent group.

contact the contact to serve.

contactTime the contact time.

ecType the end-contact type.

afterContactTime the after-contact time.

esType the end-service type.

Throws

NullPointerException if targetGroup or contact are null.

IllegalArgumentException if contactTime or afterContactTime are negative.

public StartServiceEvent (Agent targetAgent, Contact contact, double

contactTime, int ecType)

Constructs an event that will call targetAgent.getGroup().serve (contact, targetAgent,
contactTime, ecType) when it happens.

Parameters

targetAgent the target agent.

contact the contact to serve.

contactTime the contact time.

ecType the end-contact type.

Throws

NullPointerException if targetAgent or contact are null.

IllegalArgumentException if contactTime is negative.

public StartServiceEvent (Agent targetAgent, Contact contact, double

contactTime, int ecType, double afterContactTime,

int esType)

Constructs an event that will call targetAgent.getGroup().serve (contact, targetAgent,
contactTime, ecType, afterContactTime, esType) when it happens.

234 StartServiceEvent March 4, 2014

Parameters

targetAgent the target agent.

contact the contact to serve.

contactTime the contact time.

ecType the end-contact type.

afterContactTime the after-contact time.

esType the end-service type.

Throws

NullPointerException if targetAgent or contact are null.

IllegalArgumentException if contactTime or afterContactTime are negative.

Methods

public AgentGroup getTargetAgentGroup()

Returns the agent group that will receive the contact stored into the attached end-service
event.

Returns the target agent group.

public Agent getTargetAgent()

Returns the target agent of this event, or null if no target agent was specified.

Returns the target agent.

public Contact getContact()

Returns the contact being served.

Returns the contact being served.

public double getScheduledContactTime()

Returns the scheduled duration of the communication between the contact and an agent.

Returns the scheduled contact time.

public double getScheduledAfterContactTime()

Returns the scheduled after-contact time. If the after-contact time was not set, an Illegal-
StateException is thrown.

Returns the scheduled after-contact time.

http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html

March 4, 2014 StartServiceEvent 235

Throws

IllegalStateException if the after-contact time was not set.

public int getScheduledEndContactType()

Returns the type of contact termination that will occur when the end-service event happens
for the first time.

Returns the scheduled end-contact type.

public int getScheduledEndServiceType()

Returns the type of the service termination that will occur when the end-service event
happens for the second time.

Returns the scheduled end-service type.

public boolean contactDone()

Determines if the communication is finished between the contact and the agent.

Returns true if the contact was served, false otherwise.

public EndServiceEvent getNewEndServiceEvent()

Returns the end-service event representing the contact’s restarted service. This returns a
non-null value only after the execution of the actions() method.

Returns the new dequeue event.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Event.html#actions(())

236 March 4, 2014

SetNumAgentsEvent

Represents a simulation that sets the number of agents and agents’ efficiency in an agent
group.

package umontreal.iro.lecuyer.contactcenters.server;

public class SetNumAgentsEvent extends Event

Constructors

public SetNumAgentsEvent (AgentGroup group, int numAgents, double

efficiency)

Constructs a new set-num-agents event that sets the number of agents in the group group
to numAgents, and the efficiency factor to efficiency.

Parameters

group the target agent group.

numAgents the number of agents in the group after the event occurs.

efficiency the efficiency after the event occurs.

public SetNumAgentsEvent (Simulator sim, AgentGroup group, int numAgents,

double efficiency)

Equivalent to SetNumAgentsEvent (AgentGroup, int, double), using the given simulator
sim.

Methods

public AgentGroup getTargetAgentGroup()

Returns the agent group affected by this event.

Returns the target agent group.

public int getNumAgents()

Returns the number of agents in the target group after the event occurs.

Returns the desired number of agents in the target group.

public double getEfficiency()

Returns the agents’ efficiency in the target group after this event occurs.

Returns the desired efficiency in the target agent group.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Event.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html

March 4, 2014 237

RestoreAgentsEvent

Represents an event that restores the state of busy and ghost agents after the service of
contacts are started, during state restoration.

package umontreal.iro.lecuyer.contactcenters.server;

public class RestoreAgentsEvent extends Event

Constructor

public RestoreAgentsEvent (DetailedAgentGroup dgroup, AgentState[]

busyAgents, AgentState[] ghostAgents)

Constructs a new agent restoration event concerning agents in the group dgroup. When the
event occurs, the state (available, last idle time, etc.) will be restored for all agents referred
by busyAgents and ghostAgents while agents referred by ghostAgents will be removed
from the agent group.

Parameters

dgroup the agent group affected by the restoration.

busyAgents the busy agents to be restored.

ghostAgents the ghost agents to be removed from the group.

Methods

public DetailedAgentGroup getTargetAgentGroup()

Returns the agent group affected by this event.

Returns the target agent group.

public AgentState[] getBusyAgents()

Returns the state of the busy agents that will be restored when the event occurs.

Returns the state of the busy agents.

public AgentState[] getGhostAgents()

Returns the state of the ghost agents that will be restored when this event occurs.

Returns the state of ghost agents.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Event.html

238 March 4, 2014

Package umontreal.iro.lecuyer.contactcenters.dialer

Manages a predictive dialer capable of making outbound contacts. A predictive dialer is
normally used to generate outbound calls. The dialer’s policy determines the number of
calls to try on each occasion, and supplies a list to extract them from. Each extracted
contact is then tested for success or failure. The dialer defines separate lists of new-contact
listeners for right party connects, and failed calls.

This package provides the Dialer representing the predictive dialer. Any dialing policy is
an implementation of the interface DialerPolicy and dialer lists are represented by Dialer-

List objects. The package provides implementations of dialer lists as well as commonly used
dialing policies.

March 4, 2014 239

Dialer

Represents a predictive dialer making outbound contacts. A predictive dialer is normally
used to generate outbound calls. The dialer’s policy determines the number of calls to try
on each occasion (as a function of the system’s state), and supplies a list to extract them
from. This list could be produced by a contact factory and is often assumed to be infinite for
simplicity. Such lists could also be constructed from customer contacts who left a message,
who were disconnected, etc.

For each call extracted from the dialer list, a success test is performed. This test succeeds
with a probability being fixed or depending on the tested call, and the state of the system.
Successful calls represent right party connects whereas failed calls represent wrong party
connects and connection failures. The dialer generates a random delay representing the time
between the beginning of dialing and the success or failure. This delay may depend on the
success indicator, the call itself, the current time, etc. An event for broadcasting the call to
registered listeners is then scheduled to occur at the time of success or failure.

The dialer defines separate lists of new-contact listeners for right party connects, and
failed calls. Usually, only right party connects reach the router, but statistical collectors
may need to listen to failed calls as well.

Note: the order in which NewContactListener implementations are notified is unspec-
ified, and a new-contact listener modifying a list of listeners could result in unpredictable
behavior.

package umontreal.iro.lecuyer.contactcenters.dialer;

public class Dialer implements ContactSource

Constructors

public Dialer (DialerPolicy policy, RandomStream streamReach,

ValueGenerator probReach)

Constructs a new dialer using the dialer policy policy, the random stream streamReach to
determine if a dialed call reaches the right party, and with 0 reach and fail times.

Parameters

policy the dialer’s policy being used.

streamReach the random number stream used to determine the success of a dial.

probReach the probability of reaching the right party.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

240 Dialer March 4, 2014

Throws

NullPointerException if any argument is null.

public Dialer (Simulator sim, DialerPolicy policy, RandomStream

streamReach, ValueGenerator probReach)

Equivalent to Dialer (DialerPolicy, RandomStream, ValueGenerator), with the given
user-defined simulator sim.

Parameters

sim the simulator attached to the dialer.

policy the dialer’s policy being used.

streamReach the random number stream used to determine the success of a dial.

probReach the probability of reaching the right party.

Throws

NullPointerException if any argument is null.

public Dialer (DialerPolicy policy, RandomStream streamReach,

ValueGenerator probReach, ValueGenerator reachTimeGen,

ValueGenerator failTimeGen)

Constructs a new dialer using the dialer policy policy. The random stream streamReach
is used to determine if a call is reached, reachTimeGen and failTimeGen compute the reach
and fail times, respectively, i.e., the simulation time between the call to dial() and the
notification to the appropriate new-contact listeners.

Parameters

policy the dialer policy being used.

streamReach the random number stream used to compute the status of a dial.

probReach the probability of successful contact.

reachTimeGen the value generator for the time between dialing and reaching.

failTimeGen the value generator for the time between dialing and failing.

Throws

NullPointerException if any argument is null.

public Dialer (Simulator sim, DialerPolicy policy, RandomStream

streamReach, ValueGenerator probReach, ValueGenerator

reachTimeGen, ValueGenerator failTimeGen)

Equivalent to Dialer (DialerPolicy, RandomStream, ValueGenerator, ValueGenerator,
ValueGenerator), using the given simulator sim.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 4, 2014 Dialer 241

Parameters

sim the simulator attached to the dialer.

policy the dialer policy being used.

streamReach the random number stream used to compute the status of a dial.

probReach the probability of successful contact.

reachTimeGen the value generator for the time between dialing and reaching.

failTimeGen the value generator for the time between dialing and failing.

Throws

NullPointerException if any argument is null.

Methods

public void addNewContactListener (NewContactListener listener)

Calls addReachListener (NewContactListener).

Parameter

listener the new-contact listener being added.

Throws

NullPointerException if listener is null.

public void removeNewContactListener (NewContactListener listener)

Calls removeReachListener (NewContactListener).

Parameter

listener the new-contact listener being removed.

public void clearNewContactListeners()

Calls clearReachListeners().

public List<NewContactListener> getNewContactListeners()

Returns the result of getReachListeners().

public void addReachListener (NewContactListener listener)

Adds the new-contact listener listener which will be notified upon right party connects.

Parameter

listener the new-contact listener being added.

http://docs.oracle.com/javase/6/docs/api/java/util/List.html

242 Dialer March 4, 2014

Throws

NullPointerException if listener is null.

public void removeReachListener (NewContactListener listener)

Removes the new-contact listener listener from the list of listeners being notified upon
right party connects.

Parameter

listener the new-contact listener being removed.

public void clearReachListeners()

Removes all new-contact listeners being notified when this dialer makes a right party connect.

public List<NewContactListener> getReachListeners()

Returns an unmodifiable list containing all the new-contact listeners notified when a right-
party connect occurs.

Returns the list of all registered new-contact listeners.

public void addFailListener (NewContactListener listener)

Adds the new-contact listener listener which will be notified upon wrong party connects
or connection failures.

Parameter

listener the new-contact listener being added.

Throws

NullPointerException if listener is null.

public void removeFailListener (NewContactListener listener)

Removes the new-contact listener listener from the list of listeners being notified upon
wrong party connects or connection failures.

Parameter

listener the new-contact listener being removed.

public void clearFailListeners()

Removes all new-contact listeners being notified when this dialer fails to make a contact.

public List<NewContactListener> getFailListeners()

Returns an unmodifiable list containing all the new-contact listeners notified when the dialer
fails making a contact.

Returns the list of all registered new-contact listeners.

public DialerPolicy getDialerPolicy()

Returns the dialing policy used by this dialer.

http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

March 4, 2014 Dialer 243

Returns the used dialer’s policy.

public void setDialerPolicy (DialerPolicy policy)

Sets the dialing policy to policy.

Parameter

policy the new dialer’s policy.

Throws

NullPointerException if policy is null.

public RandomStream getStreamReach()

Returns the random stream used to determine if a called person is reached or not.

Returns the stream used to determine if a called person is reached.

public void setStreamReach (RandomStream streamReach)

Sets the stream used to determine if a called person is reached to streamReach.

Parameter

streamReach the new stream for success tests.

Throws

NullPointerException if streamReach is null.

public ValueGenerator getProbReachGenerator()

Returns the value generator for the probability of a call to be successful, i.e., the probability
of right party connect.

Returns the value generator for the reach probability.

public void setProbReachGenerator (ValueGenerator probReach)

Sets the value generator for right party connect probabilities to probReach.

Parameter

probReach the value generator for right party connect probabilities.

Throws

NullPointerException if probReach is null.

public ValueGenerator getReachTimeGenerator()

Returns the value generator for the reach times. A reach time corresponds to the simulation
time from the call to dial() to the notification of the successful call to the listeners.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

244 Dialer March 4, 2014

Returns the value generator for reach times.

public void setReachTimeGenerator (ValueGenerator reachTimeGen)

Sets the value generator for reach times to reachTimeGen. If reachTimeGen is null, the
dial delay for successful calls is reset to 0.

Parameter

reachTimeGen the value generator for reach times.

public ValueGenerator getFailTimeGenerator()

Returns the value generator for the fail times. A fail time corresponds to the simulation
time from the call to dial() to the notification of the failed call to the listeners.

Returns the value generator for fail times.

public void setFailTimeGenerator (ValueGenerator failTimeGen)

Sets the value generator for fail times to failTimeGen. If reachTimeGen is null, the dial
delay for successful calls is reset to 0.

Parameter

failTimeGen the value generator for fail times.

public boolean isSuccessful (Contact contact)

Determines if the call represented by contact is a right party connect. Returns true if the
call is successful, or false otherwise.

The default implementation uses the random stream returned by getStreamReach() to
return true with some probability. The probability of right party connect is generated
using the value generator returned by getProbReachGenerator().

Parameter

contact the contact being tested.

Returns the success indicator.

public boolean isUsingNumActionsEvents()

Determines if the dial() method subtracts the number of action events returned by getNum-
ActionEvents() from the return value of DialerPolicy.getNumDials (Dialer) in order
to determine the number of calls to dial. When dial delays are large enough for the dialer to
start often while phone numbers are being composed, the agents of the contact center might
receive too many calls to serve, which results in a large number of mismatches. If this flag is
enabled (the default), the dialer will take into account the number of calls for which dialing
is in progress while determining the number of additional calls to dial.

Returns true if the number of action events must be taken into account while dialing.

public void setUsingNumActionEvents (boolean useNumActionEvents)

Sets the flag for taking the number of action events into account while dialing to useNumActionEvents.

March 4, 2014 Dialer 245

Parameter

useNumActionEvents the new value of the flag.

See also isUsingNumActionsEvents()

public void dial()

Instructs the dialer to try performing outbound calls. This should be called at the end of
a service, or at any time the number of agents capable of serving outbound calls increases.
This method does nothing if the dialer is disabled.

The method uses the dialer’s policy to get the appropriate number of calls to dial as well
as the dialer list. The contact objects representing the calls being made are removed from
the dialer list, and each call is tested using isSuccessful (Contact). After the success
indicator is determined, a corresponding dial delay is generated, and an event is scheduled
to happen if the delay is non-zero. After the delay is elapsed, the appropriate new-contact
listeners are notified about the new call.

protected void notifyListeners (Contact contact, boolean success)

Notifies registered new-contact listeners about the success or failure of the contact contact.

Parameters

contact the contact to broadcast.

success the success indicator.

public void stopDial()

Stops any ongoing dialing of calls. This can be called when the simulation program knows
that if the called persons are reached, a mismatch will occur. Cancelled calls are notified as
failed calls to the appropriate listeners if dialer action events are kept. However, if the dialer
does not keep track of the action events, cancelled calls are lost without any notification.

public DialerState save()

Saves the state of this dialer and returns a state object containing the information.

Returns the state of the dialer.

public void restore (DialerState state)

Restores the state of this dialer with state information included in state.

Parameter

state the saved state of the dialer.

public boolean isKeepingActionEvents()

Determines if this dialer is keeping the action events. If this returns true, the getAction-
Events() method can be used to return a set containing the events. Otherwise, the action
events are stored in the event list only, and cannot be enumerated by the dialer. By default,
the events are not stored by the dialer.

246 Dialer March 4, 2014

Returns the keep action events indicator.

public void setKeepingActionEvents (boolean keepActionEvents)

Sets the keep-dial-events indicator to keepActionEvents.

Parameter

keepActionEvents the new value of the indicator.

See also isKeepingActionEvents()

public Iterator<DialerActionEvent> dialerActionEventsIterator

()

Constructs and returns an iterator for the dialer-action events. If isKeepingAction-
Events() returns true, the iterator is constructed from the set returned by getAction-
Events(). Otherwise, an iterator traversing the event list and filtering the appropriate
events is constructed and returned.

Returns the iterator for dialer-action events.

public Set<DialerActionEvent> getActionEvents()

Returns a set containing all the currently scheduled DialerActionEvent objects. If the
dialer does not keep track of these events, an IllegalStateException is thrown.

Returns the set of dialer action events.

public int getNumActionEvents()

Returns the number of action events currently scheduled by this dialer. This corresponds to
the number of calls the dialer is currently attempting.

Returns the current number of action events.

public void startNoDial()

This is the same as start(), except that no call to dial() is made after the dialer is started.
dial() will then be called only when an agent becomes free.

http://docs.oracle.com/javase/6/docs/api/java/util/Iterator.html
http://docs.oracle.com/javase/6/docs/api/java/util/Set.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html

March 4, 2014 247

DialerActionEvent
This event occurs when the dialer reached or failed to reach a called person. Such events are
scheduled by the Dialer.dial() method if generated dial delays are greater than zero.

package umontreal.iro.lecuyer.contactcenters.dialer;

public class DialerActionEvent extends Event

implements Cloneable

Constructor

public DialerActionEvent (Dialer dialer, Contact contact, boolean success)

Constructs a new dialer action event for contact contact with success indicator success.
When the event occurs, if success is true, the contact is notified to new-contact listeners for
right-party connect. When success is false, a failed contact is notified to the appropriate
new-contact listeners.

Parameters

dialer the associated dialer.

contact the contact object representing the call being tried.

success the success indicator.

Methods

public Contact getContact()

Returns the contact object representing the called person.

Returns the concerned contact.

public Dialer getDialer()

Returns the dialer this event is attached to.

Returns the attached dialer.

public boolean isSuccessful()

Returns true if a right party connect will occur at the time of this event. Otherwise, returns
false.

Returns the success indicator.

public boolean isObsolete()

Determines if this event is obsolete. When calling Dialer.init(), some action events might
still be in the simulator’s event list. One must use this method in actions() to test if this
event is obsolete. If that returns true, one should return immediately.

Returns true for an obsolete event, false otherwise.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Event.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Event.html#actions(())

248 March 4, 2014

DialerPolicy

Represents a dialer’s policy to determine the outbound calls to try on each occasion. A
dialer’s policy works as follows: each time the dialer is triggered, using the Dialer.dial()

method, it uses the dialer policy to get the number of calls to try. It then uses the policy to
obtain a dialer list from which to extract calls.

The simplest dialer policies compute and return a single number of calls to dial, e.g.,
by looking at the number of free outbound agents. A fixed dialer list is then returned to
allow the dialer to get the contacts. However, most complex policies might generate a list of
contacts each time the dialer is triggered.

package umontreal.iro.lecuyer.contactcenters.dialer;

public interface DialerPolicy

Methods

public int getNumDials (Dialer dialer)

Returns the number of calls the dialer should try to make simultaneously at the current
simulation time.

If Dialer.isUsingNumActionsEvents() returns true, this method must take into account
the current number of action events while determining the additional number of calls to
dial. In the simplest and most common cases, the method subtracts the result of Dialer.
getNumActionEvents() to the number of calls to dial. However, in some cases, it might be
necessary to use Dialer.getNumActionEvents (int) to get the number of action events
for each contact type individually.

Parameter

dialer the triggered dialer.

Returns the number of calls the dialer should try to make.

public DialerList getDialerList (Dialer dialer)

Returns the dialer list from which contacts have to be removed from, at the current simu-
lation time. This list should not be stored into another object since it could be constructed
dynamically when getNumDials (Dialer) is called.

Parameter

dialer the dialer for which the dialer list is required.

Returns the associated dialer list.

public void init (Dialer dialer)

Initializes this dialer’s policy for a new simulation replication. This method can be used,
for example, to clear data structures containing information about a preceding simulation.
This method should also clear the associated dialer list when appropriate.

March 4, 2014 DialerPolicy 249

Parameter

dialer the dialer which initialized this policy.

public void dialerStarted (Dialer dialer)

This method is called when the dialer using this policy is started.

Parameter

dialer the started dialer.

public void dialerStopped (Dialer dialer)

This method is called when the dialer using this policy is stopped.

Parameter

dialer the stopped dialer.

250 March 4, 2014

ConstantDialerPolicy

Represents a dialer’s policy which always tries to make the same number of calls on each
trial.

package umontreal.iro.lecuyer.contactcenters.dialer;

public class ConstantDialerPolicy implements DialerPolicy

Constructor

public ConstantDialerPolicy (DialerList list, int n)

Constructs a new dialer’s policy with dialer list list, and n calls to make on each trial.

Parameters

list the dialer list to extract calls from.

n the number of calls to make on each occasion.

Throws

NullPointerException if list is null.

IllegalArgumentException if n is negative.

Methods

public void setDialerList (DialerList list)

Sets the dialer list to list.

Parameter

list the new dialer list.

Throws

NullPointerException if list is null.

public void setNumDials (int n)

Sets the number of dialed contacts to n.

Parameter

n the number of calls to make upon each trial.

Throws

IllegalArgumentException if n is negative.

March 4, 2014 251

ThresholdDialerPolicy

Represents a threshold-based dialing policy selecting the number of calls to try based on the
number of free agents in certain groups. Before trying to make calls, the policy determines
the total number of free agents NT

F (t) in a test set of agent groups. If the number of free
agents is greater than or equal to st, the policy counts the total number ND

F (t) of free agents
in a target set of agent groups which may differ from the test set. If ND

F (t) ≥ sd, the
dialer tries to make max{Math.round (κND

F (t))+c − a, 0} calls, where κ ∈ R and c ∈ N
are predefined numbers. The constant a is the result of Dialer.getNumActionEvents() if
Dialer.isUsingNumActionsEvents() returns true, or 0 otherwise. Any parameter used by
this policy can be changed at any time during the simulation.

package umontreal.iro.lecuyer.contactcenters.dialer;

public class ThresholdDialerPolicy implements DialerPolicy

Constructors

public ThresholdDialerPolicy (DialerList list, AgentGroupSet testGroups,

AgentGroupSet targetGroups, int minFreeTest,

int minFreeTarget, double kappa, int c)

Constructs a new dialer’s policy with dialer list list, test set testGroups, and target set
targetGroups. The free agents threshold for the test set is set to minFreeTest, the threshold
is set to minFreeTarget for the target set, the multiplicative constant is set to kappa, and
the additive constant to c.

Parameters

list the dialer list being used.

testGroups the test set of agent groups.

targetGroups the target set of agent groups.

minFreeTest the (inclusive) minimum number of free agents in the test set.

minFreeTarget the (inclusive) minimum number of free agents in the target set.

kappa the multiplicative constant.

c the additive constant.

http://docs.oracle.com/javase/6/docs/api/java/lang/Math.html#round((float))

252 ThresholdDialerPolicy March 4, 2014

Throws

NullPointerException if list, testGroups, or targetGroups are null.

IllegalArgumentException if the free agents threshold is negative.

public ThresholdDialerPolicy (DialerList list, AgentGroupSet testGroups,

AgentGroupSet targetGroups, int minFreeTest,

double kappa, int c)

Equivalent to ThresholdDialerPolicy (list, testGroups, targetGroups, minFreeTest,
1, kappa, c).

Methods

public void setDialerList (DialerList list)

Sets the currently used dialer list to list.

Parameter

list the new dialer list.

Throws

NullPointerException if list is null.

public int getMinFreeAgentsTest()

Returns the minimal number of free agents st in the test set to try outbound calls.

Returns the minimal number of free agents in the test set to dial.

public void setMinFreeAgentsTest (int minFreeTest)

Sets the minimal number of free agents in the test set to minFreeTest.

Parameter

minFreeTest the new minimal number of free agents in the test set.

Throws

IllegalArgumentException if minFreeTest is negative.

public int getMinFreeAgentsTarget()

Returns the minimal number of free agents sd in the target set to try outbound calls.

Returns the minimal number of free agents in the target set to dial.

public void setMinFreeAgentsTarget (int minFreeTarget)

Sets the minimal number of free agents in the target set to minFreeTarget.

Parameter

minFreeTarget the new minimal number of free agents in the target set.

March 4, 2014 ThresholdDialerPolicy 253

Throws

IllegalArgumentException if minFreeTarget is negative.

public double getKappa()

Returns the current value of the multiplicative constant κ for this policy.

Returns the multiplicative constant.

public void setKappa (double kappa)

Sets the multiplicative constant κ to kappa for this dialer policy.

Parameter

kappa the new multiplicative constant.

public int getC()

Returns the current value of the additive constant c for this policy.

Returns the additive constant.

public void setC (int c)

Sets the additive constant c to c for this dialer’s policy.

Parameter

c the new additive constant.

public AgentGroupSet getTestSet()

Returns the current test set of agent groups.

Returns the test set of agent groups.

public void setTestSet (AgentGroupSet testGroups)

Sets the test set of agent groups to testGroups.

Parameter

testGroups the new test set of agent groups.

Throws

NullPointerException if testGroups is null.

public AgentGroupSet getTargetSet()

Returns the current target set of agent groups.

Returns the target set of agent groups.

public void setTargetSet (AgentGroupSet targetGroups)

Sets the target set of agent groups to targetGroups.

Parameter

targetGroups the new target set of agent groups.

Throws

NullPointerException if targetGroups is null.

254 March 4, 2014

BadContactMismatchRatesDialerPolicy

Represents a threshold-based dialer’s policy taking bad contact and mismatch rates into
account for dialing, as used in Deslaurier’s blend call center model [7]. This dialer’s
policy needs to be informed about the contact center’s activity through two methods:
notifyInboundContact (Contact, boolean), and notifyOutboundContact (Contact,

boolean). When an inbound contact is processed (served, abandoned, or blocked) by
the contact center, the notifyInboundContact (Contact, boolean) method needs to be
called. When an outbound contact is processed, the notifyOutboundContact (Contact,

boolean) method must be called. For both contact types, the user has to indicate this
dialer’s policy if the processed contact must be considered as good or bad. Usually, a good
inbound contact is a contact meeting some service level requirements, e.g., having waited
less than a certain time in queue. An outbound contact can be considered as good if it is
not a mismatch.

When the dialer’s policy is asked a number of calls to make, it gets the total number
of free agents NT

F (t) in a test set. If this number is smaller than a given minimum st, no
call is made. Otherwise, the dialer looks at the rate of bad inbound contacts in the last
p periods of duration d. If this rate is smaller than or equal to a threshold si, the dialer’s
policy evaluates ND

F (t), the number of free agents in a target set. If this number is smaller
than sd, no call is made. Otherwise, the base number of calls to dial n = max{Math.round
(κND

F (t))+c − a, 0} is computed. Then, if the rate of bad outbound contacts in the p last
periods of duration d is smaller than or equal to a threshold so, 2n calls are made. Otherwise,
n calls are made.

package umontreal.iro.lecuyer.contactcenters.dialer;

public class BadContactMismatchRatesDialerPolicy extends

ThresholdDialerPolicy

Constructors

public BadContactMismatchRatesDialerPolicy (DialerList list, AgentGroupSet

testSet, AgentGroupSet

targetSet, int minFreeTest,

int minFreeTarget, double

maxBadContactRate, double

mismatchRateThresh, int

numCheckedPeriods, double

checkedPeriodDuration)

This is the same as the constructor BadContactMismatchRatesDialerPolicy (Dialer-
List, AgentGroupSet, AgentGroupSet, int, int, double, int, double, double, int,
double) , with κ = 1 and c = 0.

http://docs.oracle.com/javase/6/docs/api/java/lang/Math.html#round((float))

March 4, 2014 BadContactMismatchRatesDialerPolicy 255

Parameters

list the dialer list from which to get contacts.

testSet the test agent group set.

targetSet the target agent group set.

minFreeTest the minimal number of free agents in the test set.

minFreeTarget the minimal number of free agents in the target set.

maxBadContactRate the maximal rate of bad contacts.

mismatchRateThresh the mismatch rate threshold.

numCheckedPeriods the number of checked periods p.

checkedPeriodDuration the duration d of checked periods.

Throws

NullPointerException if list, testSet or targetSet are null.

IllegalArgumentException if a threshold on the number of agents, the number of checked
periods or the duration of checked periods are negative, or a rate is negative or greater
than 1.

public BadContactMismatchRatesDialerPolicy (DialerList list, AgentGroupSet

testSet, AgentGroupSet

targetSet, int minFreeTest,

int minFreeTarget, double

kappa, int c, double

maxBadContactRate, double

mismatchRateThresh, int

numCheckedPeriods, double

checkedPeriodDuration)

Constructs a new bad contact/mismatch rates dialer’s policy with the dialer list list, test set
testSet, target set targetSet. The minimal number of free agents is set to minFreeTest for
the test set, and minFreeTarget for the target set. The maximal rate of bad contacts is set
to maxBadContactRate, while the threshold for mismatch rate is mismatchRateThresh. To
take its decisions, the policy uses rates for the last numCheckedPeriods periods of duration
checkedPeriodDuration.

Parameters

list the dialer list from which to get contacts.

testSet the test agent group set.

targetSet the target agent group set.

minFreeTest the minimal number of free agents in the test set.

256 BadContactMismatchRatesDialerPolicy March 4, 2014

minFreeTarget the minimal number of free agents in the target set.

kappa the κ multiplicative constant.

c the c additive constant.

maxBadContactRate the maximal rate of bad contacts.

mismatchRateThresh the mismatch rate threshold.

numCheckedPeriods the number of checked periods p.

checkedPeriodDuration the duration d of checked periods.

Throws

NullPointerException if list, testSet or targetSet are null.

IllegalArgumentException if a threshold on the number of agents, the number of checked
periods or the duration of checked periods are negative, or a rate is negative or greater
than 1.

Methods

public double getMaxBadContactRate()

Returns the maximal rate of bad contacts si for this dialer’s policy.

Returns the maximal rate of bad contacts.

public void setMaxBadContactRate (double maxBadContactRate)

Sets the maximal rate of bad contacts for this dialer’s policy to maxBadContactRate.

Parameter

maxBadContactRate the new rate of bad contacts.

Throws

IllegalArgumentException if maxBadContactRate is smaller than 0 or greater than 1.

public double getMismatchRateThresh()

Returns the threshold on the mismatch rate so for this dialer’s policy.

Returns the mismatch rate threshold.

public void setMismatchRateThresh (double mismatchRateThresh)

Sets the threshold on the mismatch rate to mismatchRateThresh.

Parameter

mismatchRateThresh the threshold on the mismatch rate.

March 4, 2014 BadContactMismatchRatesDialerPolicy 257

Throws

IllegalArgumentException if mismatchRateThresh is smaller than 0 or greater than 1.

public int getNumCheckedPeriods()

Returns the number of checked periods p for this dialer’s policy.

Returns the number of checked periods.

public void setNumCheckedPeriods (int numCheckedPeriods)

Sets the number of checked periods to numCheckedPeriods.

Parameter

numCheckedPeriods the number of checked periods.

Throws

IllegalArgumentException if numCheckedPeriods is negative or 0.

public double getCheckedPeriodDuration()

Returns the duration d of the checked periods.

Returns the checked period duration.

public void setCheckedPeriodDuration (double checkedPeriodDuration)

Sets the duration of the checked periods to checkedPeriodDuration.

Parameter

checkedPeriodDuration the duration of the checked periods.

Throws

IllegalArgumentException if checkedPeriodDuration is negative or 0.

public double getCurrentBadContactRate()

Gets the current bad contact rate as used by getNumDials (Dialer).

Returns the current bad contact rate.

public double getCurrentMismatchRate()

Returns the current mismatch rate as used by getNumDials (Dialer).

Returns the current mismatch rate.

public void notifyInboundContact (Contact contact, boolean bad)

Notify a processed inbound contact to this dialer’s policy. The bad indicator determines if a
bad contact is notified. The simulator must determine which contacts to notify as well as a
definition of bad contacts. Usually, all inbound contacts are notified to the dialer, and bad
contacts have a waiting time greater than some acceptable waiting time.

258 BadContactMismatchRatesDialerPolicy March 4, 2014

Parameters

contact the notified contact.

bad true if a bad contact is notified, false if a good contact is notified.

public void notifyOutboundContact (Contact contact, boolean m)

Notifies an outbound contact to this dialer policy. If m is true, the contact is a mismatch,
i.e., it has balked (most often) or needed to wait before abandoning or being served. The
application needs to decide which outbound contacts are notified and determine if contacts
are mismatches or not. Usually, only outbound contacts produced by the dialer using this
policy are notified, including right and wrong party connects.

Parameters

contact the notified contact.

m true if the notified contact is a mismatch, false otherwise.

public SumMatrixSW getInBadContactsSumMatrix()

Returns the matrix of sums counting the number of bad inbound contacts notified to this
dialing policy.

Returns the matrix of sums for bad contacts.

public SumMatrixSW getInTotalSumMatrix()

Returns the matrix of sums counting the total number of inbound contacts notified to this
dialing policy.

Returns the matrix of sums for the total number of contacts.

public SumMatrixSW getMismatchSumMatrix()

Returns the matrix of sums counting the number of mismatches notified to this dialing
policy.

Returns the matrix of sums for the number of mismatches.

public SumMatrixSW getOutTotalSumMatrix()

Returns the matrix of sums counting the total number of outbound contacts for this dialing
policy.

Returns the matrix of sums for the number of outbound contacts.

March 4, 2014 259

AgentsMoveDialerPolicy

Represents a dialer policy that dynamically moves agents from inbound to outbound groups
to balance performance. This policy is inspired from a real dialer called SER’s SmartAgent
Manager. This dialer manages a subset of the I agent groups of the contact center by
separating them into two categories: inbound agent groups and outbound agent groups.
The inbound groups are assumed to serve inbound contacts only while the outbound groups
process outbound contacts only. An inbound agent is an agent belonging to an inbound
group while any outbound agent belongs to an outbound group. Consequently, an inbound
agent is made outbound by removing it from its original inbound group, and adding it into
an outbound group. A similar process is used to turn an outbound agent into an inbound
one. This dialer policy performs such transfers in order to balance performance.

Note that this dialer policy does not impose outbound contacts to be routed to outbound
agents, and inbound contacts to be sent to inbound agents. The routing policy must be
configured separately to be consistent with the inbound and outbound agent groups managed
by the dialer.

This policy required two different aspects to be specified: how contacts are dialed, and
how agents are moved across groups. We will now describe these two aspects in more details.

The dialing process. Two algorithms are available for dialing: one simple method using
no routing information, and one more elaborate method using the information. With the
first and fastest method, the policy does not control the distribution of the dialed calls, which
can result in many mismatches if agents can only serve a restricted subset of the calls. With
the second method, the number of dialed calls of each type depends on the agents available
to serve them. Both methods use a dialer list L to obtain calls to dial.

The first method works as follows. When the dialer is triggered, i.e., when it is requested
to dial numbers, this policy computes the number of outbound agents managed by the dialer
given by

N =
I−1∑
i=0

NF,i(t)I{i is an outbound agent group managed by the dialer}.

The number of calls to dial is then obtained using n = round(κN) + c − a where κ ∈ R,
c ∈ N, and round(·) rounds its argument to the nearest integer. The dialer schedules an
action event for each call waiting a dial delay. If the number of action events is taken into
account (the default), the constant a is the number of action events currently scheduled by
the dialer. Otherwise, a = 0. An action event occurs when a call made by the dialer reaches
a person or fails. The n calls to be dialed are extracted from the dialer list L.

The dialing method using routing information works as follows. For each managed agent
group, the dialer determines a number of calls to dial using the number of free agents. It
then sums up the number of calls mk for each type, and constructs a dialer list L2 containing
at most mk calls of type k. The calls are extracted from the dialer list L. The contents of
the dialer list might be affected by limits imposed on the number of calls of each type.

260 AgentsMoveDialerPolicy March 4, 2014

The values of mk are computed as follows. First, mk = 0 for each value of k. Then,
for each managed outbound agent group i, the dialer obtains ni = round(κNF,i(t)) + c. Let
Ki be the number of different types of calls agents in group i can serve, and bk,i = 1 if and
only if agents in group i can serve calls of type k. If Ki > 0, for each value of k, the value
round(bk,ini/Ki) is added to mk. Usually, Ki = 1 with this model, i.e., agents in each group
i can serve a single outbound call type.

After each agent group is processed, if the dialer takes the number of action events into
account, the number of action events concerning calls of type k is subtracted to each value
of mk, for each call type k.

Management of agents. This dialer regroups agent groups into virtual groups containing
inbound and outbound agent groups. Let J be the total number of virtual agent groups,
and Vj(t) = Ij(t) +Oj(t) the number of agents in virtual group j at simulation time t, where
Ij(t) is the total number of inbound agents in virtual group j, and Oj(t) is the total number
of outbound agents in virtual group j at time t. This dialer policy never changes the virtual
group of an agent; it only transfers agents to groups within the same virtual group.

Note that an agent group can only be in a single virtual group, for a single dialer.

Any external change to an agent group managed by this dialer policy is handled the same
way as if the dialer never transferred agents from groups to groups. This requires the dialer
to keep track of the number of agents transferred into or out of each managed group. The
changes are performed as follows. If the number of agents is increased, agents are added to
the concerned group. However, if the number of agents is reduced, the dialer first removes
outbound agents, then inbound agents if the affected virtual group does not contain any more
outbound agents. The order in which the agent groups are selected to remove agents from
is random to avoid an agent group having priority over other groups. The only constraint
on the order is the priority of outbound agents over inbound agents. When the dialer is
stopped, every outbound agent becomes inbound, but busy outbound agents terminate their
on-going services before they become inbound.

Two flags are available for this dialer policy: inbound-to-outbound flag, and outbound-to-
inbound flag. These flags trigger procedures that can be considered as background processes,
although they are implemented with simulation events. When the inbound-to-outbound flag
is turned ON, the policy starts the following procedure for each virtual agent group j, each
time the dialer is required to take a decision.

1. If the procedure is already running for virtual group j, stop.

2. Let τ be the delay between the last time an inbound agent in virtual group j became
outbound, and the current simulation time. If τ < DOO,j, wait for DOO,j − τ .

3. Generate a random permutation of the inbound agent groups in the virtual group j.

4. For each inbound agent group i in the virtual group j, do the following. Agent groups
are processed in the order given by the random permutation of the previous step. While
NI,i(t) > 0,

March 4, 2014 AgentsMoveDialerPolicy 261

(a) Select an agent A in group i with the following characteristics:

• The agent is in group i (idle or busy) for a minimal time DIO,j,

• The idle time of the agent is greater than or equal to tj,

• The number of idle inbound agents in virtual group j is greater than or equal
to mj,

• The number of outbound idle agents in virtual group j is smaller than Mj.

(b) If no agent was selected at previous step, skip to next agent group.

(c) Remove agent A from group i, select outbound agent group o with probability
pj,o, and add the agent A to group o.

(d) Wait for a delay DOO,j.

When the flag is turned OFF, every process moving inbound agents to outbound groups is
stopped.

On the other hand, when the outbound-to-inbound flag is turned ON, the policy starts
the following procedure for each virtual agent group j, each time the dialer is required to
take a decision.

1. If the procedure is already running for group j, stop.

2. Let τ be delay between the last time an outbound agent in virtual group j became
inbound, and the current simulation time. If τ < DII,j, wait for DII,j − τ .

3. Generate a random permutation of outbound agent groups.

4. For each outbound agent group o in virtual group j, do the following. Agent groups
are processed in the order given by the random permutation generated at the previous
step. While NI,o(t) > 0,

(a) Select an agent A in group o with the following characteristic:

• The agent is in group o (idle or busy) for a minimal time DOI,j.

(b) If no agent was selected at previous step, skip to next agent group.

(c) Remove agent A from group o, select inbound agent group with probability pj,i,
and add agent A to group i.

(d) Wait for a delay DII,j.

When the flag is turned OFF, every process moving outbound agents to inbound groups is
stopped.

package umontreal.iro.lecuyer.contactcenters.dialer;

public class AgentsMoveDialerPolicy implements DialerPolicy

262 AgentsMoveDialerPolicy March 4, 2014

Constructor

public AgentsMoveDialerPolicy (DialerList list, AgentGroupInfo[] groupInfo,

double kappa, int c)

Constructs a new dialer policy using the dialer list list, and agent group information
groupInfo. Each AgentGroupInfo object results in a virtual group of agents for the dialer.

Parameters

list the dialer list.

groupInfo the agent group information.

Methods

public AgentGroupInfo[] getAgentGroupInfo()

Returns an array containing the references to the virtual agent groups managed by this
dialer policy.

Returns the virtual agent groups for this policy.

public void dialerStopped (Dialer dialer)

Calls init (Dialer).

public DialerList getDialerList (Dialer dialer)

Returns the dialer list associated with this policy.

public void setDialerList (DialerList list)

Sets the dialer list of this policy to list.

Parameter

list the new dialer list.

public int getNumDials (Dialer dialer)

This method returns the number of free agents in all outbound groups connected to this
dialer.

public void init (Dialer dialer)

Makes every agent inbound when the dialer stops.

public boolean isInboundToOutboundStarted()

Determines if the inbound-to-outbound flag is turned ON.

March 4, 2014 AgentsMoveDialerPolicy 263

Returns the status of the inbound-to-outbound flag.

public void startInboundToOutbound()

Turns the inbound-to-outbound flag on.

public void stopInboundToOutbound()

Turns the inbound-to-outbound flag off.

public boolean isOutboundToInboundStarted()

Determines if the outbound-to-inbound flag is turned ON.

Returns the status of the outbound-to-inbound flag.

public void startOutboundToInbound()

Turns the outbound-to-inbound flag on.

public void stopOutboundToInbound()

Turns the outbound-to-inbound flag off.

Nested class

public static class AgentGroupInfo

Represents a virtual agent group j for the AgentsMoveDialerPolicy. This class encap-
sulates information about inbound and outbound groups in the virtual group as well as
thresholds, probabilities, and delays. It also implements methods to transfer agents from
groups to groups.

Constructor

public AgentGroupInfo (AgentGroup[] inboundGroups, double[]

inboundGroupProbs, AgentGroup[] outboundGroups,

double[] outboundGroupProbs, RandomStream stream)

Constructs a new virtual agent group containing all inbound agent groups int inboundGroups,
and all outbound agent groups in outboundGroups. The arrays inboundGroupProbs and
outboundGroupProbs contain probabilities pj,i of selection of agent groups as targets for
transfers. The random stream stream is used to generated random numbers for permu-
tations, and for selecting target agent groups during transfers.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

264 AgentsMoveDialerPolicy March 4, 2014

Parameters

inboundGroups the inbound agent group.

inboundGroupProbs the probabilities of selection for each inbound agent group when
performing transfers.

outboundGroups the outbound agent group.

outboundGroupProbs the probabilities of selection for each outbound agent group when
performing transfers.

Methods

public double getDelayInIn()

Returns the value of DII,j , which defaults to 0.

public void setDelayInIn (double delayInIn)

Sets the value of DII,j to delayInIn.

public double getDelayInOut()

Returns the value of DIO,j , which defaults to 0.

public void setDelayInOut (double delayInOut)

Sets the value of DIO,j to delayInOut.

public double getDelayOutIn()

Returns the value of DOI,j , which defaults to 0.

public void setDelayOutIn (double delayOutIn)

Sets the value of DOI,j to delayOutIn.

public double getDelayOutOut()

Returns the value of DOO,j , which defaults to 0.

public void setDelayOutOut (double delayOutOut)

Sets the value of DOO,j to delayOutOut.

public AgentGroup[] getInboundGroups()

Returns the inbound agent group associated with this information object.

public AgentGroup[] getOutboundGroups()

Returns the outbound agent group associated with this information object.

March 4, 2014 AgentsMoveDialerPolicy 265

public int getMaximumIdleOutboundAgents()

Returns the value of Mj , which defaults to 0.

public void setMaximumIdleOutboundAgents (int maximumIdleAgents)

Sets the value of Mj to maximumIdleAgents.

public int getMinimumIdleInboundAgents()

Returns the value of mj , which defaults to 0.

public void setMinimumIdleInboundAgents (int minimumIdleAgents)

Sets the value of mj to minimumIdleAgents.

public double getMinimumIdleTime()

Returns the value of tj , which defaults to 0.

public void setMinimumIdleTime (double minimumIdleTime)

Sets the value of tj to minimumIdleTime.

public double[] getInboundGroupProbs()

Returns the probabilities pj,i of selection for each inbound agent group. Element k of
the returned array corresponds to the probability associated with agent group k in the
array returned by getInboundGroups().

Returns the probability of selection for inbound agent groups.

public double[] getOutboundGroupProbs()

Returns the probabilities pj,i of selection for each outbound agent group. Element k of
the returned array corresponds to the probability associated with agent group k in the
array returned by getOutboundGroups().

Returns the probability of selection for outbound agent groups.

public void transferToInbound (int n)

Transfers n agents from the outbound groups of this object to its inbound group. For each
transfer, the order of outbound agent groups is chosen randomly to avoid an outbound
group having priority over the others.

Parameter

n the number of agents to transfer.

public void transferToOutbound (int n)

Transfers n agents from the inbound groups of this object to its outbound group. For
each transfer, the order of inbound agent groups is chosen randomly to avoid an inbound
group having priority over the others.

266 AgentsMoveDialerPolicy March 4, 2014

Parameter

n the number of agents to transfer.

public boolean transferToInbound (int idxOut, Agent agent)

Transfers the agent agent to a randomly-chosen inbound agent group.

Parameter

agent the agent to transfer.

public boolean transferToOutbound (int idxIn, Agent agent)

Transfers the agent agent to a randomly-chosen outbound agent group.

Parameter

agent the agent to transfer.

public void startInboundToOutbound()

Starts the process moving inbound agents to outbound for the agent groups associated
with this object. This method does nothing if the moving process is already started.

public void stopInboundToOutbound()

Stops the process moving inbound agents to the outbound group.

public void startOutboundToInbound()

Similar to startInboundToOutbound(), for the outbound-to-inbound process.

public void stopOutboundToInbound()

Similar to stopInboundToOutbound(), for the outbound-to-inbound process.

public void makeAllInbound()

Moves all outbound agents to the inbound group. Any busy outbound agent is marked
to be moved after its on-going service if finished.

public void init()

Initializes both agent groups, and resets the fields storing the last time moves happened.

March 4, 2014 267

DialerList

Represents a list that contains and manages contacts to be made later by a dialer. This
interface specifies methods to clear the current list, to remove the first contact of the list,
and to compute the current size of the list. The contents of the dialer list depends on the
implementation. For example, InfiniteDialerList always has an infinite size, and uses a
user-supplied contact factory to obtain contacts. The ContactListenerDialerList, on the
other hand, is backed by a fixed list which is populated by a contact listener. The contents
of the dialer list could also change with time. For example, during some time intervals of
the day, a limit on the maximal number of dialed contacts might be imposed by restricting
the size of the dialer list.

Some dialer lists might also allow one to restrict the types of contacts that can be ex-
tracted from the list. This can be useful for some dialing policies managing contacts of
several types, and composing specific numbers of contacts of each type.

A dialer list also implements the ContactFactory interface; the implementation of
the ContactFactory.newInstance() method usually forwards the call to removeFirst

(int[]). However, while the contact factory always creates new objects, a dialer list may
extract them from a list with possibly finite size.

package umontreal.iro.lecuyer.contactcenters.dialer;

public interface DialerList extends ContactFactory

Methods

public int size (int[] contactTypes)

Returns the number of contacts of desired types stored into this dialer list. This method
counts and returns the number of stored contacts whose type identifiers correspond to one
of the elements in the given contactTypes array. If the array is null, the check is applied
for all contact types. If the size of the list is infinite, this must return Integer.MAX VALUE.
If the dialer list does not allow restriction to specific contact types, this method throws an
UnsupportedOperationException.

Parameter

contactTypes the array of desired contact types.

Returns the number of contacts in the dialer list.

http://docs.oracle.com/javase/6/docs/api/java/lang/Integer.html#MAX_VALUE
http://docs.oracle.com/javase/6/docs/api/java/lang/UnsupportedOperationException.html

268 DialerList March 4, 2014

Throws

UnsupportedOperationException if contactTypes is non-null while the dialer list does
not support restrictions to specific contact types.

public void clear()

Clears the contents of this dialer list. This method does not always reset the size of the list
to 0. For example, this method has no effect in the case of infinite dialer lists. For dialer lists
with limits on the number of dialed contacts, this resets the size to the maximum number
of contacts allowed.

public Contact removeFirst (int[] contactTypes)

Removes and returns the first contact with one of the desired types from the dialer list. If
the list is empty or does not contain any contact of the desired types, this method must
throw a NoSuchElementException. If contactTypes is null, any contact type is allowed.
If contactTypes is non-null while the dialer list does not support restrictions to specific
contact types, this throws an UnsupportedOperationException.

Parameter

contactTypes the array of desired contact types.

Returns the removed contact.

Throws

NoSuchElementException if the dialer list is empty.

UnsupportedOperationException if contactTypes is non-null while the dialer list does
not support restrictions to specific contact types.

http://docs.oracle.com/javase/6/docs/api/java/util/NoSuchElementException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/UnsupportedOperationException.html

March 4, 2014 269

InfiniteDialerList

Implements the DialerList interface for an infinite dialer list whose elements are produced
using a contact factory. This list can be used when there is no defined model for the calls
made by the dialer.

package umontreal.iro.lecuyer.contactcenters.dialer;

public class InfiniteDialerList implements DialerList

Constructor

public InfiniteDialerList (ContactFactory factory)

Constructs a new infinite dialer list whose contacts are instantiated using the contact factory
factory.

Parameter

factory the contact factory used to instantiate contacts.

Throws

NullPointerException if factory is null.

Methods

public ContactFactory getContactFactory()

Returns the contact factory associated with this dialer list.

Returns the associated contact factory.

public void setContactFactory (ContactFactory factory)

Sets the contact factory used to instantiate contacts to factory.

Parameter

factory the new contact factory.

Throws

NullPointerException if factory is null.

270 March 4, 2014

ContactListenerDialerList

Implements the DialerList interface for a finite dialer list whose elements are obtained from
an external source. Since this class implements the NewContactListener interface, it can
be bound to an arrival process or any source of contacts. When a new contact is notified to
this dialer list, it is added at the end of an internal ordered list for later use. When calling
removeFirst (int[]), the first element from this internal list is returned.

package umontreal.iro.lecuyer.contactcenters.dialer;

public class ContactListenerDialerList implements DialerList,

NewContactListener

Constructors

public ContactListenerDialerList()

Constructs a new empty dialer list implemented by a doubly-linked list. The used imple-
mentation is provided by the standard LinkedList class.

public ContactListenerDialerList (List<Contact> dialerList)

Constructs a new dialer list using the given dialerList to store the contacts. The given
list should be empty or contain only Contact instances.

Parameter

dialerList the list used to store the contacts.

Throws

NullPointerException if dialerList is null.

Methods

public List<Contact> getList()

Returns the internal list containing the contacts to dial. This list should contain only non-
null Contact instances.

Returns the internal dialer list.

public void setList (List<Contact> dialerList)

Sets the internal list of contacts to dial to dialerList.

Parameter

dialerList the list used to store the contacts.

http://docs.oracle.com/javase/6/docs/api/java/util/LinkedList.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

March 4, 2014 ContactListenerDialerList 271

Throws

NullPointerException if dialerList is null.

public void newContact (Contact contact)

Adds the new contact contact to the dialer list.

Parameter

contact the contact being added.

Throws

NullPointerException if contact is null.

272 March 4, 2014

DialerListNoQueueing

This wrapper dialer list is used by dialers dropping mismatches. It uses a regular dialer list,
and resets the patience time of all created contacts to 0. As a result, contacts that cannot
be served immediately (mismatches) leave the system without waiting in queue.

package umontreal.iro.lecuyer.contactcenters.dialer;

public class DialerListNoQueueing implements DialerList

Constructor

public DialerListNoQueueing (DialerList list)

Constructs a new dialer list with no queueing by using the inner list list.

Parameter

list the inner dialer list.

Method

public DialerList getDialerList()

Returns a reference to the internal dialer list.

Returns a reference to the internal dialer list.

March 4, 2014 273

DialerState

Represents the state of a dialer.

package umontreal.iro.lecuyer.contactcenters.dialer;

public class DialerState

Constructor

protected DialerState (Dialer dialer)

Constructs a new dialer state containing the state of the dialer dialer.

Parameter

dialer the dialer for which the state must be saved.

Method

public DialerActionState[] getDialerActionEvents()

Returns an array containing a state object for each dialer action event saved.

Returns the array of dialer action events.

274 March 4, 2014

DialerActionState

Represents the information needed to scheduled a dialer action event.

package umontreal.iro.lecuyer.contactcenters.dialer;

public class DialerActionState

Constructors

public DialerActionState (Contact contact, boolean success, double

dialEndTime)

Constructs a new dialer action event state object for a contact contact. The success flag
gives the success indicator when the dial-up is finished at simulation time dialEndTime.

Parameters

contact the contact being dialed.

success the success indicator.

dialEndTime the simulation time of success or failure.

public DialerActionState (DialerActionEvent ev)

Constructs a new dialer action state object from the dialer action event ev.

Parameter

ev the dialer action event to extract information from.

Methods

public Contact getContact()

Returns the contact being dialed.

Returns the contact being dialed.

public boolean isSuccessful()

Returns the success indicator of the dial.

Returns the success indicator of the dial.

public double getDialEndTime()

Returns the time at which success or failure will occur.

Returns the success or failure time.

March 4, 2014 275

MismatchChecker

This agent-group listener checks that the number of free agents in the test and target sets
for a given dialer never fall outside the user-defined thresholds while dialing is in-progress.
This listener is constructed using a dialer using an instance of ThresholdDialerPolicy as
a dialer’s policy. It should then be registered with all agent groups in the target sets.

Each time a service begins (and the number of free agents is reduced), the method check-

Thresh() is called, and checks for the thresholds. If the number of free agents becomes
smaller than the given threshold, in-progress dialing is stopped. If the policy is not an
instance of ThresholdDialerPolicy, this listener does nothing.

package umontreal.iro.lecuyer.contactcenters.dialer;

public class MismatchChecker implements AgentGroupListener

Constructor

public MismatchChecker (Dialer dialer)

Constructs a new mismatch checker for the dialer dialer.

Parameter

dialer the dialer for which mismatches are checked.

Method

public void checkThresh()

Checks the thresholds on the number of free agents in the test and target sets for the dialer’s
policy of the associated dialer.

276 March 4, 2014

Package umontreal.iro.lecuyer.contactcenters.router

Contains the contact routing facilities. A router, called an automatic call distributor (ACD)
for call centers, can be any class listening to new contacts, and assigning them to agent
groups or adding them to waiting queues. The router listens to service terminations to
assign queued contacts to free agents and to waiting queue events for statistical collection
and overflow support.

This package provides the Router base class as a basis to implement routers using almost
arbitrary policy. It can listen to new contacts and interact with waiting queues and agent
groups, which makes it a central point in any contact center. For contacts to be counted
correctly during statistical collection, an exited-contact listener can also be registered with
a router which knows exactly when contacts abandon, are blocked, and are served. Figure 2
gives a UML diagram summarizing how the router is connected to the other parts of the
system.

Contact

AgentGroup

WaitingQueue

DequeueEvent

EndServiceEvent

Router

ExitedContactListener

AgentGroupListener

WaitingQueueListener

DetailedAgentGroup

Agent

AgentListener

0,*

0,*

Mise en file

Service

Broadcasts to

0,*Broadcasts to
0,*

Broadcasts to
0,* 0,*

Broadcasts to0,*

Figure 2: UML diagram describing the routing of contacts

The routing policy itself must be implemented in a subclass by defining fields for the data
and implementing or overriding methods for the routing logic. The router needs schemes for
agent and contact selections, and it can optionally clear waiting queues when the contact
center does not have idle or busy agents capable of serving the waiting contacts. Algorithms
to process dequeued and served contacts may also be needed in complex systems supporting
overflow or service by multiple agents.

This package provides a few predefined policies inspired from [17] and [12]. These policies
do not cover all possible scenarios, but new policies can easily be added.

A first class of policies uses ordered lists as follows. For each contact type k, the type-to-
group map defines an ordered list ik,0, ik,1, . . . of agent groups. For each agent group i, the
group-to-type map defines an ordered list ki,0, ki,1, . . . of contact types. These lists indicate
which agent groups can serve a contact of type k and which contact types can be served by

March 4, 2014 Package umontreal.iro.lecuyer.contactcenters.router 277

agents in group i, respectively. The order of the elements can be used to define priorities.
This data structure prevents contact types or agent groups from sharing the same priority,
and may produce inconsistent routing policies. For example, a bad router could assign new
contacts of type k to agents in group i without pulling contacts of type k from queues when
an agent in group i becomes free. Checker methods are provided in RoutingTableUtils to
detect this problem, but they need to linearly scan the routing tables. As a result, they must
be manually called by the user to avoid decreasing the performance.

In a second type of policy, matrices of ranks assign ranks or priorities rTG(k, i) and
rGT(i, k) to contacts of type k served by agents in group i. If the rank is ∞, i.e., Double.
POSITIVE INFINITY, contacts of type k cannot be served by agents in group i. Otherwise,
the smaller is the rank, the higher is the priority of contacts of type k for agents in group i.
The matrix defining rTG(k, i) specifies how contacts prefer agents, and is used for agent
selection. The second matrix, defining rGT(i, k), specifies how agents prefer contacts, and
is used for contact selection. In many cases, it is possible to have rGT(i, k) = rTG(k, i) and
specify a single matrix of ranks. This structure allows equal priorities to exist, but routing
policies are more complex. When ranks are equal, a secondary algorithm must be used for
tie breaking, reducing the performance of the simulator.

The package also supports the incidence matrix, which assigns a boolean value m(i, k)
for each contact types and agent groups. m(i, k) is true if and only if contacts of type k
can be served by agents in group i. Such a matrix is not used for routing because it does
not encode any priority, but the package provides methods to convert it to a type-to-group,
group-to-type, or matrix of ranks.

The package also provides some helper classes and methods to ease the implementation
of routers with complex routing policies. These methods can test the consistency of routing
information data structures, and perform conversions from one structure to another. They
can also help in contact and agent selections.

http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#POSITIVE_INFINITY
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#POSITIVE_INFINITY

278 March 4, 2014

Router

Represents a contact router which can perform agent and contact selections. A router links
the contact sources, agent groups and waiting queues together and acts as a central element
of the contact center. It supports a certain number of contact types and contains slots for
waiting queues and agent groups.

Dequeued contacts and freed agents are notified to the router through nested classes
implementing the appropriate listener interfaces. These classes listen to the connected
agent groups and waiting queues only. Agent groups and waiting queues are connected
to the router using the setAgentGroup (int, AgentGroup) and setWaitingQueue (int,

WaitingQueue) methods, respectively. During connection, they are assigned a numerical
identifier to be referred to efficiently during routing.

This abstract class does not implement any routing policy. To implement such a policy,
many informations must be provided in a subclass: data structures, algorithms for agent,
waiting queue and contact selections, and an algorithm to automatically clear waiting queues.
A router can also specify what happens when a contact is served or abandons. We now
examine these elements in more details. Data structures are encoded into fields, and usually
consist of a type-to-group and a group-to-type maps, or matrices of ranks. Algorithms are
provided by overriding methods.

When a new contact is notified through its newContact (Contact) method specified by
the NewContactListener interface, the router performs agent selection, i.e., it tries to assign
an agent to the contact. The selectAgent (Contact) method is used to select the agent,
and selectWaitingQueue (Contact) is called if no free agent is available.

The router supports contact rerouting which works as follows. When a contact is queued,
the router gets a delay using getReroutingDelay (DequeueEvent, int). If that delay is
finite and greater than or equal to 0, a rerouting event is scheduled. When such an event
happens, the router tries to use selectAgent (DequeueEvent, int) to assign an agent to
a queued contact. If this rerouting fails, the router uses selectWaitingQueue (Dequeue-

Event, int) to decide if the contact should be dropped, transferred into another queue,
or kept in the same queue. After this queue reselection has happened, the router uses
getReroutingDelay (DequeueEvent, int) again to decide if a subsequent rerouting will
happen. By default, this functionality is disabled. One has to override getReroutingDelay

(DequeueEvent, int) and selectAgent (DequeueEvent, int) to use rerouting.

When an agent becomes free, the router must perform contact selection, i.e., it must try
to assign a queued contact to the free agent through the checkFreeAgents (AgentGroup,

Agent) method. The checkFreeAgents (AgentGroup, Agent) method is called, and usu-
ally calls selectContact (AgentGroup, Agent) to get queued contacts. If no queued con-
tact is available for the free agent, the agent remains free.

The router also supports agent rerouting which works as follows. If an agent has finished
the service of a contact and cannot find a new contact to serve, before letting the agent
idle, the router gets a delay using getReroutingDelay (Agent, int). If this delay is finite
and greater than or equal to 0, the router schedules an event that will try to assign a

March 4, 2014 Router 279

new contact to the agent. The contact is selected using the selectContact (Agent, int)

method. As with contact rerouting, agent rerouting can happen multiple times and it is
disabled by default. One needs to use detailed agent groups considering individual agents
and override getReroutingDelay (Agent, int) as well as selectContact (Agent, int)

to take advantage of agent rerouting.

At some moments during the day, queued contacts may never be served, because no
skilled agent is present. For example, when the center closes, all agents leave and queued
contacts are forced to wait forever or abandon. To avoid this, an additional algorithm may
be implemented in checkWaitingQueues (AgentGroup) to automatically clear the queues
when no agent can serve contacts. This clearing is disabled by default but can be enabled by
using setClearWaitingQueue (int, boolean) or setClearWaitingQueues (boolean).

Finally, the moment a contact exits can be controlled. By default, dequeued and served
contacts exit the system, but it is possible to override methods in this class to change this
behavior, e.g., transfer a dequeued contact to another queue, transfer a served contact to
another agent, etc.

Note that the blocking, dequeue, end-contact and end-service indicators Integer.MAX VALUE

- 1000 through Integer.MAX VALUE are reserved for present and future use by routers. De-
queue type 0 is also reserved, and represents the beginning of the service for a queued contact.
The constant DEQUEUETYPE BEGINSERVICE can be used to represent this.

Note: the ExitedContactListener implementations are notified in the order of the
list returned by getExitedContactListeners(), and an exited-contact listener modifying
the list of listeners by using addExitedContactListener (ExitedContactListener) or
removeExitedContactListener (ExitedContactListener) could result in unpredictable
behavior.

package umontreal.iro.lecuyer.contactcenters.router;

public abstract class Router implements NewContactListener

Fields

public static final int BLOCKTYPE_NOLINE

Contact blocking type occurring when there is no communication channel available in the
trunk group associated with an incoming contact.

public static final int BLOCKTYPE_QUEUEFULL

Contact blocking type occurring when the total queue capacity is exceeded upon the arrival
of a contact.

public static final int BLOCKTYPE_CANTQUEUE

Contact blocking type occurring when a contact cannot be queued, i.e., selectWaiting-
Queue (Contact) returns null.

280 Router March 4, 2014

public static final int DEQUEUETYPE_BEGINSERVICE

Contact dequeueing type representing the beginning of the service.

public static final int DEQUEUETYPE_NOAGENT

Contact dequeuing type occurring when a waiting queue is cleared because there is no agent
in the system capable of serving the contact.

public static int DEQUEUETYPE_FANTOM

Contact dequeue type used to remove multiple copies of a contact from waiting queues.
When a contact has to wait in more than one waiting queues, it can exit any of these queues
at any time. When the contact is dequeued, e.g., because it is transferred to an agent. In
this case, the contact also needs to be removed from other queues. This dequeue type can
be used to avoid such contacts being counted several times by statistical facilities.

public static int DEQUEUETYPE_TRANSFER

Contact dequeue type used when transferring a contact from a waiting to another waiting
queue.

protected int dqTypeRet

Contains the dequeue type used when a contact leaves a queue to enter a new one. By
default, this is set to 1.

Constructor

public Router (int numTypes, int numQueues, int numGroups)

Constructs a new router with numTypes contact types, numQueues waiting queues, and
numGroups agent groups.

Parameters

numTypes number of contact types.

numQueues number of waiting queues.

numGroups number of agent groups.

Throws

IllegalArgumentException if any argument is negative.

Methods

public boolean isKeepingReroutingEvents()

Determines if this router keeps track of all rerouting events scheduled. By default, these
events are discarded, i.e., they are stored in the event list only.

March 4, 2014 Router 281

Returns true if the router keeps track of the rerouting events, false otherwise.

public void setKeepingReroutingEvents (boolean keep)

Sets the keep-rerouting-events indicator to keep.

Parameter

keep the value of the indicator.

public Iterator<ContactReroutingEvent> contactReroutingEventsIterator

()

Constructs and returns an iterator for the contact rerouting events. If isKeepingRerouting-
Events() returns true, the iterator is constructed from the set returned by getContact-
ReroutingEvents(). Otherwise, an iterator traversing the event list and filtering the ap-
propriate events is constructed and returned.

Returns the iterator for contact rerouting events.

public Map<DequeueEvent, ContactReroutingEvent> getContactReroutingEvents

()

Returns an unmodifiable map containing the currently scheduled contact rerouting events.
Each key of this map corresponds to a dequeue event while each value corresponds to an in-
stance of ContactReroutingEvent. If rerouting events are not kept, this throws an Illegal-
StateException.

Returns the map of contact rerouting events.

Throws

IllegalStateException if rerouting events are not kept.

public Iterator<AgentReroutingEvent> agentReroutingEventsIterator

()

Constructs and returns an iterator for the agent rerouting events. If isKeepingRerouting-
Events() returns true, the iterator is constructed from the set returned by getAgent-
ReroutingEvents(). Otherwise, an iterator traversing the event list and filtering the ap-
propriate events is constructed and returned.

Returns the iterator for agent rerouting events.

public Map<Agent, AgentReroutingEvent> getAgentReroutingEvents

()

Returns an unmodifiable map containing the currently scheduled agent rerouting events.
Each key of this map corresponds to an Agent object while each value corresponds to an
instance of AgentReroutingEvent. If rerouting events are not kept, this throws an Illegal-
StateException.

Returns the map of agent rerouting events.

http://docs.oracle.com/javase/6/docs/api/java/util/Iterator.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/6/docs/api/java/util/Iterator.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html

282 Router March 4, 2014

Throws

IllegalStateException if rerouting events are not kept.

public RouterState save()

Saves the state of this router, and returns the resulting state object.

Returns the current state of this router.

public void restore (RouterState state)

Restores the state state of this router.

Parameter

state the saved state of the router.

public int getTotalQueueCapacity()

Returns the total capacity of the waiting queues for this router. This capacity determines
the maximal number of contacts that can be queued simultaneously by this router. By
default, this is Integer.MAX VALUE, i.e., infinite.

Returns the total queue capacity of the router.

public void setTotalQueueCapacity (int capacity)

Sets the total queue capacity to capacity for this router. If the given capacity is negative,
an IllegalArgumentException is thrown. If the capacity is less than the total number of
queued contacts, this throws an IllegalStateException.

Parameter

capacity the new total queue capacity.

Throws

IllegalArgumentException if the given capacity is negative.

IllegalStateException if the given capacity is less than the actual number of queued
contacts.

public int getCurrentQueueSize()

Returns the total number of contacts in the connected waiting queues.

Returns the total number of contacts in queues.

public int getNumContactTypes()

Returns the number of contact types supported by this router.

Returns the supported number of contact types.

public int getNumAgentGroups()

Returns the number of agent groups supported by this router.

http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalArgumentException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html

March 4, 2014 Router 283

Returns the number of agent groups.

public int getNumWaitingQueues()

Returns the number of waiting queues supported by this router.

Returns the number of waiting queues.

public WaitingQueue getWaitingQueue (int q)

Returns the waiting queue with index q for this router. If q is less than 0 or greater than
or equal to the number of supported queues, an exception is thrown. Calling the Waiting-
Queue.getId() method on the returned waiting queue should return q, unless this method
returns null.

Parameter

q the index of the queue.

Returns the associated waiting queue, or null if no queue is defined for this index.

Throws

IndexOutOfBoundsException if q is negative or greater than or equal to getNumWaiting-
Queues().

public WaitingQueue[] getWaitingQueues()

Returns an array containing the waiting queues attached to this router.

Returns the waiting queues attached to this router.

public void setWaitingQueue (int q, WaitingQueue queue)

Associates the waiting queue queue with the index q in the router. The method tries to
set the queue id to q and registers a waiting-queue listener for queue to be notified about
automatic dequeues if needed. If a waiting queue was previously associated with the index,
the router’s waiting-queue listener is removed from that previous waiting queue.

Note that some routers assume that waiting queues use FIFO discipline. In this case, one
should use StandardWaitingQueue instances only. Using PriorityWaitingQueue may lead
to routing not corresponding to the defined policy.

Parameters

q the index of the queue.

queue the queue to be associated.

Throws

IllegalStateException if the queue id was already set to another value than q.

IndexOutOfBoundsException if q is negative or greater than or equal to getNumWaiting-
Queues().

public boolean mustClearWaitingQueue (int q)

Determines if the router must clear the waiting queue q when all queued contacts cannot be
served since no agent capable of serving them is online anymore. By default, this is set to
false.

284 Router March 4, 2014

Parameter

q the index of the checked waiting queue.

Returns the clear-waiting-queue indicator.

Throws

IndexOutOfBoundsException if q is negative or greater than or equal to getNumWaiting-
Queues().

public void setClearWaitingQueue (int q, boolean b)

Sets the clear-waiting-queue indicator for the waiting queue q to b. See mustClearWaiting-
Queue (int) for more information.

Parameters

q the index of the affected waiting queue.

b the new value of the indicator.

Throws

IndexOutOfBoundsException if q is negative or greater than or equal to getNumWaiting-
Queues().

See also mustClearWaitingQueue (int)

public void setClearWaitingQueues (boolean b)

Sets the clear-waiting-queue indicator to b for all waiting queues. See mustClearWaiting-
Queue (int) for more information.

Parameter

b the new value of the indicator.

See also mustClearWaitingQueue (int)

public SingleTypeContactFactory getContactFactory (int k)

Returns the contact factory used by the simulator to create contacts of type k. This factory
may be used by some routing policies to obtain information such as the distribution of service
times. When a routing policy uses this information, the simulator should create contacts of
type k with this single-type contact factory only.

Parameter

k the contact type identifier.

Returns the contact factory.

public void setContactFactory (int k, SingleTypeContactFactory factory)

Sets the contact factory used to create contacts of type k to factory.

March 4, 2014 Router 285

Parameters

k the contact type identifier.

factory the contact factory.

public AgentGroup getAgentGroup (int i)

Returns the agent group with index i for this router. If i is less than 0 or greater than or
equal to the number of groups, an exception is thrown. Calling AgentGroup.getId() on
the returned group should return i, unless this method returns null.

Parameter

i the index of the agent group.

Returns the associated agent group, or null if no agent group is defined for this index.

Throws

IndexOutOfBoundsException if i is negative or greater than or equal to getNumAgent-
Groups().

public AgentGroup[] getAgentGroups()

Returns an array containing the agent groups attached to this router.

Returns the attached agent groups.

public void setAgentGroup (int i, AgentGroup group)

Associates the agent group group with the index i in the router. The method tries to set
the identifier of the group to i and registers an agent-group listener to be notified about
agents becoming free in order to perform contact selection. If an agent group was previously
associated with the index, the router’s agent-group listener is removed from that previous
agent group.

Parameters

i the index of the agent group.

group the agent group to be associated.

Throws

IllegalStateException if the group id was already set to another value than i.

IndexOutOfBoundsException if i is negative or greater than or equal to getNumAgent-
Groups().

public List<Dialer> getDialers (int i)

Returns a list containing the dialers which will be triggered when the service of a contact
by an agent in group i ends. This list, which may contain only non-null instances of the
Dialer class, should be used instead of an agent-group listener to activate the dialer. As
opposed to an agent-group listener requesting dialers to try calls, dialers in the returned
list are activated only after contact selection for agents in group i is done, and they are
guaranteed to be activated in the order given by the list.

http://docs.oracle.com/javase/6/docs/api/java/util/List.html

286 Router March 4, 2014

Parameter

i the index of the agent group.

Returns the list of dialers.

Throws

ArrayIndexOutOfBoundsException if the agent group index is out of bounds.

public abstract boolean canServe (int i, int k)

Returns true if and only if some agents in group i are authorized to serve contacts of type
k by this router.

Parameters

i the agent group index.

k the contact type index.

Returns determines if contacts can be served.

public boolean needsDetailedAgentGroup (int i)

Determines if the agent group i should consider individual agents. This does not determine
directly how the agent group returned by getAgentGroup (int) is implemented. This
method only gives clues to a simulator on how to construct the concerned agent group.

Parameter

i the index of the agent group.

Returns the detailed status of the agent group.

public WaitingQueueType getWaitingQueueType()

Returns an indicator describing how the implemented routing policies organizes waiting
queues. The supported modes of organization cover the most common cases only: waiting
queues corresponding to contact types or agent groups. For any other modes, the Waiting-
QueueType.GENERAL must be used.

By default, this method returns WaitingQueueType.GENERAL.

Returns the organization mode of waiting queues.

public WaitingQueueStructure getNeededWaitingQueueStructure

(int q)

Returns the needed data structure for waiting queue with index q. This method is used by
the simulator to get clues on how to construct the waiting queue; it does not affect directly
the implementation of the waiting queue returned by getWaitingQueue (int). By default,
this returns WaitingQueueStructure.LIST.

Parameter

q the index of the waiting queue.

March 4, 2014 Router 287

Returns the structure indicator.

public Comparator<? super DequeueEvent> getNeededWaitingQueueComparator

(int q)

Determines how contacts in queue should be compared with each other for waiting queue
q. This comparator is used by a simulator to construct a waiting queue if getNeeded-
WaitingQueueStructure (int) returns WaitingQueueStructure.SORTEDSET or Waiting-
QueueStructure.PRIORITY. By default, this returns null.

Parameter

q the index of the waiting queue.

Returns the waiting queue comparator.

public void newContact (Contact contact)

This method is called when the new contact contact enters in the system and should not be
overridden. The Contact.setRouter (Router) method is first used to set the router of the
new contact to this object. Then, if Contact.getTrunkGroup() returns a non-null value, a
communication channel is allocated. If no communication channel is available for the contact,
the contact is blocked with blocking type BLOCKTYPE NOLINE. If the contact has no associated
trunk group or if a communication channel could be successfully allocated, the selectAgent
(Contact) method is called to try to assign it an agent. In case of failure, i.e., selectAgent
(Contact) returns null, the router tries to queue the contact. If the total queue size is equal
to the total queue capacity, or if selectWaitingQueue (Contact) returns null, the contact
is blocked with blocking type BLOCKTYPE QUEUEFULL or BLOCKTYPE CANTQUEUE, respectively.

Parameter

contact the arrived contact.

Throws

IllegalStateException if Contact.getRouter() returns a non-null value before the
router is set.

IllegalArgumentException if the contact type identifier of the contact is negative or
greater than or equal to getNumContactTypes().

public void addExitedContactListener (ExitedContactListener listener)

Adds the exited-contact listener listener to this router. If the listener is already registered,
nothing happens.

Parameter

listener the listener being added.

Throws

NullPointerException if listener is null.

public void removeExitedContactListener (ExitedContactListener listener)

Removes the exited-contact listener listener from this router.

http://docs.oracle.com/javase/6/docs/api/java/util/Comparator.html

288 Router March 4, 2014

Parameter

listener the exited contact listener being removed.

public void clearExitedContactListeners()

Removes all the exited-contact listeners registered to this router.

public List<ExitedContactListener> getExitedContactListeners

()

Returns an unmodifiable list containing all the exited-contact listeners registered with this
router.

Returns the list of all registered exited-contact listeners.

public void notifyBlocked (Contact contact, int bType)

Notifies every registered listener that the contact contact was blocked with blocking type
bType.

Parameters

contact the blocked contact.

bType the blocking type.

public void notifyDequeued (DequeueEvent ev)

Notifies every registered listener that a contact left the waiting queue, this event being
represented by ev.

Parameter

ev the event representing the contact having left the queue.

public void notifyServed (EndServiceEvent ev)

Notifies every registered listener that a contact was served, the service being represented by
the end-service event ev.

Parameter

ev the end-service event representing the end of the service.

public void exitServed (EndServiceEvent ev)

This method must be called to notify a contact exiting the system after an end of service
with end-service event ev. It notifies any registered exited-contact listener, and releases the
communication channel taken by the contact. This must be called after the communication
between the contact and an agent, before after-contact work.

http://docs.oracle.com/javase/6/docs/api/java/util/List.html

March 4, 2014 Router 289

Parameter

ev the end-service event.

public void exitDequeued (DequeueEvent ev)

This method must be called to notify that a contact exited the system after being dequeued,
ev representing the dequeue event. It notifies any registered exited-contact listener, and
releases the communication channel taken by the contact.

Parameter

ev the dequeue event.

public void exitBlocked (Contact contact, int bType)

This method can be called when the contact contact was blocked by the router with blocking
type bType. It notifies any registered exited-contact listener, and releases the communication
channel taken by the contact. The bType = BLOCKTYPE NOLINE value is reserved for the
special case where there is no available communication channel for the contact.

Parameters

contact the contact being blocked.

bType the blocking type.

protected void startDialers (AgentGroup group)

Starts the dialers after the service of a contact by an agent in group group. This method is
called after checkFreeAgents (AgentGroup, Agent) and should call the Dialer.dial()
method on one or more dialers. The default implementation starts all the dialers in the list
getDialers (group.getId()).

Parameter

group the agent group being notified.

public void init()

This method is called at the beginning of the simulation to reset the state of this router.

protected abstract EndServiceEvent selectAgent (Contact contact)

Begins the service of the contact contact by trying to assign it a free agent. The method
must select an agent group with a free agent (or a specific free agent), start the service, and
return the end-service event if the service was started, or null otherwise.

Parameter

contact the contact being routed to an agent.

290 Router March 4, 2014

Returns the end-service event representing the started service, or null if the contact
could not be served immediately.

protected EndServiceEvent selectAgent (DequeueEvent dqEv, int

numReroutingsDone)

Selects an agent for serving a queued contact in the context of rerouting. The event dqEv
is used to represent the dequeued contact, while numReroutingsDone indicates the number
of reroutings that has happened so far. The method should return the end-service event
corresponding to the contact’s new service by an agent, or null for the contact to stay in
queue.

Parameters

dqEv the dequeue event representing the queued contact.

numReroutingsDone the number of preceding reroutings.

Returns the end-service event, or null.

protected abstract DequeueEvent selectWaitingQueue (Contact contact)

Selects a waiting queue and puts the contact contact into it. Returns the dequeue event if
the contact could be queued, or null otherwise.

Parameter

contact the contact being queued.

Returns the dequeue event representing the queued contact, or null if the contact could
not be queued.

protected DequeueEvent selectWaitingQueue (DequeueEvent dqEv, int

numReroutingsDone)

Selects a waiting queue for a queued contact in the context of rerouting. The event dqEv
is used to represent the queued contact, while numReroutingsDone indicates the number of
reroutings that has happened so far. The method should return the dequeue event corre-
sponding to the contact’s new queue, or null if the contact is required to leave the system.
If no transfer of queue is required, this method should return dqEv. If a transfer occurs, one
can use the dqTypeRet field to store the dequeue type of the contact leaving the queue.

Parameters

dqEv the dequeue event representing the queued contact.

numReroutingsDone the number of preceding reroutings.

March 4, 2014 Router 291

Returns the dequeue event, or null.

protected boolean checkFreeAgents (AgentGroup group, Agent agent)

This method is called when the agent agent in agent group group becomes free. If the given
agent is null, the method assumes that one or more arbitrary agents in the group became
free. The method must select a contact to be transferred to the free agent. The selected
contacts come from waiting queues, and must be removed from the queues with dequeue
type DEQUEUETYPE BEGINSERVICE before they are transferred to agents. The method returns
true if and only if at least one free agent could be made busy.

The default implementation calls selectContact (AgentGroup, Agent) to get a new de-
queue event representing the removed contact, extracts the contact, and routes it to an
agent, until group has no more free agent.

Parameters

group the affected agent group.

agent the agent having ended its service.

Returns true if some free agents became busy, false otherwise.

protected DequeueEvent selectContact (AgentGroup group, Agent agent)

Returns a dequeue event representing a queued contact to be served by the agent agent in
agent group group. If agent is null, the method must return a contact that can be served
by any agent in the group. If no contact is available, this method returns null. The selected
contacts come from waiting queues attached to the router. Before the selected contact is
returned, it must be removed from its queue with dequeue type DEQUEUETYPE BEGINSERVICE,
e.g., by using queue.removeFirst (DEQUEUETYPE BEGINSERVICE), or queue.remove (ev,
DEQUEUETYPE BEGINSERVICE), etc.

Generally, it is sufficient to override this method instead of checkFreeAgents (AgentGroup,
Agent). One can override checkFreeAgents (AgentGroup, Agent) to improve efficiency
when looking for contacts in the same waiting queue. This method is not abstract and
returns null by default in order to allow checkFreeAgents (AgentGroup, Agent) to be
overridden without implementing this method.

Parameters

group the affected agent group.

agent the agent having ended its service.

Returns the dequeue event representing the contact being selected.

protected DequeueEvent selectContact (Agent agent, int numReroutingsDone)

Selects a new contact for the agent agent, in the context of rerouting.

Parameters

agent the affected agent.

numReroutingsDone the number of preceding reroutings.

292 Router March 4, 2014

Returns the selected contact, or null.

protected abstract void checkWaitingQueues (AgentGroup group)

This method is called when the agent group group contains no more online agents, i.e.,
AgentGroup.getNumAgents() returns 0. It must check each waiting queue accessible for
agents in this group to determine if they need to be cleared. A queue is cleared if no agent,
whether free or busy, is available to serve any contact in it.

Parameter

group the agent group with no more agents.

protected double getReroutingDelay (DequeueEvent dqEv, int

numReroutingsDone)

Returns the delay, in simulation time units, after which a queued contact should be rerouted.
The value of numReroutingsDone gives the number of preceding reroutings, and dqEv is the
dequeue event. If this delay is negative, infinite, or NaN, no rerouting happens for the
contact. numReroutings will be -1 when this method is called at the time the contact is
queued. By default, this method returns Double.POSITIVE INFINITY.

Parameters

dqEv the dequeue event representing the queued contact.

numReroutingsDone the number of reroutings so far.

Returns the rerouting delay.

protected double getReroutingDelay (Agent agent, int numReroutingsDone)

Returns the delay, in simulation time units, after which an agent agent should try a new
time to get a contact to serve. If no rerouting should happen, the returned delay must
be negative or NaN. numReroutings will be -1 when this method is called at the end of a
service. By default, this method returns Double.POSITIVE INFINITY.

Parameters

agent the idle agent, or null.

numReroutingsDone the number of previous reroutings for the agent.

Returns the rerouting delay.

protected void beginService (EndServiceEvent ev)

This method is called when the service of a contact, represented by the event ev, begins.
By default, this method does nothing.

Parameter

ev the end-service event.

protected void endContact (EndServiceEvent ev)

This method is called when the communication between a contact and an agent is finished.
By default, it calls exitServed (EndServiceEvent).

http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#POSITIVE_INFINITY
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#POSITIVE_INFINITY

March 4, 2014 Router 293

Parameter

ev the end-service event.

protected void endService (EndServiceEvent ev)

This method is called when the service (communication and after-contact work) of a contact
in an agent group has ended. By default, this does nothing.

Parameter

ev the end-service event.

protected void enqueued (DequeueEvent ev)

This method is called when a contact is enqueued, ev representing the dequeue event. By
default, this method does nothing.

Parameter

ev the dequeue event.

protected void dequeued (DequeueEvent ev)

This method is called when a contact leaves a waiting queue, ev representing the corre-
sponding dequeue event. By default, for any effective dequeue type other than 0, this calls
exitDequeued (DequeueEvent). This method should not notify an exiting contact for a 0
dequeue type since it is reserved for queued and served contacts.

Parameter

ev the dequeue event.

public String formatWaitingQueues()

Formats the connected waiting queues as a string. For each queue slot, the returned string
contains a line with the text Waiting queue q: followed by the queue’s toString result.
If no queue is connected to the slot, undefined is used as the waiting queue descriptor.

Returns the waiting queues of the router.

public String formatAgentGroups()

Formats the connected agent groups as a string. For each group slot, the returned string
contains a line with the text Agent group i: followed by the group’s toString result.
If no group is connected to the slot, undefined is used as the agent group descriptor.

Returns the agent groups of the router.

public WaitingQueueListener getWaitingQueueListener()

Returns the waiting-queue listener registered with each waiting queue connected to this
router. Obtaining this listener can be useful to replace it, in the list of listeners of a waiting
queue, by a wrapper executing code before or after some events.

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

294 Router March 4, 2014

Returns the waiting-queue listener registered with each waiting queue.

public AgentGroupListener getAgentGroupListener()

Returns the agent-group listener registered with each agent group connected to this router.
Obtaining this listener can be useful to replace it, in the list of listeners of an agent group,
by a wrapper executing code before or after some events.

Returns the agent-group listener registered with each agent group.

public String toLongString()

Returns a string representation of detailed information about the router. This returns a
string representation of each associated waiting queue and agent group and routing policies.
For a short, one-line description, toString() should be used.

Returns a string representation of detailed information about the router.

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#toString(())

March 4, 2014 295

WaitingQueueType

Represent possible roles of waiting queues for routing policies.

package umontreal.iro.lecuyer.contactcenters.router;

public enum WaitingQueueType

Constants

CONTACTTYPE

When this type is used, there must be one waiting queue for each contact type. More
specifically, waiting queue k, for k = 0, . . . ,K − 1, contains only contacts of type k, where
K is the total number of contact types.

AGENTGROUP

When this type is used, there must be one waiting queue for each agent group. More
specifically, waiting queue i, for i = 0, . . . , I−1, contains only contacts that are to be served
by agents in group i, where I is the total number of agent groups.

GENERAL

Used when the waiting queues do not correspond to the schemes described by CONTACTTYPE
or AGENTGROUP.

296 March 4, 2014

WaitingQueueStructure

Possible data structures for waiting queues.

package umontreal.iro.lecuyer.contactcenters.router;

public enum WaitingQueueStructure

Constants

LIST

Queued contacts are placed in an ordinary list, in the order they enter the queue. When
an agent becomes free, the first contact is usually removed from the queue. This structure
therefore implements a FIFO queue. This is the most common, the fastest and is the default
structure.

PRIORITY

Queued contacts are put into a priority queue, usually implemented using a heap. A com-
parator is used to sort contacts by priority. A free agent removes the contacts with the
highest priority first. However, if a priority queue is scanned, the order of the contacts
might not be the order imposed by the comparator. The structure used only guarantees
that the first contact is the “smallest” with respect to the comparator given.

SORTEDSET

Queued contacts are put into a sorted set, usually implemented by a binary tree. This is
similar to PRIORITY, but the contacts in queue can be enumerated in the correct order at
any time. However, sorted sets are slower than priority queues.

March 4, 2014 297

ContactReroutingEvent

Represents an event happening when the router tries to reroute a queued contact to an agent,
or another queue.

package umontreal.iro.lecuyer.contactcenters.router;

public final class ContactReroutingEvent extends Event

Constructor

public ContactReroutingEvent (Router router, DequeueEvent dqEv, int

numReroutingsDone)

Constructs an event that will reroute the queued contact dqEv to an agent or another queue.

Parameters

router the router this event is linked to.

dqEv the dequeue event.

numReroutingsDone the number of reroutings done.

Methods

public Router getRouter()

Returns the router associated with this event.

Returns the associated router.

public DequeueEvent getDequeueEvent()

Returns the dequeue event associated with this rerouting event.

Returns the associated dequeue event.

public int getNumReroutingsDone()

Returns the number of reroutings done, i.e., the number of calls to actions() having resulted
in the contact not being transferred to an agent.

Returns the number of reroutings that has happened.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Event.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Event.html#actions(())

298 March 4, 2014

AgentReroutingEvent

Represents an event happening when the router tries once more to affect a contact to an
agent.

package umontreal.iro.lecuyer.contactcenters.router;

public final class AgentReroutingEvent extends Event

Constructor

public AgentReroutingEvent (Router router, Agent agent, int

numReroutingsDone)

Constructs a new agent rerouting event instructing the router router to try to find a queued
contact for the idle agent agent after there was numReroutingsDone preceding reroutings.

Parameters

router the router to be used.

agent the agent to be rerouted.

numReroutingsDone the number of preceding trials.

Methods

public Router getRouter()

Returns the router associated with this event.

Returns the associated router.

public Agent getAgent()

Returns the agent to be assigned a queued contact.

Returns the agent to be assigned a queued contact.

public int getNumReroutingsDone()

Returns the number of preceding reroutings.

Returns the number of reroutings already tried.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Event.html

March 4, 2014 299

QueuePriorityRouter

This skill-based router with queue priority ranking is based on the routing heuristic in [12],
extended to support queueing. When a contact arrives to the router, an ordered list (the
type-to-group map) is used to determine which agent groups are able to serve it, and the
order in which they are checked. If agent group ik,0 contains at least one free agent, this
agent serves the contact. Otherwise, the router tries to test agent groups ik,1, ik,2, etc. until
a free agent is found, or the list of agent groups is exhausted. In other words, the contact
overflows from one agent group to another. If no agent group in the ordered list associated
with the contact’s type is able to serve the contact, the contact is inserted into a waiting
queue corresponding to its type unless the queue is full. If the total queueing capacity of the
router is exceeded, the contact is blocked.

When an agent becomes free, it uses another ordered list (the group-to-type map) to
determine which types of contacts it can serve. If the queue containing contacts of type ki,0
is non-empty, the first contact, i.e., the contact of type ki,0 with the longest waiting time,
is removed and handled to the free agent. Otherwise, the queues containing contacts of
types ki,1, ki,2, etc. are queried similarly for contacts to be served. If no contact is available
in any accessible waiting queue, the agent stays free. The router behaves as if a priority
queue was associated with each agent group, implementing priorities by using several FIFO
waiting queues.

This router should be used only when the type-to-group and group-to-type maps are
specified as input data. If one table has to be generated from the other one, the induced
arbitrary order of the lists can affect the performance of the contact center.

package umontreal.iro.lecuyer.contactcenters.router;

public class QueuePriorityRouter extends Router

Fields

protected int[][] typeToGroupMap

Contains the type-to-group map routing table.

protected int[][] groupToTypeMap

Contains the group-to-type map routing table.

Constructor

public QueuePriorityRouter (int[][] typeToGroupMap, int[][] groupToTypeMap)

Constructs a new queue priority router with a type-to-group map typeToGroupMap, and a
group-to-type map groupToTypeMap.

300 QueuePriorityRouter March 4, 2014

Parameters

typeToGroupMap the type-to-group map.

groupToTypeMap the group-to-type map.

Methods

public int[][] getTypeToGroupMap()

Returns the type-to-group map associated with this router.

Returns the associated type-to-group map.

public int[] getTypeToGroupMap (int k)

Returns the ordered list concerning contact type k in the type-to-group map.

Parameter

k the index of the contact type.

Returns the ordered list.

public int[][] getGroupToTypeMap()

Returns the group-to-type map associated with this router.

Returns the associated group-to-type map.

public int[] getGroupToTypeMap (int i)

Returns the ordered list concerning agent group i in the group-to-type map.

Parameter

i the index of the agent group.

Returns the ordered list.

public void setRoutingTable (int[][] typeToGroupMap, int[][]

groupToTypeMap)

Changes the routing table for this router. The routing table must be specified using
typeToGroupMap and groupToTypeMap.

Parameters

typeToGroupMap the type-to-group map.

groupToTypeMap the group-to-type map.

March 4, 2014 QueuePriorityRouter 301

Throws

IllegalArgumentException if the type-to-group map does not contain K rows, or the
group-to-type map does not contain I rows.

protected void checkWaitingQueues (AgentGroup group)

This default implementation is suitable only for routers specifying a type-to-group and a
group-to-type map and using one waiting queue for each contact type. If the tables are
not specified or the number of supported waiting queues is different from the number of
supported contact types, this implementation does nothing.

Parameter

group the agent group with no more agents.

public String formatTypeToGroupMap()

Calls RoutingTableUtils.formatTypeToGroupMap (int[][]) with the type-to-group map
associated with this router.

Returns the type-to-group map, formatted as a string.

public String formatGroupToTypeMap()

Calls RoutingTableUtils.formatGroupToTypeMap (int[][]) with the group-to-type map
associated with this router.

Returns the group-to-type map, formatted as a string.

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

302 March 4, 2014

QueueAtLastGroupRouter

This router uses a queue-at-last-group policy. When a new contact of type k arrives, the
serving agent is selected the same way as with queue priority routing policy: each agent
group ik,0, ik,1, . . . of the type-to-group map is tested to find a free agent. However, if no
agent can serve the contact, the contact is put into a waiting queue associated with the
last agent group in the ordered list rather than the contact type. As usual, if the router’s
queue capacity is exceeded, the contact is blocked. When an agent requests a new contact
to be served, it looks into its associated waiting queue only. If no contact is available in that
queue, the agent remains free. The loss-delay approximation, presented in [2], assumes that
the contact center uses this policy.

package umontreal.iro.lecuyer.contactcenters.router;

public class QueueAtLastGroupRouter extends Router

Fields

public static final int NONE

Agent group which is neither loss nor delay.

public static final int LOSS

Agent group is a loss station; see isLoss (int, int).

public static final int DELAY

Agent group is a delay station; see isDelay (int, int).

public static final int LOSSDELAY

Agent group is a loss and delay station.

protected int[][] typeToGroupMap

Contains the type-to-group map routing table.

Constructor

public QueueAtLastGroupRouter (int numGroups, int[][] typeToGroupMap)

Constructs a new queue at last group router with a type-to-group map typeToGroupMap.

Parameters

numGroups the number of agent groups.

typeToGroupMap the type-to-group map.

March 4, 2014 QueueAtLastGroupRouter 303

Methods

public int[][] getTypeToGroupMap()

Returns the type-to-group map associated with this router.

Returns the associated type-to-group map.

public int[] getTypeToGroupMap (int k)

Returns the ordered list concerning contact type k in the type-to-group map.

Parameter

k the index of the contact type.

Returns the ordered list.

public void setTypeToGroupMap (int[][] tg)

Sets the type-to-group map associated with this router to tg.

Parameter

tg the new type-to-group map.

public int getAgentGroupType (int k, int i)

Determines the type of agent group i for contacts of type k. This returns LOSS if the group is
a loss station, i.e., isLoss (int, int) returns true, DELAY if it is a delay station (isDelay
(int, int) returns true), and NONE otherwise.

Parameters

k the contact type.

i the agent group.

Returns the status of agent group for the contact type.

Throws

IndexOutOfBoundsException if i or k are negative, i is greater than or equal to Router.
getNumAgentGroups() or k is greater than or equal to Router.getNumContactTypes().

public boolean isLoss (int k, int i)

Determines if the agent group i is a loss station regarding the contact type k, i.e., it forwards
contacts of type k it cannot serve immediately to other agent groups in the system, without
queueing them. If the group is not in the ordered list for the contact type or if the group
appears at the end of the ordered list, this returns false. Otherwise, this returns true.

Parameters

k the contact type identifier being tested.

i the agent group identifier being tested.

Returns true if the agent group is a loss station.

304 QueueAtLastGroupRouter March 4, 2014

Throws

IndexOutOfBoundsException if i or k are negative, i is greater than or equal to Router.
getNumAgentGroups() or k is greater than or equal to Router.getNumContactTypes().

public boolean isDelay (int k, int i)

Determines if the agent group i is a delay station regarding the contact type k, i.e., it queues
contacts of type k if it cannot serve them immediately. If the group is at the last position
in the ordered list for the contact type k, this returns true. Otherwise, this returns false.

Parameters

k the contact type identifier being tested.

i the agent group identifier being tested.

Returns true if the agent group is a delay station.

Throws

IndexOutOfBoundsException if i or k are negative, i is greater than or equal to Router.
getNumAgentGroups() or k is greater than or equal to Router.getNumContactTypes().

public int getAgentGroupType (int i)

Returns the type of the agent group i regarding all contact types. This returns LOSS if the
group is a pure loss station (isPureLoss (int) returns true), DELAY if it is a pure delay
station (isPureDelay (int) returns true), LOSSDELAY for a loss/delay station (isLoss-
Delay (int) returns true), and NONE otherwise.

Parameter

i the agent group being tested.

Returns the type of the tested agent group.

Throws

ArrayIndexOutOfBoundsException if i is negative or greater than or equal to Router.
getNumAgentGroups().

public boolean isPureLoss (int i)

Determines if the agent group i is a pure loss station, i.e., it forwards all contacts to another
agent group.

Parameter

i the agent group identifier being tested.

Returns true if the agent group is a pure loss station, false otherwise.

Throws

ArrayIndexOutOfBoundsException if i is negative or greater than or equal to Router.
getNumAgentGroups().

public boolean isPureDelay (int i)

Determines if the agent group i is a pure delay station, i.e., it queues all contacts it cannot
serve immediately.

March 4, 2014 QueueAtLastGroupRouter 305

Parameter

i the agent group identifier being tested.

Returns true if the agent group is a pure delay station, false otherwise.

Throws

ArrayIndexOutOfBoundsException if i is negative or greater than or equal to Router.
getNumAgentGroups().

public boolean isLossDelay (int i)

Determines if the agent group i is a loss/delay station, i.e., it queues some contacts it cannot
serve while forwarding some other contacts to other agent groups.

Parameter

i the agent group identifier being tested.

Returns true if the agent group is a loss/delay station, false otherwise.

Throws

ArrayIndexOutOfBoundsException if i is negative or greater than or equal to Router.
getNumAgentGroups().

public String formatTypeToGroupMap()

Calls RoutingTableUtils.formatTypeToGroupMap (int[][]) with the type-to-group map
associated with this router.

Returns the type-to-group map, formatted as a string.

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

306 March 4, 2014

LongestQueueFirstRouter

This extends the queue priority router to select contacts in the longest waiting queue. When
a contact arrives into the router, the same scheme for agent group selection as with the queue
priority router is used. However, when an agent becomes free, instead of using the group-
to-type map to determine the order in which the queues are queried, all queues authorized
by the group-to-type map are considered, and a contact is removed from the longest one. If
more than one queue has the same maximal size, the contact is removed from the first queue
in the ordered list given by the group-to-type map.

package umontreal.iro.lecuyer.contactcenters.router;

public class LongestQueueFirstRouter extends QueuePriorityRouter

Constructor

public LongestQueueFirstRouter (int[][] typeToGroupMap, int[][]

groupToTypeMap)

Constructs a new longest-queue-first router with a type-to-group map typeToGroupMap and
a group-to-type map groupToTypeMap.

Parameters

typeToGroupMap the type-to-group map.

groupToTypeMap the group-to-type map.

March 4, 2014 307

SingleFIFOQueueRouter

This extends the queue priority router to implement a single FIFO queue. The router assumes
that every attached waiting queue uses a FIFO discipline. When a contact arrives into the
router, the same scheme for agent group selection as with the queue priority router is used.
However, when an agent becomes free, instead of using the group-to-type map to determine
the order in which the queues are queried, all queues authorized by the group-to-type map
are considered, and the contact with the longest waiting time is removed. If more than one
queue has a first contact with the same queue time, which rarely happens in practice, the
contact is removed from the first one in the ordered list obtained from the group-to-type
map. This policy is equivalent to but more efficient than merging all waiting queues, sorting
the contacts in ascending arrival times, and having the agents take the first contact they can
serve.

package umontreal.iro.lecuyer.contactcenters.router;

public class SingleFIFOQueueRouter extends QueuePriorityRouter

Constructor

public SingleFIFOQueueRouter (int[][] typeToGroupMap, int[][]

groupToTypeMap)

Constructs a new single FIFO queue router with a type-to-group map typeToGroupMap and
a group-to-type map groupToTypeMap.

Parameters

typeToGroupMap the type-to-group map.

groupToTypeMap the group-to-type map.

308 March 4, 2014

LongestWeightedWaitingTimeRouter
This extends the queue priority router to select contacts with the longest weighted waiting
time. The router assumes that every attached waiting queue uses a FIFO discipline. When a
contact arrives into the router, the same scheme for agent group selection as with the queue
priority router is used. However, when an agent becomes free, instead of using the group-
to-type map to determine the order in which the queues are queried, all queues authorized
by the group-to-type map are considered, and the contact with the longest weighted waiting
time is removed. More specifically, let wq be a user-defined weight associated with waiting
queue q, and let Wq be the waiting time of the first contact waiting in queue q (if queue
q is empty, let Wq = −∞). The router then selects the first contact in the queue with
the maximal wqWq value. If more than one queue authorized by the freed agent has a first
contact with the same weighted waiting time, which rarely happens in practice, the contact
is removed from the first queue in the ordered list obtained from the group-to-type map.

package umontreal.iro.lecuyer.contactcenters.router;

public class LongestWeightedWaitingTimeRouter extends QueuePriorityRouter

Constructor

public LongestWeightedWaitingTimeRouter (int[][] typeToGroupMap, int[][]

groupToTypeMap, double[]

queueWeights)
Constructs a new longest weighted waiting time router with a type-to-group map typeToGroupMap,
a group-to-type map groupToTypeMap, and an array of weights queueWeights. Each element
of the last array corresponds to a weight assigned to a waiting queue.
Parameters

typeToGroupMap the type-to-group map.

groupToTypeMap the group-to-type map.

queueWeights the array of weights wq for waiting queues.

Methods

public double[] getQueueWeights()
Returns the weights associated with each waiting queue. Element q of the returned array
contains the weight wq for the waiting queue q.
Returns the array of weights.

public void setQueueWeights (double[] queueWeights)
Sets the weights of waiting queues to queueWeights.
Parameter

queueWeights the new array of weights.

March 4, 2014 309

AgentsPrefRouter

Performs agent and contact selection based on user-defined priorities. By default, this router
selects the agent with the longest idle time when several agents share the same priority, and
the longest waiting time to perform a selection among contacts sharing the same priority.
The agents’ preference-based router is a generalization of the router taken from [17], using
matrices of ranks to take its decisions. The router applies static routing when the ranks are
different and uses a dynamic policy when they are equal. This permits the user to partially
define the priorities instead of assigning all of them as with the queue priority routing. For
example, the user can set the router for the first waiting queue to have precedence over the
others while the other queues share the same priority.

Data structures. Two matrices of ranks can be defined, one specifying how contacts prefer
agents, and a second one defining how agents prefer contacts. The former matrix, used for
agent selection, defines a function rTG(k, i) giving the rank for contacts of type k served by
agents in group i. The latter matrix, used for contact selection, defines a function rGT(i, k)
giving the rank of contacts of type k when agents in group i perform contact selection. In
many cases, one can specify rGT(i, k) only, and have rTG(k, i) = rGT(i, k).

Additionally, the router uses matrices of weights to adjust the priority for candidates with
the same rank. These matrices define functions wTG(k, i) and wGT(i, k) which are similar to
the ranks functions, except they can take any real number. These matrices are optional and
default to matrices of 1’s if they are not specified.

Basic routing schemes. The priorities defined by matrices of ranks are used to assign
agents to incoming contacts, and contacts to free agents by performing several linear searches
over the space of agent groups or waiting queues. Each search constructs or narrows a list of
candidates until zero or one candidate is retained. The general algorithm can be summarized
as follows.

1. Find a list of candidates sharing the lowest possible rank, or equivalently the highest
possible priority;

2. Assign a score to each selected candidate;

3. Select the candidate with the best score.

Agent selection. More specifically, when a new contact of type k arrives, the router
constructs an initial list of agent groups for which NF,i(t) > 0, and rTG(k, i) < ∞. If this
list of candidates contains several agent groups, the router compares their ranks rTG(k, i),
and retains the agent groups with the minimal rank. If more than one candidates share the
same minimal rank, a score is assigned to each of them and the candidate with the best
score is taken. The default score of an agent group i is the longest idle time of the agents
in that group multiplied by the weight wTG(k, i) (which is 1 by default), also called the
longest weighted idle time. For this reason, agent groups linked to this router must be able
to take individual agents into account. In the rare event where two candidates share the
best score, i.e., two agent groups have the same weighted longest idle time, the candidate

310 AgentsPrefRouter March 4, 2014

with the smallest index i is retained. If, during the algorithm, the list of candidates happens
to be empty, the routed contact is put into a waiting queue corresponding to its type, or
blocked if the queue capacity is exceeded. If the list of candidates contains a single agent
group, this agent group is selected and service starts.

Note that for a fixed contact type k, if rTG(k, i) is different for all i such that rTG(k, i) <
∞, the scheme for agent selection is equivalent to a pure overflow router: each agent group
is tested in a fixed order for a free agent. In that setting, the weights wTG(k, ·) have no
effect. On the other hand, if all finite values of rTG(k, i) for a fixed k are equal, the routing
is completely based on the longest-weighted-idle-time selection policy. Any intermediate
combination of these two extremes can be achieved by adjusting the ranks appropriately.

Contact selection. Since one waiting queue contains contacts of a single type, we define
waiting queue k as the queue containing only contacts of type k. The router assumes that
every waiting queue uses a FIFO discipline. When an agent in group i becomes free, an
initial list of waiting queues containing at least one contact, and for which rGT(i, k) <∞. If
the list of candidates contains several waiting queues, the waiting queues k with the minimal
rank are retained. If several waiting queues share this minimal rank, a score is assigned to
each candidate, and the waiting queue with the best score is chosen. The default score of
a waiting queue k is the weighted waiting time of the first queued contact, i.e., the waiting
time multiplied by wGT(i, k). In the rare event where several waiting queues have the same
minimal rank, and the same best score, i.e., several queued contacts have the exact same
weighted waiting time, the waiting queue with the smallest index k is chosen. If, at any time
during the algorithm, the list of candidates becomes empty, the tested agent remains free.
When the list of candidates contains a single waiting queue, the first contact in that waiting
queue is assigned to the free agent.

Note that for a fixed agent group i, if rGT(i, k) is different for all k such that rGT(i, k) <∞,
this policy is equivalent to the queue priority router’s contact selection: the waiting queues
are queried in a fixed order for contacts. In that particular setting, the weights wGT(i, ·)
have no effect. On the other hand, if, for a fixed i, all finite rGT(i, k) are equal for all k,
the router uses the longest weighted waiting time policy for agent group i. As with agent
selection, any combination of these two extremes can be achieved by adjusting the ranks.

Randomized selection. By default, if several agent groups or waiting queues share the
same minimal rank, a score is assigned to each of them, and the agent group or queue with
the minimal score is chosen. However, this selection can be randomized as follows. Let Ci
be the score given to agent group i during agent selection, any negative score excluding the
concerned group being replaced with 0. When randomized agent selection is used, the agent
group i is selected with probability pi = Ci/

∑I−1
i=0 Ci. In other words, the highest score an

agent group obtains, the greatest is its probability of selection. A similar logic applies for
contact selection, with Ci replaced by Ck, the score assigned to contact type k.

package umontreal.iro.lecuyer.contactcenters.router;

public class AgentsPrefRouter extends Router

March 4, 2014 AgentsPrefRouter 311

Fields

protected AgentGroup bestGroup

Best agent group selected by selectAgent (Contact, double, boolean[], int).

protected Agent bestAgent

Best agent selected by selectAgent (Contact, double, boolean[], int), or null if the
best agent group does not take account of individual agents.

protected WaitingQueue bestQueue

Contains the best waiting queue selected by selectWaitingQueue (AgentGroup, Agent,
double, boolean[], int).

protected DequeueEvent bestQueuedContact

Contains the best queued contact selected by selectWaitingQueue (AgentGroup, Agent,
double, boolean[], int), or null if the first contact in the best queue is taken.

Constructors

public AgentsPrefRouter (int numTypes, int[][] groupToTypeMap)

Constructs a new agents’ preference-based router with a group-to-type map groupToTypeMap
and numTypes contact types. This router always uses queue priority for contact selection.
The rank rGT(i, k) is the value j for which ki,j = k in the group-to-type map, and rTG(k, i) =
rGT(i, k). The matrices of weights are initialized with 1’s.

Parameters

numTypes the number of contact types.

groupToTypeMap the group-to-type map.

public AgentsPrefRouter (double[][] ranksGT)

Constructs a new agents’ preference-based router with matrix of ranks ranksGT defining how
agents prefer contacts. The given matrix must be rectangular with one row per agent group,
and one column per contact type. It defines the function rGT(i, k) while rTG(k, i) = rGT(i, k).
The matrices of weights are initialized with 1’s.

Parameter

ranksGT the contact selection matrix of ranks being used.

312 AgentsPrefRouter March 4, 2014

Throws

NullPointerException if ranksGT is null.

IllegalArgumentException if the ranks 2D array is not rectangular.

public AgentsPrefRouter (double[][] ranksTG, double[][] ranksGT)

Constructs a new agents’ preference-based router with matrix of ranks ranksTG defining
how contacts prefer agents, and ranksGT defining how agents prefer contacts. The given
matrices must be rectangular. The matrices of weights are initialized with 1’s.

Parameters

ranksTG the matrix of ranks defining how contacts prefer agents.

ranksGT the matrix of ranks defining how agents prefer contacts.

Throws

NullPointerException if ranksGT or ranksTG are null.

IllegalArgumentException if the ranks 2D arrays are not rectangular.

public AgentsPrefRouter (double[][] ranksTG, double[][] ranksGT, double[][]

weightsTG, double[][] weightsGT)

Constructs a new agents’ preference-based router with matrix of ranks ranksTG defining
how contacts prefer agents, and ranksGT defining how agents prefer contacts. The matrices
of weights are set to weightsTG, and weightsGT. The given matrices must be rectangular.

Parameters

ranksTG the matrix of ranks defining how contacts prefer agents.

ranksGT the matrix of ranks defining how agents prefer contacts.

weightsTG the matrix of weights defining wTG(k, i).

weightsGT the matrix of weights defining wGT(i, k).

Throws

NullPointerException if ranksGT, ranksTG, weightsTG, or weightsGT are null.

IllegalArgumentException if the 2D arrays are not rectangular.

Methods

public double[][] getRanksTG()

Returns the matrix of ranks defining how contacts prefer agents, used for agent selection.

Returns the matrix of ranks defining how contacts prefer agents.

public void setRanksTG (double[][] ranksTG)

Sets the matrix of ranks defining how contacts prefer agents to ranksTG.

March 4, 2014 AgentsPrefRouter 313

Parameter

ranksTG the new agent selection matrix of ranks.

Throws

NullPointerException if ranksTG is null.

IllegalArgumentException if ranksTG is not rectangular or has wrong dimensions.

public double[][] getRanksGT()

Returns the matrix of ranks defining how agents prefer contacts, used for contact selection.

Returns the matrix of ranks defining how agents prefer contacts.

public void setRanksGT (double[][] ranksGT)

Sets the matrix of ranks defining how agents prefer contacts to ranksGT.

Parameter

ranksGT the new contact selection matrix of ranks.

Throws

NullPointerException if ranksGT is null.

IllegalArgumentException if ranksGT is not rectangular or has wrong dimensions.

public double[][] getWeightsTG()

Returns the matrix of weights defining wTG(k, i).

Returns the matrix of weights defining wTG(k, i).

public void setWeightsTG (double[][] weightsTG)

Sets the matrix of weights defining wTG(k, i) to weightsTG.

Parameter

weightsTG the new matrix of weights defining wTG(k, i).

Throws

NullPointerException if weightsTG is null.

IllegalArgumentException if weightsTG is not rectangular or has wrong dimensions.

public double[][] getWeightsGT()

Returns the matrix of weights defining wGT(i, k).

Returns the matrix of weights defining wGT(i, k).

public void setWeightsGT (double[][] weightsGT)

Sets the matrix of weights defining wGT(i, k) to weightsGT.

314 AgentsPrefRouter March 4, 2014

Parameter

weightsGT the new matrix of weights defining wGT(i, k).

Throws

NullPointerException if weightsGT is null.

IllegalArgumentException if weightsGT is not rectangular or has wrong dimensions.

public double getRankTG (int k, int i)

Returns the rank of contact type k = k for agent group i = i, used for agent selection.

Parameters

k the contact type identifier.

i the agent group identifier.

Returns the rank of the contact type for the agent group.

Throws

ArrayIndexOutOfBoundsException if i or k are negative, i is greater than or equal
to Router.getNumAgentGroups(), or k is greater than or equal to Router.getNum-
ContactTypes().

public double getRankGT (int i, int k)

Returns the rank of contact type k = k for agent group i = i, used for contact selection.

Parameters

i the agent group identifier.

k the contact type identifier.

Returns the rank of the contact type for the agent group.

Throws

ArrayIndexOutOfBoundsException if i or k are negative, i is greater than or equal
to Router.getNumAgentGroups(), or k is greater than or equal to Router.getNum-
ContactTypes().

public double getWeightTG (int k, int i)

Returns the weight of contact type k = k for agent group i = i, used for agent selection.

Parameters

k the contact type identifier.

i the agent group identifier.

Returns the weight of the contact type for the agent group.

March 4, 2014 AgentsPrefRouter 315

Throws

ArrayIndexOutOfBoundsException if i or k are negative, i is greater than or equal
to Router.getNumAgentGroups(), or k is greater than or equal to Router.getNum-
ContactTypes().

public double getWeightGT (int i, int k)

Returns the weight of contact type k = k for agent group i = i, used for contact selection.

Parameters

i the agent group identifier.

k the contact type identifier.

Returns the weight of the contact type for the agent group.

Throws

ArrayIndexOutOfBoundsException if i or k are negative, i is greater than or equal
to Router.getNumAgentGroups(), or k is greater than or equal to Router.getNum-
ContactTypes().

public int[][] getTypeToGroupMap()

Computes a type-to-group map from the agent selection matrix of ranks by calling Routing-
TableUtils.getTypeToGroupMap (double[][]) on the transpose of the matrix of ranks,
and returns the result.

Returns the computed type-to-group map.

public int[][] getGroupToTypeMap()

Computes a group-to-type map from the contact selection matrix of ranks by calling
RoutingTableUtils.getGroupToTypeMap (double[][]), and returns the result.

Returns the computed group-to-type map.

public RandomStream getStreamAgentSelection()

Returns the random stream used for agent selection. If the agent selection is not randomized
(the default), this returns null.

Returns the random stream for agent selection.

public void setStreamAgentSelection (RandomStream streamAgentSelection)

Sets the random stream for agent selection to streamAgentSelection. Setting the stream
to null disables randomized agent selection.

Parameter

streamAgentSelection the new random stream for agent selection.

public RandomStream getStreamContactSelection()

Returns the random stream used for contact selection. If the contact selection is not ran-
domized (the default), this returns null.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

316 AgentsPrefRouter March 4, 2014

Returns the random stream for contact selection.

public void setStreamContactSelection (RandomStream streamContactSelection)

Sets the random stream for contact selection to streamContactSelection. Setting the
stream to null disables randomized contact selection.

Parameter

streamContactSelection the new random stream for contact selection.

public AgentSelectionScore getAgentSelectionScore()

Returns the current mode of computation for the agent selection score. The default value is
AgentSelectionScore.LONGESTIDLETIME.

Returns the way the score is computed for agent selection.

public void setAgentSelectionScore (AgentSelectionScore

agentSelectionScore)

Sets the way scores for agent selection are computed to agentSelectionScore.

Parameter

agentSelectionScore the way scores for agent selection are computed.

Throws

NullPointerException if agentSelectionScore is null.

public ContactSelectionScore getContactSelectionScore()

Returns the current mode of computation for the contact selection score. The default value
is ContactSelectionScore.LONGESTWAITINGTIME.

Returns the way the score is computed for contact selection.

public void setContactSelectionScore (ContactSelectionScore

contactSelectionScore)

Sets the way scores for contact selection are computed to contactSelectionScore.

Parameter

contactSelectionScore the way scores for contact selection are computed.

Throws

NullPointerException if contactSelectionScore is null.

protected double getRankForAgentSelection (int k, int i)

Determines the rank to be used for agent selection for contact type k, and agent in group i.
By default, this returns rTG(k, i), but subclasses may override this method for the rank to
depend on some state of the system.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 4, 2014 AgentsPrefRouter 317

Parameters

k the contact type index.

i the agent group index.

Returns the rank associated with (k, i).

protected void selectAgent (Contact ct, double bestRank, boolean[]

candidates1, int numCandidates)

This method is called by selectAgent (Contact) to perform the selection of an agent
among the numCandidates agent groups sharing the same minimal finite rank and containing
at least one free agent. The method must select an agent group i among the agent groups
for which candidates[i] is true and store the reference to this group in the protected field
bestGroup. The field bestAgent can be used to hold the selected agent if the agent group
takes account of individual agents. If no candidate is satisfactory, the method must set
bestGroup and bestAgent to null before returning; the incoming contact will be queued
or blocked as appropriate.

The default implementation computes a score for each candidate using getScoreForAgent-
Selection (Contact, AgentGroup, Agent) and takes the candidate with the best score.
This method can be overridden to implement a different selection scheme, e.g., randomly
selecting a free agent.

Parameters

ct the contact being processed.

bestRank the best rank found when looking for a candidate agent.

candidates1 the agent group that could serve the contact.

numCandidates the number of true values in candidates.

protected double getScoreForAgentSelection (Contact ct, AgentGroup

testGroup, Agent testAgent)

Returns the score for contact ct associated with agent group testGroup and agent testAgent.
When selecting an agent for contact ct, if there are several agent groups with the same min-
imal rank, the agent group with the greatest score is selected. Returning a negative infinite
score prevents an agent group from being selected. The default selectAgent (Contact,
double, boolean[], int) method calls this method with testAgent = null if testGroup
is not an instance of DetailedAgentGroup, otherwise the method is called with testAgent
= testGroup.getLongestIdleAgent().

By default, this returns a score depending on the return value of getAgentSelection-
Score(). This can return the longest weighted idle time (the default), the weighted number
of free agents, or the weight only. See AgentSelectionScore for more information.

Parameters

ct the contact being assigned an agent.

testGroup the tested agent group.

testAgent the tested agent, can be null.

318 AgentsPrefRouter March 4, 2014

Returns the score given to the association between the contact and the agent.

protected double getRankForContactSelection (int i, int k)
Determines the rank to be used for contact selection for contact type k, when an agent in
group i becomes free. By default, this returns rGT(i, k), but subclasses may override this
method for the rank to depend on some state of the system.
Parameters

i the agent group index.

k the contact type index.
Returns the rank associated with (i, k).

protected void selectWaitingQueue (AgentGroup group, Agent agent, double

bestRank, boolean[] qCandidates1, int

numCandidates)
Selects the queued contact for an agent agent in group group, with waiting queue candidates
qCandidates. The waiting queues k for which qCandidates[k] is true share the same
minimal rank and contain at least one contact. The method must store the selected waiting
queue in the field bestQueue and possibly the contact to be removed in the bestQueued-
Contact. If bestQueuedContact is null, the first contact in the best queue will be used. If
no waiting queue can be selected, bestQueue must be set to null.
The default implementation selects the waiting queue with the greatest score as computed
by getScoreForContactSelection (AgentGroup, DequeueEvent), and the best queued
contact is always null. This method can be overridden to use an alternate selection scheme,
e.g., randomly selecting a queued contact.
Parameters

group the agent group containing the free agent.

agent the free agent.

bestRank the best rank found when searching for candidates.

qCandidates1 the waiting queue candidates contacts can be pulled from.

protected double getScoreForContactSelection (AgentGroup group,

DequeueEvent ev)
Returns the score for the association between the agent group group and the queued contact
represented by ev. If contacts can be pulled from several waiting queues with the same
minimal rank, the router takes the contact with the greatest score. A negative infinite score
prevents a contact from being dequeued.
By default, this returns a score depending on the return value of getContactSelection-
Score(). This can return the weighted waiting time (the default), the weighted number of
queued agents, or the weight only. See ContactSelectionScore for more information.
Parameters

group the agent group to which pulled contacts would be assigned.

ev the dequeue event.
Returns the assigned score.

March 4, 2014 319

AgentsPrefRouterWithDelays

Extends the agents’ preference-based router to support delays for routing, and allow priority
to change with waiting time. Often, a contact has to wait for some time before it can overflow
to groups of backup agents. Delays are used to favor the usage of primary agents as opposed
to backup agents which are kept for customers which have waited long enough. The priority
of a waiting contact may also change if it is waiting long enough. This router allows the
user to input such delays, and to set up several different matrices of ranks for priority to be
a piecewise-constant function of the waiting time.

Data structures. This router uses the same structures as the agents’ preference-based
router without delays, with an additional I ×K matrix of delays, and optional extra group-
to-type matrices of ranks associated with minimal waiting times. Each delay d(i, k) is a finite
positive number indicating the minimal time a contact of type k must wait to be accepted
for service by an agent in group i.

Each extra matrix of ranks defines a function rGT,j(i, k) which associates a matrix of
ranks with the minimal waiting time wj. Let w0 = 0 and rGT,0(i, k) = rGT(i, k). So if no
extra matrix of ranks is given, we have only rGT,0(i, k), the default matrix of ranks used by
the agents’ preference-based routing policy without delays.

Note that fixing d(i, k) = 0 for all i and k, and omitting extra matrices of ranks reverts
to the original agents’ preference-based routing without delays.

Basic routing scheme. We now describe more specifically how the routing with delays
works. Let dk,1, dk,2, . . . be the delays d(·, k) sorted in increasing order, with duplicates
eliminated, and dk,0 = 0. When a contact of type k arrives, it can be served only by agents
whose group i satisfies d(i, k) = 0 in addition to the conditions imposed by the agents’
preference-based routing policy. If a contact is queued as no free agent is available to serve
it, an event is scheduled to try routing the contact again after a delay dk,1. During this so-
called rerouting, the delay condition becomes W ≥ d(i, k), where W is the time the contact
has waited in queue so far. If this second agent selection fails, a third trial happens after
a delay dk,2 − dk,1. More generally, reroutings happen for each delay dk,j, for j = 1, 2, . . .,
unless the contact is accepted by an agent, or abandons. Consequently, as its waiting time
increases, the contact can be accepted by a wider range of agents.

Contact selection is done in a similar way as with the agents’ preference-based routing
policy, except that delays d(i, k), and extra matrices of ranks rGT,j(i, k) are taken into account
while determining the rank for a pair (i, k). More specifically, let Wk be the longest waiting
time among all queued contacts of type k. First, the rank of a queued contact of type k
is infinite (so the call cannot leave the queue) if its waiting time Wk is smaller than the
delay d(i, k). On the other hand, if Wk ≥ d(i, k), the rank is given by rGT,j′(i, k) where
j′ = max{j : Wk ≥ wj} is the index of the matrix of ranks applying to the queued contact.
If j′ > 0, we check the other queued contacts of type k to determine if another queued
contact has a smaller rank, i.e., an higher priority. For each scanned queued contact, we
check the delay condition and stop scanning as soon as Wk < d(i, k) or j′ = 0.

The default behavior of this policy can be altered by two switches: overflow transfer, and
longest waiting time modes. When overflow transfer is turned ON, a contact gaining access

320 AgentsPrefRouterWithDelays March 4, 2014

to some agent groups after waiting some delay also loses access to the original agent groups.
When longest waiting time is turned OFF, the contact selection gives priority to pairs (i, k)
with small delays d(i, k).

Overflow transfer mode. In this mode, turned off by default, the delay condition for the
jth rerouting (j+1th agent selection) becomes dk,j ≤ q < dk,j+1, j starting with 0, while the
original condition is dk,j ≤ q. With this variant, when a contact has waited sufficient long
to overflow to a new set of agent groups, it cannot be served by the original agent groups.
Overflow can then be considered as a transfer in a new section of the contact center.

Longest waiting time mode. In this mode, turned on by default, contact selection is
performed in a single pass, in a way similar to the contact selection of the policy without
delays. However, the delay condition is enforced to restrict contact-to-agent assignment.

If this option is disabled, contact selection is performed using the following multiple-
passes process. When an agent in group i becomes free, it first searches for a contact whose
type k satisfies d(i, k) = 0. Then, it searches for contacts for which d(i, k) ≤ dk,1, for contacts
for which d(i, k) ≤ dk,2, etc., in that order. This gives higher priority to contacts with small
minimal delay, because they can be served by a more restricted set of agents.

The latter behavior of this router is especially appropriate if delays are functions of the
distance between the contact and the agent. For local contacts, d(i, k) is small, while it
is large for remote contacts. The router then always gives priority to local assignments.
However, it is often simpler and more intuitive to use the single-pass contact selection.

package umontreal.iro.lecuyer.contactcenters.router;

public class AgentsPrefRouterWithDelays extends AgentsPrefRouter

Constructors

public AgentsPrefRouterWithDelays (double[][] ranksGT, double[][] delaysGT)

Constructs a new agents’ preference-based router with matrix of ranks ranksGT and delays
matrix delaysGT. The given matrices must be rectangular with one row per agent group,
and one column per contact type. They define the functions rGT(i, k) (with rTG(k, i) =
rGT(i, k)), and d(i, k), respectively. The weights matrices are initialized with 1’s.

Parameters

ranksGT the contact selection matrix of ranks being used.

delaysGT the delays matrix.

March 4, 2014 AgentsPrefRouterWithDelays 321

Throws

NullPointerException if ranksGT or delaysGT are null.

IllegalArgumentException if the ranks or delays 2D array are not rectangular.

public AgentsPrefRouterWithDelays (double[][] ranksTG, double[][] ranksGT,

double[][] delaysGT)

Constructs a new agents’ preference-based router with matrix of ranks ranksTG defining
how contacts prefer agents, ranksGT defining how agents prefer contacts, and delaysGT for
routing delays. The given matrices must be rectangular. The weights matrices are initialized
with 1’s.

Parameters

ranksTG the matrix of ranks defining how contacts prefer agents.

ranksGT the matrix of ranks defining how agents prefer contacts.

delaysGT the delays matrix.

Throws

NullPointerException if ranksGT, ranksTG, or delaysGT are null.

IllegalArgumentException if the given 2D arrays are not rectangular.

public AgentsPrefRouterWithDelays (double[][] ranksTG, double[][] ranksGT,

double[][] weightsTG, double[][]

weightsGT, double[][] delaysGT)

Constructs a new agents’ preference-based router with matrix of ranks ranksTG defining
how contacts prefer agents, and ranksGT defining how agents prefer contacts. The weights
matrices are set to weightsTG, and weightsGT. The delays matrix is set to delaysGT. The
given matrices must be rectangular.

Parameters

ranksTG the matrix of ranks defining how contacts prefer agents.

ranksGT the matrix of ranks defining how agents prefer contacts.

weightsTG the weights matrix defining wTG(k, i).

weightsGT the weights matrix defining wGT(i, k).

delaysGT the delays matrix.

Throws

NullPointerException if ranksGT, ranksTG, weightsTG, weightsGT, or delaysGT are
null.

IllegalArgumentException if the 2D arrays are not rectangular.

322 AgentsPrefRouterWithDelays March 4, 2014

Methods

public double[][] getDelaysGT()

Returns the delays matrix used by this router.

Returns the delays matrix.

public double getDelayGT (int i, int k)

Returns d(i, k) for the given agent group index i, and contact type identifier k.

Parameters

i the queried agent group index.

k the queried contact type identifier.

Returns the delay d(i, k).

public void setDelaysGT (double[][] delaysGT)

Sets the delays matrix of this router to delaysGT.

Parameter

delaysGT the new delays matrix.

Throws

NullPointerException if delaysGT is null.

IllegalArgumentException if delaysGT is not rectangular.

public boolean getOverflowTransferStatus()

Returns true if the overflow transfer mode is enabled. By default, this returns false.

Returns the status of the overflow transfer mode.

public void setOverflowTransferStatus (boolean overflowTransfer)

Sets the overflow transfer mode to overFlowTransfer.

Parameter

overflowTransfer the new status of the mode.

See also getOverflowTransferStatus()

public boolean getLongestWaitingTimeStatus()

Returns true if the router uses a single-phase agent selection based on the longest waiting
time.

Returns the status of the longest waiting time mode.

public void setLongestWaitingTimeStatus (boolean longestWaitingTime)

Sets the longest waiting time mode to longestWaitingTime.

March 4, 2014 AgentsPrefRouterWithDelays 323

Parameter

longestWaitingTime the new status of the mode.

See also getLongestWaitingTimeStatus()

public void setRanksGT (double minWaitingTime, double[][] ranksGT)

Sets the matrix of ranks used for selecting contacts which have waited at least minWaitingTime.

Parameters

minWaitingTime the minimum waiting time.

ranksGT the matrix of ranks for this minimal waiting time.

324 March 4, 2014

AgentSelectionScore

Parameter indicating how the default agent selection score computed by AgentsPrefRouter.

getScoreForAgentSelection (Contact, AgentGroup, Agent) is computed.

package umontreal.iro.lecuyer.contactcenters.router;

public enum AgentSelectionScore

Constants

WEIGHTONLY

The score for an agent group i for contact type k corresponds to the weight wTG(k, i).

NUMFREEAGENTS

The score corresponds to the number of free agents in group i multiplied by the weight
wTG(k, i).

LONGESTIDLETIME

The score corresponds to the longest idle time of agents in group i, multiplied by the weight
wTG(k, i). Using this score if agent groups are not detailed throws an exception.

March 4, 2014 325

ContactSelectionScore

Parameter indicating how the default contact selection score computed by AgentsPref-

Router.getScoreForContactSelection (AgentGroup, DequeueEvent) is computed.

package umontreal.iro.lecuyer.contactcenters.router;

public enum ContactSelectionScore

Constants

WEIGHTONLY

The score for an agent group i for contact type k corresponds to the weight wGT(i, k).

QUEUESIZE

The score corresponds to the number of contacts in queue multiplied by wGT(i, k).

LONGESTWAITINGTIME

The score corresponds to the waiting time of the queued contact of type k multiplied by the
weight wGT(i, k).

326 March 4, 2014

LocalSpecRouter

This router implements the local-specialist policy which tries to assign contacts to agents
in the same region and prefers specialists to preserve generalists. This router associates a
region identifier with each contact type and agent group. The originating region of a contact
is determined by the region identifier associated with its type. The location of agents in an
agent group is determined by the region identifier associated with the agent group. This
policy is similar to agents’ preference-based routing, but it adds a region tie breaker and the
rank rGT(i, k) can be considered as a measurement of the specialty of agents in group i in
serving contacts of type k. Often, rTG(k, i) = rGT(i, k).

When a new contact arrives, the router applies the same agent selection scheme as the
agents’ preference-based router, except that only agent groups within the originating region
of the contact are accepted as candidates. If the contact cannot be served locally, it is added
to a waiting queue corresponding to its type. After the contact spent a certain time in
queue, called the overflow delay, the router tries to perform a new agent selection, this time
allowing local and remote agents to serve the contact. If the contact can be served remotely,
it is removed from the waiting queue before service starts. Otherwise, it stays in queue.

When an agent becomes free, the same contact selection scheme as with the agents’
preference-based router is applied, except that a contact can be pulled from a waiting queue
only if its originating region is the same as the location of the free agent. In other words, the
local waiting queues are queried first. If, after this first pass, the agent is still free, the router
performs a second pass which proceeds the same way as agents’ preference-based, except
that a contact can be pulled from a waiting queue only if it is in the same region as the free
agent, or its waiting time is greater than the overflow delay.

Often, rGT(i, k) = s(i) for each k corresponding to a contact type the agents in group i
can serve, and rTG(k, i) = rGT(i, k). The function s(i) is the skill count for agent group i,
i.e., the number of contact types agents in group i can serve. An agent in group i1 is more
specialist than an agent in group i2 if s(i1) < s(i2). With this format of matrix, if an agent
becomes free, local waiting queues are queried first and the contact with the longest weighted
waiting time is pulled. Moreover, if weights wGT(i, k) are all set to 1 (the default), only the
location of the free agent induces priority for contact selection.

package umontreal.iro.lecuyer.contactcenters.router;

public class LocalSpecRouter extends AgentsPrefRouter

Constructors

public LocalSpecRouter (int[] typeRegion, int[] groupRegion, double

overflowDelay, int[] skillCounts, boolean[][] m)

March 4, 2014 LocalSpecRouter 327

Constructs a local-specialist router with contact type region identifiers typeRegion, agent
group region groupRegion, overflow delay overflowDelay, skill counts skillCounts, and
incidence matrix m. The rank function rGT(i, k) is set to skillCounts[i] if m[i][k] is
true and ∞ otherwise while rTG(k, i) = rGT(i, k). The incidence matrix has one row per
agent group and one column per contact type; the boolean m[i][k] determines if an agent
group i can serve a contact type k. If skillCounts is null, the skill count for agent group i
is determined by counting the number of k values for which m[i][k] is true. The weights
matrices are initialized with 1’s.
Parameters

typeRegion the contact type region identifiers.

groupRegion the agent group region identifiers.

overflowDelay the delay before overflow is allowed.

skillCounts the number of skills for each agent group.

m the incidence matrix.
Throws

NullPointerException if typeRegion, groupRegion, or m are null.

IllegalArgumentException if the overflow delay is negative or the incidence matrix is
non rectangular.

public LocalSpecRouter (int[] typeRegion, int[] groupRegion, double

overflowDelay, double[][] ranksGT)
Constructs a local-specialist router with contact type region identifiers typeRegion, agent
group region identifiers groupRegion, overflow delay overflowDelay, and contact selection
ranks matrix ranksGT. The agent selection ranks matrix is generated by transposing the
contact selection matrix. The weights matrices are initialized with 1’s.
Parameters

typeRegion the contact type region identifiers.

groupRegion the agent group region identifiers.

overflowDelay the delay before overflow is allowed.

ranksGT the matrix giving the rGT(i, k) function.
Throws

NullPointerException if typeRegion, groupRegion, or ranks are null.

IllegalArgumentException if the overflow delay is negative.

public LocalSpecRouter (int[] typeRegion, int[] groupRegion, double

overflowDelay, double[][] ranksTG, double[][]

ranksGT)
Constructs a local-specialist router with contact type region identifiers typeRegion, agent
group region identifiers groupRegion, overflow delay overflowDelay, agent selection ranks
matrix ranksTG, and contact selection ranks matrix ranksGT. The weights matrices are
initialized with 1’s.

328 LocalSpecRouter March 4, 2014

Parameters

typeRegion the contact type region identifiers.

groupRegion the agent group region identifiers.

overflowDelay the delay before overflow is allowed.

ranksTG the matrix giving the rTG(k, i) function.

ranksGT the matrix giving the rGT(i, k) function.

Throws

NullPointerException if typeRegion, groupRegion, or ranks are null.

IllegalArgumentException if the overflow delay is negative.

public LocalSpecRouter (int[] typeRegion, int[] groupRegion, double

overflowDelay, double[][] ranksTG, double[][]

ranksGT, double[][] weightsTG, double[][]

weightsGT)

Constructs a local-specialist router with contact type region identifiers typeRegion, agent
group region identifiers groupRegion, overflow delay overflowDelay, agent selection ranks
matrix ranksTG, and contact selection ranks matrix ranksGT. The weights matrices are set
to weightsTG, and weightsGT.

Parameters

typeRegion the contact type region identifiers.

groupRegion the agent group region identifiers.

overflowDelay the delay before overflow is allowed.

ranksTG the matrix giving the rTG(k, i) function.

ranksGT the matrix giving the rGT(i, k) function.

weightsTG the weights matrix defining wTG(k, i).

weightsGT the weights matrix defining wGT(i, k).

Throws

NullPointerException if typeRegion, groupRegion, ranks or weights matrices are null.

IllegalArgumentException if the overflow delay is negative.

Methods

public double getOverflowDelay()

Returns the current overflow delay for this router.

March 4, 2014 LocalSpecRouter 329

Returns the current overflow delay.

public void setOverflowDelay (double overflowDelay)

Sets the overflow delay to overflowDelay.

Parameter

overflowDelay the new overflow delay.

Throws

IllegalArgumentException if the overflow delay is negative.

public int getTypeRegion (int k)

Returns the region identifier for contact type k.

Parameter

k the contact type identifier.

Returns the associated region identifier.

Throws

ArrayIndexOutOfBoundsException if k is negative or greater than or equal to the number
of contact types.

public void setTypeRegion (int k, int r)

Sets the region identifier for contact type k to r.

Parameters

k the contact type identifier.

r the new region identifier.

Throws

ArrayIndexOutOfBoundsException if k is negative or greater than or equal to the number
of contact types.

public int getGroupRegion (int i)

Returns the region identifier for agent group i.

Parameter

i the agent group identifier.

Returns the associated region identifier.

Throws

ArrayIndexOutOfBoundsException if i is negative or greater than or equal to the number
of agent groups.

public void setGroupRegion (int i, int r)

Sets the region identifier for agent group i to r.

330 LocalSpecRouter March 4, 2014

Parameters

i the agent group identifier.

r the new region identifier.

Throws

ArrayIndexOutOfBoundsException if i is negative or greater than or equal to the number
of agent groups.

public int[][] getTypeToGroupMap()

Computes a type-to-group map from the ranks matrix by calling RoutingTableUtils.get-
TypeToGroupMap (double[][], int[], int[]), and returns the result.

Returns the computed type-to-group map.

public int[][] getGroupToTypeMap()

Computes a group-to-type map from the ranks matrix by calling RoutingTableUtils.get-
GroupToTypeMap (double[][], int[], int[]), and returns the result.

Returns the computed group-to-type map.

March 4, 2014 331

QueueRatioOverflowRouter

This router sends new contacts to agent groups using a fixed list, but for each agent group,
routing occurs conditional on the expected waiting time. More specifically, the router uses
a K × I ranks matrix giving a rank rTG(k, i) for each contact type k and agent group i.
The lower is this rank, the higher is the priority of assigning contacts of type k to agents
in group i. If a rank is ∞, the corresponding assignment is not allowed. The ranks matrix
giving rTG(k, i) for all k and i is used to generate overflow lists defined as follows. For each
contact type k, the router creates a list of agent groupsets sharing the same priority. The
jth groupset for contact type k is denoted i(k, j) = {i = 0, . . . , I − 1 | rTG(k, i) = rk,j}.
Here, rk,j1 < rk,j2 < ∞ for any j1 < j2. The overflow list for contact of type k is then
i(k, 0), i(k, 1), . . . For example, suppose we have the following ranks matrix: 1 1 2

1 ∞ 2
∞ 1 ∞


The overflow list for contact type 0 is ((0, 1), (2)), while the overflow list for contact type 1
is ((0), (2)).

When a new contact of type k arrives, the router performs two phases to assign an agent
group or waiting queues to the contact. Here, each waiting queue corresponds to a single
agent group. The first phase tries to associate an agent groupset with the contact while
the second phase, which occurs when the first phase fails, associates a waiting queue to the
contact. The first phase checks every agent groupset i(k, j) sequentially, and stops as soon
as a groupset containing a free agent is found. For each considered groupset, the router tests
every agent group to determine if at least one agent is free. If a single agent is free, the
contact is routed to that agent. If several agents of that groupset are free, the contact is
routed to the agent with the longest idle time.

If no agent is available in the tested groupset, one or more waiting queues must be
selected to add the contact to. A waiting queue i with size Qi(t) is associated with a single
agent group, which has Ni(t) agents, where t is the current simulation time. The router
considers waiting queues in the current groupset only, and selects a queue only if the queue
ratio (Si(t) + 1)/Ni(t) is greater than the agent-group specific target. This queue ratio gives
an estimate of the expected waiting time of the contact. Note that this estimate assumes
that service times are exponential, and no abandonment is allowed. If no candidate waiting
queue is available, e.g., all waiting queues in the groupset have a queue ratio greater than
the target queue ratio, the router checks the next agent groupset.

If there are no more groupset, the router performs the second phase as follows. Since no
groupset contains a free agent or waiting queue with a small enough queue ratio, the router
checks every authorized waiting queue, i.e., each queue i for which rTG(k, i) <∞, and selects
the waiting queue with the smallest queue ratio. In this phase, the queue ratio is allowed to
be greater than the target.

The queues the contact is sent to depend on two flags associated with this router: the
copy and overflow modes. The copy mode determines if contacts can be queued to multiple

332 QueueRatioOverflowRouter March 4, 2014

agent groups. The overflow mode, which is used only when contacts can be added into
multiple queues, can be set to transfer or promotion. In transfer mode, the contact moves
from groupsets to groupsets. In promotion mode, a copy of the contact is left in every
considered groupset.

More specifically, if queueing to multiple targets is disabled, the router always sends the
contact to the queue with the smallest queue ratio among the considered candidates. In
the first phase, these candidates are the queues in the current groupset with a queue ratio
smaller than the target. In the second phase, this corresponds to all queues the contact is
authorized in.

If contacts can be added to multiple queues, the overflow mode has the following effect.
If candidates were found during the first phase, when checking agent groupset i(k, j), the
contact is queued to all queues in that groupset when the overflow mode is transfer. However,
if the overflow mode is promotion, the contact is also added to all queues in the preceding
groupsets, i.e., groupsets i(k, j′) for j′ = 0, . . . , j. If the router reaches the second phase, the
contact is always sent to the queue with the smallest queue ratio. In promotion mode, it is
also queued to all other authorized waiting queues.

This router needs agent groups taking individual agents into account to select agents
based on their longest idle times.

package umontreal.iro.lecuyer.contactcenters.router;

public class QueueRatioOverflowRouter extends Router

Constructor

public QueueRatioOverflowRouter (int numGroups, double[][] ranksTG, double[]

targetQueueRatio, boolean allowCopies,

boolean overflowTransfer)

Constructs a new queue-ratio overflow router with ranks matrix ranksTG, numGroups agent
groups, and target queue ratio for contact type k set to targetQueueRatio[k]. The
allowCopies flag determines if contacts can be added to multiple waiting queues, while
the overflowTransfer flag determines if the transfer overflow mode is active. If this latter
flag is false, overflow mode is set to promotion. The second flag has no effect if the first
flag is false.

Parameters

numGroups the number of agent groups.

ranksTG the ranks matrix.

targetQueueRatio the target queue ratio for each contact type.

allowCopies the allow-copies flag.

overflowTransfer the overflow-transfer flag.

March 4, 2014 QueueRatioOverflowRouter 333

Throws

NullPointerException if any argument is null.

IllegalArgumentException if the length of targetQueueRatio does not correspond to
the number of rows in the ranks matrix.

Methods

public double[][] getRanksTG()

Returns the ranks matrix defining how contacts prefer agents, used for agent selection.

Returns the ranks matrix defining how contacts prefer agents.

public void setRanksTG (double[][] ranksTG)

Sets the ranks matrix defining how contacts prefer agents to ranksTG.

Parameter

ranksTG the new agent selection ranks matrix.

Throws

NullPointerException if ranksTG is null.

IllegalArgumentException if ranksTG is not rectangular or has wrong dimensions.

public boolean isAllowCopies()

Determines if contacts can be added to multiple queues.

Returns true if and only if contacts can be added to multiple queues.

public void setAllowCopies (boolean allowCopies)

Sets the allow-copies flag to allowCopies.

Parameter

allowCopies the new value of the flag.

See also isAllowCopies()

public boolean isOverflowTransfer()

Determines if the overflow mode is transfer.

Returns true if the overflow mode is transfer.

public void setOverflowTransfer (boolean overflowTransfer)

Sets the overflow mode to overflowTransfer.

Parameter

overflowTransfer the new overflow mode.

334 QueueRatioOverflowRouter March 4, 2014

See also isOverflowTransfer()

public double[] getTargetQueueRatio()

Gets the target queue ratio for each contact type.

Returns the target queue ratios.

public void setTargetQueueRatio (double[] targetQueueRatio)

Sets the target queue ratio for each contact type to targetQueueRAtio.

Parameter

targetQueueRatio the new target queue ratios.

Throws

IllegalArgumentException if the length of targetQueueRatio does not correspond to
the number of rows in the ranks matrix.

March 4, 2014 335

ExpDelayRouter

Represents a router using the expected delay to assign agent groups to new contacts. When
a contact is routed to an agent group, it is assigned a free agent of this particular group.
If all agents in the target group are busy, the contact enters a waiting queue specific to the
target agent group. The contact cannot move across waiting queues.

A waiting queue is associated with each agent group i. When a new contact of type k
arrives, the router uses the weighted expected delays Ei(t)/wTG(k, i) for each waiting queue
to take its decisions. Here, Ei(t) is a prediction of the waiting time for the new contact arrived
at time t if sent to queue i while wTG(k, i) is a user-defined constant weight determining the
importance of contacts of type k for agents in group i. Two decision modes are available:
deterministic, or stochastic. In deterministic mode, the router chooses the agent group with
the minimal weighted expected delay. In stochastic mode, the router chooses agent group i
with probability

pi(t) =
wTG(k, i)/Ei(t)∑I−1
j=0 wTG(k, j)/Ei(t)

independently of the other contacts. With this formula, the smaller is the weighted expected
delay for an agent group i, the higher is the probability of selection of group i. When an
agent becomes free, it picks up a new contact from its associated waiting queue only.

Note that the routing of a contact of type k to an agent in group i can be prevented by
fixing wTG(k, i) = 0. Increasing wTG(k, i) increases the probability of a contact of type k to
be routed to an agent in group i.

The expected delay is estimated using a waiting time predictor. The default predictor
is the LastWaitingTimePerQueuePredictor which predicts the waiting time using the last
observed waiting time before a service.

package umontreal.iro.lecuyer.contactcenters.router;

public class ExpDelayRouter extends Router

Constructors

public ExpDelayRouter (double[][] weightsTG, RandomStream stream)

Constructs a new router using expected delays, with a weights matrix weightsTG, a random
stream stream. The K× I weights matrix is used to determine the number of contact types
and agent groups while stream determines the mode of the router. If stream is null, the
router is in deterministic mode. Otherwise, it is in stochastic mode.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

336 ExpDelayRouter March 4, 2014

Parameters

weightsTG the weights matrix.

stream the random stream used in stochastic mode.

public ExpDelayRouter (double[][] weightsTG, RandomStream stream,

WaitingTimePredictor pred)

Equivalent to ExpDelayRouter (double[][], RandomStream) with a user-defined waiting
time predictor pred.

Parameters

weightsTG the weights matrix.

stream the random stream used in stochastic mode.

pred the waiting time predictor.

Methods

public double[][] getWeightsTG()

Returns the weights matrix defining wTG(k, i).

Returns the weights matrix defining wTG(k, i).

public void setWeightsTG (double[][] weightsTG)

Sets the weights matrix defining wTG(k, i) to weightsTG.

Parameter

weightsTG the new weights matrix defining wTG(k, i).

Throws

NullPointerException if weightsTG is null.

IllegalArgumentException if weightsTG is not rectangular or has wrong dimensions.

public RandomStream getStreamAgentSelection()

Returns the random stream used for agent selection. If the agent selection is not randomized,
this returns null.

Returns the random stream for agent selection.

public void setStreamAgentSelection (RandomStream streamAgentSelection)

Sets the random stream for agent selection to streamAgentSelection. Setting the stream
to null disables randomized agent selection.

Parameter

streamAgentSelection the new random stream for agent selection.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 4, 2014 337

OverflowAndPriorityRouter

Represents a routing policy allowing contacts to overflow from one set of agents to another,
and agents to pick out queued contacts based on priorities that can change at predefined mo-
ments during the waiting time. This routing policy also supports some forms of conditional
routing. However, the router using this policy might be slow, because of the more complex
management of queues. Therefore, if conditional routing is not needed, or if priorities do
not change with time, it might be faster to use a simpler policy such as AgentsPrefRouter
or AgentsPrefRouterWithDelays. The latter policy also supports some forms of priorities
changing with time.

We now describe the policy in details. The agent selection of any new contact C of
type k using this policy is based on a sequence of stages. Each stage is defined by a triplet
(wk,j, fk,j(X,C), gk,j(X,C)) where wk,j is a minimal waiting time, fk,j(X,C) is a function
returning a vector of ranks for agent selection, and gk,j(X,C) is another function returning
a vector of ranks for queueing. For any call type k = 0, . . . , K − 1, we have 0 ≤ wk,0 <
wk,1 < · · ·. Often, we have fk,j = gk,j. The vectors returned by these functions can depend
on the contact but also on the state X of the system, which allows the implementation of
some forms of conditional routing.

More specifically, when a contact of type k arrives, the router checks the first triplet
(wk,0, fk,0, gk,0). If wk,0 > 0, the contact waits for wk,0 time units in an extra waiting queue
no agent has access to; this can be used to model a positive routing delay. Then, the function
fk,0(X,C) is evaluated on the new contact C to get a vector of ranks (r0, . . . , rI−1). These
ranks determine which agent groups can be selected for the new contact, and the priority
for each group. The smaller is ri, the higher is the priority for the agent group i. If ri =∞,
the contact cannot be sent to agent group i at this stage of routing.

The router selects the agent group with the smallest value ri among the groups containing
at least one free agent. If a single group with this minimal rank exists, the contact is sent to
a free agent in it, and routing is done. Otherwise, a score Si is associated with each group
with minimal rank, and the group with the highest score is selected. Usually, the score
corresponds to the longest idle time of agents in the group.

If no agent group can be assigned to the new contact, the contact is put into one or more
waiting queues. There is one priority queue per agent group, and an extra queue storing
contacts not queued to any agent group. To select the waiting queues, the router applies the
function gk,0(X,C) on the new contact to get a vector (q0, . . . , qI−1) of ranks. The rank qi
determines the priority of the contact in queue i. The smaller is the rank, the higher is the
priority. An infinite rank qi prevents the contact to be put in queue i. Often, the priority is
the same for every waiting queue allowed for the contact, but priorities may differ in general.
If all ranks qi are infinite, the contact goes into the extra queue.

When an agent becomes free, it looks for a contact in the queue associated with its group
only. The contacts in this queue are sorted in increasing order of rank. Contacts sharing
the same rank are sorted in decreasing order of score. The default function for the score is
the time spent in queue. When a contact is removed from a queue, it is also removed from
every other queue managed by the router.

338 OverflowAndPriorityRouter March 4, 2014

If the contact waits for w1 time units in queue without abandoning or being served, a
new agent selection happens. The selection is similar to the first one, except that a new
function, fk,1(X,C), is used to generate the vector of ranks. The ranks can thus evolve
with time. If no agent group is available for the contact at this second stage of routing, a
waiting queue update occurs. For this, a vector of ranks is generated using gk,1(X,C), and
used to determine the new priority of the contact, for each queue. If the priority qi goes
from an infinite to a finite value, the contact joins queue i. If the priority goes from a finite
to an infinite value, the contact leaves queue i. If the priority changes from a finite value
to another finite value, the position of the contact in queue is updated. The priority of a
contact can thus evolve with time. This process is repeated at waiting time w2, w3, and so
on, for all stages of routing.

A contact leaving all waiting queues linked to agent groups at a given stage is put into the
extra waiting queue. It can still abandon, but it cannot be served until a subsequent stage
of routing puts it back into a waiting queue linked to an agent group. On the other hand,
if a contact enters a queue linked to an agent group at a given stage of routing, it leaves
the extra queue. Moreover, even if the contact changes queue, it keeps the same residual
patience time; changing waiting queue does not reset the maximal queue time.

For example, suppose that a contact of type k can be served by two agent groups, 0
and 1. A newly arrived contact has access to group 0 only, and is queued with priority
1 if it cannot be served immediately. However, after s seconds of wait, the contact gains
access to group 1. It is queued to this new group with priority 1, but the priority with
original group 0 changes to 2 (a lower priority). The parameters for such a routing would be
(0, (1,∞), (1,∞)), (s, (1, 1), (2, 1)). For an example with conditional routing, suppose that
at waiting time s, the priorities depend on the service level observed in the last m minutes.

package umontreal.iro.lecuyer.contactcenters.router;

public class OverflowAndPriorityRouter extends Router

Constructor

public OverflowAndPriorityRouter (int numGroups, RoutingStageInfo[][]

stages)

Constructs a new overflow and priority router with numGroups agent groups, and stages
for information about routing stages. The 2D array stages must contain K rows, each row
giving a routing script for a specific contact type.

Parameters

numGroups the number of agent groups.

stages the information about routing stages.

March 4, 2014 OverflowAndPriorityRouter 339

Throws

NullPointerException if stages is null.

IllegalArgumentException if numGroups is negative or a list of stages are not ordered
with respect to waiting time, for at least one contact type.

Methods

public double[][] getWeightsTG()

Returns the matrix of weights defining wTG(k, i) for each contact type and agent group.
These weights are used by getScoreForAgentSelection (Contact, AgentGroup, Agent)
to compute scores for agent groups, and default to 1 if they are not set by setWeightsTG
(double[][]).

Returns the matrix of weights defining wTG(k, i).

public void setWeightsTG (double[][] weightsTG)

Sets the matrix of weights defining wTG(k, i) for each k and i to weightsTG.

Parameter

weightsTG the new matrix of weights defining wTG(k, i).

Throws

NullPointerException if weightsTG is null.

IllegalArgumentException if weightsTG is not rectangular or has wrong dimensions.

public double[][] getWeightsGT()

Returns the matrix of weights defining wGT(i, k) for each contact type and agent group.
These weights are used by getScoreForContactSelection (DequeueEvent) to give scores
to waiting queues, and default to 1 if they are not set by setWeightsGT (double[][]).

Returns the matrix of weights defining wGT(i, k).

public void setWeightsGT (double[][] weightsGT)

Sets the matrix of weights defining wGT(i, k) for each k and i to weightsGT.

Parameter

weightsGT the new matrix of weights defining wGT(i, k).

Throws

NullPointerException if weightsGT is null.

IllegalArgumentException if weightsGT is not rectangular or has wrong dimensions.

public AgentSelectionScore getAgentSelectionScore()

Returns the current mode of computation for the agent selection score. The default value is
AgentSelectionScore.LONGESTIDLETIME.

340 OverflowAndPriorityRouter March 4, 2014

Returns the way the score is computed for agent selection.

public void setAgentSelectionScore (AgentSelectionScore

agentSelectionScore)

Sets the way scores for agent selection are computed to agentSelectionScore.

Parameter

agentSelectionScore the way scores for agent selection are computed.

Throws

NullPointerException if agentSelectionScore is null.

public ContactSelectionScore getContactSelectionScore()

Returns the current mode of computation for the contact selection score. The default value
is ContactSelectionScore.LONGESTWAITINGTIME.

Returns the way the score is computed for contact selection.

public void setContactSelectionScore (ContactSelectionScore

contactSelectionScore)

Sets the way scores for contact selection are computed to contactSelectionScore.

Parameter

contactSelectionScore the way scores for contact selection are computed.

Throws

NullPointerException if contactSelectionScore is null.

protected double getScoreForAgentSelection (Contact ct, AgentGroup

testGroup, Agent testAgent)

Returns the score for contact ct associated with agent group testGroup and agent testAgent.
When selecting an agent for contact ct, if there are several agent groups with the same min-
imal rank, the agent group with the greatest score is selected. Returning a negative infinite
score prevents an agent group from being selected.

By default, this returns a score depending on the return value of getAgentSelection-
Score(). This can return the longest weighted idle time (the default), the weighted number
of free agents, or the weight only. See AgentSelectionScore for more information.

Parameters

ct the contact being assigned an agent.

testGroup the tested agent group.

testAgent the tested agent, can be null.

March 4, 2014 OverflowAndPriorityRouter 341

Returns the score given to the association between the contact and the agent.

protected double getScoreForContactSelection (DequeueEvent ev)

Returns the score for the queued contact represented by ev.

By default, this returns a score depending on the return value of getContactSelection-
Score(). This can return the weighted waiting time (the default), the weighted number of
queued agents, or the weight only. See ContactSelectionScore for more information.

Parameter

ev the dequeue event.

Returns the assigned score.

Nested class

public static final class RoutingInfo

Represents information about the routing for a particular contact. When this router pro-
cesses a contact, it creates an instance of this class and associates it to the contact. This in-
stance can be retrieved by using contact.getAttributes().get (router), where router
is the corresponding router.

Constructor

public RoutingInfo (int numGroups)

Constructs a new routing information object for a system with numGroups agent groups.

Parameter

numGroups the number of agent groups.

Methods

public double[] getRanksForAgentSelectionArray()

Returns an array containing the ranks associated with this contact for the last agent
selection. The first time this method is called, an array is created and returned. This
array can then be filled with ranks.

Returns the ranks for agent selection.

public double[] getRanksForContactSelectionArray()

Similar to getRanksForAgentSelectionArray(), for the ranks used by waiting queue
selection.

342 OverflowAndPriorityRouter March 4, 2014

Returns the ranks for waiting queues.

public double[] getNewRanksForContactSelectionArray()

Similar to getRanksForAgentSelectionArray(), for the ranks used by waiting queue
selection. This array is used when a new vector of ranks is generated, to be compared
with the original vector of ranks giving the priorities of the contacts currently in queues.

Returns the ranks for waiting queues.

public DequeueEvent getDequeueEvent (int q)

Returns the event representing the associated contact in queue q. If the contact is not
in this queue, this returns null.

Parameter

q the index of the tested queue.

Returns the dequeue event.

public void setDequeueEvent (int q, DequeueEvent ev)

Sets the dequeue event for queue q to ev.

Parameters

q the index of the waiting queue.

ev the dequeue event.

public int getNumQueues()

Returns the number of waiting queues the contact is in.

public int getStagesDone()

Returns the number of agent selections performed so far for this contact.

public void oneStageDone()

Indicates that a new agent selection was just done for the contact.

March 4, 2014 343

RankFunction

Represents a function computing a vector of ranks for a given contact, for the Overflow-

AndPriorityRouter router.

package umontreal.iro.lecuyer.contactcenters.router;

public interface RankFunction

Methods

public boolean updateRanks (Contact contact, double[] ranks)

Fills the array ranks with the ranks for the contact contact. The given array should have
length I, and is filled by this method with ranks. The function might use the given contact
as well as any relevant model’s state to determine the ranks. Note that additional routing
information can be obtained through the OverflowAndPriorityRouter.RoutingInfo.

The vector of ranks given to this method is constructed by the router, and associated to
a specific call. When this method is called for a new call, the vector contains Double.
POSITIVE INFINITY values. For any subsequent calls, the vector contains the current ranks
for the call. This method should replace these values with the new ranks concerning the
call. The method returns true if and only if at least one of the ranks in the given vector
needs to be updated. Otherwise, it returns false.

Parameters

contact the contact being routed.

ranks the vector filled with ranks.

Returns true if the vector of ranks was modified, false otherwise.

public boolean canReturnFiniteRank (int i)

Determines if updateRanks (Contact, double[]) can return a finite rank at position i for
this particular function.

http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#POSITIVE_INFINITY
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#POSITIVE_INFINITY

344 March 4, 2014

RoutingStageInfo

Represents a stage for routing, with a minimal waiting time, and two rank functions for agent
and contact selections. Instances of this class are used by the OverflowAndPriorityRouter

router.

package umontreal.iro.lecuyer.contactcenters.router;

public interface RoutingStageInfo

Methods

public double getWaitingTime()

Returns the minimal waiting time for this routing stage.

public RankFunction getRankFunctionForAgentSelection()

Returns the rank function for agent selection at this stage of routing.

public RankFunction getRankFunctionForContactSelection()

Returns the rank function for contact selection at this stage of routing.

March 4, 2014 345

ExitedContactListener

Represents an exited-contact listener which gets notified when a contact exits the system.
A contact can leave the center when it is served, dequeued or blocked.

package umontreal.iro.lecuyer.contactcenters.router;

public interface ExitedContactListener

Methods

public void blocked (Router router, Contact contact, int bType)

This method is called when the contact contact is blocked in the router router. The integer
bType is used to indicate the reason of the blocking, e.g., the contact could not be served or
put into any waiting queue.

Parameters

router the router causing the blocking.

contact the blocked contact.

bType an indicator giving the reason why the contact is blocked.

public void dequeued (Router router, DequeueEvent ev)

This method is called when a contact leaves a waiting queue linked to the router router,
without being served.

Parameters

router the router causing the dequeueing.

ev the dequeue event.

public void served (Router router, EndServiceEvent ev)

This method is called when a contact was served by an agent. This method is called by the
router before the after-contact work begins so ev does not contain the information about
after-contact time.

Parameters

router the router managing the contact.

ev the end service event.

346 March 4, 2014

RoutingTableUtils

Provides some utility methods to manage routing tables represented using 2D arrays. Three
types of routing tables are supported: type-to-group and group-to-type maps, incidence
matrices and matrices of ranks. This class provides facilities to check the consistency of
such routing tables, to generate one table from the other, and to format them as strings.
However, converting from one routing table to another may destroy some information or
force the conversion algorithm to infer information, which can lead to bad routing policies.

package umontreal.iro.lecuyer.contactcenters.router;

public final class RoutingTableUtils

Methods

public static void checkTypeToGroupMap (int numGroups, int[][]

typeToGroupMap)

Applies a consistency check for the type-to-group map typeToGroupMap supporting I = numGroups
agent groups. This checks that every positive element of the given matrix corresponds to
an agent group index and no group index appears more than once in an ordered list. If an
inconsistency is detected, this throws an IllegalArgumentException describing the prob-
lem.

Parameters

numGroups the number of agent groups I.

typeToGroupMap the type-to-group map being checked.

Throws

NullPointerException if typeToGroupMap or one of its elements are null.

IllegalArgumentException if the matrix is incorrect.

public static void checkGroupToTypeMap (int numTypes, int[][]

groupToTypeMap)

Applies a consistency check for the group-to-type map groupToTypeMap supportingK = numTypes
contact types. This checks that every positive element of the given matrix corresponds to
a contact type index and no type index appears more than once in an ordered list. If an
inconsistency is detected, this throws an IllegalArgumentException describing the prob-
lem.

Parameters

numTypes the number of contact types K.

groupToTypeMap the group-to-type map being checked.

http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalArgumentException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalArgumentException.html

March 4, 2014 RoutingTableUtils 347

Throws

NullPointerException if groupToTypeMap or one of its elements are null.

IllegalArgumentException if the matrix is incorrect.

public static void checkConsistency (int[][] typeToGroupMap, int[][]

groupToTypeMap)

Checks the consistency of the routing tables typeToGroupMap and groupToTypeMap. It is as-
sumed that the matrices are themselves consistent routing tables, i.e., checkTypeToGroupMap
(groupToTypeMap.length, typeToGroupMap) and checkGroupToTypeMap (typeToGroupMap.length,
groupToTypeMap) do not throw exceptions. This methods checks that an agent group in-
dex i appears in the ordered list for contact type k if and only if the contact type k appears
in the ordered list for agent group i. If this consistency criterion is violated, an Illegal-
ArgumentException is thrown.

Parameters

typeToGroupMap the type-to-group map.

groupToTypeMap the group-to-type map.

Throws

IllegalArgumentException if the consistency check fails.

See also checkTypeToGroupMap (int, int[][]), checkGroupToTypeMap (int, int[][])

public static int[][] getTypeToGroupMap (int numTypes, int[][]

groupToTypeMap)

Generates the type-to-group map from the group-to-type map groupToTypeMap. For each
contact type k, this method constructs an ordered list containing all agent groups referring
to it in the group-to-type map, sorted in increasing order of group identifier. It is assumed
that the groupToTypeMap matrix is consistent, i.e., checkGroupToTypeMap (int, int[][])
does not throw an exception when called with it.

Parameters

numTypes the number of contact types K.

groupToTypeMap the group-to-type map being processed.

Returns the generated type-to-group map.

See also checkGroupToTypeMap (int, int[][])

public static int[][] getTypeToGroupMap (boolean[][] m)

Constructs and returns a new type-to-group map from the incidence matrix m. For each
column k of the rectangular matrix m, the method creates a row in the type-to-group map
with a column containing value i for each true m(i, k) value. This gives lists of agent groups
sorted in increasing order of group identifier.

http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalArgumentException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalArgumentException.html

348 RoutingTableUtils March 4, 2014

Parameter

m the incidence matrix.

Returns the type-to-group map.

See also ArrayUtil.checkRectangularMatrix (Object)

public static int[][] getTypeToGroupMap (double[][] ranksTG)

Generates a type-to-group map from the agent selection matrix of ranks ranksTG. Assuming
that the given matrix is rectangular, the method first uses a scheme similar to getTypeTo-
GroupMap (boolean[][]) to get a list of agent groups sorted in increasing order of group
identifier for each contact type. Each row of the resulting type-to-group map is then sorted
in rank-increasing order, i.e., an agent group i1 goes before i2 if rTG(k, i1) < rTG(k, i2). If
rTG(k, i1) = rTG(k, i2), i1 goes before i2 in the ordered list for contact type k if i1 < i2.

Parameter

ranksTG the matrix of ranks being transformed.

Returns the generated type-to-group map.

public static int[][] getTypeToGroupMap (double[][] ranksTG, int[]

typeRegions, int[] groupRegions)

This method is similar to getTypeToGroupMap (double[][]) with a sorting algorithm
adapted for the local-specialist policy. Except from the agent selection matrix of ranks, the
method needs arrays associating a region identifier to each contact type and agent group.
For contact type k, an agent group i1 goes before an agent group i2 if the location of i1 is
the same as the originating region of contacts of type k, but i2’s location is different from
i1’s. In other words, groupRegions[i1] == typeRegions[k] and groupRegions[i2] !=
typeRegions[k] if i1 is before i2. Any pair (i1, i2) not meeting this extra condition is sorted
using the same algorithm as in getTypeToGroupMap (double[][]).

Parameters

ranksTG the matrix of ranks.

typeRegions the region identifier of each contact type.

groupRegions the region identifier of each agent group.

Returns the constructed type-to-group map.

public static int[][] getGroupToTypeMap (int numGroups, int[][]

typeToGroupMap)

Generates the group-to-type map from the type-to-group map typeToGroupMap. For each
agent group i, this method constructs a list containing all contact types referring to it in
the type-to-group map, sorted in increasing order of type identifier. It is assumed that the
typeToGroupMap matrix is consistent, i.e., checkTypeToGroupMap (int, int[][]) does
not throw an exception when called with it.

March 4, 2014 RoutingTableUtils 349

Parameters

numGroups the number of agent groups I.

typeToGroupMap the type-to-group map being processed.

Returns the generated group-to-type map.

See also checkTypeToGroupMap (int, int[][])

public static int[][] getGroupToTypeMap (boolean[][] m)

Constructs and returns a new group-to-type map from the incidence matrix m. For each
row i of m, the method creates a row in the group-to-type map with a column having a value
k for each true m(i, k) value. This gives lists of contact types sorted in increasing order
of type identifier.

Parameter

m the incidence matrix.

Returns the group-to-type map.

public static int[][] getGroupToTypeMap (double[][] ranksGT)

Generates a group-to-type map from the contact selection matrix of ranks ranksGT. The
method first uses a scheme similar to getGroupToTypeMap (boolean[][]) to get a list of
contact types sorted in increasing order of type identifier for each agent group. Each row of
the resulting group-to-type map is then sorted in rank-increasing order, i.e., a contact type
k1 goes before k2 if rGT(i, k1) < rGT(i, k2). If rGT(i, k1) = rGT(i, k2), k1 goes before k2 in
the list if k1 < k2.

Parameter

ranksGT the matrix of ranks.

Returns the new group-to-type map.

public static int[][] getGroupToTypeMap (double[][] ranksGT, int[]

typeRegions, int[] groupRegions)

This method is similar to getGroupToTypeMap (double[][]) with a sorting algorithm
adapted for the local-specialist policy. Except from the contact selection matrix of ranks,
the method needs arrays associating a region identifier to each contact type and agent group.
For each agent group i, a contact type k1 goes before a contact type k2 if the originating re-
gion of k1 is the same as the location of agent group i, but k2’s originating region is different
from k1’s. In other words, typeRegions[k1] == groupRegions[i] and typeRegions[k2]
!= groupRegions[i] if k1 is before k2. Any pair (k1, k2) not meeting this extra condition
is sorted using the same algorithm as in getGroupToTypeMap (double[][]).

Parameters

ranksGT the matrix of ranks.

typeRegions the region identifier of each contact type.

groupRegions the region identifier of each agent group.

350 RoutingTableUtils March 4, 2014

Returns the constructed group-to-type map.

public static boolean[][] getIncidenceFromTG (int numGroups, int[][]

typeToGroupMap)

Constructs and returns the incidence matrix from the typeToGroupMap with numGroups
agent groups. The returned incidence matrix has one row for each agent group and one
column for each contact type. Element (i, k) of the matrix is true if and only agent group i
is included in the list of contact type k, i.e., ik,j = k for some j. In the incidence matrix, all
the ranking induced by the type-to-group map is lost. It is assumed that the type-to-group
map is consistent as checked by checkTypeToGroupMap (int, int[][]).

Parameters

numGroups the number of agent groups.

typeToGroupMap the type-to-group map.

Returns the incidence matrix.

public static boolean[][] getIncidenceFromGT (int numTypes, int[][]

groupToTypeMap)

Constructs and returns the incidence matrix from the groupToTypeMap with numTypes con-
tact types. The returned incidence matrix has one row for each agent group and one column
for each contact type. Element (i, k) of the matrix is true if and only if the contact type k
is included in the list of agent group i, i.e., ki,j = k for some j. In the incidence matrix, all
the ranking induced by the group-to-type map is lost. It is assumed that the group-to-type
map is consistent as checked by checkGroupToTypeMap (int, int[][]).

Parameters

numTypes the number of contact types.

groupToTypeMap the group-to-type map.

Returns the incidence matrix.

public static double[][] getRanksFromTG (int numGroups, int[][]

typeToGroupMap)

Constructs the agent selection matrix of ranks from the typeToGroupMap with numGroups
agent groups. For each non-negative ik,j = typeToGroupMap[k][j], the rank rTG(k, ik,j)
of contact type k for agent group ik,j is set to j. If i does not appear in the list of k,
rTG(k, i) =∞.

Parameters

numGroups the number of agent groups.

typeToGroupMap the type-to-group map.

March 4, 2014 RoutingTableUtils 351

Returns the matrix of ranks.

public static double[][] getRanksFromGT (int numTypes, int[][]

groupToTypeMap)

Constructs the contact selection matrix of ranks from the groupToTypeMap with numTypes
contact types. For each non-negative ki,j = groupToTypeMap[i][j], the rank rGT(i, ki,j)
of contact type ki,j for agent group i is set to j. If k does not appear in the list of i,
rGT(k, i) =∞.

Parameters

numTypes the number of contact types.

groupToTypeMap the group-to-type map.

Returns the matrix of ranks.

public static double[][] getRanks (boolean[][] m, int[] skillCounts)

Constructs a contact selection matrix of ranks from the incidence matrix m and skill counts
skillCounts. Assuming m is rectangular, this method creates a matrix of ranks with
m.length rows and m[0].length columns. For each agent group i, and each contact type k,
the method sets the rank to ∞ if the contact cannot be served, i.e., if m[k][i] is false.
Otherwise, rGT(i, k) is set to skillCounts[i]. If skillCounts is null, skillCounts[i] is
inferred by counting the number of k for which m[i][k] is true.

Parameters

m the incidence matrix.

skillCounts the skill counts.

Returns the matrix of ranks.

Throws

IllegalArgumentException if m.length is different from skillCounts.length.

public static int[][][] getOverflowLists (double[][] ranksTG)

Constructs and returns overflow lists from the given matrix of ranks ranksTG. More specif-
ically, the ranks matrix giving rTG(k, i) for all k and i is used to generate overflow
lists defined as follows. For each contact type k, this method creates a list of agent
groupsets sharing the same priority. The jth groupset for contact type k is denoted
i(k, j) = {i = 0, . . . , I − 1 : rTG(k, i) = rk,j}. Here, rk,j1 < rk,j2 < ∞ for any j1 < j2.
The overflow list for contact type k is then i(k, 0), i(k, 1), . . . Array [k][j] of the returned
3D array contains the elements of i(k, j).

Parameter

ranksTG the input matrix of ranks.

352 RoutingTableUtils March 4, 2014

Returns the overflow lists.

public static String formatTypeToGroupMap (int[][] typeToGroupMap)

Formats the type-to-group ordered lists as a string. For each supported contact type, a line
containing Contact type k: [i1, i2, ...] is generated, where i1, i2, ... correspond
to agent group indices. Each ordered list is formatted using formatOrderedList (int[]).

Parameter

typeToGroupMap the type-to-group map being formatted.

Returns the type-to-group map, formatted as a string.

public static String formatGroupToTypeMap (int[][] groupToTypeMap)

Formats the group-to-type ordered lists as a string. For each supported agent group, a line
containing Agent group i: [k1, k2, ...] is generated, where k1, k2, ... correspond to
contact type indices. Each ordered list is formatted using formatOrderedList (int[]).

Parameter

groupToTypeMap the group-to-type map being formatted.

Returns the group-to-type map, formatted as a string.

public static String formatRanksTG (double[][] ranksTG)

Formats the agent selection matrix of ranks ranksTG for each contact type and agent group.
For each contact type, the returned string contains a line giving the rank of each agent
group. When a contact type cannot be served by an agent group, a - is used to represent
the infinite rank.

Parameter

ranksTG the matrix of ranks to be formatted.

Returns the ranks formatted as a string.

public static String formatRanksGT (double[][] ranksGT)

Formats the contact selection matrix of ranks ranksGT for each contact type and agent
group. For each agent group, the returned string contains a line giving the rank of each
contact type. When a contact type cannot be served by an agent group, a - is used to
represent the infinite rank.

Parameter

ranksGT the matrix of ranks to be formatted.

Returns the ranks formatted as a string.

public static String formatWeightsTG (double[][] weightsTG)

Formats the agent selection weights matrix weightsTG for each contact type and agent
group. For each contact type, the returned string contains a line giving the weight of each
agent group. A - is used to represent an infinite weight.

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

March 4, 2014 RoutingTableUtils 353

Parameter

weightsTG the weights matrix to be formatted.

Returns the weights formatted as a string.

public static String formatWeightsGT (double[][] weightsGT)

Formats the contact selection weights matrix weightsGT for each contact type and agent
group. For each agent group, the returned string contains a line giving the weight of each
contact type. A - is used to represent an infinite weight.

Parameter

weightsGT the weights matrix to be formatted.

Returns the weights formatted as a string.

public static String formatIncidence (boolean[][] m)

Formats the incidence matrix m for each contact type and agent group. For each agent group,
the returned string contains a line giving the contact types it can serve. Each line contains
one value for each contact type. The value 0 is used if the contact cannot be served and 1
otherwise.

Parameter

m the incidence matrix to be formatted.

Returns the incidence matrix formatted as a string.

public static String formatOrderedList (int[] orderedList)

Formats the ordered list orderedList as a string. This method constructs and returns a
string containing the comma-separated list of indices stored in orderedList. If a negative
index is found, it is replaced with -1 and formatted in the string only if at least one positive
index follows it. For example, the ordered list -2, 0, 3, -1, -1 will be formatted as -1,
0, 3.

Parameter

orderedList the ordered list to be formatted.

Returns the string representing the ordered list.

public static int[][] normalizeRoutingTable (int[][] table, int minColumns)

Converts the routing table table to a rectangular matrix containing table.length rows
and at least minColumns columns. Assuming the given 2D array is a valid type-to-group or
group-to-type map, evaluates the maximum number of columns in each row and pads the
rows with -1 for the returned 2D array to be a rectangular matrix, i.e., each row has the same
number of columns. In some circumstances, this can simplify manipulation of the routing
table and the returned array is still compatible with the routers since negative indices must
be ignored.

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

354 RoutingTableUtils March 4, 2014

Parameters

table the routing table to be converted.

minColumns the minimal number of columns in the normalized routing table.

Returns the converted routing table.

Throws

NullPointerException if table or one of its elements is null.

IllegalArgumentException if minColumns is negative.

public static int[][] normalizeRoutingTable (int[][] table)

Equivalent to normalizeRoutingTable (table, 0).

March 4, 2014 355

AgentGroupSelectors

Provides some convenience methods to select an agent from a list of agent groups. All the
methods provided by this class are static and return a reference to the selected agent group.
If no agent group is available, they return null. They must be given an array of indices ind
used to reference agent groups in the given router. One can also specify an optional array
of booleans subset indicating which element in the list will be taken into account.

For each index j, let i = ind[j]. If r >= 0 and subset[j] is true if the subset is
specified, the agent group Router.getAgentGroup (i) will be considered. Otherwise, i will
be ignored.

package umontreal.iro.lecuyer.contactcenters.router;

public final class AgentGroupSelectors

Methods

public static AgentGroup selectFirst (Router router, int[] ind, boolean[]

subset)

Selects, from the given ordered list, the first agent group containing at least one free agent.

Parameters

router the router used to map indices in the ordered list to AgentGroup references.

ind the ordered list of agent group indices.

subset the subset of indices to take into account when traversing the given list.

Returns the selected agent group.

public static AgentGroup selectFirst (Router router, int[] ind)

Equivalent to selectFirst (router, ind, null).

public static AgentGroup selectLast (Router router, int[] ind, boolean[]

subset)

Selects, from the given ordered list, the last agent group containing at least one free agent.

Parameters

router the router used to map indices in the ordered list to AgentGroup references.

ind the ordered list of agent group indices.

subset the subset of indices to take into account when traversing the given list.

356 AgentGroupSelectors March 4, 2014

Returns the selected agent group.

public static AgentGroup selectLast (Router router, int[] ind)

Equivalent to selectLast (router, ind, null).

public static AgentGroup selectGreatestFree (Router router, int[] ind,

boolean[] subset)

Returns a reference to the agent group, among the groups referred to by the given list of
indices, containing the greatest number of free agents.

Parameters

router the router used to map indices in the list to AgentGroup references.

ind the list of agent group indices.

subset the subset of indices to take into account when traversing the given list.

Returns the selected agent group.

public static AgentGroup selectGreatestFree (Router router, int[] ind)

Equivalent to selectGreatestFree (router, ind, null).

public static AgentGroup selectUniform (Router router, int[] ind, boolean[]

subset, RandomStream stream)

Returns a reference to a randomly selected agent group, among the groups referred to by
the given list of indices. The probability of group i to be selected is given by NF,i(t)/NF(t),
where NF,i(t) is the number of free agents in group i at current simulation time, and NF(t)
is the total number of free agents in the groups referred to by the indices.

Parameters

router the router used to map indices in the given list to AgentGroup references.

ind the list of agent group indices.

subset the subset of indices to take into account when traversing the given list.

stream the random number stream to generate one uniform.

Returns the selected agent group.

public static AgentGroup selectUniform (Router router, int[] ind,

RandomStream stream)

Equivalent to selectUniform (router, ind, null, stream).

public static Agent selectLongestIdle (Router router, int[] ind, boolean[]

subset)

Returns the reference to the agent having the longest idle time among the agent groups
indexed by the list ind and possibly restricted by subset if it is non-null. This selection
rule will be applied only to DetailedAgentGroup linked to the router. Indices mapping to
an AgentGroup instance will be ignored.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 4, 2014 AgentGroupSelectors 357

Parameters

router the router used to map indices in the given list to AgentGroup references.

ind the list of agent group indices.

subset the subset of indices to take into account when traversing the given list.

Returns the selected agent.

public static Agent selectLongestIdle (Router router, int[] ind)

Equivalent to selectLongestIdle (router, ind, null).

358 March 4, 2014

RouterState

Represents state information for a router. This information includes the contents of waiting
queues, and the contacts served by agents.

package umontreal.iro.lecuyer.contactcenters.router;

public class RouterState

Constructor

protected RouterState (Router router)

Constructs a new state information for a router router.

Parameter

router the router being processed.

Methods

public AgentGroupState[] getAgentGroups()

Returns the state of each agent group saved at the time the state of the router was saved.

Returns the state of agent groups.

public Map<AgentState, ReroutingState> getAgentReroutingInfo

()

Returns the agent rerouting information saved at the time the state of the router was saved.
Each key of the returned map is of type Agent while each value is of type ReroutingState.

Returns the agent rerouting information.

public Map<DequeueEvent, ReroutingState> getContactReroutingInfo

()

Returns the contact rerouting information saved at the time the state of the router was
saved. Each key of the returned map is of class DequeueEvent while each value is of class
ReroutingState.

Returns the contact rerouting information.

public WaitingQueueState[] getWaitingQueues()

Returns the state of the waiting queues attached to the router at the time the state of the
router was saved.

Returns the state of the waiting queues.

http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html

March 4, 2014 359

ReroutingState

Represents state information for contact or agent rerouting.

package umontreal.iro.lecuyer.contactcenters.router;

public class ReroutingState implements Cloneable

Constructor

public ReroutingState (int numReroutingsDone, double nextReroutingTime)

Constructs a new state information object for rerouting for a contact or an agent that has
been previously rerouted numReroutingsDone times, and whose next rerouting will happen
at time nextReroutingTime.

Parameters

numReroutingsDone the number of times the contact or agent has been rerouted before.

nextReroutingTime the simulation of the next rerouting.

Methods

public double getNextReroutingTime()

Returns the simulation time at which the router will try to reroute the contact or the agent.

Returns the next rerouting time.

public int getNumReroutingsDone()

Returns the number of reroutings that has happened so far for the contact or agent.

Returns the number of preceding reroutings.

http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html

360 March 4, 2014

EnqueueEventWithRerouting

Represents an event that queues a contact, and schedules an additional event for supporting
rerouting. This event is the same as the event represented by the superclass EnqueueEvent,
except that the dequeue event obtained by adding the contact into the waiting queue is used
to construct a ContactReroutingEvent based on stored information.

package umontreal.iro.lecuyer.contactcenters.router;

public class EnqueueEventWithRerouting extends EnqueueEvent

Constructors

public EnqueueEventWithRerouting (DequeueEvent oldDequeueEvent, Router

targetRouter, ReroutingState

reroutingState)

Constructs a new dequeue event with rerouting from the old dequeue event oldDequeueEvent,
the target router targetRouter, and the rerouting state reroutingState. This calls super
(oldDequeueEvent) and sets the target router and rerouting information.

Parameters

oldDequeueEvent the old dequeue event.

targetRouter the target router.

reroutingState the rerouting state.

public EnqueueEventWithRerouting (WaitingQueue targetQueue, DequeueEvent

oldDequeueEvent, Router targetRouter,

ReroutingState reroutingState)

Constructs a new enqueue event with rerouting from the target waiting queue targetQueue,
the old dequeue event oldDequeueEvent, the target router targetRouter, and the rerouting
state information reroutingState. This calls super (targetQueue, oldDequeueEvent)
and sets the target router and rerouting information.

Parameters

targetQueue the target waiting queue.

oldDequeueEvent the old dequeue event.

targetRouter the target router.

reroutingState the rerouting information.

March 4, 2014 EnqueueEventWithRerouting 361

public EnqueueEventWithRerouting (WaitingQueue targetQueue, Contact

contact, double queueTime, int dqType,

Router targetRouter, int

numReroutingsDone, double

nextReroutingTime)

Constructs a new enqueue event with rerouting from the target waiting queue targetQueue,
queueing information, and rerouting information. This calls super (targetQueue, contact,
queueTime, dqType) and sets the target router and rerouting information.

Parameters

targetQueue the target waiting queue.

contact the contact being queued.

queueTime the maximal queue time.

dqType the dequeue type.

targetRouter the target router.

numReroutingsDone the number of times the contact or agent has been rerouted before.

nextReroutingTime the simulation of the next rerouting.

Methods

public Router getTargetRouter()

Returns the target router for this event, i.e., the router for which the rerouting event will
be scheduled.

Returns the target router.

public double getNextReroutingTime()

Returns the simulation time at which the router will try to reroute the contact or the agent.

Returns the next rerouting time.

public int getNumReroutingsDone()

Returns the number of reroutings that has happened so far for the contact or agent.

Returns the number of preceding reroutings.

362 March 4, 2014

Package umontreal.iro.lecuyer.contactcenters.expdelay

Provides facilities to predict the waiting time of contacts. This package defines an interface,
WaitingTimePredictor, representing a waiting-time predictor. Before a predictor can be
used, it must be registered with a router. This registration allows the predictor to register
any observer necessary to track system’s state. A prediction can be obtained for any contact,
whether it is newly-arrived, or is already waiting in a queue.

March 4, 2014 363

WaitingTimePredictor

Represents a heuristic that can predict the waiting time of a contact depending on the
system’s state. Such predictions can be used, e.g., for routing, altering patience time, etc.
A predictor can have an associated router which is used to obtain system state necessary
for predictions. It can also register listeners in order to receive additional information. The
method getWaitingTime (Contact) is used to get a prediction of the waiting time for a
given contact waiting in any queue. The method getWaitingTime (Contact, Waiting-

Queue), on the other hand, gives a prediction of the waiting time for a contact waiting in a
specific queue.

package umontreal.iro.lecuyer.contactcenters.expdelay;

public interface WaitingTimePredictor

Methods

public Router getRouter()

Returns a reference to the router associated with this predictor. By default, this returns
null since no router is bound to a newly-constructed predictor. A router is associated with
a predictor using the setRouter (Router) method.

Returns a reference to the currently associated router.

public void setRouter (Router router)

Sets the router associated with this predictor to router. When router is non-null, this
method can also register any listener required to make the predictions. If the router asso-
ciated with a predictor is changed, the predictor should unregister any listener associated
with the previous router.

Parameter

router the new router.

public void init()

Resets any internal variable of this predictor.

public double getWaitingTime (Contact contact)

Returns a prediction of the waiting time of contact contact waiting in any queue. This
method returns Double.NaN if it cannot make a prediction for the given contact.

Parameter

contact the contact for which we need a prediction.

http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#NaN

364 WaitingTimePredictor March 4, 2014

Returns the global waiting time.

public double getWaitingTime (Contact contact, WaitingQueue queue)

Returns a prediction of the waiting time for the given contact contact conditional on the
contact joining the waiting queue queue. This method returns Double.NaN if it cannot make
a prediction for the given contact, or the given waiting queue.

Parameters

contact the contact for which a delay is predicted.

queue the target waiting queue.

Returns the predicted delay.

http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#NaN

March 4, 2014 365

ExpectedDelayPredictor
Approximates the expected waiting time conditional on a given queue assuming that service
times are i.i.d. exponential, and a queue is associated with each agent group. More specif-
ically, let Qi(t) be the size of waiting queue i at time t, and Ni(t) be the total number of
agents in group i. We suppose that agents in group i cannot pick up contacts in other queues
than queue i. Assuming that service times at agent group i are i.i.d. exponential with mean
1/µi, the expected waiting time for a contact waiting at queue i is (Qi(t)+1)/(µiNi(t)). The
rates µi are initialized to 1, and should be changed using setMu (int, double). Moreover,
if K = I, the rates can be initialized automatically using setMuWithContactTypes().

package umontreal.iro.lecuyer.contactcenters.expdelay;

public class ExpectedDelayPredictor implements WaitingTimePredictor

Methods

public double getMu (int i)

Returns the currently used value of µi.

Parameter

i the waiting queue index.

Returns the value of µi.

public double[] getMu()

Returns an array containing a copy of the values of µi.

Returns an array containing the values of µi.

public void setMu (int i, double m)

Sets the value of µi to m.

Parameters

i the index of the affected waiting queue.

m the new value of µi.

public void setMu (double[] mu)

Sets the values of µi to mu.

Parameter

mu the array containing the new values of µi.

public void setMuWithContactTypes()

Initializes the values of µi using the mean service time for contact types. This method
assumes that K = I, i.e., there is a waiting queue for each contact type. In that setting, the
service rate µi is initialized using the mean service time for contact type i.

366 March 4, 2014

LastWaitingTimePredictor

Waiting time predictor using the waiting time of the last contact beginning service as a pre-
diction for the waiting time. This predictor monitors every waiting queue attached to the as-
sociated router, and stores the last observed waiting time. This waiting time is returned each
time a prediction is requested. One can decide if the collected waiting times include times
before abandonment, and time before service, using methods setCollectingAbandonment

(boolean), and setCollectingService (boolean), respectively. By default, only the
waiting times before service are collected.

package umontreal.iro.lecuyer.contactcenters.expdelay;

public class LastWaitingTimePredictor implements WaitingTimePredictor

Methods

public boolean isCollectingAbandonment()

Determines if the collected waiting times for predictions include times before abandonment.
By default, this is set to false.

Returns true if and only if times of abandonment are used for predicting waiting times.

public void setCollectingAbandonment (boolean collectingAbandonment)

Sets the flag for collecting abandonment to collectingAbandonment.

Parameter

collectingAbandonment the new value of the flag.

See also isCollectingAbandonment()

public boolean isCollectingService()

Determines if the collected waiting times for predictions include times before service. By
default, this is set to true.

Returns true if and only if times of beginning of service are used for predicting waiting
times.

public void setCollectingService (boolean collectingService)

Sets the flag for collecting service to collectingService.

Parameter

collectingService the new value of the flag.

See also isCollectingService()

March 4, 2014 367

LastWaitingTimePerQueuePredictor

Waiting time predictor using the waiting time of the last contact exiting queue q for service
as a prediction for the waiting time of a new contact entering queue q. This predictor collects
the waiting times of contacts, and stores the last waiting time separately for each queue. If
a prediction is requested for a specific queue, the last waiting time for that queue is given.
If a prediction is requested for any queue, the last waiting time over all queues is given.

package umontreal.iro.lecuyer.contactcenters.expdelay;

public class LastWaitingTimePerQueuePredictor extends

LastWaitingTimePredictor

368 March 4, 2014

HeadOfQueuePredictor

Head of queue waiting time predictor. This predictor obtains a waiting time by taking the
longest waiting time among the first queued contacts of the associated router. When waiting
queues are first in first out (FIFO), this corresponds to the longest waiting time among all
queued contacts. The waiting time of a queued contact is the time from which the contact
entered the queue to the current time.

package umontreal.iro.lecuyer.contactcenters.expdelay;

public class HeadOfQueuePredictor implements WaitingTimePredictor

March 4, 2014 369

Package umontreal.iro.lecuyer.stat.mperiods

Provides facilities for storing observations during a simulation per time period, for the com-
mon situation where time is partitioned into a finite number of intervals, and statistics have
to be collected separately for the different intervals. For example, we may want to collect
statistics on the quality of service for each hour in a telephone call center.

Sometimes, a vector or a matrix of statistical probes is sufficient for performing this task,
especially when simulating independent replications. Probes are used during an experiment
to compute sums and the resulting sums or averages are collected in tallies to get samples; the
sample size corresponds to the number of replications. However, the number of periods can
sometimes be random.This happens when using the batch means method [13], if the number
of batches can change adaptively. For the same reason, it can be necessary to regroup periods
to save memory, when the total number of periods becomes too large; this is not supported
by a matrix of statistical probes. Events can also be counted in previous batches in addition
to the last one. As a result, in a general setting, a probe computing a sum and being reset
at the end of each batch cannot be used.

When the number of periods is large, it can be necessary to get observations for a subset
of these periods, e.g., the last ten periods. For example, this can be used by the dialer of
a phone call center to determine the quality of service in the last ten minutes on which
decisions can be based.

To address these problems, this package defines an interface for a matrix of measures.
Each row of this matrix corresponds to a type of event, e.g., the type of a customer in a
retail store. Each column corresponds to a period that can be any time interval such as half
an hour, a complete day, etc.

When independent replications of the same simulation are performed, the finite horizon
is often divided into periods. For each period, a vector of observations may be computed
and stored. This results in a matrix of observations that can be added to a matrix of tallies
at the end of each replication. The matrix can be obtained from the vectors of observations
directly, or some vectors can be regrouped.

When simulating for an infinite horizon, a single vector of observations may be obtained.
However, to get an estimate on the variance, for computing confidence intervals, the simula-
tion time is divided into intervals called batches. For each batch, a vector of observations is
obtained. If the simulation length is constant, or if the number of batches is allowed to be
random, it is sufficient to compute one vector at a time and collect it as observations at the
end of each batch. However, when the number of batches is required to be constant while
the simulation length is random, it is necessary to keep all the vectors of observations to
regroup them later. Vectors of observations, or groups of vectors, are collected during or at
the end of the simulation.

Depending on the type of experiment, matrices of measures can be added directly to tal-
lies as matrices of observations, some columns can be regrouped, or each column (or group
of consecutive columns) might be collected in tallies separately. This package provides a

370 Package umontreal.iro.lecuyer.stat.mperiods March 4, 2014

mechanism to implement simulation events collecting independently of the way the experi-
ment is performed. The MeasureMatrix interface represents a matrix of measures. Usually,
an implementation of this interface counts the number of occurrences of an event, the sum
of values, or some integrals. The SumMatrix class implements this interface for computing a
matrix of sums. A subclass, SumMatrixSW, provides a sliding window permitting the obser-
vations in a subset of the periods to be stored. For integrals, the simulator must provide a
custom implementation of MeasureMatrix which computes a function relative to the simu-
lation time, from time 0 to the current simulation time. The IntegralMeasureMatrix class
can be used to get the value of the integral for time intervals by storing the value of the
integral for user-defined times.

March 4, 2014 371

MeasureMatrix
Represents a matrix of measures for a set of related values during successive simulation pe-
riods. For example, it can compute the number of served customers of different types, for
each simulation period. A period can be any time interval such as half an hour, a com-
plete day, a batch, etc. At the beginning of a simulation, the matrix is initialized using
the init() method. During the simulation, it is updated with new events or values by
implementation-specific methods. An implementation of this interface computes raw obser-
vations of a simulated system by counting the number of occurrences of events, by summing
values, or by computing integrals. At determined times, e.g., at the end of a replication or a
batch, these raw observations are processed to be added into some statistical collectors. This
interface provides an abstraction layer to separate the computation of observations from the
required processing before they are collected.

Some methods specified by this interface are mandatory whereas others are optional.
When an unsupported optional method is called, its implementation simply throws an
UnsupportedOperationException.

package umontreal.iro.lecuyer.stat.mperiods;

public interface MeasureMatrix

Methods

public void init()

Initializes this matrix of measures for a new simulation replication. This resets the measured
values to 0, or initializes the probes used to compute them.

public int getNumMeasures()

Returns the number of measures calculated by the implementation of this interface.

Returns the number of computed values.

public void setNumMeasures (int nm)

Sets the number of measures to nm. If this method is supported, it can limit the maximal
or minimal accepted number of measures.

Parameter

nm the new number of measures.

Throws

IllegalArgumentException if the given number is negative or not accepted.

UnsupportedOperationException if the number of measures cannot be changed.

public int getNumPeriods()

Returns the number of periods stored into this matrix of measures.

http://docs.oracle.com/javase/6/docs/api/java/lang/UnsupportedOperationException.html

372 MeasureMatrix March 4, 2014

Returns the number of stored periods.

public void setNumPeriods (int np)

Sets the number of periods of this matrix to np. If this method is supported, it can limit
the maximal or minimal accepted number of periods.

Parameter

np the new number of periods.

Throws

IllegalArgumentException if the given number is negative or not accepted.

UnsupportedOperationException if the number of periods cannot be changed.

public double getMeasure (int i, int p)

Returns the measure corresponding to the index i and period p.

Parameters

i the index of the measure.

p the period of the measure.

Returns the corresponding value.

Throws

IndexOutOfBoundsException if i or p are negative or greater than or equal to the number
of measures or the number of periods, respectively.

public void regroupPeriods (int x)

Increases the length of stored periods by regrouping them. If this method is supported,
for p = 0, ..., getNumPeriods()/x - 1, it sums the values for periods xp, . . . ,xp+x-1, and
stores the results in period p whose length will be x times the length of original periods.
If the number of periods is not a multiple of x, an additional period is used to contain
the remaining sums of values. The unused periods are zeroed for future use. This method
can be useful for memory management when using batch means to estimate steady-state
performance measures.

Parameter

x the number of periods per group.

Throws

IllegalArgumentException if the number of periods per group is negative or 0.

UnsupportedOperationException if the matrix does not support regrouping.

March 4, 2014 373

StatProbeMeasureMatrix

Matrix of measures whose value is obtained using a statistical probe. This matrix only
contains one measure and one period, and its value is obtained by using StatProbe.sum().
Since the sum can be considered as an integral, the IntegralMeasureMatrix class can be
used to turn this single-period matrix into a multiple-periods one.

package umontreal.iro.lecuyer.stat.mperiods;

public class StatProbeMeasureMatrix implements MeasureMatrix, Cloneable

Constructor

public StatProbeMeasureMatrix (StatProbe probe)

Constructs a new matrix of measures using the statistical probe probe.

Parameter

probe the statistical probe being used.

Methods

public StatProbe getStatProbe()

Returns the statistical probe associated with this matrix.

Returns the associated statistical probe.

public void setStatProbe (StatProbe probe)

Sets the associated statistical probe to probe. If null is given, this changes the number of
measures and periods to 0. If a non-null probe is given, the number of measures in this
object is 1.

Parameter

probe the new statistical probe.

public void setNumMeasures (int nm)

Throws an UnsupportedOperationException.

Throws

UnsupportedOperation if this method is called.

public void setNumPeriods (int np)

Throws an UnsupportedOperationException.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/StatProbe.html#sum(())
http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/StatProbe.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/StatProbe.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/StatProbe.html
http://docs.oracle.com/javase/6/docs/api/java/lang/UnsupportedOperationException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/UnsupportedOperationException.html

374 StatProbeMeasureMatrix March 4, 2014

Throws

UnsupportedOperation if this method is called.

public void regroupPeriods (int x)

Throws an UnsupportedOperationException.

Throws

UnsupportedOperation if this method is called.

public StatProbeMeasureMatrix clone()

Makes a copy of this matrix of measures. The statistical probe is not cloned.

Returns a clone of this instance.

http://docs.oracle.com/javase/6/docs/api/java/lang/UnsupportedOperationException.html

March 4, 2014 375

ListOfStatProbesMeasureMatrix

Matrix of measures whose values are obtained using an list of statistical probes. This matrix
contains one measure for each element of the list, and a single period. The measures are
obtained by using the StatProbe.sum() method. Since the sum can be considered as an
integral, the IntegralMeasureMatrix can be used to turn this single-period matrix into a
multiple-periods one if needed.

package umontreal.iro.lecuyer.stat.mperiods;

public class ListOfStatProbesMeasureMatrix implements MeasureMatrix,

Cloneable

Constructor

public ListOfStatProbesMeasureMatrix (ListOfStatProbes<? extends StatProbe

> list)

Constructs a new matrix of measures using the list of probes list.

Parameter

list the list of statistical probes being used.

Methods

public ListOfStatProbes<? extends StatProbe> getListOfStatProbes

()

Returns the list of statistical probes associated with this matrix.

Returns the associated list of statistical probes.

public void setListOfStatProbes (ListOfStatProbes<? extends StatProbe>

list)

Sets the associated list of statistical probes to list. If the given list is null, the number
of measures and periods is set to 0. Otherwise, the number of measures corresponds to the
length of the list, and the number of periods is 1.

Parameter

list the new list of statistical probes.

public void setNumPeriods (int np)

Throws an UnsupportedOperationException.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/StatProbe.html#sum(())
http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/list/ListOfStatProbes.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/StatProbe.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/list/ListOfStatProbes.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/StatProbe.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/list/ListOfStatProbes.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/StatProbe.html
http://docs.oracle.com/javase/6/docs/api/java/lang/UnsupportedOperationException.html

376 ListOfStatProbesMeasureMatrix March 4, 2014

Throws

UnsupportedOperationException if this method is called.

public void regroupPeriods (int x)

Throws an UnsupportedOperationException.

Throws

UnsupportedOperationException if this method is called.

public ListOfStatProbesMeasureMatrix clone()

Makes a copy of this matrix of measures. The list of statistical probes is not cloned.

Returns a clone of this instance.

http://docs.oracle.com/javase/6/docs/api/java/lang/UnsupportedOperationException.html

March 4, 2014 377

MatrixOfStatProbesMeasureMatrix
Matrix of measures whose values are obtained using a matrix of statistical probes. This
matrix contains one measure for each row of the matrix, and one period for each column.
The measures are obtained using the StatProbe.sum() method. Since the sum can be
considered as an integral, the IntegralMeasureMatrix can be used to turn this matrix into
a multiple-periods one if the associated matrix contains a single column.

package umontreal.iro.lecuyer.stat.mperiods;

public class MatrixOfStatProbesMeasureMatrix implements MeasureMatrix,

Cloneable

Constructor

public MatrixOfStatProbesMeasureMatrix (MatrixOfStatProbes<?> matrix)

Constructs a new matrix of measures using the matrix of probes matrix.

Parameter

matrix the matrix of statistical probes being used.

Methods

public MatrixOfStatProbes<?> getMatrixOfStatProbes()

Returns the matrix of statistical probes associated with this matrix of measures.

Returns the associated matrix of statistical probes.

public void setMatrixOfStatProbes (MatrixOfStatProbes<?> matrix)

Sets the associated matrix of statistical probes to matrix. If the given matrix is null, the
number of measures and periods are set to 0. Otherwise, they correspond to the number of
rows and columns of the matrix, respectively.

Parameter

matrix the new matrix of statistical probes.

public void regroupPeriods (int x)

Throws an UnsupportedOperationException.

Throws

UnsupportedOperationException if this method is called.

public MatrixOfStatProbesMeasureMatrix clone()

Makes a copy of this matrix of measures. The statistical probe matrix is not cloned.

Returns a clone of this instance.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/StatProbe.html#sum(())
http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfStatProbes.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfStatProbes.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfStatProbes.html
http://docs.oracle.com/javase/6/docs/api/java/lang/UnsupportedOperationException.html

378 March 4, 2014

MeasureSet

Represents a set of related measures computed using different measure matrices. Each
measure of such a set corresponds to a measure computed by another matrix. For example,
this class can regroup the queue size for different waiting queues. It can compute the sum
of the measures for each period, and give statistical collecting mechanisms access to the
measures using the MeasureMatrix interface.

package umontreal.iro.lecuyer.stat.mperiods;

public class MeasureSet implements MeasureMatrix, Cloneable

Constructor

public MeasureSet()

Constructs a new empty measure set. The addMeasure (MeasureMatrix, int) method
must be used to add some measures.

Methods

public boolean isComputingSumRow()

Determines if the measure set contains an additional row containing the sum of each col-
umn. If this returns true (the default), the row of sums is computed. Otherwise, it is not
computed. The sum row adds one additional measure to the measure set only if the number
of measures is greater than 1.

Returns the sum row computing indicator.

public void setComputingSumRow (boolean b)

Sets the computing sum row indicator to b. See isComputingSumRow() for more information.

Parameter

b the new sum row computing indicator.

public void addMeasure (MeasureMatrix mat, int imat)

Adds the measure imat calculated by mat to this set of measures. It is recommended that
every added measure matrix has the same number of periods.

Parameters

mat the measure matrix computing the added measure.

imat the index of the added measure, in mat.

http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html

March 4, 2014 MeasureSet 379

Throws

NullPointerException if mat is null.

public void clearMeasures()

Clears all measures contained in this set.

public MeasureInfo getMeasureInfo (int i)

Returns the measure information object for measure i.

Returns the measure information object.

Throws

IndexOutOfBoundsException if i is out of bounds.

public int getNumMeasures()

Returns the number of supported measures. If the set contains 0 or 1 measure, this method
returns 0 or 1, respectively. If the set contains n > 1 measures, n + 1 is returned if is-
ComputingSumRow() returns true, or n is returned otherwise.

Returns the number of supported measures.

public int getNumPeriods()

Returns the number of supported periods. If the set is empty, this returns 0. Otherwise,
this returns the maximal number of periods of the contained measure matrices.

Returns the supported number of periods.

public void setNumMeasures (int nm)

This implementation does not support changing the number of measures.

Throws

UnsupportedOperationException if this method is called.

public void setNumPeriods (int np)

This implementation does not support changing the number of periods.

Throws

UnsupportedOperationException if this method is called.

public void regroupPeriods (int x)

This implementation does not support period regrouping.

380 MeasureSet March 4, 2014

Throws

UnsupportedOperationException if this method is called.

public void init()

This method does nothing in this implementation.

public double getMeasure (int i, int p)

Returns the measure i in period p for this matrix. Let n be the number of measures in this
set, i.e., the value of getNumMeasures() if isComputingSumRow() returns false. If i < n,
this returns the ith measure added to this set. If i = n, n > 1 and the measure set is
computing the sum row, this returns the sum of all the contained measures for period p. Let
P be the number of periods as returned by getNumPeriods(). If p is greater than or equal
to the number of periods in the queried measure matrix but smaller than P , Double.NaN is
returned. In the sum of measures, the NaN value is not counted to avoid a NaN sum.

Parameters

i the index of the measure.

p the index of the period.

Returns the value of the measure.

Throws

IndexOutOfBoundsException if the measure or period indices are out of bounds.

Nested class

public static final class MeasureInfo implements Cloneable

Contains information about a measure added to a measure set.

Constructor

public MeasureInfo (MeasureMatrix mat, int index)

Constructs a new measure information object for the measure index in the matrix mat.

Parameters

mat the measure matrix to take the measure from.

index the index of the measure, in mat.

Throws

NullPointerException if mat is null.

http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#NaN
http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html

March 4, 2014 MeasureSet 381

Methods

public MeasureMatrix getMeasureMatrix()

Returns the measure matrix from which the measure is extracted.

Returns the associated measure matrix.

public int getMeasureIndex()

Returns the index, in the associated measure matrix, of the represented measure.

Returns the index of the measure.

382 March 4, 2014

SumMatrix

This matrix of measures can be used to compute sums of values, or the number of occurrences
of events. It supports several types of observations on several simulation periods. This class
supports every optional operation specified by the MeasureMatrix interface.

package umontreal.iro.lecuyer.stat.mperiods;

public class SumMatrix implements MeasureMatrix, Cloneable

Fields

protected int numTypes

Number of types of events.

protected int numPeriods

Number of periods.

protected int numStoredPeriods

Number of stored periods.

protected double[] count

Array containing the sums, in row major order. If i is an event type and p is a stored period,
the value at (i, p) is given by count[i + numTypes*p].

Constructors

public SumMatrix (int numTypes)

Constructs a new matrix of sums for numTypes event types and a single period.

Parameter

numTypes the number of event types.

Throws

IllegalArgumentException if the number of types is negative.

public SumMatrix (int numTypes, int numPeriods)

Constructs a new matrix of sums for numTypes event types and numPeriods periods.

Parameters

numTypes the number of event types.

numPeriods the number of stored periods.

http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html

March 4, 2014 SumMatrix 383

Throws

IllegalArgumentException if the number of types or periods is negative.

Methods

public int getNumStoredPeriods()

Returns the total number of periods stored in this matrix of sums. This corresponds to p+1
if p is the maximal period index given to add (int, int, double) or set (int, int,
double) since the last call to init(). If add (int, int, double) or set (int, int,
double) were not called since the last initialization, this returns 0. The returned value
cannot be larger than the number of stored periods (getNumPeriods()).

Returns the number of used periods.

public void add (int type, int period, double x)

Adds a new observation x of type type in the period period.

Parameters

type the type of the new value.

period the period of the new value.

x the value being added.

Throws

ArrayIndexOutOfBoundsException if type or period are negative, if type is greater than
or equal to the number of supported types, or if period is greater than or equal to the
number of supported periods.

public void add (int type, int period, double x, DoubleDoubleFunction fn)

Similar to add (int, int, double), but applies a function fn instead of just adding. More
specifically, if c is the original value in the matrix, and x is the new value, this method adds
the value f(c, x) at the given position in the matrix.

public void set (int type, int period, double x)

Sets the sum for event type in period period for this matrix to x. This is the same as
the add (int, int, double) method except the measure is replaced by x instead of being
incremented.

Parameters

type the type of the event.

period the period of the event.

x the new value.

http://acs.lbl.gov/software/colt/api/cern/colt/function/DoubleDoubleFunction.html

384 SumMatrix March 4, 2014

Throws

ArrayIndexOutOfBoundsException if type or period are negative, if type is greater than
or equal to the number of supported types, or if period is greater than or equal to the
number of supported periods.

public void setNumMeasures (int nm)

Sets the number of measures to nm. If nm is greater than getNumMeasures(), new measures
are added and initialized to 0. If nm is smaller than getNumMeasures(), the last getNum-
Measures() - nm measures are removed. Otherwise, nothing happens.

Parameter

nm the new number of measures.

Throws

IllegalArgumentException if the given number is negative.

public void setNumPeriods (int np)

Sets the number of periods to np. As with setNumMeasures (int), added periods are
initialized to 0 and the last periods are removed if necessary.

Parameter

np the new number of periods.

Throws

IllegalArgumentException if the given number is negative.

protected void regroupPeriods (int x, boolean onlyFirst)

Similar to regroupPeriods (int), but if onlyFirst is false, do not sum the values in each
group. regroupPeriods with onlyFirst = false is internally used by IntegralMeasure-
Matrix.

protected int getPeriod (int p)

Returns the period index corresponding to period p. This returns p by default, but it is
overridden by SumMatrixSW to take the sliding window into account.

Parameter

p the source period index.

Returns the target period index.

March 4, 2014 385

SumMatrixSW

Extends SumMatrix to add a sliding window. By using a circular buffer to store the values,
it can compute observations for all the periods or for a subset of the periods.

When values are added to this matrix of sums using the add (int, int, double)

method, the index of a real period needs to be specified. When obtaining a value from
this object, the index of a stored period (or simply a period) is needed. If the number of
considered periods is smaller than or equal to the number of stored periods, these two index
spaces match, no information is lost, and this class behaves exactly as SumMatrix. This is
the most common case.

However, if the number of real periods is greater than the number of stored periods,
some values are lost. Only the values from the last periods are accessible at any time. For
example, if a matrix of sums is defined to store 10 periods, values for the periods 0 to 9
are available until the add (int, int, double) method is required to add a value in the
period 10 or greater. After a value is added into the real period 10, values for the period 0
are lost. The stored periods are shifted and stored periods 0 to 9 then correspond to real
periods 1 to 10. This facility allows, for example, to compute a statistic for the last ten
minutes, at any times during a simulation.

package umontreal.iro.lecuyer.stat.mperiods;

public class SumMatrixSW extends SumMatrix

Constructors

public SumMatrixSW (int numTypes)

Constructs a new matrix of sums with sliding window for numTypes event types and a single
period.

Parameter

numTypes the number of event types.

Throws

IllegalArgumentException if the number of types is negative.

public SumMatrixSW (int numTypes, int numPeriods)

Constructs a new matrix of sums with sliding window for numTypes event types and
numPeriods periods.

Parameters

numTypes the number of event types.

numPeriods the number of stored periods.

386 SumMatrixSW March 4, 2014

Throws

IllegalArgumentException if the number of types or periods is negative.

Methods

public int getFirstRealPeriod()

Returns the real period corresponding to stored period having index 0 when using the Sum-
Matrix.getMeasure (int, int) method. If no period is currently lost, this returns 0.

Returns the first real period.

public void setFirstRealPeriod (int firstRealPeriod)

Sets the index of the first real period to firstRealPeriod.

Parameter

firstRealPeriod the new index of the first real period.

Throws

IllegalArgumentException if firstRealPeriod is negative.

public int getNumRealPeriods()

Returns the number of real periods used by this matrix of sums. This corresponds to one plus
the maximal value of realPeriod given to add (int, int, double) or set (int, int,
double) since the last call to init(). In contrast with the similar method SumMatrix.get-
NumStoredPeriods(), the returned value can be greater than SumMatrix.getNumPeriods().

Returns the number of used real periods.

public void add (int type, int realPeriod, double x)

Adds a new observation x of type type in the real period realPeriod. If the given real period
is inside the interval [getFirstRealPeriod(), . . . , getFirstRealPeriod() + SumMatrix.
getNumPeriods() - 1], which we will call the current interval, a new value is added; the
corresponding measure is increased by x. If the period is at the left of the current interval,
an exception is thrown. Otherwise, the window of observations slides and getFirstReal-
Period() is increased; some computed values are then lost.

Parameters

type the type of the new value.

realPeriod the real period of the new value.

x the value being added.

March 4, 2014 SumMatrixSW 387

Throws

ArrayIndexOutOfBoundsException if type or realPeriod are negative, if type is greater
than or equal to the number of supported types, or if realPeriod is smaller than
getFirstRealPeriod().

public void set (int type, int realPeriod, double x)

Sets the sum for event type in real period realPeriod for this matrix to x. This is the
same as the add (int, int, double) method except the measure is replaced by x instead
of being incremented.

Parameters

type the type of the event.

realPeriod the real period of the event.

x the new value.

Throws

ArrayIndexOutOfBoundsException if type or realPeriod are negative, if type is greater
than or equal to the number of supported types, or if realPeriod is smaller than
getFirstRealPeriod().

388 March 4, 2014

IntegralMeasureMatrix
Computes per-period values for a matrix of measures with a single period. Some matrices of
measures only support a single period. For example, when using an Accumulate object to
compute an integral over simulation time, per-period measures cannot be computed directly.
This class can be used to transform a matrix of measures with a single period computing
integrals into a multiple-periods matrix.

Let fi(t) be an integral (or a sum) for measure i, computed by the underlying single-period
matrix over the simulation time, from 0 to t. Often, fi(t) is a discrete function such as a sum
or the integral of a piecewise-constant function, but the function can also be continuous.
If newRecord() is called at simulation time tp, the value of f(tp) = (f0(tp), f1(tp), . . .) is
computed and recorded. At time t0 where init() is called, a record is automatically added
with the values in the matrices of measures. At the end of the simulation, if newRecord()
was called P times, we have P + 1 recorded values of f(tp), for p = 0, . . . , P . This permits
the computation of P vectors of integrals, each corresponding to a period. The integrals for
period p, i.e., during the interval [tp, tp+1), are computed by f(tp+1)− f(tp).

package umontreal.iro.lecuyer.stat.mperiods;

public class IntegralMeasureMatrix<M extends MeasureMatrix> implements

MeasureMatrix, Cloneable

Constructor

public IntegralMeasureMatrix (M mat, int numPeriods)

Constructs a new matrix of measures for computing integrals on multiple periods. The
wrapped matrix of measures is given by mat, and the integral is computed for numPeriods.
The object will be able to record numPeriods+1 values of f(t). The number of measures or
periods of mat should not be changed after it is associated with this object.

Parameters

mat the single-period matrix of measures.

numPeriods the required number of periods.

Throws

NullPointerException if mat is null.

IllegalArgumentException if a multiple-periods matrix of measures is given, or if numPeriods
is smaller than 1.

Methods

protected SumMatrix createSumMatrix (int nm, int np)

This methods creates and returns the internal sum matrix, and is overridden in Integral-
MeasureMatrixSW to create an instance of SumMatrixSW instead.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Accumulate.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html

March 4, 2014 IntegralMeasureMatrix 389

Parameters

nm the number of measures.

np the number of periods.

public M getMeasureMatrix()

Returns the associated single-period matrix of measures.

Returns the associated single-period matrix of measures.

public void setMeasureMatrix (M mat)

Sets the associated matrix of measures to mat. This should only be called before or after
init().

Parameter

mat the new matrix of measures.

Throws

NullPointerException if mat is null.

IllegalArgumentException if the given matrix has multiple periods.

public SumMatrix getSumMatrix()

Returns the internal sum matrix for which each period p contains the value of f(tp). The
number of measures of this matrix is getNumMeasures() while the number of periods is one
more than getNumPeriods().

Returns the internal matrix of sums.

public int getNumStoredRecords()

Returns the current number of records of f(t) available for this matrix of measures.

Returns the current number of records.

public void newRecord()

Records the current values of f(t). This increases the number of stored records, and an
IllegalStateException is thrown if no additional record can be stored.

protected int getPeriod()

Returns the period, in mpc, the new record needs to be added in. This returns mpc.getNum-
StoredPeriods().

Returns the period used by newRecord().

public double getSum (int i, int r)

Returns fi(tr), the measure i of the associated measure matrix at the simulation time tr.

http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html

390 IntegralMeasureMatrix March 4, 2014

Parameters

i the measure index.

r the record index.

Returns the value of the measure.

Throws

IndexOutOfBoundsException if i or r are out of bounds.

public double getMeasure (int i, int p)

Returns the measure i for period p. This corresponds to fi(tp+1) − fi(tp) where tp is the
simulation time of the stored record p.

Parameters

i the index of the measure.

p the period of the measure.

Returns the corresponding value.

Throws

IndexOutOfBoundsException if i or p are negative or greater than or equal to the number
of measures or the number of periods, respectively.

March 4, 2014 391

IntegralMeasureMatrixSW

This extends IntegralMeasureMatrix to add a sliding window for the records. With the
base class, the total number of records is limited to the number of periods in the measure
matrix. With this class, the number of added records can be greater than the number of
periods. If a record is added while all allocated periods are used, the first record is lost and
the new one is added. Therefore, the integral can be obtained for the last periods only.

package umontreal.iro.lecuyer.stat.mperiods;

public class IntegralMeasureMatrixSW<M extends MeasureMatrix> extends

IntegralMeasureMatrix<M>

Constructor

public IntegralMeasureMatrixSW (M mat, int numPeriods)

Calls super (mat, numPeriods).

Methods

public int getFirstRealRecord()

Returns the first value p for which a recorded value f(tp) is available. If no recorded value
is lost, this returns 0.

Returns the first value of p for which f(tp) is available.

public void setFirstRealRecord (int firstRealRecord)

Sets the index of the first real record to firstRealRecord.

Parameter

firstRealRecord the index of the first real record.

Throws

IllegalArgumentException if firstRealRecord is negative.

public int getNumRealRecords()

Returns the total number of times the newRecord() method was called since the last call
to IntegralMeasureMatrix.init() plus one. If the returned value exceeds the number
of stored records (IntegralMeasureMatrix.getNumStoredRecords()), only the values of
f(t) for the last IntegralMeasureMatrix.getNumStoredRecords() are accessible; the first
values are then lost.

392 IntegralMeasureMatrixSW March 4, 2014

Returns the total number of records.

public void newRecord()

This is the same as in the superclass, but if the number of stored records exceeds the number
of real records, the first stored record is discarded.

protected int getPeriod()

Returns mpc.getNumRealPeriods().

public double getSum (int i, int r)

Returns fi(tj), the measure i of the associated measure matrix at the simulation time tj , j
being r + getFirstRealRecord().

Parameters

i the measure index.

r the record index.

Returns the value of the measure.

Throws

IndexOutOfBoundsException if i or r are out of bounds.

public double getMeasure (int i, int p)

Returns the measure i for period p. This corresponds to fi(ts+p+1)− fi(ts+p) where ts+p is
the simulation time of the stored record p, and s is the result of getFirstRealRecord().

Parameters

i the index of the measure.

p the period of the measure.

Returns the corresponding value.

Throws

IndexOutOfBoundsException if i or p are negative or greater than or equal to the number
of measures or the number of periods, respectively.

March 4, 2014 393

Package umontreal.iro.lecuyer.simevents

Extends the SSJ’s discrete-event simulation package to add utility methods and support
batch means simulation.

394 March 4, 2014

SimTimeMeasureMatrix

This matrix of measures contains a single measure corresponding to the current simulation
time.

package umontreal.iro.lecuyer.simevents;

public class SimTimeMeasureMatrix implements MeasureMatrix

Methods

public void setNumMeasures (int nm)

Throws an UnsupportedOperationException.

Throws

UnsupportedOperationException if this method is called.

public void setNumPeriods (int np)

Throws an UnsupportedOperationException.

Throws

UnsupportedOperationException if this method is called.

public void regroupPeriods (int x)

Throws an UnsupportedOperationException.

Throws

UnsupportedOperationException if this method is called.

http://docs.oracle.com/javase/6/docs/api/java/lang/UnsupportedOperationException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/UnsupportedOperationException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/UnsupportedOperationException.html

March 4, 2014 395

UnusableSimulator

Simulator for which all methods throw an UnsupportedOperationException. By setting
Simulator.defaultSimulator to an instance of this class, one can detect unexpected usage
of the static Sim class. This can be useful for adapting a program for parallel simulations,
because such a program must use an instance of Simulator for each parallel replication
rather than the static class. An unexpected use of Sim may lead to unpredictable results in
such cases.

package umontreal.iro.lecuyer.simevents;

public class UnusableSimulator extends Simulator

http://docs.oracle.com/javase/6/docs/api/java/lang/UnsupportedOperationException.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html#defaultSimulator
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Sim.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Sim.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html

396 REFERENCES March 4, 2014

References

[1] O. Z. Akşin, M. Armony, and V. Mehrotra. The modern call center: A multi-disciplinary
perspective on operations management research. Production and Operations Manage-
ment, 16(6):665–688, 2007.

[2] A. N. Avramidis, W. Chan, and P. L’Ecuyer. Staffing multi-skill call centers via search
methods and a performance approximation. IIE Transactions, 41:483–497, 2009.

[3] A. N. Avramidis, A. Deslauriers, and P. L’Ecuyer. Modeling daily arrivals to a telephone
call center. Management Science, 50(7):896–908, 2004.

[4] A. N. Avramidis and P. L’Ecuyer. Modeling and simulation of call centers. In M. E.
Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, editors, Proceedings of the 2005
Winter Simulation Conference, pages 144–152. IEEE Press, 2005.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, second edition, September 2001.

[6] J. M. Davenport and R. L. Iman. An iterative algorithm to produce a positive definite
correlation matrix from an approximate correlation matrix. Technical report, Sandia
National Laboratories, Albuquerque, New Mexico, 1982.

[7] A. Deslauriers. Modélisation et simulation d’un centre d’appels téléphoniques dans un
environnement mixte. Master’s thesis, Department of Computer Science and Operations
Research, University of Montreal, Montreal, Canada, 2003.

[8] N. Gans, G. Koole, and A. Mandelbaum. Telephone call centers: Tutorial, review,
and research prospects. Manufacturing and Service Operations Management, 5:79–141,
2003.

[9] Wolfgang Hoschek. The Colt Distribution: Open Source Libraries for High Performance
Scientific and Technical Computing in Java. CERN, Geneva, 2004. Available at
http://acs.lbl.gov/software/colt/.

[10] N. L. Johnson and S. Kotz. Distributions in Statistics: Discrete Distributions.
Houghton Mifflin, Boston, 1969.

[11] G. Jongbloed and G. Koole. Managing uncertainty in call centers using Poisson mix-
tures. Manuscript, Vrije University, Amsterdam.

[12] G. Koole, A. Pot, and J. Talim. Routing heuristics for multi-skill call centers. In
Proceedings of the 2003 Winter Simulation Conference, pages 1813–1816. IEEE Press,
2003.

[13] A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill, New
York, NY, third edition, 2000.

http://acs.lbl.gov/software/colt/

March 4, 2014 REFERENCES 397

[14] P. L’Ecuyer. SSJ: A Java Library for Stochastic Simulation, 2004. Software user’s
guide, available at http://www.iro.umontreal.ca/~lecuyer.

[15] V. Mehrotra and J. Fama. Call center simulation modeling: Methods, challenges,
and opportunities. In Proceedings of the 2003 Winter Simulation Conference, pages
135–143. IEEE Press, 2003.

[16] J. E. Mosimann. On the compound negative multinomial distribution and correlations
among inversely sampled pollen counts. Biometrika, 50:47–54, 1963.

[17] W. Whitt. Engineering solution of a basic call-center model. Management Science,
2004. To appear.

http://www.iro.umontreal.ca/~lecuyer

	Overview
	Package umontreal.iro.lecuyer.contactcenters
	Initializable
	Named
	ToggleElement
	ToggleEvent
	SwitchEvent
	PeriodChangeListener
	PeriodChangeEvent
	NonStationaryMeasureMatrix
	MultiPeriodGen
	ValueGenerator
	ConstantValueGenerator
	RandomValueGenerator
	MinValueGenerator
	ContactCenter
	MatrixUtil
	RandomStreamUtil
	StatUtil
	RepSimCC
	BatchMeansSimCC

	Package umontreal.iro.lecuyer.contactcenters.contact
	Contact
	ServiceTimes
	ContactFactory
	SimpleContactFactory
	SingleTypeContactFactory
	RandomTypeContactFactory
	ContactInstantiationException
	NewContactListener
	ContactSumMatrix
	ContactStepInfo
	TrunkGroup
	ContactSource
	ContactArrivalProcess
	StationaryContactArrivalProcess
	PoissonArrivalProcess
	PiecewiseConstantPoissonArrivalProcess
	PoissonArrivalProcessWithTimeIntervals
	PoissonGammaArrivalProcess
	PoissonGammaNortaRatesArrivalProcess
	GammaParameterEstimator
	DirichletCompoundArrivalProcess
	PoissonUniformArrivalProcess
	FixedCountsArrivalProcess
	DirichletArrivalProcess
	NORTADrivenArrivalProcess
	CorrelationMatrixCorrector
	CorrelationMtxFitting
	PoissonArrivalProcessWithInversion
	PoissonArrivalProcessWithThinning

	Package umontreal.iro.lecuyer.contactcenters.queue
	WaitingQueue
	DequeueEvent
	DequeueEventComparator
	WaitingQueueSet
	WaitingQueueListener
	StandardWaitingQueue
	PriorityWaitingQueue
	QueueWaitingQueue
	QueueSizeStat
	QueueSizeStatMeasureMatrix
	ContactPatienceTimeGenerator
	WaitingQueueState
	EnqueueEvent

	Package umontreal.iro.lecuyer.contactcenters.queuemodel
	ErlangC

	Package umontreal.iro.lecuyer.contactcenters.server
	AgentGroup
	EndServiceEvent
	DetailedAgentGroup
	EndServiceEventDetailed
	Agent
	AgentGroupSet
	AgentGroupListener
	AgentListener
	GroupVolumeStat
	GroupVolumeStatMeasureMatrix
	ContactTimeGenerator
	AfterContactTimeGenerator
	AgentGroupState
	DetailedAgentGroupState
	AgentState
	StartServiceEvent
	SetNumAgentsEvent
	RestoreAgentsEvent

	Package umontreal.iro.lecuyer.contactcenters.dialer
	Dialer
	DialerActionEvent
	DialerPolicy
	ConstantDialerPolicy
	ThresholdDialerPolicy
	BadContactMismatchRatesDialerPolicy
	AgentsMoveDialerPolicy
	DialerList
	InfiniteDialerList
	ContactListenerDialerList
	DialerListNoQueueing
	DialerState
	DialerActionState
	MismatchChecker

	Package umontreal.iro.lecuyer.contactcenters.router
	Router
	WaitingQueueType
	WaitingQueueStructure
	ContactReroutingEvent
	AgentReroutingEvent
	QueuePriorityRouter
	QueueAtLastGroupRouter
	LongestQueueFirstRouter
	SingleFIFOQueueRouter
	LongestWeightedWaitingTimeRouter
	AgentsPrefRouter
	AgentsPrefRouterWithDelays
	AgentSelectionScore
	ContactSelectionScore
	LocalSpecRouter
	QueueRatioOverflowRouter
	ExpDelayRouter
	OverflowAndPriorityRouter
	RankFunction
	RoutingStageInfo
	ExitedContactListener
	RoutingTableUtils
	AgentGroupSelectors
	RouterState
	ReroutingState
	EnqueueEventWithRerouting

	Package umontreal.iro.lecuyer.contactcenters.expdelay
	WaitingTimePredictor
	ExpectedDelayPredictor
	LastWaitingTimePredictor
	LastWaitingTimePerQueuePredictor
	HeadOfQueuePredictor

	Package umontreal.iro.lecuyer.stat.mperiods
	MeasureMatrix
	StatProbeMeasureMatrix
	ListOfStatProbesMeasureMatrix
	MatrixOfStatProbesMeasureMatrix
	MeasureSet
	SumMatrix
	SumMatrixSW
	IntegralMeasureMatrix
	IntegralMeasureMatrixSW

	Package umontreal.iro.lecuyer.simevents
	SimTimeMeasureMatrix
	UnusableSimulator

