
User’s Guide for ContactCenters Simulation Library

CTMC call center simulator API Specification

Version: March 17, 2014

Eric Buist

This is the API specification for the CTMC-based simulator using the ContactCenters
library. This API describes the classes of this simulator, as well as its extensions.

March 17, 2014 CONTENTS i

Contents

Package umontreal.iro.lecuyer.contactcenters.ctmc 2

CallCenterCTMC . 3

CallCenterCTMCWithQueues . 19

TransitionType . 20

TransitionListener . 21

AgentGroupSelector . 22

SimpleGroupSelector . 23

ListGroupSelector . 24

PriorityGroupSelector . 25

SimpleQueueSelector . 26

WaitingQueueSelector . 27

ListQueueSelector . 28

PriorityQueueSelectorQS . 29

PriorityQueueSelectorWT . 30

CallCenterCTMCQueues . 31

CircularIntArray . 33

CCEvent . 35

CCEventFactory . 36

FalseTransitionEvent . 37

LookupEvent . 38

EventWithSelection . 39

EventWithTest . 41

CallCenterCTMC11 . 43

CallCenterCTMC11WithQueues . 44

CallCenterCTMCKI . 45

CallCenterCTMCKIWithQueues . 46

CTMCCreationException . 47

QueueSizeThresh . 48

StateThresh . 50

InitStateThresh . 53

ProbInAWT . 54

March 17, 2014 CONTENTS 1

ProbInAWTBinomial . 56

ProbInAWTGamma . 57

CallCenterCounters . 58

CallCenterStat . 61

RateChangeTransitions . 64

RateChangeInfo . 66

AbstractCallCenterCTMCSim . 67

BasicCallCenterCTMCSim . 68

IntMCallCenterCTMCSim . 69

CallCenterStatMP . 70

AbstractCallCenterCTMCSimMP . 71

BasicCallCenterCTMCSimMP . 72

Package umontreal.iro.lecuyer.contactcenters.ctmc.splitmerge 73

CallCenterCTMCSimSplit . 74

2 March 17, 2014

Package umontreal.iro.lecuyer.contactcenters.ctmc

Provides call center simulators based on a quick uniformized continuous-time Markov chain
model. Staffing and scheduling optimization in large multiskill call centers is time-consuming,
mainly because it requires lengthy simulations to evaluate performance measures and their
sensitivity. Simplified models that provide tractable formulas are unrealistic in general.
This package implements an intermediate solution, based on an approximate continuous-
time Markov chain model of the call center. This model is more accurate than the commonly
used approximations, and yet can be simulated faster than a more realistic simulation (based
on non-exponential distributions and additional details). To speed up the simulation, the
Markov chain is uniformized and only its discrete-time version is simulated. Performance
measures such as the fraction of calls of each type answered within a given waiting time limit
can be recovered from this simulation.

The CTMC model supports multiple call types and agent groups, but it assumes that
calls arrive following a Poisson process, and service and patience times are exponential. For
more information about the model, see [1].

The main class for the simulator is BasicCallCenterCTMCSimMP. It can simulate a call
center with multiple periods by using one CTMC for each period. The BasicCallCenter-

CTMCSim class, on the other hand, provides a simulator for a single period, using a single
CTMC. Both simulators first generate the total number of transitions from the Poisson distri-
bution, followed by the transitions. However, the IntMCallCenterCTMCSim class implements
a single-period simulator generating a large number of transitions and integrating over the
number of transitions using Poisson probabilities when estimating performance measures.

All these simulators use CTMC models represented by the interface IntMCallCenter-

CTMCSim. The package provides two different implementations for this interface: one adapted
for a single call type and agent group using linear search, and another one for multiple call
types and agent groups based on indexed search.

March 17, 2014 3

CallCenterCTMC

Represents a continuous-time Markov chain (CTMC) modeling a call center with possibly
multiple call types and agent groups. More specifically, calls are divided into K types, and
are served by agents partitionned into I groups. Each agent group i = 0, . . . , I − 1 has a
skillset Si ⊆ {1, . . . , K} giving the types of the calls the agents can serve. Callers arriving
when no agent is available join a waiting queue, and can abandon if they do not receive
service fast enough.

For each k = 0, . . . , K − 1, we suppose that calls of type k arrive following a Poisson
process with rate λk. Service times for calls of type k served by agents in group i are i.i.d.
exponential with rate µk,i. A call of type k not served immediately can balk (abandon
immediately) with probability ρk. The patience times of callers of type k joining the queue
without balking are i.i.d. exponential with rate νk. Moreover, for each i = 0, . . . , I−1, agent
group i contains Ni agents.

A router is used to assign agents to new calls, and queued calls to free agents using either
static lists, or matrices of priorities. See AgentGroupSelector, and WaitingQueueSelector

for more information. If no agent group contains free agents, the call joins a waiting queue
specific to its type (and possibly balks). Abandoning calls are lost.

This interface specifies methods to obtain information about the modelled call center as
well as methods to initialize the CTMC, and generate the next state randomly from the
current state.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public interface CallCenterCTMC extends Cloneable

Methods

public void initEmpty()

Initializes the system to an empty call center, and resets the counter giving the number of
transitions done to 0.

public void init (CallCenterCTMC ctmc)

Initializes the state of this CTMC with the state of the other CTMC ctmc. The parameters
of this CTMC, e.g., arrival rates, service rates, etc., are unchanged while the state is set to
the state of the given CTMC. This method throws an IllegalArgumentException if the
given CTMC is incompatible with this CTMC, e.g., the number of contact types or agent
groups differ.

Parameter

ctmc the CTMC to initialize the state from.

http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalArgumentException.html

4 CallCenterCTMC March 17, 2014

Throws

IllegalArgumentException if the given CTMC is not compatible with this CTMC.

public int getNumContactTypes()

Returns the number of contact types used in the modelled call center.

Returns the number of contact types.

public int getNumAgentGroups()

Returns the number of agent groups used in the modelled call center.

Returns the number of agent groups.

public int getNumContactsInQueue()

Returns the total number of contacts currently waiting in queue.

Returns the total number of queued contacts.

public int getNumContactsInService()

Returns the total number of contacts currently served by agents.

Returns the total number of contacts in service.

public int getNumContactsInQueue (int k)

Returns the number of contacts of type k currently waiting in queue.

Parameter

k the tested contact type.

Returns the number of contacts waiting in queue.

Throws

IllegalArgumentException if k is negative or greater than or equal to the result of get-
NumContactTypes().

public int getNumContactsInServiceK (int k)

Returns the number of contacts of type k currently in service.

Parameter

k the tested contact type.

Returns the number of contacts in service.

Throws

IllegalArgumentException if k is negative or greater than or equal to the result of get-
NumContactTypes().

public int getNumContactsInServiceI (int i)

Returns the number of contacts currently in service by agents in group i.

March 17, 2014 CallCenterCTMC 5

Parameter

i the tested agent group.

Returns the number of contacts in service.

Throws

IllegalArgumentException if i is negative or greater than or equal to the result of get-
NumAgentGroups().

public int getNumContactsInService (int k, int i)

Returns the number of contacts of type k in service by agents in group i.

Parameters

k the tested contact type.

i the tested agent group.

Returns the number of contacts in service.

public int getQueueCapacity()

Returns the maximal queue capacity.

Returns the maximal queue capacity.

public void setQueueCapacity (int q)

Sets the capacity of the waiting queue to q.

Parameter

q the new queue capacity.

Throws

IllegalArgumentException if the new capacity is smaller than the current number of
contacts in queue, returned by getNumContactsInQueue(), or larger than the maximum
returned by getMaxQueueCapacity().

public int getMaxQueueCapacity()

Returns the current bound on the queue capacity used to determine the transition rate of
the CTMC.

Returns the bound on the queue capacity.

public void setMaxQueueCapacity (int q)

Sets the bound on the queue capacity to q. Note that this method can change the transition
rate, which usually involves recreating search indexes. Calling this method too often can
thus decrease performance; one should use setQueueCapacity (int) instead.

Parameter

q the new maximal queue capacity.

6 CallCenterCTMC March 17, 2014

Throws

IllegalArgumentException if q is smaller than the queue capacity returned by getQueue-
Capacity().

public int getNumStateThresh()

Returns the number of thresholds on the state space. When the queue size or the number
of busy agents are small enough, the CTMC simulator can use a smaller transition rate,
and generate a random number of successive false transitions before every transition. Since
multiple transitions are generated using a single random number, this can save CPU time.
This method returns the total number of transition rates the simulator can use depending on
the queue size, and number of busy agents. Note that using too many vectors of thresholds
can increase memory usage, because a separate search index is required for each vector of
threshold.

Returns the number of state thresholds.

public int[][] getStateThresholds()

Returns the R × I + 1 matrix of thresholds whose used for state space partitioning. Each
row of the matrix corresponds to a vector of thresholds, column i = 0, . . . , I − 1 corresponds
to thresholds on the number of agents in group i, and the last column corresponds to the
queue size.

Returns the matrix of thresholds.

public void setStateThresholds (int[][] thresholds)

Sets the matrix of thresholds for this CTMC to thresholds.

Parameter

thresholds the matrix of thresholds.

Throws

NullPointerException if thresholds is null.

IllegalArgumentException if thresholds has invalid dimensions.

public StateThresh getStateThresh()

Returns the thresholds on the state of the CTMC.

Returns the state thresholds.

public double getArrivalRate (int k)

Returns the arrival rate λk for contacts of type k.

Parameter

k the tested contact type.

Returns the arrival rate.

March 17, 2014 CallCenterCTMC 7

Throws

IllegalArgumentException if k is negative or greater than or equal to the result of get-
NumContactTypes().

public void setArrivalRate (int k, double rate)

Sets the arrival rate for contacts of type k to rate.

Parameters

k the contact type.

rate the arrival rate.

Throws

IllegalArgumentException if rate is negative, or greater than the bound returned by
getMaxArrivalRate (int).

public void setArrivalRates (double[] rates)

Sets the arrival rate for each contact type k to rates[k].

Parameter

rates the arrival rates.

Throws

IllegalArgumentException if rates does not have length K, contains at least one neg-
ative element, or if rates[k] is greater than the result of getMaxArrivalRate (k) for
at least one k.

public double getArrivalRate()

Returns the total arrival rate λ =
∑K−1

k=0 λk for all contact types.

Returns the total arrival rate.

public double getMaxArrivalRate (int k)

Returns the maximal arrival rate λ̃k for contacts of type k.

Parameter

k the tested contact type.

Returns the maximal arrival rate.

Throws

IllegalArgumentException if k is negative or greater than or equal to the result of get-
NumContactTypes().

public void setMaxArrivalRate (int k, double rate)

Sets the maximal arrival rate for contacts of type k to rate. This can change the transition
rate, and force the simulator to recompute some search indexes. Using this method often
can therefore degrade performance, so it is recommended to call setArrivalRate (int,
double) instead.

8 CallCenterCTMC March 17, 2014

Parameters

k the contact type.

rate the arrival rate.

Throws

IllegalArgumentException if rate is smaller than the rate returned by getArrivalRate
(int).

public void setMaxArrivalRates (double[] rates)

Sets the maximal arrival rate for each contact type k to rates[k].

Parameter

rates the arrival rates.

Throws

IllegalArgumentException if rates does not have length K, orif rates[k] is smaller
than the result of getArrivalRate (k) for at least one k.

public double getMaxArrivalRate()

Returns the total maximal arrival rate λ̃ =
∑K−1

k=0 λ̃k for all contact types.

Returns the total maximal arrival rate.

public double getProbBalking (int k)

Returns the probability of balking ρk for contacts of type k.

Parameter

k the tested contact type.

Returns the probability of balking.

Throws

IllegalArgumentException if k is negative or greater than or equal to the result of get-
NumContactTypes().

public void setProbBalking (int k, double rhok)

Sets the balking probability to ρk for contacts of type k to rhok.

Parameters

k the affected contact type.

rhok the new value of ρk.

Throws

IllegalArgumentException if rhok is negative or greater than 1.

public double getPatienceRate (int k)

Returns the patience rate νk for contacts of type k.

March 17, 2014 CallCenterCTMC 9

Parameter

k the tested contact type.

Returns the patience rate.

Throws

IllegalArgumentException if k is negative or greater than or equal to the result of get-
NumContactTypes().

public void setPatienceRate (int k, double nuk)

Sets the patience rate νk for contacts of type k to nuk.

Parameters

k the affected contact type.

nuk the new value of νk.

Throws

IllegalArgumentException if k is out of range, nuk is negative, or nuk is greater than
the maximum returned by getMaxPatienceRate (int).

public double getMaxPatienceRate (int k)

Returns the maximal patience rate ν̃k for contacts of type k.

Parameter

k the tested contact type.

Returns the maximal patience rate.

Throws

IllegalArgumentException if k is negative or greater than or equal to the result of get-
NumContactTypes().

public void setMaxPatienceRate (int k, double nuk)

Sets the maximal patience rate ν̃k for contacts of type k to nuk. This method can change
the transition rate and recompute search indexes so using it repeatedly might degrade per-
formance. It is recommended to use setPatienceRate (int, double) instead.

Parameters

k the affected contact type.

nuk the new patience rate.

Throws

IllegalArgumentException if nuk is smaller than the result of getPatienceRate (int),
or if k is out of range.

public double getServiceRate (int k, int i)

Returns the service rate µk,i for contacts of type k served by agents in group i.

10 CallCenterCTMC March 17, 2014

Parameters

k the tested contact type.

i the tested agent group.

Returns the service rate.

Throws

IllegalArgumentException if k or i are out of range.

public void setServiceRate (int k, int i, double muki)

Sets the service rate µk,i to for contacts of type k served by agents in group i to muki.

Parameters

k the affected contact type.

i the affected agent group.

muki the new service rate.

Throws

IllegalArgumentException if k or i are out of range, if muki is negative, or if muki is
greater than the maximum returned by getMaxServiceRate (int, int).

public double getMaxServiceRate (int k, int i)

Returns the maximal service rate µ̃k,i for contacts of type k served by agents in group i.

Parameters

k the tested contact type.

i the tested agent group.

Returns the service rate.

Throws

IllegalArgumentException if k or i are out of range.

public void setMaxServiceRate (int k, int i, double muki)

Sets the maximal service rate for contacts of type k served by agents in group i to muki. This
method can change the transition and recompute search indexes, so using it repeatedly might
degrade performance. It is recommended to use setServiceRate (int, int, double)
instead.

Parameters

k the affected contact type.

i the affected agent group.

muki the new maximal service rate.

March 17, 2014 CallCenterCTMC 11

Throws

IllegalArgumentException if k or i are out of range, or if muki is smaller than the service
rate returned by getServiceRate (int, int).

public double getJumpRate()

Returns the uniformized transition rate used by this CTMC.

Returns the uniformized transition rate.

public int getNumAgents()

Returns the total number of agents available for serving contacts.

Returns the total number of agents.

public int getMaxNumAgents()

Returns the maximal total number of agents that can be used for the CTMC.

Returns the maximal number of agents.

public int getNumAgents (int i)

Returns the number of agents in group i.

Parameter

i the tested agent group.

Returns the number of agents.

Throws

IllegalArgumentException if i is negative or greater than or equal to the result of get-
NumAgentGroups().

public int[] getNumAgentsArray()

Returns an array of length I containing the number of agents in each agent group.

Returns the number of agents in each group.

public int getMaxNumAgents (int i)

Returns the maximal number of agents in group i.

Parameter

i the tested agent group.

Returns the maximal number of agents.

public int[] getMaxNumAgentsArray()

Returns an array of length I containing the maximal number of agents in each agent group.

12 CallCenterCTMC March 17, 2014

Returns the maximal number of agents in each group.

public void setNumAgents (int i, int n)

Sets the number of agents in group i to n. This method might cause the transition rate to
increase so it should never be called during the simulation of the CTMC.

Parameters

i the tested agent group.

n the new number of agents in the group.

Throws

IllegalArgumentException if i is negative or greater than or equal to the result of get-
NumAgentGroups(), or if n is negative.

public void setNumAgents (int[] numAgents)

For each agent group i = 0, . . . , I−1, sets the number of agents in group i to numAgents[i].

Parameter

numAgents the array containing the number of agents.

Throws

IllegalArgumentException if numAgents has a length different from I, or if it contains
at least one negative value.

public void setMaxNumAgents (int i, int n)

Sets the maximal number of agents in group i to n. This method might cause the maximal
transition rate returned by getJumpRate() to increase so it should never be called during
the simulation of the CTMC.

Parameters

i the tested agent group.

n the new maximal number of agents in the group.

Throws

IllegalArgumentException if i is negative or greater than or equal to the result of get-
NumAgentGroups(), or if n is negative.

public void setMaxNumAgents (int[] numAgents)

For each agent group i = 0, . . . , I − 1, sets the maximal number of agents in group i to
numAgents[i].

Parameter

numAgents the array containing the number of agents.

March 17, 2014 CallCenterCTMC 13

Throws

IllegalArgumentException if numAgents has a length different from I, or if it contains
at least one negative value.

public double[][] getRanksTG()

Returns the type-to-group matrix of ranks associating a priority to each contact type and
agent group when selecting an agent group for a new arrival.

Returns the matrix of ranks being used.

public double[][] getRanksGT()

Returns the group-to-type matrix of ranks associating a priority to each agent group and
contact type when selecting a waiting queue for a free agent.

Returns the matrix of ranks being used.

public TransitionType getLastTransitionType()

Returns the type of the last transition, or null if no transition occurred since the last call
to initEmpty().

Returns the type of the last transition.

public int getLastSelectedContactType()

Returns the last contact type selected by the nextState (double) method.

Returns the last selected contact type.

public int getLastSelectedContact()

Returns the index of the last selected contact having abandoned. This returns the position
of the contact having abandoned within a queue containing contacts of type k only. The
returned value is thus in 0, . . . , Qk − 1 where k is the result of getLastSelectedContact-
Type(), and Qk is the number of contacts of type k in queue.

Returns the last selected contact.

public int getLastSelectedAgentGroup()

Returns the last agent group selected by the nextState (double) method.

Returns the last selected agent group.

public int getLastSelectedQueuedContactType()

Returns the type of the last contact removed from a waiting queue for service by the next-
State (double) method.

14 CallCenterCTMC March 17, 2014

Returns the last selected queued contact type.

public TransitionType nextState (double u)

Generates the next state of the CTMC randomly from the current state, using the given uni-
form u, and changes the current state to this new state. The method then returns the type of
transition being generated. Depending on the transition type, additional information about
the selected contact type or agent group can be obtained using getLastSelectedContact-
Type(), getLastSelectedQueuedContactType(), or getLastSelectedAgentGroup().

Parameter

u the uniform used to generate the new state.

Returns the type of the generated transition.

public TransitionType nextStateInt (int v)

Similar to nextState (double), except that the given random variate v is uniformly dis-
tributed over [0, 231 − 1].

Parameter

v the uniform random integer.

Returns the type of the generated transition.

public TransitionType getNextTransition (double u)

Returns the type of the next transition generated using the random number u. This method
is similar to nextState (double), except that it does not alter the state of the CTMC.

Parameter

u the random number for the state generation.

Returns the type of the next transition.

public TransitionType getNextTransitionInt (int u)

Similar to getNextTransition (double), using a random integer rather than a uniform
number.

Parameter

u the random number used for generating the transition.

Returns the type of the next transition.

public void generateArrivalServed (int k, int i, int np, int nf)

Generates the arrival of a contact of type k served by an agent in group i. If all agents are
busy in group i, this method throws an IllegalStateException.

http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html

March 17, 2014 CallCenterCTMC 15

Parameters

k the contact type.

i the agent group.

np the number of false transitions preceding the main transition.

nf the number of false transitions following the main transition.

Throws

IllegalStateException if all agents in group i are busy.

public void generateArrivalQueued (int k, int np, int nf)

Generates the arrival of a contact of type k, and adds the new contact to the waiting queue.
This method throws an IllegalStateException if the queue is full before the arrival.

Parameters

k the type of the new contact.

np the number of false transitions preceding the main transition.

nf the number of false transitions following the main transition.

Throws

IllegalStateException if the queue capacity is exceeded.

public void generateArrival (int k, int np, int nf)

Generates the arrival of a contact of type k being blocked or balking.

Parameters

k the type of the arrival.

np the number of false transitions preceding the main transition.

nf the number of false transitions following the main transition.

public void generateEndService (int k, int i, int np, int nf)

Generates the end of the service for a contact of type k served by an agent in group i. If
no contact of type k are in service by agents in group i, this method throws an Illegal-
StateException.

Parameters

k the type of the contact.

i the group of the agent.

np the number of false transitions preceding the main transition.

nf the number of false transitions following the main transition.

http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html

16 CallCenterCTMC March 17, 2014

Throws

IllegalStateException if no contact of type k is in service by agents in group i.

public void generateEndService (int k, int i, int kp, int np, int nf)

Generates the end of the service for a contact of type k served by an agent in group i, and
assigns the kposth queued contact of type kp to the free agent. If no contact of type k are
in service by agents in group i, this method throws an IllegalStateException.

Parameters

k the type of the contact ending service.

i the group of the agent ending service.

kp the type of the dequeued contact.

np the number of false transitions preceding the main transition.

nf the number of false transitions following the main transition.

public void generateAbandonment (int k, int kpos, int np, int nf)

Generates the abandonment of the kposth contact of type k. This method throws an
IllegalStateException if kpos is negative or greater than or equal to the number of
queued contacts of type k.

Parameters

k the contact type.

kpos the position of the contact in queue.

np the number of false transitions preceding the main transition.

nf the number of false transitions following the main transition.

public boolean selectContact (int i)

Selects a new queued contact for a free agent in group i, and returns a boolean indicator
determining if a contact could be selected. After this method returns true, the method get-
LastSelectedAgentGroup() returns the value of i while getLastSelectedQueuedContact-
Type() returns the type of the contact assigned to the free agent. This method can be used,
e.g., when agents are added in some groups during a simulation.

Parameter

i the agent group index.

Returns determines whether a contact is removed from a queue.

public void generateFalseTransition (int np, int nf)

Generates a false transition. This method only updates the transition counter of the CTMC.

http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html

March 17, 2014 CallCenterCTMC 17

Parameters

np the number of false transitions preceding the main transition.

nf the number of false transitions following the main transition.

public int getNumPrecedingFalseTransitions()

Returns the number of additionnal false transitions generated by the last call to nextState
(double) before the main transition. Some implementation of this interface might generate
several false transitions using a single random number. In this case, the call to nextState
(double) will return a transition type while this method should be used to obtain the
number of additional false transitions that were generated before the main transition.

Returns the number of additional false transitions generated by the last call to nextState
(double) before the main transition.

public int getNumFollowingFalseTransitions()

Similar to getNumPrecedingFalseTransitions(), but for the number of false transitions
generated after the main transition.

Returns the number of additional false transitions generated by the last call to nextState
(double) after the main transition.

public int getNumTransitionsDone()

Returns the number of generated transitions. This corresponds to the number of times the
nextState (double) method was called since the last call to initEmpty().

Returns the number of transitions done.

public CallCenterCTMC clone()

Returns an independent copy of this call center CTMC. In particular, calling nextState
(double) on the returned CTMC should not affect the state of any other CTMC.

Returns the clone of the chain.

public int hashCodeState()

Computes and returns a hash code using the current state of the CTMC. The returned
hash code should be

∑I
i=1Ki

∑K
k=1 Sk,i +KI+1

∑K
k=1Qk +KI+2n where Ki =

∏i−1
j=1 Ñj for

i = 1, . . . , I + 1, and KI+1 = KI+1H.

Returns the computed hash code.

public boolean equalsState (Object o)

Determines if the state of this CTMC is the same as the state of the CTMC o. If o does
not correspond to an instance of CallCenterCTMC, this method should return false.

Parameter

o the object to test.

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html

18 CallCenterCTMC March 17, 2014

Returns the result of the equality test.

public int getTargetNumTransitions()

Returns the current target number of transitions. Sometimes, nextState (double) or
nextStateInt (int) generate several false transitions with a single random number. When
the number of transitions done is near the target number of transitions, the final number of
transitions may then exceed the target.

When a target number of transition is specified, no more state change occur after the target
is reach. Moreover, when the return value of getNumTransitionsDone() is greater than
or equal to the value returned by this method, nextState (double), and nextStateInt
(int) throw an IllegalStateException.

The default target number of transitions is Integer.MAX VALUE.

Returns the current target number of transitions.

public void setTargetNumTransitions (int tntr)

Sets the target number of transitions to tntr.

Parameter

tntr the new target number of transitions.

Throws

IllegalArgumentException if tntr is negative.

http://docs.oracle.com/javase/6/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Integer.html#MAX_VALUE

March 17, 2014 19

CallCenterCTMCWithQueues

Extends the CallCenterCTMC interface for keeping track of the transition number for any
queued contact. This additional bookkeeping allows one to obtain the waiting time of the last
contact having entered service or abandoned using the getLastWaitingTime (int) method,
or the longest waiting time in queue using the getLongestWaitingTime (int) method.

Note that waiting times returned by these two methods are expressed in numbers of
transitions. Because the simulated Markov chain is uniformized, the expected waiting time
can be retrived by dividing this integer by CallCenterCTMC.getJumpRate().

One can use CallCenterCTMCQueues to implement the two methods specified by this
interface.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public interface CallCenterCTMCWithQueues extends CallCenterCTMC

Methods

public int getLastWaitingTime (int k)

?eturns waiting time of the last contact of type k having entered service, or abandoned. If
no such contact exists, this method returns 0.

Parameter

k the queried tppe of contact.

Returns the last waiting time.

public int getLongestWaitingTime (int k)

Returns the longest waiting time among all contacts of type k. This returns 0 if no contact
of type k is waiting in queue.

Parameter

k the queried contact type.

Returns the longest waiting time.

20 March 17, 2014

TransitionType

Represents the type of a transition performed by the CallCenterCTMC.nextState (double)

method.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public enum TransitionType

Constants

ARRIVALSERVED

Arrival with immediate service.

ARRIVALBALKED

Arrival with balking (immediate abandonment).

ARRIVALQUEUED

Arrival and waiting in queue.

ARRIVALBLOCKED

Arrival and blocking due to exceeded queue capacity.

ENDSERVICEANDDEQUEUE

An agent terminates a service, and receives a new queued contact to serve.

ENDSERVICENODEQUEUE

An agent terminates a service, and remains free because of no available queued contacts.

ABANDONMENT

A queued contacts abandons, i.e., leaves the queue without receiving service.

FALSETRANSITION

Fictious transition not affecting the state of the CTMC.

March 17, 2014 21

TransitionListener

Represents a listener that can be notified when a transition occurs during a DTMC simulation
of a call center. After an object of a class implementing this interface is constructed, it can
be registered with a DTMC call center simulator.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public interface TransitionListener

Methods

public void init (CallCenterCTMC ctmc, int r, int mp)

This method is called when the registered call center CTMC is initialized, during replication
r, at the beginning of main period mp.

Parameters

ctmc the initialized CTMC.

r the replication number.

mp the main period index.

public void newTransition (CallCenterCTMC ctmc, int r, int mp,

TransitionType type)

This method is called when a new transition occurs in the CTMC ctmc, during replication r
of the simulation of main period mp. The type of the simulated transition is given by type.

Parameters

ctmc the continuous-time Markov chain.

r the replication index.

mp the main period index.

type the transition type.

22 March 17, 2014

AgentGroupSelector

Represents a policy selecting an agent group for an incoming contact, in a CTMC call center
model. A CTMC model supporting multiple call types can have a different agent group
selector for each contact type. The available implementations are ListGroupSelector, and
PriorityGroupSelector.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public interface AgentGroupSelector

Methods

public int selectAgentGroup (CallCenterCTMC ctmc, int tr)

Selects an agent group for the newly arrived contact, and returns the index of the selected
agent group. If no agent group can be selected, this method returns a negative value.

Parameters

ctmc the call center CTMC model.

tr the current transition number.

Returns the selected agent group.

public double[] getRanks()

Returns an array giving the rank associated with each agent group by this agent group
selector.

Returns the array of ranks.

March 17, 2014 23

SimpleGroupSelector

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class SimpleGroupSelector implements AgentGroupSelector

24 March 17, 2014

ListGroupSelector

Represents an agent group selector using static lists for agent selection. When a call enters
the center, the group of the serving agent is given by the first group, among the user-specified
groups i0, i1, . . ., containing at least one free agent.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class ListGroupSelector implements AgentGroupSelector

Constructor

public ListGroupSelector (int numGroups, int[] groupList)

Constructs a new list-based agent group selector using the given static list groupList.

Parameter

groupList the list of agent groups being queried by selectAgentGroup (CallCenter-
CTMC, int).

March 17, 2014 25

PriorityGroupSelector

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class PriorityGroupSelector implements AgentGroupSelector

26 March 17, 2014

SimpleQueueSelector

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class SimpleQueueSelector implements WaitingQueueSelector

March 17, 2014 27

WaitingQueueSelector

Represents a policy selecting a queued contact for an agent becoming free, in a CTMC call
center model. A CTMC model supporting multiple agent groups can have a different waiting
queue selector for each agent group. The available implementations are ListQueueSelector,
PriorityQueueSelectorQS, and PriorityQueueSelectorWT.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public interface WaitingQueueSelector

Methods

public int selectWaitingQueue (CallCenterCTMC ctmc, int k, int tr)

Selects a waiting queue for the free agent, and returns the index of the selected queue. If no
waiting queue can be selected, this method returns a negative value.

Parameters

ctmc the call center CTMC model.

tr the current transition number.

Returns the selected waiting queue.

public double[] getRanks()

Returns an array giving the rank associated with each waiting queue by this waiting queue
selector.

Returns the array of ranks.

28 March 17, 2014

ListQueueSelector

Represents a waiting queue selector using static lists. When an agent becomes free, the
router selects the first waiting queue, among the user-specified queues k0, k1, . . ., containing
at least one call. If such a queue exists, the first queued call is removed, and assigned to the
free agent. Otherwise, the agent stays free until a new call arrives.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class ListQueueSelector implements WaitingQueueSelector

Constructor

public ListQueueSelector (int numQueues, int[] queueList)

Constructs a new list-based waiting queue selector using the given list queueList.

Parameter

queueList the list of waiting queried by selectWaitingQueue (CallCenterCTMC, int,
int).

March 17, 2014 29

PriorityQueueSelectorQS

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class PriorityQueueSelectorQS implements WaitingQueueSelector

30 March 17, 2014

PriorityQueueSelectorWT

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class PriorityQueueSelectorWT implements WaitingQueueSelector

March 17, 2014 31

CallCenterCTMCQueues

Provides helper method used to maintain information on queued calls, for a CTMC model
of a call center. This class encapsulates an array of circular arrays of integers representing
the waiting queues, and provides the init() that should be called after CallCenterCTMC.

initEmpty() or CallCenterCTMC.init (CallCenterCTMC). It also implements the update

(CallCenterCTMC, TransitionType) method which should be called after each transition
to update the waiting queues. The methods getLastWaitingTime (int), and getQueue

(int) can then be used by CTMC models to implement the interface CallCenterCTMCWith-
Queues.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class CallCenterCTMCQueues implements Cloneable

Constructor

public CallCenterCTMCQueues (CallCenterCTMC ctmc)

Constructs a new object holding queueing information from the call center CTMC model
ctmc.

Parameter

ctmc the call center CTMC model.

Methods

public CircularIntArray getQueue (int k)

Returns the circular array of integers containing the transition number at which each call of
type k entered the queue, provided that the update (CallCenterCTMC, TransitionType)
method has been called at each transition.

Parameter

k the tested call type.

Returns the circular array representing the queue.

public int getLastWaitingTime (int k)

Returns the number of transitions spent by the last call of type k having left the queue,
provided that the update (CallCenterCTMC, TransitionType) method has been called
after each transition.

Parameter

k the tested call type.

http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html

32 CallCenterCTMCQueues March 17, 2014

Returns the number of transitions spent in queue.

public void init()

Empties all the circular arrays representing waiting queues, and resets the last waiting times
to 0.

public void init (CallCenterCTMCQueues q)

Initializes this object with the contents of the other object q.

Parameter

q another object holding queue information.

public void update (CallCenterCTMC ctmc, TransitionType type)

Updates the status of the waiting queues after a transition of type type of the CTMC model
ctmc.

Parameters

ctmc the CTMC model in which the transition occurred.

type the type of transition.

public CallCenterCTMCQueues clone()

Constructs and returns a deep copy of this object, including copies of the waiting queues.

March 17, 2014 33

CircularIntArray

Represents a resizable circular array of integers. Any object of this class encapsulates an
ordinary array of integers as well as an index of the starting position. Elements can be
added to the array which grows as necessary. The first and last element of the array can be
removed in constant time while removing any other element requires a linear time shift of
the other elements in the array.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class CircularIntArray implements Cloneable

Constructors

public CircularIntArray()

Constructs a new circular array of integers with a default initial capacity of 5 elements.

public CircularIntArray (int initialCapacity)

Constructs a new array of integers with the given initial capacity.

Parameter

initialCapacity the initial capacity of the array.

Methods

public void clear()

Clears this circular array. After a call to this method, the size of the array returned by
size() is 0.

public void init (CircularIntArray a)

Initializes this circular array of integers with the contents of another circular array a. This
method replaces the internal array of this object with a clone of the internal array of a, and
also copies the size and starting position of the given array.

Parameter

a the other circular array to copy.

public void add (int x)

Adds the element x at the end of this circular array. If adding the element would exceed the
capacity of the internal array, the internal array gorows.

http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html

34 CircularIntArray March 17, 2014

Parameter

x the new element to add.

public int removeFirst()

Removes and returns the first element of this circular array. If the size of the array returned
by the size() method is 0, this method throws a NoSuchElementException.

Returns the value of the (removed) first element.

public int removeLast()

Removes and returns the last element of this circular array. If the size of the array returned
by the size() method is 0, this method throws a NoSuchElementException.

Returns the value of the (removed) last element.

public int size()

Returns the size of this circular array.

Returns the size of the circular array.

public int get (int i)

Returns the value of element i in this circular array.

Parameter

i the index of the queried element.

Returns the value of the element.

public void set (int i, int e)

Sets the value of element i to e.

Parameters

i the index of the element to modify.

e the new value of the element.

public int remove (int i)

Removes and returns the element with index i in the array. If the given index is 0, this calls
removeFirst(). If the given index is size() minus 1, this returns the result of remove-
Last(). Otherwise, elements of the array are shifted appropriately to remove the element.

Parameter

i the index of the element to remove.

Returns the removed element.

public CircularIntArray clone()

Returns a copy of this circular array of integers. The returned copy is completely independent
from this instance since the internal array is also cloned.

public String toString()

Constructs and returns a string representation of the form [e1, e2, ...] of this array.

http://docs.oracle.com/javase/6/docs/api/java/util/NoSuchElementException.html
http://docs.oracle.com/javase/6/docs/api/java/util/NoSuchElementException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

March 17, 2014 35

CCEvent

Represents an event occurring during a transition of a CTMC representing a contact center
with multiple contact types and agent groups.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public interface CCEvent

Method

public TransitionType actions (CallCenterCTMCKI ctmc, int tr, int rv, int

usedBits, boolean changeState)

Performs the necessary actions for the transition, and returns the appropriate transition type.
This method is called by CallCenterCTMCKI.nextStateInt (int) in order to generate a
transition. Random bits can be obtained as needed by using the given integer rv, but the
numUsedBits least significant bits of rv are already used before the method is called, i.e.,
to select the index of an event in a lookup table.

Parameters

ctmc the CTMC representing the call center.

tr the number of transitions already done.

rv the random integer used to simulate the transition.

usedBits the number of bits already used in rv.

changeState determines if the event can change the state of the CTMC.

Returns the type of the simulated transition.

36 March 17, 2014

CCEventFactory

Represents a factory for creating new call center events.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public interface CCEventFactory

Method

public CCEvent newInstance (double u1, double u2, int maxExtraBits)

Creates a new call center event resulting from a uniform generated in interval [u1, u2], and
using a maximum of maxExtraBits additional random bits to take decisions.

Parameters

u1 the uniform u1.

u2 the uniform u2.

maxExtraBits the maximal number of additional bits that can be used by the created
events to take decisions.

Returns the constructed event.

March 17, 2014 37

FalseTransitionEvent

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class FalseTransitionEvent implements CCEvent

38 March 17, 2014

LookupEvent

Represents a call center event using random bits to select the index of a subinterval cor-
responding to an event. The executed selected event might perform some action or a new
indexed search. A lookup event can be constructed from any array of call center events.
Alternatively, a method createIndex (double[], CCEventFactory[], int, int) is pro-
vided to construct a search index.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class LookupEvent implements CCEvent

Constructor

public LookupEvent (CCEvent[] events)

Creates a new lookup event selecting events from the given array events.

Parameter

events the array of events.

Method

public static LookupEvent createIndex (double[] prob, CCEventFactory[]

factories, int numIntervals, int

maxBits)

Creates a search index by partitioning the [0, 1] in numIntervals subintervals, and using a
maximum of maxBits randm bits for the indexed search. A subinterval is assigned an event
l created with the factory factories[l] with probability prob[l].

Parameters

prob the probabilities of occurrence of the events.

factories the event factories.

numIntervals the number of subintervals.

maxBits the maximal number of bits.

Returns the event performing the indexed search.

March 17, 2014 39

EventWithSelection

Represents an event that can select the integers k = 0, . . . , K − 1 and p = 0, . . . , nk− 1 such
that 0 ≤ u −

∑k−1
j=0 Wjnj − pWk < wk. Here 0 ≤ u1 < u2 ≤ WN where wk ≤ Wk ≤ W

for k = 0, . . . , K − 1, and
∑K−1

k=0 nk ≤ N . This can be interpreted as selecting an event
p = 0, . . . , nk − 1 of type k, with each event of type k having weight wk.

This class can be used, e.g., to determine if a uniform u generates a false transition, or
an abandonment of type k. In this case, nk gives the number of queued contacts of type k,
wk = νk is the abandonment rate for contacts of type k, Wk = ν̃k is the maximal possible
abandonment rate for contacts of type k, and N is the total queue capacity. The integer p
then corresponds to the position of the contact in queue having abandoned.

To use this class, one must extend it to provide implementations for getNumValues

(CallCenterCTMCKI), and getNumValues (CallCenterCTMCKI, int). In the CCEvent.

actions (CallCenterCTMCKI, int, int, int, boolean) method, one then calls select-
Type (CallCenterCTMCKI, int, int, int) to select the event type.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public abstract class EventWithSelection extends EventWithTest

Constructor

public EventWithSelection (double minU, double maxU, int numBits, int

numTypes, double maxWeight)

Constructs a new event with selection.

Parameters

minU the value of u1.

maxU the value of u2.

numBits the number b of bits used to generate u when the test cannot be completed only
with u1, and u2.

numTypes the number K of event types.

maxWeight the maximal weight W .

Methods

public int getNumTypes()

Returns the number K of event types.

40 EventWithSelection March 17, 2014

Returns the value of K.

public int getLastSelectedEvent()
Returns the index p of the last selected event among events of type k.
Returns the last selected position.

public abstract double getWeight (CallCenterCTMCKI ctmc, int k)
Returns the weight wk corresponding to events of type k.
Parameters

ctmc the tested CTMC.

k the tested type.
Returns the weight wk.

public abstract double getMaxWeight (CallCenterCTMCKI ctmc, int k)
Returns the weight Wk corresponding to events of type k.
Parameters

ctmc the tested CTMC.

k the tested type.
Returns the weight Wk.

public abstract int getNumValues (CallCenterCTMCKI ctmc, int k)
Returns the current value of nk.
Parameters

ctmc the tested CTMC.

k the tested type.
Returns the value of nk.

public abstract int getNumValues (CallCenterCTMCKI ctmc)
Returns the sum

∑K−1
k=0 nk.

Parameter

ctmc the tested CTMC.
Returns the sum of nk’s.

public int selectType (CallCenterCTMCKI ctmc, int tr, int rv, int usedBits)
Selects and returns an event type k. If the event corresponds to a false transition, this
returns K. Otherwise, the method getLastSelectedEvent() can be used to obtain p.
Parameters

ctmc the CTMC representing the call center.

tr the number of transitions already done.

rv the random integer used to simulate the transition.

usedBits the number of bits already used in rv.
Returns the selected event type.

March 17, 2014 41

EventWithTest

Abstract event type with some helper methods to generate u1 ≤ u < u2 randomly and
uniformly, and to test that u < t for any value of t.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public abstract class EventWithTest implements CCEvent

Constructor

public EventWithTest (double minU, double maxU, int numBits)

Constructs a new event with the associated interval [u1, u2), and using numBits additional
random bits to generate u when needed. The value of u1 and u2 are given using the fields
minU and maxU.

Parameters

minU the value of u1.

maxU the value of u2.

numBits the number of bits used to generate u.

Methods

public double getMinU()

Returns the value of u1 associated with this event.

Returns the associated value of u1.

public double getMaxU()

Returns the value of u2 associated with this event.

Returns the associated value of u2.

public double getU (int rv, int usedBits)

Generates the value of u using bits in rv but ignoring the first least significant usedBits
bits.

Parameters

rv the random bits to generate u from.

usedBits the number of used random bits.

42 EventWithTest March 17, 2014

Returns the value of u.

public boolean isUSmallerThan (int rv, int usedBits, double t)

Returns true if and only if u < t, using getU (rv, usedBits) to generate u randomly. This
method returns true without generating u if u2 < t since in that case, u < u2 < t. Similarly,
it returns false without generating u if u1 ≥ t since in this case, u ≥ u1 ≥ t. Otherwise,
getU (int, int) is called to get the value of u.

Parameters

rv the random bits to generate u from.

usedBits the number of used random bits.

t the tested threshold.

Returns the success indicator of the test.

public int getPosition (int rv, int usedBits, double weight, double

maxWeight, int maxS)

Returns the value s for which 0 ≤ u− sW < w, where s = 0, . . . , S − 1, or S if such s does
not exist. Here, w ≤W . For example, if 0 ≤ u < q̃, w = ν, and W = ν̃, s can be interpreted
as the position in queue of a contact having abandoned.

Parameters

rv the random bits to generate u from.

usedBits the number of used random bits.

weight the value of w.

maxWeight the value of W .

maxS the maximal value S of s.

Returns the value of s.

March 17, 2014 43

CallCenterCTMC11

CTMC model for a call center with a single call type and a single agent group.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class CallCenterCTMC11 implements CallCenterCTMC

44 March 17, 2014

CallCenterCTMC11WithQueues

Extension of the CTMC model for a single contact type and agent group, with information
on contacts waiting in queue.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class CallCenterCTMC11WithQueues extends CallCenterCTMC11

implements CallCenterCTMCWithQueues

March 17, 2014 45

CallCenterCTMCKI

CTMC model of a call center with multiple call types and agent groups.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class CallCenterCTMCKI implements CallCenterCTMC

46 March 17, 2014

CallCenterCTMCKIWithQueues

Extends the CTMC model for multiple call types and agent groups with information on
queued calls.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class CallCenterCTMCKIWithQueues extends CallCenterCTMCKI

implements CallCenterCTMCWithQueues

March 17, 2014 47

CTMCCreationException

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class CTMCCreationException extends Exception

http://docs.oracle.com/javase/6/docs/api/java/lang/Exception.html

48 March 17, 2014

QueueSizeThresh

Encapsulates thresholds on the queue size with the corresponding transition rates and geo-
metric distributions for the number of successive self jumps preceding any generated transi-
tion.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class QueueSizeThresh

Constructor

public QueueSizeThresh (double jumpRate, double nu, int queueCapacity, int

numThresh)

Constructs a new manager for queue size thresholds, for a CTMC with the given jump rate
jumpRate, representing a call center with maximal abandonment rate nu, and maximal queue
capacity queueCapacity. The computed thresholds is an increasing sequence of numThresh
integers distributed evenly on the interval [0, H], where H is the queue capacity.

Parameters

jumpRate the jump rate for the CTMC.

nu the maximal abandonment rate.

queueCapacity the queue capacity.

numThresh the number of thresholds to create.

Methods

public int getNumThresholds()

Returns the number of thresholds managed by this object.

Returns the number of managed thresholds.

public double getJumpRate (int r)

Returns the maximal transition rate if the queue size is smaller than or equal to the the
threshold with index r.

Parameter

r the index of the tested threshold.

Returns the transition rate.

public int getQueueSizeThresh (int r)

Returns the threshold on the queue size with index r.

March 17, 2014 QueueSizeThresh 49

Parameter

r the index of the threshold.

Returns the threshold corresponding to the index.

public GeometricDist getNumFalseTrDist (int r)

Returns the geometric distribution for the successive number of self jumps before any tran-
sition, while the queue size is smaller than or equal to to threshold with index r.

Parameter

r the index of the queue size threshold.

Returns the distribution of the successive number of self jumps before any transition.

public int updateQIdx (int qidx, int queueSize)

Returns the smallest index for which the queue size is smaller than or equal to the cor-
responding threshold, given that the current index is qidx. The given index is used as a
starting point for searching the correct index.

Parameters

qidx the current threshold index.

queueSize the current queue size.

Returns the appropriate queue size threshold index.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/probdist/GeometricDist.html

50 March 17, 2014

StateThresh

Represents thresholds on the queue size, and the number of agents in each group. The
transition rate, and the distribution for the number of successive self jumps preceding any
transition are also computed and stored.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class StateThresh implements Cloneable

Constructor

public StateThresh (CallCenterCTMC ctmc, int[][] thresholds)

Constructs a new state thresholds object using the given thresholds on the queue size
and agent groups. This constructor accepts a CTMC ctmc, a matrix of thresholds
thresholds on the number of agents, and the queue size. Elements thresholds[r][i],
for i = 0, . . . , I−1, give the rth threshold on the number of agents in group i, while element
thresholds[r][I], the threshold on queue size. If thresholds is null, a single vector of
thresholds (Ñ0, . . . , ÑI−1, H) is used. This vector of thresholds is also added if thresholds
is not null, and the vector is not present in the 2D array thresholds.

Parameters

ctmc the call center CTMC.

thresholds the thresholds on the number of agents, and queue size.

Throws

IllegalArgumentException if thresholds has invalid dimensions, or contains a negative
value.

Methods

public int getNumVectorsOfThresholds()

Returns the number of vectors of thresholds stored by this object.

Returns the number of vectors of thresholds.

public double getJumpRate (int r)

Returns the transition rate corresponding to vector of thresholds with index r.

Parameter

r the index of the vector of thresholds.

http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html

March 17, 2014 StateThresh 51

Returns the corresponding transition rate.

public GeometricDist getNumFalseTrDist (int r)

Returns the geometric distribution for the successive number of self jumps before any tran-
sition, while the queue size and number of agents are smaller than or equal to to thresholds
with index r.

Parameter

r the index of the vector of thresholds.

Returns the distribution of the successive number of self jumps before any transition.

public int getThreshNumAgents (int r, int i)

Returns the threshold on the number of agents in group i corresponding to vector with
index r.

Parameters

r the index of the vector of thresholds.

i the index of the agent group.

Returns the value of the threshold.

public int[][] getThreshNumAgents()

Returns a 2D array containing the thresholds on the number of agents. Element [r][i] of
the array gives the threshold with index r for agent group i.

Returns the array of thresholds.

public int getThreshQueueSize (int r)

Returns the threshold on the queue size corresponding to vector with index r.

Parameter

r the index of the vector of thresholds.

Returns the threshold on the queue size.

public int[] getThreshQueueSize()

Returns the array of thresholds on the queue size. Element r of the returned array gives the
threshold for index r.

Returns the array of thresholds on the queue size.

public void initOperatingMode (CallCenterCTMC ctmc)

Determines the current operating mode r depending on the state of the given CTMC ctmc.
This method is called after the CTMC is initialized. The more efficient updateOperating-
Mode (CallCenterCTMC, TransitionType) can be used to update r at each transition. The
value of r can be obtained using getOperatingMode().

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/probdist/GeometricDist.html

52 StateThresh March 17, 2014

Parameter

ctmc the call center CTMC.

public int getOperatingMode()

Returns the current operating mode. The operating mode corresponds to the vector of
thresholds r offering the smallest jump rate, and thresholds greater than or equal to the
current number of agents and queue size.

Returns the current operating mode.

public boolean updateOperatingMode (CallCenterCTMC ctmc, TransitionType

type)

Updates the current vector of thresholds after a transition of type type of the CTMC model
ctmc. This returns true if the operating mode changed, and needs to be queried using
getOperatingMode().

Parameters

ctmc the call center CTMC.

type the transition type.

Returns true if the operating mode changed.

March 17, 2014 53

InitStateThresh

Used to initialize vectors of thresholds automatically. This program provides a method
getThresholds (CallCenterCTMC, int, int, boolean) returning a matrix of thresholds.
The program can also be called from the command-line to perform the initialization.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class InitStateThresh

Methods

public static int[][] getThresholds (CallCenterCTMC ctmc, int

numStateThresh, int numGroupSlices,

boolean threshOnQueueSize)

Returns a matrix with numStateThresh*numGroupSlices rows representing vectors of
thresholds. Columns i = 0, . . . , I − 1 of the returned matrix give thresholds for the
number of agents while column I gives thresholds on the waiting queue. The vectors
of thresholds are constructed based on the CTMC model ctmc. The constructed ma-
trix has M = numGroupSlices sets of numStateThresh vectors of thresholds. Set m, for
m = 0, . . . ,M − 1, has thresholds with number of agents in (bmÑi/Mc, b(m+ 1)Ñi/Mc].

Parameters

ctmc the call center CTMC model.

numStateThresh the number of vectors of thresholds on the state.

numGroupSlices the number of slices for the number of agents in groups.

Returns the 2D array of thresholds.

Throws

NullPointerException if ctmc is null.

IllegalArgumentException if numStateThresh or numGroupSlices are smaller than 1.

public static void main (String[] args)

Main method of the class, to be called from the command-line. This method accepts the
name of the parameter file for the call center, the name of the parameter file for the ex-
periments, the number of vectors of thresholds to create, and an ouput parameter file. The
program computes the vectors of thresholds for each main period in the model, and outputs
a modified version of the given experiment parameter file, with the vectors of thresholds.

Parameter

args the command-line arguments of the program.

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

54 March 17, 2014

ProbInAWT

Represents an object that can compute information on the waiting time distribution condi-
tional on the total number of transitions during a time horizon, the transition rate, and the
number of transitions spent in queue by a particular contact.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public interface ProbInAWT

Methods

public double getProbInAWT (int delta)

Returns the probability that the waiting time of a contact having spent delta transitions
in the queue is smaller than the current acceptable waiting time.

Parameter

delta the number of transitions spent in queue by the contact.

Returns the probability of the waiting time being smaller than the threshold.

public double getExpectedWaitingTime (int delta)

Returns the expected waiting time for a contact having spent delta transitions in queue.

Parameter

delta the number of transitions spent in queue.

Returns the expected waiting time.

public double getExpectedWaitingTimeGTAWT (int delta)

Returns the expected waiting time conditional that the waiting time is greater than the
acceptable waiting time, for a contact having spent delta transitions into the queue.

Parameter

delta the number of transitions spent into the queue.

Returns the expected waiting time.

public double getJumpRate()

Returns the currently used transition rate.

Returns the transition rate.

public double getAWT()

Returns the currently used acceptable waiting time.

March 17, 2014 ProbInAWT 55

Returns the acceptable waiting time.

public double getTimeHorizon()

Returns the currently used time horizon.

Returns the time horizon.

public int getNumTransitions()

Returns the currently used number of transitions.

Returns the current number of transitions.

public void init (double awt, double jumpRate, double timeHorizon, int

numTransitions)

Initializes this object with a new acceptable waiting time, transition rate, time horizon, and
number of transitions.

Parameters

awt the new acceptable waiting time.

jumpRate the new transition rate.

timeHorizon the new time horizon.

numTransitions the new number of transitions.

56 March 17, 2014

ProbInAWTBinomial

Computes information on the conditional distribution of the waiting time, for a deterministic
horizon.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class ProbInAWTBinomial implements ProbInAWT

March 17, 2014 57

ProbInAWTGamma

Computes information on the conditional distribution of the waiting time in the case of a
random horizon.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class ProbInAWTGamma implements ProbInAWT

58 March 17, 2014

CallCenterCounters

Represents statistical counters computing sums for individual replications of a simulation of
a call center using a discrete-time Markov chain. After a simulator constructs an instance of
this class, it calls init (CallCenterCTMC, double, int) at the beginning of each replica-
tion, and then uses collectStat (CallCenterCTMC, TransitionType) for each simulated
transition. At the end of the simulation, the method updateStatOnTime (CallCenterCTMC)

should also be called.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class CallCenterCounters implements Cloneable

Constructors

public CallCenterCounters (CallCenterCTMC ctmc, double[] awt, boolean

randomHorizon)

Constructs a new set of call center counters using the given CTMC to obtain the number
of call types, agent groups, etc. The argument awt contains a vector giving the acceptable
waiting times for estimating the expected number of calls waiting less than a given time limit.
Element sK ′ + k of this array gives the sth AWT for calls of type k if k = 0, . . . ,K − 1, or
for calls of all types if k = K. Here, K ′ = K + 1 if K > 1, or K otherwise. This can be
null if performance measures based on acceptable waiting times are not estimated.

The boolean randomHorizon is set to true if we are simulating on a random horizon, or
false for deterministic horizon. The horizon type has an impact on how some performance
measures are estimated.

Parameters

ctmc the call center model.

awt the vector of acceptable waiting times.

randomHorizon true for a random time horizon, false for a deterministic horizon.

public CallCenterCounters (CallCenterCTMC ctmc, double[] awt, double[]

gawt, boolean randomHorizon, double[] jumpRate,

int[] startingTransition, int counterPeriod)

Similar to constructor CallCenterCounters (CallCenterCTMC, double[], boolean), for
a case with multiple periods. The additional argument gawt plays a role similar to awt, but
contains thresholds used for all periods; this is used to estimate performance measures based
of acceptable waiting times over the entire horizon while awt is used for the estimates over
a single period.

The last three arguments are used to estimate performance measures for calls arriving into
and leaving the system during different periods. The argument jumpRate contains a (P +1)-
dimensional vector of transition rates for each of the P + 1 period-specific CTMCs; there

http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html

March 17, 2014 CallCenterCounters 59

is P CTMCs for the main periods, plus one CTMC for the wrap-up period. The argument
startingTransition, on the other hand, is a (P + 1)-dimensional vector giving the start-
ing transition for each period; this is updated as the simulation is made. The argument
counterPeriod gives the index of the period for which this set of counters computes sums.

Parameters

ctmc the call center model.

awt the vector of period-specific acceptable waiting times.

gawt the vector of global acceptable waiting times.

randomHorizon true for a random time horizon, false for a deterministic horizon.

jumpRate the per-period transition rates.

startingTransition the starting transitions for each period.

counterPeriod the period concerned by this counter.

Methods

public void init (CallCenterCTMC ctmc, double timeHorizon, int ntr)

Initializes this set of counters using the given call center CTMC ctmc, for a simulation
over a time horizon timeHorizon with ntr transitions. For random horizon, the number of
transitions is ignored.

Parameters

ctmc the call center CTMC.

timeHorizon the time horizon.

ntr the number of transitions to simulate.

public void collectSum (boolean lastTimeAvg, boolean statAWTG,

CallCenterCounters... counters)

For each counter of this set, replaces the current value with the sum of the values of all cor-
responding counters in the sets given by the array counters. This can be used to aggregate
statistics from successive individual periods into a single counter.

The lastTimeAvg boolean determines if the last counter in the given array, which usually
corresponds to counters concerning the wrap-up period, is taken into account when summing
the time-average queue size and number of agents. This has no impact on other statistics.

If statAWTG is set to true, the number of calls waiting less than the acceptable waiting
time, stored in fields numServedBeforeAWT and numAbandonedBeforeAWT, are determined
by summing the numbers in fields numServedBeforeAWTG and numAbandonedBeforeAWTG
in the counters of counters. If statAWTG is false, the fields numServedBeforeAWT and
numAbandonedBeforeAWT are used instead.

60 CallCenterCounters March 17, 2014

Parameters

lastTimeAvg determines whether the last element in array counters is taken into account
for average queue size and number of agents.

statAWTG determines how the number of calls waiting less than the acceptable waiting
time is summed up.

counters the array of counters.

public void collectStat (CallCenterCTMC ctmc, TransitionType type)

Collects statistics concerning the last transition of the CTMC ctmc with type type by
updating the appropriate counters.

Parameters

ctmc the call center CTMC.

type the transition type.

public void updateStatOnTime (CallCenterCTMC ctmc)

Updates the arrays queueSize, busyAgents, and totalAgents for this set of counters from
the corresponding accumulates computing time-averages for the queue size, number of busy
agents, and total number of agents, respectively. Note that the third quantity changes with
time only in a multi-period setup.

Parameter

ctmc the call center CTMC.

public CallCenterCounters clone()

Returns a copy of this set of counters. This method creates a clone of each internal array in
the set of counters.

public String toString()

Returns a string giving the number of counted arrivals, abandoned calls, and calls waiting
less than the acceptable waiting time.

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

March 17, 2014 61

CallCenterStat

Regroups tallies collecting observations obtained from independent replications of a simu-
lation using a CTMC in the case of an individual period. After an object of this class is
constructed, it can be initialized using init (CallCenterCTMC). While transitions are sim-
ulated, a set of counters represented by an instance of CallCenterCounters is updated. At
the end of the replication, the set of counters is given to the addObs (CallCenterCounters,

double) method of this class to collect the observations. Statistical collectors are regrouped
into matrices concerning types of performance measures. The method getMatrixOfStat-

Probes (PerformanceMeasureType) can be used to obtain the matrix of statistical probes
for a given type of performance measure.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class CallCenterStat

Constructor

public CallCenterStat (CallCenterCTMC ctmc, int ns, boolean keepObs)

Constructs a new set of statistical probes based on the CTMC model ctmc, with ns matrices
of acceptable waiting times. The boolean keepObs indicates if observations are kept while
collecting statistics.

Parameters

ctmc the call center CTMC.

ns the number of matrices of acceptable waiting times.

keepObs determines if collected observations are kept.

Methods

public Tally getStatNumFalseTransitions()

Returns the tally for statistics on the number of false transitions, also called self jumps.

Returns the tally for collecting the number of false transitions.

public Tally getStatNumTransitions()

Returns the tally for statistics on the number of simulated transitions.

Returns the tally for collecting the number of simulated transitions.

public PerformanceMeasureType[] getPerformanceMeasures()

Returns an array of types of performance measures for which statistics are collected by this
object.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/Tally.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/Tally.html

62 CallCenterStat March 17, 2014

Returns the array of performance measures.

public Map<PerformanceMeasureType, MatrixOfStatProbes<?>>

getMatricesOfStatProbes()

Returns a map associating each supported type of performance measure with a matrix of
statistical probes.

Returns the map associating the performance measures with matrices of statistical
probes.

public MatrixOfStatProbes<?> getMatrixOfStatProbes (PerformanceMeasureType

m)

Returns the matrix of statistical probes corresponding to the performance measure type m.

Parameter

m the type of the performance measure.

Returns the associated matrix of statistical probes.

public void init (CallCenterCTMC ctmc)

Initializes the statistical probes in this object. The given CTMC model is used for initializing
the arrival rates which are used for some statistics.

public void initLambda (CallCenterCTMC[] ctmcs)

Initializes the arrival rates used by this statistical collector by summing the arrival rates
for all the CTMCs in the given array. The arrival rates are used by addObs (CallCenter-
Counters, double) to compute the expected number of arrivals during the considered pe-
riod. By default, the arrival rates are initialized from the parameters of the CTMC given to
the init (CallCenterCTMC) method. With this method, the arrival rates can be replaced
with sums over several periods, to get the total arrival rate over all periods of an horizon.

Parameter

ctmcs the array of CTMCs.

public void addObs (CallCenterCounters counters, double periodDuration)

Adds new observations obtained from counters to the statistical probes managed by this
object. The period duration periodDuration is used to multiply the arrival rates in order
to get the expected number of arrivals over the considered period.

Parameters

counters the counters to get statistics from.

periodDuration the period duration.

public void formatReport (Map<String, Object> evalInfo, double

numExpectedTransitions)

Adds statistical information about the number of transitions to a map of evaluation in-
formation. Usually, the map is obtained using ContactCenterEval.getEvalInfo(), and
generated information is displayed in reports produced by a simulator.

http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfStatProbes.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfStatProbes.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html

March 17, 2014 CallCenterStat 63

Parameters

evalInfo the evaluation information.

numExpectedTransitions the expected number of transitions.

64 March 17, 2014

RateChangeTransitions

Provides methods to determine transitions at which arrivl rates change in order to have
piecewise-constant arrival rates in the CTMC simulator. By default, a simulator based on
an implementation of CallCenterCTMC uses a fixed arrival rate for each call type. Each
replication, N(T) transitions are simulated. This class provides methods to determine how
many transitions to simulate with each arrival rate, and generate a sequence of (t, k, λk)
tuples. Each tuple indicates that the arrival rate for call type k changes to λk at transition
number t.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class RateChangeTransitions

Constructor

public RateChangeTransitions (CallCenter cc)

Constructs a new object for managing changes of arrival rates for the call center cc. This
constructor collects the arrival rates and time of changes for any call type with an arrival
processs having piecewise-constant arrival rate. Any call type with an arrival process other
than PoissonArrivalProcessWithTimeIntervals is ignored; the associated arrival rate
will remain constant with time.

Parameter

cc the call center from which to collect the information.

Methods

public boolean hasChanges()

Returns true if and only if the arrival rate for at least one call type of the associated model
changes with time.

public double[][] getTimeDist (double startingTime, double endingTime)

Returns a 2D array with one row per call type. Row k of the returned array is created by
calling getTimeDist (double[], double, double) with the time of changes for call type
k, and the given values of startingTime and endingTime.

Parameters

startingTime the starting time a.

endingTime the ending time b.

March 17, 2014 RateChangeTransitions 65

Returns the 2D array of time distributions.

public static double[] getTimeDist (double[] times, double startingTime,

double endingTime)

Constructs an array of length L + 1 giving the proportion of interval [a, b) taken by each
interval [tj−1, tj). Let 0 ≤ t0 < · · · < tL−1 <∞ be an increasing sequence of times. For each
j = 0, . . . , L, the method sets the element j of the returned array to

max(min(tj , b)−max(tj−1, a), 0)/(b− a).

Here, t−1 = 0 and tL = ∞. Each element of the returned array is in [0, 1], and the sum
of the values is 1. Element j of the returned array gives the proportion of transitions, in a
uniformized CTMC, that needs to be simulated with arrival rate λj corresponding to time
interval [tj , tj+1). The arrival rate is always 0 with time t < t0 and t ≥ tL−1.

Parameters

times the sequence of times t0, . . . , tL−1.

startingTime the starting time a.

endingTime the ending time b.

Returns an array containing the proportion of total time for each interval.

public RateChangeInfo[] generateRateChanges (RandomStream stream, double[][]

timeDist, int ntr)

Generates and returns a sequence of changes of arrival rates for simulating a uniformized
CTMC with time-varying arrival rates for one or more call types. For each call type k
for which timeDist[k] is non-null, this method generates a vector from the multinomial
distribution giving the number of transitions spent with each arrival rate. The vectors are
generated using random stream stream, and parameter n of the multinomials is ntr, and the
vector of probabilities for call type k is given by timeDist[k]. The method then creates a
squence of objects representing change of arrival rates, and sorts these objects in increasing
number of transition.

Parameters

stream the random stream used to generate random vectors.

timeDist the time distribution for each call type.

ntr the total number of transitions.

Returns the sequence of changes of arrival rates.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

66 March 17, 2014

RateChangeInfo

Represents information about a change in the arrival rate.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class RateChangeInfo implements Comparable<RateChangeInfo>

Constructor

public RateChangeInfo (int tr, int k, double rate)

Constructs a new object representing a change to arrival rate rate of call type k at transition
number tr.

Parameters

tr the transition number at which the rate is supposed to change.

k the affected call type.

rate the new arrival rate.

Methods

public int getTransition()

Returns the transition number.

public int getK()

Returns the index of the call type.

public double getRate()

Returns the new arrival rate.

public int compareTo (RateChangeInfo o)

Compares this object with another object o. This comparison method orders objects using
the transition number, and the call type for objects with the same transition number.

http://docs.oracle.com/javase/6/docs/api/java/lang/Comparable.html

March 17, 2014 67

AbstractCallCenterCTMCSim

Base class for simulators of call centers using a continuous-time Markov chain. Any instance
of this class encapsulates a CTMC, statistical counters concerning replications, and statistical
probes for collecting observations for the replications. The simulator is constructed from an
instance of CallCenterParams which is usually obtained from a XML parameter file.

package umontreal.iro.lecuyer.contactcenters.ctmc;

public abstract class AbstractCallCenterCTMCSim extends

AbstractContactCenterSim

implements ContactCenterSimWithObservations

Constructor

public AbstractCallCenterCTMCSim (CallCenterParams ccParams,

CTMCRepSimParams simParams, int mp)

throws CallCenterCreationException,

CTMCCreationException

Constructs a new simulator using call center parameters ccParams, experiment parameters
simParams, and concentrating on main period mp of the model.

Parameters

ccParams the parameters of the call center.

simParams the parameters of the experiment.

mp the index of the simulated main period.

Throws

CallCenterCreationException if an error occurs during the creation of the call center.

CTMCCreationException if an exception occurs during the creation of the CTMC.

Methods

public abstract void simulate (RandomStream stream1, double timeHorizon,

int n)

public abstract double getNumExpectedTransitions()

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

68 March 17, 2014

BasicCallCenterCTMCSim

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class BasicCallCenterCTMCSim extends AbstractCallCenterCTMCSim

March 17, 2014 69

IntMCallCenterCTMCSim

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class IntMCallCenterCTMCSim extends AbstractCallCenterCTMCSim

70 March 17, 2014

CallCenterStatMP

Provides a merged view of several single-period CallCenterStat instances. More specif-
ically, for each supported type of performance measure, a matrix of tallies resulting from
the concatenation of all single-column matrices concerning the same type of performance
measure can be obtained through this object. An object of this class is constructed using
an array of CallCenterStat instances. Any update to these sets of statistical probes are
reflected on the merged view. Matrices of statistical probes regrouping statistics for each
separate period, for a given type of performance measure, can be obtained by using the
method getMatrixOfStatProbes (PerformanceMeasureType).

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class CallCenterStatMP

Constructor

public CallCenterStatMP (CallCenterCTMC[] ctmc, CallCenterStat[] ccStat)

Constructs a new set of statistical probes from the given (P + 1)-dimensional arrays of
CTMCs and period-specific statistical counters. The last element of ctmc corresponds to
the CTMC for the wrap-up period while the last element of ccStat contains the collectors
concerning the complete horizon. All other elements concern a specific main period.

Parameters

ctmc the array of CTMCs.

ccStat the array of statistical probes.

Method

public void formatReport (Map<String, Object> evalInfo, double[]

numExpectedTransitions)

Adds statistical information about the number of transitions during each period to a map of
evaluation information. Usually, the map is obtained using ContactCenterEval.getEval-
Info(), and generated information is displayed in reports produced by a simulator.

Parameters

evalInfo the evaluation information.

numExpectedTransitions the expected number of transitions, for each period.

http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html

March 17, 2014 71

AbstractCallCenterCTMCSimMP

package umontreal.iro.lecuyer.contactcenters.ctmc;

public abstract class AbstractCallCenterCTMCSimMP extends

AbstractContactCenterSim

implements ContactCenterSimWithObservations

Methods

public abstract void simulate (RandomStream stream1, int n)

public abstract double[] getNumExpectedTransitions()

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

72 March 17, 2014

BasicCallCenterCTMCSimMP

package umontreal.iro.lecuyer.contactcenters.ctmc;

public class BasicCallCenterCTMCSimMP extends AbstractCallCenterCTMCSimMP

March 17, 2014 73

Package umontreal.iro.lecuyer.contactcenters.ctmc.splitmerge

Provides an implementation of a split and merge scheme for simulating a call center with
different staffing vectors simultaneously.

74 March 17, 2014

CallCenterCTMCSimSplit

package umontreal.iro.lecuyer.contactcenters.ctmc.splitmerge;

public class CallCenterCTMCSimSplit extends AbstractCallCenterCTMCSim

March 17, 2014 REFERENCES 75

References

[1] E. Buist, W. Chan, and P. L’Ecuyer. Speeding up call center simulation and optimiza-
tion by Markov chain uniformization. In Proceedings of the 2008 Winter Simulation
Conference, pages 1652–1660, Pistacaway, New-Jersey, 2008. IEEE Press.

	Package umontreal.iro.lecuyer.contactcenters.ctmc
	CallCenterCTMC
	CallCenterCTMCWithQueues
	TransitionType
	TransitionListener
	AgentGroupSelector
	SimpleGroupSelector
	ListGroupSelector
	PriorityGroupSelector
	SimpleQueueSelector
	WaitingQueueSelector
	ListQueueSelector
	PriorityQueueSelectorQS
	PriorityQueueSelectorWT
	CallCenterCTMCQueues
	CircularIntArray
	CCEvent
	CCEventFactory
	FalseTransitionEvent
	LookupEvent
	EventWithSelection
	EventWithTest
	CallCenterCTMC11
	CallCenterCTMC11WithQueues
	CallCenterCTMCKI
	CallCenterCTMCKIWithQueues
	CTMCCreationException
	QueueSizeThresh
	StateThresh
	InitStateThresh
	ProbInAWT
	ProbInAWTBinomial
	ProbInAWTGamma
	CallCenterCounters
	CallCenterStat
	RateChangeTransitions
	RateChangeInfo
	AbstractCallCenterCTMCSim
	BasicCallCenterCTMCSim
	IntMCallCenterCTMCSim
	CallCenterStatMP
	AbstractCallCenterCTMCSimMP
	BasicCallCenterCTMCSimMP

	Package umontreal.iro.lecuyer.contactcenters.ctmc.splitmerge
	CallCenterCTMCSimSplit

