
User’s Guide for ContactCenters Simulation Library

API Specification for the Blend/multi-skill call center
simulator

Version: March 17, 2014

Eric Buist

This is the API specification for the generic blend/multi-skill simulator using the Con-
tactCenters library. This API describes the classes of this simulator, as well as its extensions.

March 17, 2014 CONTENTS i

Contents

Package umontreal.iro.lecuyer.contactcenters.msk 2

CallCenterSim . 4

CallTracer . 6

CallCenterParamsConverter . 7

ParameterEstimator . 8

AbstractCallCenterSim . 9

CallCenterSimUtil . 11

OldCallCenterParamsConverter . 12

PeriodCovarianceEstimator . 13

CallCenterSimStrat . 14

CallCenterSimRQMC . 16

Package umontreal.iro.lecuyer.contactcenters.msk.model 18

CallCenter . 19

CallCenterUtil . 37

MakeAgentAvailableEvent . 39

CallFactoryStreamType . 40

ArrivalProcessStreamType . 41

DialerStreamType . 42

AgentGroupStreamType . 43

RandomStreams . 44

Call . 49

CallFactory . 55

ServiceTimesManager . 64

RandomTypeCallFactory . 68

OutboundCallFactory . 70

AgentGroupManager . 72

AgentGroupManagerWithStaffing . 78

AgentGroupManagerWithSchedule . 80

AgentGroupManagerWithAgents . 83

TimeInterval . 85

ShiftPart . 87

ii CONTENTS March 17, 2014

ScheduleShift . 89

ShiftEvent . 91

AgentInfo . 93

CallSourceManager . 94

ArrivalProcessManager . 95

DialerManager . 98

DialerObjects . 101

CallNotifierForBadContactMismatchRate . 102

CallNotifierForAgentsMove . 103

DialerLimit . 104

DialerListWithLimits . 105

RouterManager . 106

CallCenterRoutingStageInfo . 116

RoutingCase . 117

CallTransferManager . 119

VirtualHoldManager . 120

SegmentInfo . 121

CallCenterCreationException . 126

CallFactoryCreationException . 127

ArrivalProcessCreationException . 128

DialerCreationException . 129

RouterCreationException . 130

Package umontreal.iro.lecuyer.contactcenters.msk.simlogic 131

SimLogic . 132

SimLogicListener . 136

SimLogicBase . 137

RepLogic . 138

BatchMeansLogic . 140

March 17, 2014 CONTENTS iii

Package umontreal.iro.lecuyer.contactcenters.msk.stat 142

AWTPeriod . 143

StatPeriod . 144

MeasureType . 146

CallCenterMeasureManager . 149

CallByCallMeasureManager . 154

BusyAgentsChecker . 156

QueueSizeChecker . 157

CallCounter . 158

OutboundCallCounter . 159

CallCenterStatProbes . 160

AbstractCallCenterStatProbes . 163

SimCallCenterStat . 164

ChainCallCenterStat . 165

StatType . 166

StatCallCenterStat . 167

CovFMMCallCenterStat . 169

TimeNormalizeType . 171

CallCenterStatWithSlidingWindows . 172

Package umontreal.iro.lecuyer.contactcenters.msk.cv 174

CVBetaFunction . 175

CVCallCenterStat . 176

ControlVariable . 178

NumArrivalsCV . 180

March 17, 2014 CONTENTS 1

Package umontreal.iro.lecuyer.contactcenters.msk.conditions 181

Condition . 182

OrCondition . 183

AndCondition . 184

QueueSizesCondition . 185

QueueSizesWithTypesCondition . 186

NumFreeAgentsCondition . 187

TwoIndicesInfo . 188

IndexThreshInfo . 189

FracBusyAgentsCondition . 190

FracBusyAgentsWithTypesCondition . 191

QueueSizeThreshCondition . 192

QueueSizeThreshWithTypeCondition . 195

NumFreeAgentsThreshCondition . 196

QueueSizeThreshWithTypeCondition . 195

NumFreeAgentsThreshCondition . 196

FracBusyAgentsThreshCondition . 197

ConditionUtil . 198

Package umontreal.iro.lecuyer.contactcenters.msk.spi 202

DialerPolicyFactory . 203

RouterFactory . 204

ArrivalProcessFactory . 205

2 March 17, 2014

Package umontreal.iro.lecuyer.contactcenters.msk

Provides a generic simulator for multi-skill and blend call centers. ContactCenters can
be used directly to construct simulators for arbitrarily complex contact centers. See the
examples.pdf document for examples of this. However, this requires programming and the
resulting programs can become complex. This package provides a generic simulator adapted
for call centers with multiple call types and agent groups, and using XML configuration
files. It can be used for many simulation scenarios, and estimates a large set of performance
measures.

This reference documentation covers all classes and methods in the simulator. It is
targeted at developers who are using the tool in a program, or extending it. See the
guidemsk.pdf document for a description of the model implemented by this simulator, and
examples showing how to configure and use the tool from a user perspective.

The simulator implemented in this package is split into several components representing
the model, the simulation logic, and the system managing statistics. The model regroups
every entity of the call center, e.g., calls, agent groups, waiting queues, routers, etc. It also
specifies how random numbers are generated throughout the simulation.

The simulation logic contains the necessary instructions to run the model in order to
generate results. It defines the concept of a step and assigns statistical periods to calls. For
a simulation with independent replications, each step corresponds to a replication while the
statistical period is usually the period of arrival. For a simulation of a single period as it
was infinite in the model, steps correspond to time intervals of a single long replication, and
the statistical period is always 0.

The system managing statistics, on the other hand, is made of observers, and matrices
of counters. Observers are registered to collect information about every call leaving the
system, and the evolution of agent groups and waiting queues. All this information is used
to update matrices of counters whose rows usually correspond to call types or agent groups,
and columns, to periods. At the end of each simulation step, the values of the counters are
added to matching matrices of statistical collectors. After the simulation is done, matrices
of averages, sample variances, and other statistics can be obtained.

Figure 1 shows a UML diagram of the simulator’s main classes. The model is implemented
by classes in package umontreal.iro.lecuyer.contactcenters.msk.model, CallCenter
being the main class. The simulation logics are implemented in package umontreal.

iro.lecuyer.contactcenters.msk.simlogic with the SimLogic interface representing any
simulation logic. The management of statistics is in package umontreal.iro.lecuyer.

contactcenters.msk.stat. Matrices of counters are encapsulated in an object of Call-

CenterMeasureManager, while matrices of statistical probes are stored in an instance of a
class implementing the CallCenterStatProbes. See the documentation of these packages
for more information about these components and the classes.

The simulator provides three packages in addition to the packages providing the imple-
mentation for the main components. The package umontreal.iro.lecuyer.contactcenters.
msk.cv provides an implementation of control variates to reduce the variance in simulations.

March 17, 2014 Package umontreal.iro.lecuyer.contactcenters.msk 3

CallCenterSim

CallCenter

SimLogic

CallCenterMeasureManager CallCenterStatProbes

RepLogic BatchMeansLogic

Figure 1: UML diagram of the generic blend/multi-skill simulator

The package umontreal.iro.lecuyer.contactcenters.msk.spi provides interfaces used
when integrating a custom arrival process, routing or dialing policy into the simulator. The
package umontreal.iro.lecuyer.contactcenters.msk.conditions implement conditions
that can be used by some routing and dialing policies.

The class CallCenterSim represents the simulator as a whole, and implements the inter-
face ContactCenterSim, which provides methods to perform simulations and obtain statistics
in a standardized way. It provides a main method that can be used to call the simulator
from the command line. The simulator can also be called from Java code.

4 March 17, 2014

CallCenterSim
Encapsulates all the components of the blend and multi-skill call center simulator, and
provides methods to perform simulations and obtain results. This class uses the CallCenter
class to implement a model, and a SimLogic implementation for the simulation logic. It also
uses an implementation of CallCenterStatProbes for statistical collecting.

An object of this class is constructed using parameter objects usually read from XML files.
The parameters of the model are stored into an instance of CallCenterParams, while the
parameters of the experiment are encapsulated into an object of class SimParams. The classes
CallCenterParamsConverter and SimParamsConverter can be used to read parameters
from XML files.

After the simulator is constructed, it can be accessed in a standardized way through the
ContactCenterEval interface, which defines methods to obtain global information about
the call center, perform simulations, and retrieve matrices of statistics.

The CallCenterSim class also provides a main method accepting as arguments the name
of the parameter files, performing a simulation, and showing results. This permits the
simulator to be launched from the command-line.

package umontreal.iro.lecuyer.contactcenters.msk;

public class CallCenterSim extends AbstractCallCenterSim

implements ContactCenterSimWithObservations

Constructors

public CallCenterSim (CallCenterParams ccParams, SimParams simParams)

throws CallCenterCreationException
Constructs a new call center simulator using call center parameters ccParams, and simulation
parameters simParams.
This calls AbstractCallCenterSim.createModel (Simulator, CallCenterParams, Random-
Streams) to create the model, AbstractCallCenterSim.createSimLogic (CallCenter,
SimParams) to create the simulation logic.
Parameters

ccParams the call center parameters.

simParams the simulation parameters.

public CallCenterSim (CallCenterParams ccParams, SimParams simParams,

RandomStreams streams) throws

CallCenterCreationException
Constructs a new call center simulator using call center parameters ccParams, simulation
parameters simParams, and random streams streams.
This calls AbstractCallCenterSim.createModel (Simulator, CallCenterParams, Random-
Streams) to create the model, AbstractCallCenterSim.createSimLogic (CallCenter,
SimParams) to create the simulation logic.

March 17, 2014 CallCenterSim 5

Parameters

ccParams the call center parameters.

simParams the simulation parameters.

streams the random streams used by the simulator.

public CallCenterSim (Simulator sim, CallCenterParams ccParams, SimParams

simParams, RandomStreams streams) throws

CallCenterCreationException

Similar to CallCenterSim (CallCenterParams, SimParams, RandomStreams), with the
given simulator sim.

public CallCenterSim (Simulator sim, CallCenterParams ccParams, SimParams

simParams) throws CallCenterCreationException

Similar to CallCenterSim (CallCenterParams, SimParams), with the given simulator
sim.

Method

public static void main (String[] args)

Main method allowing to run this class from the command-line. The needed command-line
arguments are the name of an XML file containing the non-stationary simulation parameters
(root element mskccparams), and the name of a second XML file containing the simulation
parameters (root elements batchsimparams or repsimparams).

Parameter

args the command-line arguments.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

6 March 17, 2014

CallTracer

Observer sending any notified call to a contact trace facility. An object of this class is
constructed using a ContactTrace instance as well as a SimLogic object. Each time a
call exits the simulated system, a line is written to the associated trace, using information
obtained from the contact object, and the simulation logic.

package umontreal.iro.lecuyer.contactcenters.msk;

public class CallTracer implements ExitedContactListener, NewContactListener

Constructor

public CallTracer (SimLogic simLogic, ContactTrace trace)

Creates a new call tracer from the given simulation logic and trace.

Parameters

simLogic the simulation logic used to get step and period for the trace.

trace the object representing the call-by-call trace facility.

Methods

public SimLogic getSimLogic()

Returns the simulation logic associated with this call tracer.

public ContactTrace getContactTrace()

Returns the associated facility for contact-by-contact trace.

public void register()

Registers this call tracer with the model associated with the simulation logic returned by
getSimLogic(). After this method is called, this listener is notified about every contact
leaving the simulated system as well as any failed outbound call.

public void unregister()

Unregisters this call tracer with the model associated with the simulation logic returned by
getSimLogic().

March 17, 2014 7

CallCenterParamsConverter

package umontreal.iro.lecuyer.contactcenters.msk;

public class CallCenterParamsConverter extends JAXBParamsConverter<

CallCenterParams>

8 March 17, 2014

ParameterEstimator
Estimates the parameters of a call center model. This class defines a main method that
loads a parameter file, estimates the parameters for probability distribution with associated
data, and writes a new file for the same model, with the estimated parameters.

package umontreal.iro.lecuyer.contactcenters.msk;

public class ParameterEstimator

Methods

public static void setParamsFromDefault (ArrivalProcessParams par,

ArrivalProcessParams defaultPar)

If the basic parameters of arrival process par are not set, sets them to those of the default
arrival process defPar.

Parameters

par parameters of the given arrival process

defaultPar parameters of the default arrival process

public static boolean estimateParameters (CallCenterParams ccParams)

throws

DistributionCreationException

Estimates the parameters for each element in the call center parameter objects for which
raw observations are specified. Returns true if at least one parameter has been estimated
by this method.

Parameter

ccParams the call center parameters.

Returns true if method was successfull.

Throws

DistributionCreationException if an error occurs during the creation of a distribution.

public static void main (String[] args)

Main method of this class taking, as arguments, the names of the input and the output files.

Parameter

args the arguments given to the program.

Throws

IOException if an I/O error occurs when reading or writing files.

ParserConfigurationException if an error occurs when parsing the XML file.

SAXException if an error occurs with SAX, when parsing the XML file.

TransformerException if an error occurs when creating the output XML file.

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

March 17, 2014 9

AbstractCallCenterSim

package umontreal.iro.lecuyer.contactcenters.msk;

public abstract class AbstractCallCenterSim extends AbstractContactCenterSim

implements ObservableContactCenterSim

Constructors

public AbstractCallCenterSim (CallCenterParams ccParams, SimParams

simParams) throws

CallCenterCreationException
Constructs a new call center simulator using call center parameters ccParams, and simulation
parameters simParams.
This calls createModel (Simulator, CallCenterParams, RandomStreams) to create the
model, createSimLogic (CallCenter, SimParams) to create the simulation logic.
Parameters

ccParams the call center parameters.

simParams the simulation parameters.

public AbstractCallCenterSim (CallCenterParams ccParams, SimParams

simParams, RandomStreams streams) throws

CallCenterCreationException
Constructs a new call center simulator using call center parameters ccParams, simulation
parameters simParams, and random streams streams.
This calls createModel (Simulator, CallCenterParams, RandomStreams) to create the
model, createSimLogic (CallCenter, SimParams) to create the simulation logic.
Parameters

ccParams the call center parameters.

simParams the simulation parameters.

streams the random streams used by the simulator.

public AbstractCallCenterSim (Simulator sim, CallCenterParams ccParams,

SimParams simParams) throws

CallCenterCreationException
Similar to AbstractCallCenterSim (CallCenterParams, SimParams), with the given sim-
ulator sim.

public AbstractCallCenterSim (Simulator sim, CallCenterParams ccParams,

SimParams simParams, RandomStreams streams)

throws CallCenterCreationException
Similar to AbstractCallCenterSim (CallCenterParams, SimParams, RandomStreams),
with the given simulator sim.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html

10 AbstractCallCenterSim March 17, 2014

Methods

@Deprecated public CallCenter getModel()

Use getCallCenter() instead.

public CallCenter getCallCenter()

Returns a reference to the model used by this simulator.

Returns a reference to the model.

public SimLogic getSimLogic()

Returns a reference to the simulation logic used by this simulator.

Returns a reference to the simulation logic.

protected CallCenter createModel (Simulator sim, CallCenterParams ccPs,

RandomStreams streams) throws

CallCenterCreationException

Constructs and returns the model of the call center used by this simulator. By default, this
method constructs an instance of the CallCenter class, calls the CallCenter.create()
method, and returns the resulting model object.

Parameters

ccPs the parameters of the call center.

streams the random streams.

Returns the constructed model.

protected SimLogic createSimLogic (CallCenter model, SimParams simParams)

Constructs and returns a SimLogic implementation for the simulation logic, using the given
model and simulation parameters simParams.

By default, this method creates a RepLogic instance if simParams is an instance of RepSim-
Params, a BatchMeansLogic if simParams is an instance of BatchSimParams, and throws
an exception otherwise.

Parameters

model the simulation model.

simParams the simulation parameters.

Returns the simulation logic.

http://docs.oracle.com/javase/6/docs/api/java/lang/Deprecated.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html

March 17, 2014 11

CallCenterSimUtil

package umontreal.iro.lecuyer.contactcenters.msk;

public class CallCenterSimUtil

Methods

public static int getRequiredNewSteps (Map<PerformanceMeasureType,

MatrixOfStatProbes<?>> ccStat, List

<SequentialSamplingParams> seqSamp,

boolean verbose)

Computes the number of additional replications or batches required for reaching a certain
precision.

Parameters

ccStat the statistical probes of the call center.

seqSamp the parameters for sequential sampling.

verbose determines if the method logs information about the number of required additional
observations, for each tested performance measure.

Returns the number of additional observations required.

public static int checkCpuTimeLimit (double cpuTime, double limit, int

steps, int nb, boolean verbose)

Corrects the number of observations required to approximately enforce the CPU time limit.
This method estimates the CPU time for computing one observation by dividing the CPU
time elapsed by nb, and estimates the maximal number of observations allowed without
exceeding the CPU time limit. The method then returns this number, or nb if the limit is
greater than nb.

Parameter

nb the computed number of additional observations.

Returns the corrected number of additional observations.

http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfStatProbes.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

12 March 17, 2014

OldCallCenterParamsConverter

package umontreal.iro.lecuyer.contactcenters.msk;

public class OldCallCenterParamsConverter

March 17, 2014 13

PeriodCovarianceEstimator

package umontreal.iro.lecuyer.contactcenters.msk;

public class PeriodCovarianceEstimator implements MatrixOfObservationListener

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfObservationListener.html

14 March 17, 2014

CallCenterSimStrat
Defines a call center simulator using stratified sampling. This simulator stratifies on B, the
busyness factor for inbound calls, and uses proportional allocation.

package umontreal.iro.lecuyer.contactcenters.msk;

public class CallCenterSimStrat extends AbstractCallCenterSim

Constructor

public CallCenterSimStrat (CallCenterParams ccParams, StratSimParams

simParams) throws CallCenterCreationException
Constructs a new stratified call center simulator using the call center parameters ccParams,
the simulation parameters simParams, and simulating numStrata strata.
Parameters

ccParams the call center parameters.

simParams the simulation parameters.

Methods

public void setProportionalAllocation()
Initializes the number of replications in each stratum for proportional allocation. This sets
the number of replications ns to n/m, where n is the total number of replications and m is
the number of strata.

public void setOptimalAllocation (PerformanceMeasureType m, int r, int c,

boolean cv)
Sets the number of replications in each stratum for optimal allocation minimizing the vari-
ance of performance measure of type m, at row r and column c. The boolean cv determines
if control variables are used. One must call makePilotRuns() before calling this method.
Parameters

m the type of performance measure.

r the row index.

c the column index.

cv determines if control variables will be used.

public static void main (String[] args) throws IOException, JAXBException,

CallCenterCreationException
Main method allowing to run this class from the command-line. The needed command-line
arguments are the name of an XML file containing the non-stationary simulation parameters
(root element mskccparams), and the name of a second XML file containing the simulation
parameters (root elements batchsimparams or repsimparams).

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/io/IOException.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/bind/JAXBException.html

March 17, 2014 CallCenterSimStrat 15

Parameter

args the command-line arguments.

16 March 17, 2014

CallCenterSimRQMC

Extends the CallCenterSim class for randomized Quasi-Monte Carlo simulation.

package umontreal.iro.lecuyer.contactcenters.msk;

public class CallCenterSimRQMC extends AbstractCallCenterSim

Constructor

public CallCenterSimRQMC (CallCenterParams ccParams, RepSimParams

simParams, int numPoints) throws

CallCenterCreationException

Constructs a new randomized Quasi-Monte Carlo call center simulator using the call center
parameters ccParams, and simulation parameters simParams, with a point set containing
numPoints points.

Parameters

ccParams the call center parameters.

simParams the simulation parameters.

numPoints the number of points in the point set.

Methods

public PointSet getPointSet()

Returns the point set used by this simulator.

Returns the point set being used.

protected PointSet createPointSet (int numPoints)

Creates the point set used for Quasi-Monte Carlo, which contains numPoints points. By
default, this creates a Sobol sequence with one dimension, and containing numPoints points.

Parameter

numPoints the number of points in the point set.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/hups/PointSet.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/hups/PointSet.html

March 17, 2014 CallCenterSimRQMC 17

Returns the constructed point set.

protected void installPointSet()

Configures the simulator for generating random numbers from the point set rather than from
the default random streams. By default, this changes the busyness generator to obtain the
busyness factor from the first dimension of the point set.

protected void uninstallPointSet()

Restors the simulator to stop using the point set.

protected void randomizePointSet()

Randomize the point set for a new macro-replication. By default, this applies an affine
matrix scrambbling followed by a random digital shift.

public static void main (String[] args) throws IOException,

CallCenterCreationException, JAXBException

Main method allowing to run this class from the command-line. The needed command-line
arguments are the name of an XML file containing the non-stationary simulation parameters
(root element mskccparams), and the name of a second XML file containing the simulation
parameters (root elements batchsimparams or repsimparams).

Parameter

args the command-line arguments.

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/io/IOException.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/bind/JAXBException.html

18 March 17, 2014

Package umontreal.iro.lecuyer.contactcenters.msk.model

Provides the classes that implement the model of a call center with multiple call types and
agent groups used by the blend and multi-skill simulator. The implemented model contains
several elements: random streams for each type of random variate, factories for creating
objects representing calls, arrival processes for generating the arrival times of inbound calls,
dialers for producing outbound calls, agent groups, waiting queues, and a router. The pa-
rameters of the model are obtained using XML files transformed by JAXB into intermediate
objects regrouped in an instance of the CallCenterParams class. The class CallCenter-

ParamsConverter can be used to help in the conversion of XML data to an instance of
CallCenterParams. The parameter objects are used to create the model, which provides
methods to access parameters in a convenient way.

Arrival processes, dialers, agent groups, and the router are encapsulated in manager
objects playing several roles: provide convenience methods for accessing parameters specific
to the managed object, create the appropriate instance for the managed object, initialize it
at the beginning of a simulation, and update its state throughout the simulation. All these
manager objects can be accessed using methods in the CallCenter class, which is the central
point of the model.

The model is usually created by the CallCenterSim class, and can be retrieved by its
getCallCenter method. However, one may create a CallCenter object directly, and use
it to get some information about the represented call center (e.g., mean service times), or
perform custom simulations.

March 17, 2014 19

CallCenter
Represents the model of a call center with multiple call types and agent groups. The model
encapsulates all the logic of the call center itself: a simulator with a clock and event list, a
simulation event marking the change of periods, the call factories which create objects for
every call, manager objects for arrival processes, dialers, agent groups, and the router, etc.
A program can use methods in this class to obtain references to the call center objects, and
retrieve their parameters, or register listeners to observe their evolution in time.

A model is created from an instance of CallCenterParams, and an instance of Random-
Streams. After it is created using the create() method, it can be initialized for simulation
using initSim(). The encapsulated period-change event, and managed arrival processes
and dialers must then be started to schedule events before the simulation is started using
simulator().start().

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class CallCenter extends AbstractContactCenterInfo

Constructors

public CallCenter (CallCenterParams ccParams, RandomStreams streams)

Constructs a new call center model from the call center parameters ccParams, and the
random streams streams. This constructor assumes that ccParams is valid. The class
CallCenterParamsConverter can be used to create valid objects from XML files.

Note that the create() method must be called after the model is constructed in order to
create the model.

Parameters

ccParams

streams

Throws

NullPointerException if ccParams or streams are null.

public CallCenter (Simulator sim, CallCenterParams ccParams, RandomStreams

streams)

Similar to CallCenter (CallCenterParams, RandomStreams), with the given simulator
sim.

public CallCenter (CallCenterParams ccParams)

Creates a call center model with parameters stored in ccParams, and using the default class
of random stream MRG32k3a.

Note that the create() method must be called after the model is constructed in order to
create the model.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/MRG32k3a.html

20 CallCenter March 17, 2014

Parameter

ccParams the parameters of the call center.

Throws

NullPointerException if ccParams is null.

public CallCenter (Simulator sim, CallCenterParams ccParams)

Similar to CallCenter (CallCenterParams), with the given simulator sim.

Methods

public final Simulator simulator()

Returns the simulator associated with this call center model. The simulator is used to
schedule events, and obtain simulation time when necessary.

Returns the associated simulator.

public final void setSimulator (Simulator sim)

Sets the simulator of this model to sim. After this method is called, the model should be
reset using the create() method.

Parameter

sim the new simulator.

Throws

NullPointerException if sim is null.

public double getTime (Duration d)

Converts the given duration d to a time in the default time unit. This method calls
Duration.getTimeInMillis (Date) using the date returned by getStartingDate(). It
then uses TimeUnit.convert (double, TimeUnit, TimeUnit) to convert the obtained
time in milliseconds to the default unit given by getDefaultUnit().

Parameter

d the duration to be converted.

Returns the duration in the default time unit.

public double[] getTime (Duration... d)

Constructs and returns an array whose elements correspond to the time durations in the
given array, converted to the default time unit. This method constructs an array with the
same length as d, and sets element i of the target array to the result of getTime (Duration)
called with d[i].

Parameter

d the array of durations to convert.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Simulator.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/datatype/Duration.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/datatype/Duration.html#getTimeInMillis((java.util.Date))
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/util/TimeUnit.html#convert((double,%20umontreal.iro.lecuyer.util.TimeUnit,%20umontreal.iro.lecuyer.util.TimeUnit))
http://docs.oracle.com/javase/6/docs/api/javax/xml/datatype/Duration.html

March 17, 2014 CallCenter 21

Returns the array of converted durations.

public double[][] getTime (Duration[][] d)

Similar to getTime (Duration...), for a 2D array.

Parameter

d the 2D array of durations to convert.

Returns the 2D array of converted durations.

public double getTime (XMLGregorianCalendar xgcal)

Converts the time returned by CallCenterUtil.getTimeInMillis (XMLGregorianCalendar)
to the default time unit returned by getDefaultUnit().

Parameter

xgcal the XML gregorian calendar representing a time.

Returns the time in the default time unit.

public double[] getTime (XMLGregorianCalendar... d)

Similar to getTime (Duration...), for an array of XML gregorian calendars.

Parameter

d the array of times to convert.

Returns the array of converted times.

public double[][] getTime (XMLGregorianCalendar[][] d)

Similar to getTime (XMLGregorianCalendar...), for a 2D array.

Parameter

d the 2D array of times to convert.

Returns the 2D array of converted times.

public TimeUnit getDefaultUnit()

Returns the default unit used for this call center. This corresponds to the unit for simulation
time, and for output such as waiting times, excess times, etc.

Returns the default unit.

public double getPeriodDuration()

Returns the duration of main periods, expressed in the default time unit returned by get-
DefaultUnit().

http://docs.oracle.com/javase/6/docs/api/javax/xml/datatype/Duration.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/util/TimeUnit.html

22 CallCenter March 17, 2014

Returns the period duration.

public Date getStartingDate()

Returns the date corresponding to the environment being modeled. This corresponds to the
date at which the preliminary period begins, with time set to midnight. This corresponds
to the current date, at which this object was created, if no date was given explicitly in
parameters.

Returns the date corresponding to the considered environment.

public double getStartingTime()

Returns the starting time of the first main period, expressed in the default time unit.

Returns the starting time of the first main period.

public Date getMainPeriodStartingDate (int mp)

Returns the date corresponding to the beginning of the main period mp. This method adds
the starting time, and mp times the period duration to the date returned by getStarting-
Date(), and returns the resulting date.

Parameter

mp the index of the main period.

Returns the date of the main period.

public boolean isHorizonSpanningDays()

Determines if the horizon of this model spans multiple days, i.e., if the period duration times
the number of periods is larger than 24 hours. This method determines the starting dates
of the first and last main periods, using getMainPeriodStartingDate (int), and returns
true if and only if the two dates have different days according to the Gregorian calendar.

Returns the success indicator of the test.

public int getNumMatricesOfAWT()

Returns the number of sets of parameters for the service level given by the user in parameter
file.

Returns the number of sets of parameters for the service level.

public String getMatrixOfAWTName (int m)

Returns the name of the matrix of acceptable waiting time with index m, or null if no name
was given in the parameter file.

Parameter

m the index of the matrix.

Returns the name corresponding to the matrix, or null.

http://docs.oracle.com/javase/6/docs/api/java/util/Date.html
http://docs.oracle.com/javase/6/docs/api/java/util/Date.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

March 17, 2014 CallCenter 23

Throws

ArrayIndexOutOfBoundsException if m is negative or greater than or equal to the value
returned by getNumMatricesOfAWT().

public ServiceLevelParamReadHelper getServiceLevelParams

(int m)

Returns the set of parameters m for the service level.

Parameter

m the index of the set.

Returns the set of parameters.

public CallCenterParams getCallCenterParams()

Returns the call center parameters associated with this model.

Returns the associated call center parameters.

public RandomStreams getRandomStreams()

Returns the random streams used by this model.

Returns the random streams used.

@Deprecated public RandomStreams getStreams()

Returns the random streams associated with this simulator.

Returns the associated random streams.

Deprecated Use getRandomStreams() instead.

public void setRandomStreams (RandomStreams streams)

Sets the random streams used by this model to streams. This method calls RandomStreams.
createStreams (CallCenterParams) on the call center parameters to create necessary
streams.

Note that the new random streams are used only after create() is called.

Parameter

streams the new random streams.

http://docs.oracle.com/javase/6/docs/api/java/lang/Deprecated.html

24 CallCenter March 17, 2014

Throws

NullPointerException if streams id null.

public void resetNextSubstream()

Calls RandomStream.resetNextSubstream() on every random stream of this model.

public void resetStartStream()

Calls RandomStream.resetStartStream() on every random stream of this model.

public void resetStartSubstream()

Calls RandomStream.resetStartSubstream() on each random stream of this model.

public void reset (CallCenterParams ccParams1, RandomStreams streams1)

throws CallCenterCreationException

Recreates the model with new parameters. This class sets the call center parameters to
ccParams, the random streams to streams, and calls create() to recreate the model.

Parameters

ccParams1 the new call center parameters.

streams1 the new random streams.

Throws

NullPointerException if ccParams or streams are null.

public void create() throws CallCenterCreationException

Calls create (false).

Throws

CallCenterCreationException if an error occurs during the creation of the model.

public void create (boolean recreateStreams) throws

CallCenterCreationException

Constructs the elements of the call center. This method is called by the constructor or
by reset (CallCenterParams, RandomStreams). If recreateStreams is true, a new
RandomStreams object is created and associated with this model; this results in a change
of seeds for every random stream used. If recreateStreams is false, the same random
streams are kept, and new ones are created just if needed.

Since this method recreates the complete structure of the call center, any listener observing
the evolution of the model must be re-registered after this method returns.

Parameter

recreateStreams determines if random streams are recreated.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html#resetNextSubstream(())
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html#resetStartStream(())
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html#resetStartSubstream(())

March 17, 2014 CallCenter 25

Throws

CallCenterCreationException if an error occurs during the creation of the model.

public DialerObjects getDialerObjects()

Returns the instance of DialerObjects associated with this model. If no such instance
exists, it is constructed, stored for future use, and returned.

Returns eht dialer objects of this model.

protected WaitingQueue createWaitingQueue (int q)

Constructs and returns the qth waiting queue for this call center. By default, this returns
an instance of StandardWaitingQueue which is a FIFO queue without priority.

Parameter

q the index of the created waiting queue.

Returns the constructed waiting queue.

public void initSim()

Initializes the model for a new simulation with a random busyness factor. This method first
generates the busyness factor B using the generator returned by getBusynessGen(), or sets
B = 1 if no generator was given in parameter file for the busyness factor. It then calls
initSim (double) with the generated B to complete initialization.

public double getBusynessFactor()

Returns the current value of B used by arrival processes.

Returns the current value of B.

public void initSim (double b1)

Initializes the model for a new simulation setting the busyness factor of arrival processes to
the given value b. This method initializes arrival processes, dialers, agent groups, waiting
queues, and the router, without scheduling any event. Methods such as PeriodChange-
Event.start(), ContactArrivalProcess.start(), etc. must be used to schedule events
before starting the simulation.

Parameter

b1 the busyness factor used.

public boolean isCallTransferSupported()

Determines if this model supports call transfers. This returns true if CallFactory.is-
CallTransferSupported() returns true for at least one call factory returned by getCall-
Factories().

26 CallCenter March 17, 2014

Returns true if and only if this model supports call transfers.

public boolean isVirtualHoldSupported()

Determines if this model supports virtual holding. This returns true if CallFactory.is-
VirtualHoldSupported() returns true for at least one call factory returned by getCall-
Factories().

Returns true if and only if this model supports call virtual holding.

public AWTPeriod getAwtPeriod()

Returns the object used to compute the AWT period of contacts. This method returns null
unless setAwtPeriod (AWTPeriod) was called with a non-null value.

Returns the object for AWT periods.

public void setAwtPeriod (AWTPeriod awtPeriod)

Sets the object for computing AWT periods to awtPeriod.

Parameter

awtPeriod the object for computing AWT periods.

public int getAwtPeriod (Contact contact)

Returns the period index used to obtain the period-specific acceptable waiting time for con-
tact contact. If getAwtPeriod() returns null, this method returns the main period index
of the contact’s arrival. Otherwise, it returns the result of getAwtPeriod().getAwtPeriod
(contact).

Parameter

contact the contact to be tested.

Returns the AWT period of the contact.

public PeriodChangeEvent getPeriodChangeEvent()

Returns a reference to the period-change event used by this model. This event occurs at the
beginning of each period of the horizon, and triggers updates of some parameters such as the
staffing in agent groups. One should start this event using PeriodChangeEvent.start() to
simulate the horizon, or use PeriodChangeEvent.setCurrentPeriod (int) to simulate a
single period as if it was infinite in the model.

Returns the period-change event.

@Deprecated public void setRouter (Router router)

http://docs.oracle.com/javase/6/docs/api/java/lang/Deprecated.html

March 17, 2014 CallCenter 27

Deprecated Use RouterManager.setRouter (Router) instead.

public Router getRouter()

Returns a reference to the router used by this model. This method calls getRouterManager().getRouter().

public RouterManager getRouterManager()

Returns a reference to the router manager of this model.

public RandomVariateGen getBusynessGen()

Returns a reference to the random variate generator used for the global busyness factor B
multiplying the arrival rates or number of arrivals of calls. This method returns null if no
busyness factor is used.

Returns the random variate generator for busyness factor.

public void setBusynessGen (RandomVariateGen bgen)

Sets the random variate generator for the global busyness factor to bgen.

Parameter

bgen the new random variate generator.

public int getNumDialers()

Returns the maximal number of dialer managers in this model. This corresponds to the
number of outbound call types plus the number of dialers that can generate calls of several
types.

Returns the number of dialers.

public DialerManager getDialerManager (int k)

Returns the dialer manager with index k. The first KO dialers generate outbound calls of a
single type while other dialers can generate calls of several types. This method returns null
if k is smaller than KO, and no dialer dedicated to calls of outbound type k exists.

Parameter

k the index of the dialer manager.

Returns the dialer manager.

Throws

ArrayIndexOutOfBoundsException if k is negative, or greater than or equal to the value
returned by getNumDialers().

public Dialer getDialer (int k)

Returns the dialer with index k, or null if k is smaller than KO, and no dialer is dedicated
to outbound calls of type k. This method calls getDialerManager (int) with the given
value of k, and returns the dialer associated with the returned dialer manager.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/randvar/RandomVariateGen.html

28 CallCenter March 17, 2014

Parameter

k the index of the dialer.

Returns the dialer, or null.

public DialerManager[] getDialerManagers()

Returns the array of dialer managers in this model. The first KO elements of the returned
array represent dialers dedicated to a single type of outbound call, and may be null if no
dialer is dedicated to a given call type.

public Dialer[] getDialers()

Returns an array containing the dialers of this model. This method calls getDialer-
Managers(), and creates an array with each element k being the dialer associated with
the dialer manager k. As with getDialerManagers(), some elements in the returned array
might be null.

public int getNumArrivalProcesses()

Returns the maximal number of arrival process managers in this model. This corresponds
to the number of inbound call types plus the number of arrival processes that can generate
calls of several types.

Returns the number of arrival processes.

public ArrivalProcessManager getArrivalProcessManager (int k)

Returns the arrival process manager with index k. The first KI arrival processes generate
inbound calls of a single type while other processes can generate calls of several types. This
method returns null if k is smaller than KI, and no arrival process dedicated to calls of
inbound type k exists.

Parameter

k the index of the arrival process manager.

Returns the arrival process manager.

Throws

ArrayIndexOutOfBoundsException if k is negative, or greater than or equal to the value
returned by getNumArrivalProcesses().

public ContactArrivalProcess getArrivalProcess (int k)

Returns the arrival process with index k, or null if k is smaller than KI, and no arrival
process is dedicated to inbound calls of type k. This method calls getArrivalProcess-
Manager (int) with the given value of k, and returns the arrival process associated with
the returned manager.

Parameter

k the index of the arrival process.

March 17, 2014 CallCenter 29

Returns the arrival process, or null.

public ArrivalProcessManager[] getArrivalProcesManagers

()

Returns the array of arrival process managers in this model. The first KI elements of the
returned array represent arrival processes dedicated to a single type of inbound call, and
may be null if no arrival process is dedicated to a given call type.

public ContactArrivalProcess[] getArrivalProcesses()

Returns an array containing the arrival processes of this model. This method calls get-
ArrivalProcesManagers(), and creates an array with each element k being the arrival
process associated with the manager k. As with getArrivalProcesManagers(), some ele-
ments in the returned array might be null.

public AgentGroupManager getAgentGroupManager (int i)

Returns the agent group manager with index i.

Parameter

i the index of the agent group.

Returns the agent group manager.

Throws

ArrayIndexOutOfBoundsException if i is negative, or greater than or equal to the value
returned by getNumAgentGroups().

public AgentGroup getAgentGroup (int i)

Returns the agent group with index i. This method is equivalent to calling getAgentGroup-
Manager (int) and using AgentGroupManager.getAgentGroup().

Parameter

i the index of the agent group.

Returns the agent group.

Throws

ArrayIndexOutOfBoundsException if i is negative, or greater than or equal to the value
returned by getNumAgentGroups().

public AgentGroupManager[] getAgentGroupManagers()

Returns an array containing the agent group managers of this model.

public AgentGroup[] getAgentGroups()

Returns an array containing the agent groups of this model.

public WaitingQueue[] getWaitingQueues()

Returns an array containing the waiting queues of this model.

public WaitingQueue getWaitingQueue (int q)

Returns the waiting queue with index q in this model.

30 CallCenter March 17, 2014

Parameter

q the index of the waiting queue.

Returns a reference to the waiting queue.

Throws

ArrayIndexOutOfBoundsException if q is negative, or greater than or equal to the value
returned by getNumWaitingQueues().

public CallFactory[] getCallFactories()

Returns the array of call factories for this model.

public CallFactory getCallFactory (int k)

Returns the call factory generating calls of type k in this model.

Parameter

k the index of the call type.

Returns a reference to the call factory.

Throws

ArrayIndexOutOfBoundsException if k is negative, or greater than or equal to the value
returned by getNumContactTypes().

public SegmentInfo[] getInContactTypeSegments()

Returns an array containing information objects for all user-defined segments regrouping
inbound contact types.

public SegmentInfo getInContactTypeSegment (int k)

Returns the information object for the kth user-defined segment regrouping inbound contact
types.

Parameter

k the index of the user-defined segment.

Returns the segment information object.

Throws

ArrayIndexOutOfBoundsException if k is negative, or greater than or equal to getNum-
InContactTypeSegments().

public SegmentInfo[] getOutContactTypeSegments()

Returns an array containing information objects for all user-defined segments regrouping
outbound contact types.

public SegmentInfo getOutContactTypeSegment (int k)

Returns the information object for the kth user-defined segment regrouping outbound con-
tact types.

March 17, 2014 CallCenter 31

Parameter

k the index of the user-defined segment.

Returns the segment information object.

Throws

ArrayIndexOutOfBoundsException if k is negative, or greater than or equal to getNum-
OutContactTypeSegments().

public SegmentInfo[] getContactTypeSegments()

Returns an array containing information objects for all user-defined segments regrouping
contact types.

public SegmentInfo getContactTypeSegment (int k)

Returns the information object for the kth user-defined segment regrouping contact types.

Parameter

k the index of the user-defined segment.

Returns the segment information object.

Throws

ArrayIndexOutOfBoundsException if k is negative, or greater than or equal to getNum-
ContactTypeSegments().

public SegmentInfo[] getAgentGroupSegments()

Returns an array containing information objects for all user-defined segments regrouping
agent groups.

public SegmentInfo getAgentGroupSegment (int i)

Returns the information object for the ith user-defined segment regrouping agent groups.

Parameter

i the index of the user-defined segment.

Returns the segment information object.

Throws

ArrayIndexOutOfBoundsException if i is negative, or greater than or equal to getNum-
AgentGroups().

public SegmentInfo[] getMainPeriodSegments()

Returns an array containing information objects for all user-defined segments regrouping
main periods.

public SegmentInfo getMainPeriodSegment (int p)

Returns the information object for the pth user-defined segment regrouping main periods.

32 CallCenter March 17, 2014

Parameter

p the index of the user-defined segment.

Returns the segment information object.

Throws

ArrayIndexOutOfBoundsException if p is negative, or greater than or equal to getNum-
MainPeriods().

public double getArrivalsMult()

Returns the global multiplier applied to the arrival rates or number of arrivals for each
arrival process in this model.

Returns the global multiplier for arrivals.

public double getPatienceTimesMult()

Returns the global multiplier for patience times which is applied on every generated patience
time.

Returns the global multiplier for patience times.

public double getServiceTimesMult()

Returns the global multiplier for service times which is applied on every generated service
time.

Returns the global multiplier for service times.

public double getConferenceTimesMult()

Returns the global multiplier for conference times of calls transferred to a new agent with
the primary agent waiting for the secondary agent.

Returns the global multiplier for conference times.

public double getPreServiceTimesNoConfMult()

Returns the global multiplier for pre-service times of calls transferred to a new agent without
the primary agent waiting for the secondary agent.

Returns the global multiplier for pre-service times.

public double getTransferTimesMult()

Returns the global multiplier applied on any generated transfer time.

Returns the global multiplier for transfer times.

public double getPreviewTimesMult()

Returns the global multiplier applied to all generated preview times of outbound calls.

March 17, 2014 CallCenter 33

Returns the global multiplier for preview times.

public double getAgentsMult()

Returns the global multiplier for the number of agents in any group during any period.

Returns the global multiplier for staffing.

public void setArrivalsMult (double arrivalsMult)

Sets the global multiplier for arrivals to arrivalsMult. This multiplier takes effect only
after the next call to initSim().

Parameter

arrivalsMult the new multiplier.

Throws

IllegalArgumentException if the given multiplier is negative.

public void setPatienceTimesMult (double patienceTimesMult)

Sets the global multiplier for patience times to patienceTimesMult. This multiplier takes
effect only after the next call to initSim().

Parameter

patienceTimesMult the new multiplier.

Throws

IllegalArgumentException if the given multiplier is negative.

public void setServiceTimesMult (double serviceTimesMult)

Sets the global multiplier for service times to serviceTimesMult. This multiplier takes
effect only after the next call to initSim().

Parameter

serviceTimesMult the new multiplier.

Throws

IllegalArgumentException if the given multiplier is negative.

public void setConferenceTimesMult (double conferenceTimesMult)

Sets the global multiplier for conference times to conferenceTimesMult. This multiplier
takes effect only after the next call to initSim().

Parameter

conferenceTimesMult the new multiplier.

34 CallCenter March 17, 2014

Throws

IllegalArgumentException if the given multiplier is negative.

public void setPreServiceTimesNoConfMult (double preServiceTimesNoConfMult)

Sets the global multiplier for pre-service times to preServiceTimesNoConfMult. This mul-
tiplier takes effect only after the next call to initSim().

Parameter

preServiceTimesNoConfMult the new multiplier.

Throws

IllegalArgumentException if the given multiplier is negative.

public void setTransferTimesMult (double transferTimesMult)

Sets the global multiplier for transfer times to transferTimesMult. This multiplier takes
effect only after the next call to initSim().

Parameter

transferTimesMult the new multiplier.

Throws

IllegalArgumentException if the given multiplier is negative.

public void setPreviewTimesMult (double previewTimesMult)

Sets the global multiplier for preview times to previewTimesMult. This multiplier takes
effect only after the next call to initSim().

Parameter

previewTimesMult the new multiplier.

Throws

IllegalArgumentException if the given multiplier is negative.

public void setAgentsMult (double agentsMult)

Sets the global multiplier for the number of agents to agentsMult. This multiplier takes
effect only after the next call to initSim().

Parameter

agentsMult the new multiplier.

Throws

IllegalArgumentException if the given multiplier is negative.

public boolean[][] getDefaultShiftMatrix()

Returns the J × P default shift matrix used for any agent group with a schedule giving
only a vector of agents. Here, J is the number of shifts in the matrix. Element (j, p) of the
returned matrix is true if and only if agents on shift j work during main period p.

March 17, 2014 CallCenter 35

Returns the default matrix of shifts.

public void resetAgentsMult()

Sets the multiplier returned by getAgentsMult() to 1, and adjusts the multipliers for each
agent group. Let m be the multiplier returned by getAgentsMult() before this method is
called. This method changes the multiplier for each agent group i from mi to m ∗mi, and
resets the global multiplier m to 1.

public Class<? extends WaitingTimePredictor> getWaitingTimePredictorClass

()

Returns the class of waiting time predictors used by some routing policies, and virtual
holding.

Returns the class of predictor for waiting times.

public int getQueueCapacity()

Returns the current queue capacity in this model. This corresponds to the maximal total
number of calls in queue at any time during the simulation,. An infinite queue capacity is
represented by Integer.MAX VALUE.

Returns the total queue capacity.

public void setQueueCapacity (int q)

Sets the total queue capacity to q.

Parameter

q the new queue capacity.

Throws

IllegalArgumentException if the given queue capacity is smaller than the current total
number of calls in queue.

public boolean isExponentialPatienceTime (int k, int mp)

Determines if patience times for contacts of type k arrived during period mp are exponential,
and returns the result of the test.

Parameters

k the tested contact type.

mp the tester arrival period.

Returns true if and only if patience times are exponential.

public boolean[][] isExponentialPatienceTime()

Returns an array containing true at position [k][p] if contacts of type k arrived during
period p have exponential patience times.

http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Integer.html#MAX_VALUE

36 CallCenter March 17, 2014

Returns the status of patience times for all contact types and periods.

public boolean isExponentialServiceTime (int k, int i, int mp)

Determines if service times for contacts of type k arrived during period mp, and served by
agents in group i are exponential, and returns the result of the test.

Parameters

k the tested contact type.

i the tested agent group.

mp the tested arrival period.

Returns true if and only if service times are exponential.

public boolean[][][] isExponentialServiceTime()

Returns an array containing true at position [k][i][p] if contacts of type k arrived during
period p, and served by agents in group i have exponential service times.

Returns the status of service times for all contact types and periods.

public Map<String, Object> getProperties()

Returns a map containing the user-defined properties associated with this model.

Returns the map of user-defined properties.

http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html

March 17, 2014 37

CallCenterUtil
Provides helper static methoeds used for the initialization of call center models.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class CallCenterUtil

Methods

public static int[] getIntArray (int[] array, int numPeriods)

Constructs and returns an array containing numPeriods elements from the input array
array. If the length of the given array is 0, this returns an empty array. Otherwise, if
the length is 1, this returns an array of length numPeriods filled with array[0]. Otherwise,
an array with the first numPeriods elements of array is constructed and returned.

Parameters

array the input array.

numPeriods the number of elements in the output array.

Returns the output array.

Throws

IllegalArgumentException if the given array is too short.

public static double[] getDoubleArray (double[] array, int numPeriods)

Similar to getIntArray (int[], int), for an array of double-precision values.

Parameters

array the input array.

numPeriods the number of elements in the output array.

Returns the output array.

Throws

IllegalArgumentException if the given array is too short.

public static GregorianCalendar getDate (XMLGregorianCalendar xgcal)

Converts the given XML gregorian calendar into a Java gregorian calendar, with time reset
to midnight relative to the timezone given in the XML gregorian calendar. If xgcal does
not specify a timezone offset, the default offset of the system is used. If xgcal is null, the
current date is used.

This method first creates a Java GregorianCalendar by using XMLGregorianCalendar.
toGregorianCalendar() (this uses the default timezone offset if no offset was specified
explicitly), or the no-argument constructor of GregorianCalendar if xgcal is null (this
creates a calendar initialized to the current date and time). It then resets the time fields of
the created calendar to midnight before returning it.

http://docs.oracle.com/javase/6/docs/api/java/util/GregorianCalendar.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html
http://docs.oracle.com/javase/6/docs/api/java/util/GregorianCalendar.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#toGregorianCalendar(())
http://docs.oracle.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#toGregorianCalendar(())
http://docs.oracle.com/javase/6/docs/api/java/util/GregorianCalendar.html

38 CallCenterUtil March 17, 2014

Parameter

xgcal the XML gregorian calendar to be converted to a date.
Returns the gregorian calendar representing the date.

public static long getTimeInMillis (XMLGregorianCalendar xgcal)
Returns the time duration, in milliseconds, elapsed between midnight and the time given by
xgcal, at the date set by xgcal. This method uses XMLGregorianCalendar.toGregorian-
Calendar (TimeZone, Locale, XMLGregorianCalendar) with a default timezone corre-
sponding to GMT, the default locale, and no default XML gregorian calendar. It then
clears all fields of the resulting calendar corresponding to date components, and returns
Calendar.getTimeInMillis(). If xgcal is null, this returns 0.
Parameter

xgcal the XML gregorian calendar.
Returns the time in milliseconds.

public static String getCallTypeInfo (CallCenterParams ccParams, int k)
Returns information about a call type k defined in call center parameters ccParams. This
method returns a string of the form call type k (name) which is included in some error
messages.
Parameters

ccParams the call center parameters.

k the index of the call type.
Returns the string representation for the call type.

public static String getAgentGroupInfo (CallCenterParams ccParams, int i)
Similar to getCallTypeInfo (CallCenterParams, int), for agent group i. This method
returns a string of the form agent group i (name) included in some error messages.
Parameters

ccParams the call center parameters.

i the index of the agent group.
Returns the string representation of the agent group.

public static <K> Map<K, String> toStringValues (Map<? extends K, ?

extends Object> map)
Constructs and returns a map for which each entry (k, v′) is created from entry (k, v) in
map map, where k is a key, and v′ is the string representation of the value v. The string
representation of v is the string “null” if v is null, or the result of v.toString() if v is
non-null.
Type parameter

K the type of keys in the maps.
Parameter

map the source map.
Returns the map with string representations as values.

http://docs.oracle.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#toGregorianCalendar((java.util.TimeZone,%20java.util.Locale,%20javax.xml.datatype.XMLGregorianCalendar))
http://docs.oracle.com/javase/6/docs/api/javax/xml/datatype/XMLGregorianCalendar.html#toGregorianCalendar((java.util.TimeZone,%20java.util.Locale,%20javax.xml.datatype.XMLGregorianCalendar))
http://docs.oracle.com/javase/6/docs/api/java/util/Calendar.html#getTimeInMillis(())
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html

March 17, 2014 39

MakeAgentAvailableEvent

Represents an event occuring when a disconnected agent becomes available again.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public final class MakeAgentAvailableEvent extends Event

Constructor

public MakeAgentAvailableEvent (CallCenter model, Agent agent)

Constructs an event making the agent agent in the model model available when it occurs.

Parameters

model the model the agent belongs to.

agent the agent that will be made available.

Methods

public CallCenter getCallCenter()

Returns the model associated with this event.

Returns the associated model.

public Agent getAgent()

Returns the agent associated with this event.

Returns the associated agent.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Event.html

40 March 17, 2014

CallFactoryStreamType

Types of random streams for call factories.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public enum CallFactoryStreamType

Constants

BALKTEST

Random stream for immediate abandonment.

PATIENCE

Random stream for patience time, for contacts not abandoning immediately.

SERVICE

Random stream for service time.

March 17, 2014 41

ArrivalProcessStreamType

Types of random streams for arrival processes.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public enum ArrivalProcessStreamType

Constants

INTERARRIVAL

Stream for inter-arrival times.

RATES

Stream for random arrival rates, in the case of doubly-stochastic arrival processes.

42 March 17, 2014

DialerStreamType

Types of random streams for dialers.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public enum DialerStreamType

Constants

DIALDELAY

Random stream for dialing delays.

REACHTEST

Random stream for testing if a call is reached or has failed.

March 17, 2014 43

AgentGroupStreamType

Types of random streams for agent groups.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public enum AgentGroupStreamType

Constants

DISCONNECTTEST

Random stream for probability that an agent disconnects after some event occurs.

DISCONNECTTIME

Random stream for the time an agent remains offline after it disconnects.

44 March 17, 2014

RandomStreams

Encapsulates the random streams used by the blend/multi-skill call center simulator. The
model uses one random stream for each type of random variate for better synchronization
when using common random numbers. This class creates, stores, and manages all these
random streams.

Often, this class is not used directly since the CallCenter class provides a construc-
tor which implicitly creates the random streams. However, it can be useful to get the
RandomStreams object of a model, using the CallCenter.getRandomStreams() method, in
order to retrieve the reference to a particular random stream, or to pass the random streams
to a new model. Creating several models with the same random streams can improve syn-
chronization when comparing systems with common random numbers.

However, if several instances of CallCenter are used in parallel, each instance should
have its own random streams. The clone() method can be used if seeds must be shared
between two instances of this class.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class RandomStreams implements Cloneable

Fields

public static final int NUMFACTORYSTREAMS

Number of random streams for a contact factory.

public static final int NUMFACTORYSTREAMS2

Number of random streams for a contact factory.

public static final int NUMAPSTREAMS

Number of random streams for arrival processes.

public static final int NUMDIALERSTREAMS

Number of streams for dialers.

public static final int NUMAGENTGROUPSTREAMS

Number of streams for agent groups.

http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html

March 17, 2014 RandomStreams 45

Constructor

public RandomStreams (RandomStreamFactory rsf, CallCenterParams ccParams)

Creates a new set of random streams using the random stream factory rsf, and the call
center parameters ccParams. The parameters are used to determine the number of call
types, agent groups, etc., in order to set the number of streams of each type to create.

This method sets the random stream factory returned by getRandomStreamFactory(), and
calls createStreams (CallCenterParams).

Parameters

rsf the random stream factory used to create each RandomStream instance.

ccParams the parameters of the call center for which random streams are created.

Throws

NullPointerException if rsf or ccParams are null.

Methods

public void createStreams (CallCenterParams ccParams)

Creates the necessary random streams for supporting K = KI + KO contact types, and I
agent groups. This method reuses every stream associated with this object; it only creates
new streams when needed. Consequently, it cannot be used to set new random seeds for
every stream. Setting new seeds can be done by constructing a new RandomStreams instance.

Parameter

ccParams the parameters of the call center.

Throws

NullPointerException if ccParams is null.

public RandomStreamFactory getRandomStreamFactory()

Returns the random stream factory used by the createStreams (CallCenterParams)
method of this object to create random streams.

Returns the associated random stream factory.

public void setRandomStreamFactory (RandomStreamFactory rsf)

Sets the associated random stream factory to rsf. The new factory will only affect streams
created by subsequent calls to createStreams (CallCenterParams), not already created
streams.

Parameter

rsf the new random stream factory.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStreamFactory.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStreamFactory.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStreamFactory.html

46 RandomStreams March 17, 2014

Throws

NullPointerException if rsf is null.

public Set<RandomStream> getRandomStreamsInit()

Returns the set regrouping random streams used during the initialization of replications
only. Streams in this set can, for example, set the busyness factor for the day, the total
(random) number of arrivals, etc.

Returns the set of random streams used for initialization.

public Set<RandomStream> getRandomStreamsSim()

Returns the set of random streams regrouping random streams used during the whole simu-
lation. These streams may, for example, generate inter-arrival, patience, and service times.

Returns the set of random streams.

public RandomStream getStreamCT()

Returns the random stream used for generating contact type indices while the system is
initialized non-empty, for a simulation on an infinite horizon using batch means.

Returns the random stream for contact type indices.

public RandomStream getStreamB()

Returns the random stream used for the global busyness factor. This stream is used only at
the beginning of a replication, for a finite-horizon simulation, if a distribution was given for
the busyness factor B of the day.

Returns the random stream used for the global busyness factor.

public RandomStream getCallFactoryStream (int k, CallFactoryStreamType s)

Returns the random stream of type s used by the contact factory with index k.

Parameters

k the index of the call factory.

s the type of the stream.

Returns the random stream.

public RandomStream getCallFactoryStream2 (int k, CallFactoryStreamType2 s)

Similar to getCallFactoryStream (int, CallFactoryStreamType), for a complementary
set of random streams. These streams, used for call transfer and virtual queueing, were
added at a later time, so a second set was used to avoid changing the seeds of other streams.

Parameters

k the index of the call factory.

s the type of the complementary stream.

http://docs.oracle.com/javase/6/docs/api/java/util/Set.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://docs.oracle.com/javase/6/docs/api/java/util/Set.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 17, 2014 RandomStreams 47

Returns the random stream.

public RandomStream getArrivalProcessStream (int ki,

ArrivalProcessStreamType s)

Returns the random stream of type s used by the arrival process with index ki.

Parameters

ki the index of the arrival process.

s the type of the stream.

Returns the random stream.

public RandomStream getArrivalProcessPStream (int ki)

Returns the random stream used to select generated call type for the ki-th arrival process
generating calls of multiple types.

Parameter

ki the index of the arrival process.

Returns the random stream.

public RandomStream getDialerStream (int ko, DialerStreamType s)

Returns the random stream of type s used by the dialer with index ko.

Parameters

ko the index of the dialer.

s the type of the stream.

Returns the random stream.

public RandomStream getDialerPStream (int ko)

Returns the random stream used to select generated call type for the ko-th dialer generating
calls of multiple types.

Parameter

ko the index of the dialer.

Returns the random stream.

public RandomStream getAgentGroupStream (int i, AgentGroupStreamType s)

Returns the random stream of type s used by the agent group i.

Parameters

i the index of the agent group.

s the type of the stream.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

48 RandomStreams March 17, 2014

Returns the random stream.

public RandomStream getStreamAgentSelection()

Returns the random stream used for agent selection during routing, if agent selection is
randomized.

Returns the random stream used for agent selection.

public RandomStream getStreamContactSelection()

Returns the random stream used for contact selection during routing, if contact selection is
randomized.

Returns the random stream used for contact selection.

public RandomStreams clone()

Creates a clone of this object and all the contained random streams. This method creates a
copy of this object, and clones every random stream by casting them to CloneableRandom-
Stream and calling clone(). Each generator in the cloned object has the same properties
and seeds as the corresponding generator in the original object.

Throws

ClassCastException if at least one encapsulated random stream does not implement the
CloneableRandomStream interface.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/CloneableRandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/CloneableRandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/CloneableRandomStream.html

March 17, 2014 49

Call

Represents a call in the multi-skill call center simulator. A call is a special type of contact
that stores the periods of its arrival, of its service startup and its service termination. These
periods can be stored, because the model uses a single period-change event. A call also holds
additional information such as transfer times, conference times, etc.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class Call extends Contact

Constructors

public Call (PeriodChangeEvent pce, int arrivalPeriod)

Equivalent to Call (pce, arrivalPeriod, 1, 0).

Parameters

pce the period-change event associated with the call.

arrivalPeriod the period of arrival of the call.

Throws

NullPointerException if pce is null.

public Call (PeriodChangeEvent pce, int arrivalPeriod, int typeId)

Equivalent to Call (pce, arrivalPeriod, 1, typeId).

Parameters

pce the period-change event associated with the call.

arrivalPeriod the period of arrival of the call.

typeId the type identifier of the call.

Throws

NullPointerException if pce is null.

public Call (PeriodChangeEvent pce, int arrivalPeriod, double priority,

int typeId)

Constructs a new call with period-change event pce, period of arrival arrivalPeriod, pri-
ority priority, and type identifier typeId. The period-change event is used to set the
simulator associated with the call, and to determine periods of service termination or aban-
donment.

50 Call March 17, 2014

Parameters

pce the period-change event associated with the call.

arrivalPeriod the period of arrival of the call.

priority the priority of the call.

typeId the type identifier of the call.

Throws

NullPointerException if pce is null.

Methods

public int getArrivalPeriod()

Returns the period during which this call has arrived. This corresponds to the period during
which the call object was constructed.

Returns the period during which the call arrived.

public void setArrivalPeriod (int arrivalPeriod)

Sets the period of arrival of this call to arrivalPeriod.

Parameter

arrivalPeriod the new period of arrival.

public int getBeginServicePeriod()

Returns the period at which the service of this call started, or -1 if this call was never served.

Returns the period at which the service of this call began.

public void setBeginServicePeriod (int beginServicePeriod)

Sets the period at which the service of this call begins to beginServicePeriod.

Parameter

beginServicePeriod the period at which the service of this call begins.

public int getExitPeriod()

Returns the period at which this call exited the system, or -1 if the call is still in the system.

Returns the period at which this call exited the system.

public void setExitPeriod (int exitPeriod)

Sets the period at which this call exits the system to exitPeriod.

March 17, 2014 Call 51

Parameter

exitPeriod the period at which this call exits the system.

public PeriodChangeEvent getPeriodChangeEvent()

Returns the period-change event used to initializes the period at which the service begins,
and at which this call exits.

Returns the period-change event.

public void setPeriodChangeEvent (PeriodChangeEvent pce)

Sets the period-change event of this call to pce.

Parameter

pce the period-change event associated with this call.

Throws

NullPointerException if pce is null.

public boolean isRightPartyConnect()

Determines if this call is a right party connect. By default, this method returns true, but
for outbound calls, OutboundCallFactory can set this flag to false in order to generate a
wrong party connect. This differs from a failed call, which is handled by the dialer itself,
because an agent is needed to screen the call. The main use of the returned value is for
statistical collecting.

Returns true if and only if this call is a right party connect, or an inbound call.

public void setRightPartyConnect (boolean rightPartyConnect)

Sets the indicator for right party connect to rightPartyConnect.

Parameter

rightPartyConnect the new value of the indicator.

See also isRightPartyConnect()

public EndServiceEvent getPrimaryEndServiceEvent()

If this object represents a transferred call, returns a reference to the end-service event rep-
resenting the service with the primary agent, before the transfer. This end-service event is
used to terminate the service with the primary agent after a conference time. This returns
null if this object does not represent a transferred call, or if the primary agent does not
wait for a secondary agent after the transfer.

Returns the end-service event associated with the primary agent for a transferred call.

public void setPrimaryEndServiceEvent (EndServiceEvent

primaryEndServiceEvent)

Sets the end-service event associated with the primary agent for a transferred call to
primaryEndServiceEvent.

52 Call March 17, 2014

Parameter

primaryEndServiceEvent the new end-service event.

public double getUTransfer()

Returns the random number used to test if a call is transferred after its service is over. This
uniform is initialized by the call factory if call transfers are supported. Otherwise, it is set
to 0.

Returns the uniform for deciding if the call is transferred.

public void setUTransfer (double transfer)

Sets the uniform for transfer decision to transfer.

Parameter

transfer the new uniform.

Throws

IllegalArgumentException if transfer is out of [0, 1].

See also getUTransfer()

public double getUTransferWait()

Returns the uniform used to decide if the primary agent waits for a secondary agent after a
transfer. This uniform is generated by the call factory only if call transfers are supported.
If transfers are disabled, this method always returns 0.

Returns the uniform for deciding if the primary agent waits for the secondary agent with
the caller.

public void setUTransferWait (double transferWait)

Sets the uniform for deciding if the primary agent waits for a secondary agent to transferWait.

Parameter

transferWait the new uniform.

Throws

IllegalArgumentException if transferWait is out of [0, 1].

See also getUTransferWait()

public double getUVQ()

Returns the uniform used to decide if a call accepts to be called back (or join the virtual
queue) if offered the possibility. This uniform is generated by the call factory if virtual
queueing is used. If virtual queueing is disabled, this method always returns 0.

Returns the uniform for virtual queueing decision.

public void setUVQ (double u)

Sets the uniform for deciding if a call chooses to be called back to u.

March 17, 2014 Call 53

Parameter

u the new uniform.

Throws

IllegalArgumentException if u is not in [0, 1].

See also getUVQ()

public double getUVQCallBack()

Returns the uniform used to decide if a call returning from the virtual queue is successfully
called back. This uniform is generated by the call factory, and is always 0 if virtual queueing
is disabled.

Returns the uniform for call back success.

public void setUVQCallBack (double u)

Sets the uniform for call back success to u.

Parameter

u the new uniform.

Throws

IllegalArgumentException if u is not in [0, 1].

See also getUVQCallBack()

public ServiceTimes getConferenceTimes()

Returns the conference times spent by a primary agent with a secondary before the service
of this transferred call begins with the secondary agent. By default, this is set to 0. This
time is set by the call factory if call transfers are enabled.

Returns an object storing the conference times.

public ServiceTimes getPreServiceTimesNoConf()

Returns the pre-service times with an agent. By default, this is set to 0.

Returns an object storing pre-service times.

public ServiceTimes getTransferTimes()

Returns the transfer times spent by primary agents to initiate call transfers. By default,
this is set to 0.

Returns an object storing transfer times.

public double getWaitingTimeVQ()

Returns the time spent in virtual queue by this call. If virtual queueing is disabled, this
method always returns 0.

54 Call March 17, 2014

Returns the waiting time of this call in virtual queue.

public void setWaitingTimeVQ (double waitingTimeVQ)

Sets the waiting time in virtual queue of this call to waitingTimeVQ.

Parameter

waitingTimeVQ the new waiting time in virtual queue.

public int getTypeBeforeVQ()

Returns the type of this call before entering virtual queue.

Returns the type identifier of this call before entering virtual queue.

public void setTypeBeforeVQ (int beforeVQ)

Sets the type of this call before it enters virtual queue to beforeVQ.

Parameter

beforeVQ the original type of this call.

March 17, 2014 55

CallFactory

Contact factory used to create the calls for the simulator, and to generate call-specific ran-
dom variates such as patience times and service times. The call factory also contains any
information related to call types, such as name, properties, and the probability distribution
for patience and service times.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class CallFactory extends SingleTypeContactFactory

Constructor

public CallFactory (CallCenter cc, CallCenterParams ccParams,

CallTypeParams par, int k) throws

CallFactoryCreationException

Constructs a new call factory using the call center cc, the call center parameters ccParams,
the call-type parameters par, and call type index k.

Parameters

cc the call center.

ccParams the call center parameters.

par the call-type parameters.

k the call type index.

Throws

CallFactoryCreationException if an exception occurs during the creation of the factory.

Methods

public void initTransferTargets (CallCenterParams ccParams, int k) throws

CallFactoryCreationException

Constructs a contact factory used to generate calls resulting from transfers after service
termination. This initialization is not included in the constructor, because all call factories
must be created before the contact factory for transfered calls is constructed.

Parameters

ccParams the parameters of the call center.

k the identifier of the call type.

56 CallFactory March 17, 2014

Throws

CallFactoryCreationException if an error occurs during the creation of the call factory.

public CallCenter getCallCenter()

Returns the call center object containing this call factory.

Returns the call center object for this factory.

public void init()

Initializes this call factory by setting the multipliers for patience and service times.

public double getPatienceTimesMult()

Returns the current multiplier for patience times for calls generated by this factory. Pa-
tience times are multiplied by this constant and the multiplier returned by CallCenter.
getPatienceTimesMult(). The default value of this multiplier is 1.

Returns the multiplier for patience times.

public void setPatienceTimesMult (double pgenMult)

Sets the multiplier for patience times to pgenMult.

Parameter

pgenMult the new multiplier for patience times.

Throws

IllegalArgumentException if pgenMult is negative.

public ServiceTimesManager getServiceTimesManager()

Returns an object managing the random variate generators for regular service times.

Returns the service times manager.

public ServiceTimesManager getConferenceTimesManager()

Returns an object managing the random variate generators for conference times between
primary and secondary agents.

Returns the conference times manager.

public ServiceTimesManager getPreServiceTimesNoConfManager

()

Returns an object managing the random variate generators for pre-service times with sec-
ondary agents if no conference with primary agents.

Returns the pre-service times manager.

public ServiceTimesManager getTransferTimesManager()

Returns an object managing the random variate generators for transfer times.

March 17, 2014 CallFactory 57

Returns the transfer times manager.

public static CallFactory create (CallCenter cc, CallCenterParams ccParams,

int k) throws

CallFactoryCreationException

Constructs a new call factory using call center cc, call center parameters ccParams, and call
type index k. This returns an instance of this class for inbound call types, or an instance of
OutboundCallFactory for outbound types. This method calls init() on the constructed
factory before returning it.

Parameters

cc the call center model.

ccParams the call center parameters.

k the index of the call type.

Returns the constructed call factory.

Throws

CallFactoryCreationException if an exception occurs during the creation of the factory.

public String getName()

Returns the name of the call type associated with this call factory.

Returns the name of the call type.

public Map<String, Object> getProperties()

Returns the user-defined properties of the call type associated with this call factory.

Returns the user-defined properties of the call type.

public double getWeight()

Returns the default weight used when no per-period weight is available for the call type
associated with this call factory.

Returns the weight of the call type.

public double getWeight (int mp)

Returns the weight of the associated call type during main period mp, or the result of get-
Weight() if no per-period weight was given.

Parameter

mp the index of the main period.

Returns the weight of the call type during the given main period.

public double getProbAbandon (int mp)

Returns the probability of balking for main period mp.

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html

58 CallFactory March 17, 2014

Parameter

mp the index of the main period.
Returns the probability of balking.

public double getProbTransfer (int i, int mp)

Returns the probability of transfer for a call of the associated type arrived during main
period mp, and whose service finishes with a primary agent in group i.
Parameters

i the index of the agent group.

mp the index of the main period.
Returns the probability of transfer.

public double getProbTransferWait (int i, int mp)

Returns the probability of a primary agent waiting for transfer to finish, for a call of the
associated type arrived during main period mp, and whose service finishes with a primary
agent in group i.
Parameters

i the index of the agent group.

mp the index of the main period.
Returns the probability of waiting for transfer.

public double getServiceTimesMultTransfer (int i, int mp)

Returns the multiplier for service times of callers arrived during main period mp, and served
by an agent in group i before a transfer to another agent occurs.
Parameters

i the index of the agent group.

mp the index of the main period.
Returns the service times multiplier.

public boolean isCallTransferSupported()

Determines if call transfer is supported by this call factory. This returns true if and only
if getProbTransfer (int, int) returns a non-zero value for at least one pair (i, p), and
getTransferTargetFactory() returns a non-null value.

public boolean isVirtualHoldSupported()

Determines if virtual holding (or virtual queueing) is supported for the associated call type.
This returns true if and only if getExpectedWaitingTimeThresh (int) returns a finite
value for at least one p, getProbVirtualQueue (int) returns a non-zero value for at least
one p, and getTargetVQType() returns a non-negative value.

public ContactFactory getTransferTargetFactory()

Returns the contact factory used to generate transferred calls from calls of the associated
type.

March 17, 2014 CallFactory 59

Returns the contact factory for transferred calls.

public double getPatienceTimesMultNoVirtualQueue (int mp)

Returns the multiplier for patience times for callers arrived during main period mp, and
deciding not to join the virtual queue. The default multiplier is 1.

Parameter

mp the main period of arrival.

Returns the multiplier of the patience times.

public double getPatienceTimesMultCallBack (int mp)

Returns the multiplier of patience times for calls arriving during main period mp, joining
the virtual queue, successuflly called back, and having to wait in regular queue. The default
multiplier is 1.

Parameter

mp the main period of arrival.

Returns the multiplier of the patience times.

public double getServiceTimesMultNoVirtualQueue (int i, int mp)

Returns the multiplier of service times for callers arrived during main period mp, deciding
not to join the virtual queue, and served by an agent in group i.

Parameters

i the index of the agent group.

mp the index of the main period.

Returns the service times multiplier.

public double getServiceTimesMultCallBack (int i, int mp)

Returns the multiplier of service times for callers arrived during main period mp, and served
by an agent in group i after being called back.

Parameters

i the index of the agent group.

mp the index of the main period.

Returns the service times multiplier.

public void multiplyServiceTimesNoVirtualQueue (Call call)

Applies the multipliers returned by getServiceTimesMultNoVirtualQueue (int, int) to
the given call call. This changes the service times returned by Contact.getContact-
Times() for the given call.

60 CallFactory March 17, 2014

Parameter

call the call whose service times are modified.

public void multiplyServiceTimesCallBack (Call call)

Similar to multiplyServiceTimesNoVirtualQueue (Call), but using multipliers returned
by getServiceTimesMultCallBack (int, int).

Parameter

call the call whose service times are modified.

public int getTargetVQType()

Returns the index of the call type calls entering virtual queue are changed to.

Returns the target call type for virtual queueing.

public void setTargetVQType (int targetVQType)

Sets the target call type for virtual queueing to targetVQType.

Parameter

targetVQType the new target type.

public double getProbVirtualQueue (int mp)

Returns the probability that a caller arriving during main period mp accepts to enter virtual
queue, and be called back later.

Parameter

mp the main period of arrival.

Returns the probability of entering virtual queue.

public double getProbVirtualQueueCallBack (int mp)

Returns the probability that a caller arriving during main period mp is successfully called
back after joining the virtual queue.

Parameter

mp the main period of arrival.

Returns the probability of successful call back.

public double getExpectedWaitingTimeThresh (int mp)

Returns the threshold on the expected waiting time for determining if a caller arrived during
main period mp has the possibility to be called back.

Parameter

mp the main period of arrival.

March 17, 2014 CallFactory 61

Returns the threshold on the expected waiting time.

public double getExpectedWaitingTimeMult (int mp)

Returns the multiplier for the expected waiting time used to determine the time spent by a
caller arriving during main period mp in the virtual queue.

Parameter

mp the main period of arrival.

Returns the waiting time multiplier.

public void setConferenceTimes (Call call)

Generates conference times for the given call call, and adds these conference times to the
regular service times.

Parameter

call the call being processed.

public void setPreServiceTimesNoConf (Call call)

Similar to setConferenceTimes (Call), for pre-service times in the case when no confer-
ence occurs.

Parameter

call the call being processed.

public MultiPeriodGen getPatienceTimeGen()

Returns the patience time, converted to MultiPeriodGen. Note that calling MultiPeriod-
Gen.setMult (double) on the returned instance is not recommended as the multipliers are
reset by init(). One should use setPatienceTimesMult (double) or CallCenter.set-
PatienceTimesMult (double) to alter the multipliers of the patience times.

public MultiPeriodGen getServiceTimeGen()

Returns the random variate generator for the default service times used when no agent group
specific service times are available.

Note that it is not recommended to use MultiPeriodGen.setMult (double) on the returned
object. One should alter the multipliers provided by getServiceTimesManager() instead.

Returns the service time generator.

public MultiPeriodGen[] getServiceTimeGenGroups()

Similar to SingleTypeContactFactory.getContactTimeGenGroups(), but returns an array
of MultiPeriodGen instead. The same note for multipliers as in method getServiceTime-
Gen() applies here.

62 CallFactory March 17, 2014

Returns the array of service times.

public boolean isDisableCallSource()

Determines if calls of the associated type can be produced using a call source, e.g., an arrival
process or a dialer. By default, this returns false for regular call types, and true for call
types corresponding to transfer or virtual queueing targets.

public void setDisableCallSource (boolean disableCallSource)

Sets the indicator for disabled call source to disableCallSource.

See also isDisableCallSource()

public boolean isExcludedFromStatTotal()

Determines if calls of the associated type are excluded from the totals in statistical reports.
By default, this returns false for regular call types, and true for call types corresponding
to transfer or virtual queueing targets.

public void setExcludedFromStatTotal (boolean excludedFromStatTotal)

Sets the indicator for exclusion in totals to excludedFromStatTotal.

See also isExcludedFromStatTotal()

public static RandomTypeCallFactory createRandomTypeContactFactory

(CallCenter cc, List<ProducedCallTypeParams> types, RandomStream stream,

boolean checkAgents) throws CallFactoryCreationException

Constructs and returns a contact factory that can produce calls of randomly selected types.
This constructs and returns an instance of RandomTypeCallFactory by using the proba-
bilities obtained by parsing the list types. Each element of this list gives a type identifier
with associated probability of selection. See RandomTypeCallFactory for more information
about how the selection is performed.

Parameters

cc the call center model.

types the list of produced contact types.

stream the random stream used to select contact type.

checkAgents determines if the call factory checks that there are agents capable of serving
the call before producing a call of a given type.

Returns the contact type factory.

Throws

CallFactoryCreationException if an error occurs during the creation of the factory.

public static void checkInbound (int numInCallTypes, List<

ProducedCallTypeParams> types)

For each element in the list types, tests that the type identifier returned by the Produced-
CallTypeParams.getType() method is smaller than the given constant numInCallTypes.
This condition is necessary for the indices to represent inbound call types.

http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html

March 17, 2014 CallFactory 63

Parameters

numInCallTypes the number of inbound call types.

types the list of call type records to test.

Throws

IllegalArgumentException if at least one type identifier is invalid.

public static void checkOutbound (int numInCallTypes, int numCallTypes,

List<ProducedCallTypeParams> types)

For each element in the list types, tests that the type identifier returned by the Produced-
CallTypeParams.getType() method is greater than or equal to numInCallTypes but
smaller than numCallTypes. This condition is necessary for the indices to represent in-
bound call types.

Parameters

numInCallTypes the number of inbound call types.

numCallTypes the number of call types, inbound or outbound.

types the list of call type records to test.

Throws

IllegalArgumentException if numInCallTypes is greater than numCallTypes, or if at
least one type identifier is invalid.

http://docs.oracle.com/javase/6/docs/api/java/util/List.html

64 March 17, 2014

ServiceTimesManager

Manages the construction of service time generators specific to each agent, to each agent
group also as well as a default generator used when no generator is available for a given
agent or agent group. This class associates a multiplier to each such service time which can
be used to alter the mean service time. One object of this class can be constructed for each
part of the service time, e.g., the talk time, the transfer time, etc.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class ServiceTimesManager

Constructor

public ServiceTimesManager (CallCenter cc, String name, List<

ServiceTimeParams> pars, int k, RandomStream

sStream, double sgenMultAllGroups, int

numGroups) throws CallFactoryCreationException

Constructs a new service times manager using call center parameters cc. This method uses
the given list of service time parameters pars, and the stream sStream to construct service
time generators.

Parameters

cc the call center model.

name the name of the part of the service time this object concerns, used in error messages.

pars the service time parameters.

k the concerned call type.

sStream the random stream used to generate the service times.

sgenMultAllGroups the multiplier applied to all service time generators.

numGroups the number of agent groups.

Throws

CallFactoryCreationException if an error occurs during the construction of the service
time manager.

Methods

public MultiPeriodGen getServiceTimeGen()

Returns the default service time generator used when no agent-group-specific service time
is available.

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 17, 2014 ServiceTimesManager 65

Returns the default service time generator.

public void setServiceTimeGen (MultiPeriodGen sgen)

Sets the default service time generator to sgen.

Parameter

sgen the new default service time generator.

public MultiPeriodGen getServiceTimeGen (int i)

Returns the service time generator for agent group i. If no such generator is available, this
returns the result of getServiceTimeGen().

Parameter

i the tested agent group.

Returns the associated service time generator.

public MultiPeriodGen[] getServiceTimeGenGroups()

Returns an array containing the service time generators for each agent group. If no service
time generator is associated with an agent group, the element at the corresponding position
in the returned array is null.

Returns the array of service time generators.

public void setServiceTimeGenGroups (MultiPeriodGen[] sgenGroups)

Sets the service time generators to sgenGroups for agent groups.

Parameter

sgenGroups the new array of service time generators.

public void setServiceTimeGen (int i, MultiPeriodGen gen)

Sets the service time generator for agent group i to gen.

Parameters

i the index of the agent group.

gen the new generator.

public double[] getServiceTimesGenGroupsMult()

Returns an array containing the multiplier for each service time generator specific to an
agent group.

Returns the array of service time multipliers.

public void setServiceTimesGenGroupsMult (double[] sgenMultGroups)

Sets the service time multipliers for the agent groups using the array sgenMultGroups.

66 ServiceTimesManager March 17, 2014

Parameter

sgenMultGroups the array giving the multipliers.

public double getServiceTimesMult()

Returns the multiplier applied to the default service time generator.

Returns the multiplier for the default service time generator.

public void setServiceTimesMult (double sgenMult)

Sets the multiplier for the default service time generator to sgenMult.

Parameter

sgenMult the multiplier for the default service time multiplier.

public double getServiceTimesMult (int i)

Returns the service time multiplier specific to agent group i. This returns 1 if no generator
is associated with specific agent groups.

Parameter

i the tested agent group.

Returns the multiplier.

public void setServiceTimesMult (int i, double mult)

Sets the service time multiplier specific to agent group i to mult.

Parameters

i the agent group identifier.

mult the new multiplier.

public double getServiceTimesMultAllGroups()

Returns the service time multiplier applied to the default generator, as well as all generators
specific to agent groups.

Returns the global service time multiplier.

public void setServiceTimesMultAllGroups (double sgenMultAllGroups)

Sets the global multiplier applied to each service time generator managed by this object to
sgenMultAllGroups.

Parameter

sgenMultAllGroups the new multiplier.

public void init (double mult)

Initializes this manager by setting the multipliers for the random variate generators. The
used multiplier is the product of mult, the result of getServiceTimesMultAllGroups(),
and the generator-specific multiplier. The value of mult corresponds to the global service
time multiplier applying to all call types.

March 17, 2014 ServiceTimesManager 67

Parameter

mult the global multiplier.

public void generate (ServiceTimes st)

Uses the random variate generators attached with this service times manager to generate
service times, and store the times in st.

Parameter

st the object holding service times.

68 March 17, 2014

RandomTypeCallFactory

This class is similar to RandomTypeContactFactory, but it allows the probability of gen-
erating each contact type to change from periods to periods, and possibly depends on the
presence of agents in groups. More specifically, the factory contains a K×P 2D array giving
a weight pk,p to each call type k and main period p. Each time a call is requested, the cur-
rent main period is determined, and a weight is assigned to each call type. If the selection
takes account of the presence of agents, weights corresponding to call types for which no
agent is available are reset to 0. The weights are then summed up, and normalized to give
probabilities which are used to select a call type.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class RandomTypeCallFactory implements ContactFactory

Constructor

public RandomTypeCallFactory (CallCenter cc, double[][] probMainPeriod,

RandomStream stream, boolean checkAgents)

Constructs a new random-type call factory using period-change event associated with cc to
obtain the current main period, and random stream stream to generate random numbers.
The probabilities of selection pk,p are initialized using the given probMainPeriod K ×P 2D
array as follows. For each factory k, pk,p = 0 for p = 1, . . . , P if probMainPeriod[k] is
null or has length 0. The probability pk,p = q for p = 1, . . . , P if probMainPeriod[k] has
a single element q. Otherwise, pk,p is given by probMainPeriod[k][p].

Parameters

cc the call center object.

probMainPeriod the main period and call factory specific probabilities.

stream the random stream used to generate random numbers.

checkAgents determines if the call factory checks that there are agents capable of serving
the call before producing a call of a given type.

Throws

NullPointerException if any argument is null.

IllegalArgumentException if the lengths of factories and probMainPeriod are differ-
ent.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 17, 2014 RandomTypeCallFactory 69

Methods

public int nextIndex()

Generates and returns a new type identifier.

public double[][] getProbPeriod()

Returns a copy of the K × P 2D array giving the values of pk,p.

public double getProbPeriod (int k, int p)

Returns the value of pk,p.

public RandomStream getStream()

Returns the random stream used by this factory.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

70 March 17, 2014

OutboundCallFactory

Represents a call factory for outbound calls. This extends CallFactory with parameters
specific to outbound calls: the probability of right-party connect, and the generators for
reach and fail times.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class OutboundCallFactory extends CallFactory

Constructor

public OutboundCallFactory (CallCenter cc, CallCenterParams ccParams,

OutboundTypeParams par, int k) throws

CallFactoryCreationException

Constructs a new call factory for outbound call.

Parameters

cc the call center.

ccParams the call center parameters.

par the parameters of the outbound call type.

k the index of the call type.

Throws

CallFactoryCreationException if an error occurs during the creation of the factory.

Methods

public double getProbReach (int mp)

Returns the probability of right party connect for this outbound call type during main period
p.

Parameter

mp the index of the main period.

Returns the probability of right party connect.

public double getProbRPC (int mp)

Returns the probability of right party connect for this outbound call type during main period
p.

Parameter

mp the index of the main period.

March 17, 2014 OutboundCallFactory 71

Returns the probability of right party connect.

public MultiPeriodGen getReachGen()

Returns the random variate generator for reach times.

Returns the random variate generator for reach times.

public MultiPeriodGen getFailGen()

Returns the random variate generator for fail times.

Returns the random variate generatof for fail times.

72 March 17, 2014

AgentGroupManager

Manages an agent group in the call center model. This class implements the mechanisms
necessary to construct the agent group, and to update its state during the simulation. It
also manages agent disconnection if it is enabled.

By default, this agent group manager sets the number of agents in the managed group
to 0, and does not change it during simulation. However, subclasses such as AgentGroup-

ManagerWithStaffing can override the init() method in order to set and update the
number of agents.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class AgentGroupManager extends NamedInfo

Constructor

public AgentGroupManager (CallCenter cc, AgentGroupParams par, int i)

throws AgentGroupCreationException

Constructs a new agent group manager for the call center cc, agent group i, and based on
agent group parameters par.

Parameters

cc the call center model.

par the parameters of the agent group to be managed.

i the index of the agent group.

Throws

AgentGroupCreationException if an error occurs while constructing the agent group man-
ager, or the associated agent group.

Methods

public double getAgentsMult()

Returns the factor by which the number of agents in the managed group given in parameter
file is multiplied. This multiplier is reset to 1 if the number of agents is changed program-
matically by, e.g., AgentGroupManagerWithStaffing.setStaffing (int[]).

Returns the multiplier for the managed agent group.

public void setAgentsMult (double mult)

Sets the multiplier of the managed agent group to mult.

March 17, 2014 AgentGroupManager 73

Parameter

mult the new multiplier.

public void connectToRouter (Router router)

Connects the managed agent group to the router router by using the Router.setAgent-
Group (int, AgentGroup) method. If agent disconnection is enabled, this method also
ensures that the listener handling disconnections is notified of events related to the agent
group before the router.

Parameter

router the router the agent group is connected to.

public double getWeight()

Returns the weight associated with the managed agent group.

Returns the weight of the managed agent group.

public int getSkillCount()

Returns the skill count associated with the managed agent group, or Integer.MAX VALUE if
no skill count was set explicitly by the user.

This method is mainly for internal use; the recommended way to obtain the skill count is
by using RouterManager.getSkillCount (int) after RouterManager.initSkillCounts
(RouterParams) was called.

Returns the explicitly set skill count.

public double getIdleCost()

Returns the cost of an idle agent in the managed group during one simulation time unit.

Returns the cost of an idle agent.

public double getBusyCost()

Returns the cost of a busy agent in the managed group during one simulation time unit.

Returns the cost of a busy agent.

public double getPerUseCost()

Returns the cost incurred each time an agent in the managed group starts the service of a
call.

Returns the per-use cost of agents in the managed group.

public double getIdleCost (int mp)

Returns the cost of an idle agent managed by this group during main period mp, during one
simulation time unit. This returns the result of getIdleCost() if no per-period cost were
given by the user in parameter file.

http://docs.oracle.com/javase/6/docs/api/java/lang/Integer.html#MAX_VALUE

74 AgentGroupManager March 17, 2014

Parameter

mp the index of the tested main period.

Returns the idle cost.

public double getBusyCost (int mp)

Returns the cost of a busy agent managed by this group during main period mp, during one
simulation time unit. This returns the result of getBusyCost() if no per-period cost were
given by the user in parameter file.

Parameter

mp the index of the tested main period.

Returns the busy cost.

public double getPerUseCost (int mp)

Returns the cost incurred each time an agent in the managed group starts a service during
main period mp. This method returns the result of getPerUseCost() if no per-period costs
were given in parameter file.

Parameter

mp the index of the tested main period.

Returns the per-use cost.

public double getWeight (int mp)

Returns the weight of the managed agent group during main period mp. If no per-period
weights were given in parameter file, this method returns the result of getWeight().

Parameter

mp the index of the tested main period.

Returns the weight of the managed agent group.

public int getMaxAgents()

Returns the maximal number of agents in the managed group.

Returns the maximal number of agents in the managed group.

public int getMinAgents()

Returns the minimal number of agents in the managed group.

Returns the minimal number of agents in the managed group.

public int getMaxAgents (int mp)

Returns the maximal number of agents in the managed group during main period mp. This
method returns the result of getMaxAgents() if no per-period maximum number of agents
were given in parameter file.

March 17, 2014 AgentGroupManager 75

Parameter

mp the index of the tested main period.

Returns the maximal number of agents.

public int getMinAgents (int mp)

Returns the minimal number of agents in the managed group during main period mp. This
method returns the result of getMinAgents() if no per-period minimum number of agents
were given in parameter file.

Parameter

mp the index of the tested main period.

Returns the minimal number of agents.

public static AgentGroupManager create (CallCenter cc, AgentGroupParams

par, int i) throws

AgentGroupCreationException

Constructs and returns a new agent group manager for call center cc, agent group with
index i, and parameters par. If the given parameters contain a staffing, an instance of
AgentGroupManagerWithStaffing is created. If the parameters contain a schedule, an
instance of AgentGroupManagerWithSchedule is constructed. If the parameters contain
information about individual agents, an AgentGroupManagerWithAgents object is created.
Otherwise, a plain AgentGroupManager object is created. The created object can, depending
on parameters, be converted to an instance of AgentGroupManagerWithStaffing. The
constructed (or converted) object is returned.

Parameters

cc the call center model.

par the parameters of the agent group to be managed.

i the index of the agent group.

Throws

AgentGroupCreationException if an error occurs while constructing the agent group man-
ager, or the associated agent group.

protected AgentGroup createAgentGroup (AgentGroupParams par, int i)

throws AgentGroupCreationException

Constructs and returns the ith agent group for this call center. By default, this constructs
an AgentGroup or DetailedAgentGroup instance, depending on the return value of the
AgentGroupParams.isDetailed() method.

Parameter

i the agent group index.

76 AgentGroupManager March 17, 2014

Returns the constructed agent group.

public CallCenter getCallCenter()

Returns a reference to the call center containing this agent group manager.

public RandomStream getProbDisconnectStream()

Returns the random stream used to test if an agent disconnects after the end of a service.

public void setProbDisconnectStream (RandomStream dpStream)

Sets the random stream used to test if an agents disconnects after the end of a service to
dpStream.

public MultiPeriodGen getDisconnectTimeGen()

Returns the random variate generator used for disconnect times.

public AgentGroup getAgentGroup()

Returns a reference to the managed agent group.

public double[] getProbDisconnect()

Returns an array giving the probabilities of disconnection, for each main period.

public double getProbDisconnect (int mp)

Returns the probability that an agent ending a service during main period mp disconnects
for a random time.

public void init()

Calls init on the managed agent group.

public int[] getStaffing()

Returns the raw staffing of the managed agent group. The returned array gives the number
of agents in the managed group during each main period in the model, before any multiplier
is applied.

This method is mainly for internal use; the getEffectiveStaffing() method should be
used instead to take multipliers into account.

The default behavior of this method is to return an array of 0’s.

Returns the raw staffing for the managed agent group.

public int getStaffing (int mp)

Returns element mp of the array that would be returned by getStaffing().

As with getStaffing(), this method is for internal use. The method getEffective-
Staffing (int) should be used instead.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

March 17, 2014 AgentGroupManager 77

Parameter

mp the index of the tested main period.

Returns the raw staffing.

public int[] getEffectiveStaffing()

Returns the staffing determining the effective number of agents in the managed group for each
main period in the model. This method calls getStaffing(), and multiplies each element
of the returned array by m ∗mi, where m is determined by CallCenter.getAgentsMult()
and mi is given by getAgentsMult(). The resulting numbers are rounded to the nearest
integers, and stored in the array being returned.

Returns the effective staffing.

public int getEffectiveStaffing (int mp)

Returns element mp of the array that would be returned by getEffectiveStaffing().

Parameter

mp the index of the tested main period.

Returns the effective staffing.

public AgentGroupSchedule getSchedule()

Returns the schedule associated with the managed agent group. This corresponds to the
effective schedule if this object is an instance of AgentGroupManagerWithSchedule. If this
object is an instance of AgentGroupManagerWithStaffing converted from an instance with
schedule, this returns the schedule of the original agent group manager with schedule. Oth-
erwise, this method returns null.

public static boolean estimateParameters (AgentGroupParams par) throws

DistributionCreationException

Estimates parameters relative to the agent group described by par. The method estimates
the parameters of the distribution for disconnect times. If the agent group has staffing
information, the method then estimates staffing and probAgents from staffingData if
staffingData is given. If scheduling information is used, the method calls AgentGroup-
Schedule.estimateParameters (AgentGroupScheduleParams) to complete parameter es-
timation.

Parameter

par the parameters of the agent group.

Returns true if and only if some parameters were estimated.

Throws

DistributionCreationException if an error occurs during parameter estimation.

78 March 17, 2014

AgentGroupManagerWithStaffing
Manages an agent group with a staffing vector giving the number of agents for each period.
This manager stores the staffing vector and registers a period-change to update the staffing
at the beginning of main periods.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class AgentGroupManagerWithStaffing extends AgentGroupManager

Constructors

public AgentGroupManagerWithStaffing (CallCenter cc, AgentGroupParams par,

int i) throws

AgentGroupCreationException

Calls the superclass’ constructor, and extracts the staffing from par.

public AgentGroupManagerWithStaffing (CallCenter cc, AgentGroupParams par,

int i, int[] staffing) throws

AgentGroupCreationException

Similar to the first constructor AgentGroupManagerWithStaffing (CallCenter, Agent-
GroupParams, int), but uses the given staffing vector instead of the one extracted from
par.

Methods

public void setStaffing (int[] staffing)

Sets the staffing vector to staffing.

Parameter

staffing the new staffing vector.

public void setStaffing (int mp, int staffing)

Sets the staffing for main period mp to staffing.

Parameters

mp the index of the affected main period.

staffing the new staffing.

public void setEffectiveStaffing (int[] staffing)

Sets the effective staffing for the managed agent group to staffing. This method sets
the staffing to staffing using setStaffing (int[]), but it also resets the value of the
multiplier m∗mi to 1. This makes sure that AgentGroupManager.getEffectiveStaffing()
will return the same value as the staffing passed to this method.

March 17, 2014 AgentGroupManagerWithStaffing 79

Parameter

staffing the new effective staffing.

public void setEffectiveStaffing (int mp, int ns)

Similar to setEffectiveStaffing (int[]), for a single main period.

Parameters

mp the index of the affected main period.

ns the new number of agents.

public int[] getCurNumAgents()

Returns the number of agents in the managed group for the current simulation replication.
If the number of agents is deterministic, this method returns the result of AgentGroup-
Manager.getEffectiveStaffing(). Otherwise, it returns the current (random) number of
agents for each main period.

Returns the number of agents in the current replication.

public int getCurNumAgents (int mp)

Similar to getCurNumAgents(), for a given main period mp.

Parameter

mp the index of the main period.

Returns the number of agents.

public double[] getAgentProbability()

Returns the per-period probabilities of presence for each agent in the group. If no such
probabilities wre given by the user, this returns an array of 1’s.

Returns the presence probability, for each main period.

public double getAgentProbability (int mp)

Similar to getAgentProbability(), for a given main period mp.

Parameter

mp the index of the main period.

Returns the presence probability.

public void setAgentProbability (double[] prob)

Sets the per-period presence probabilities of agents to prob.

Parameter

prob the per-period presence probabilities.

public void setAgentProbability (int mp, double prob)

Sets the presence probability of agents to prob for main period mp.

80 March 17, 2014

AgentGroupManagerWithSchedule

Manages an agent group whose member follow a given schedule. A schedule is composed of
shifts that can start and end at arbitrary times during the simulation horizon. This agent
group manager encapsulates a simulation event for each shift. This event is used to add or
remove agents to the managed group during simulation.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class AgentGroupManagerWithSchedule extends AgentGroupManager

Constructor

public AgentGroupManagerWithSchedule (CallCenter cc, AgentGroupParams par,

int i) throws

AgentGroupCreationException

Constructs the new schedule-based agent group manager.

Parameters

cc the call center model.

par the agent group parameters.

i the index of the agent group.

Throws

AgentGroupCreationException if an exception occurs when creating the agent group.

Methods

protected AgentGroup createAgentGroup (AgentGroupParams par, int i)

throws AgentGroupCreationException

Constructs and returns a detailed agent group, which is needed to add and remove agents.

public ScheduleShift[] getShifts()

Returns the shifts composing the schedule of the agents.

Returns the shifts composing the schedule.

public int getNumShifts()

Returns the number of shifts in the schedule.

March 17, 2014 AgentGroupManagerWithSchedule 81

Returns the number of shifts in the schedule.

public ScheduleShift getShift (int i)

Returns the shift with index i.

Parameter

i the index of the shift.

Returns the corresponding shift.

public int[] getNumAgents()

Returns a vector giving the raw number of agents for each shift. This method is for inter-
nal use; the method getEffectiveNumAgents() is recommended to take account of agents
multipliers into account.

Returns the raw number of agents per shift.

public int getNumAgents (int shift)

Returns the raw number of agents in shift shift. The method getEffectiveNumAgents
(int) can be used to take agents multipliers into account.

Parameter

shift the index of the shift.

Returns the raw number of agents on the shift.

public int[] getEffectiveNumAgents()

Returns the effective number of agents during each shift. This method calls getNumAgents(),
and multiplies each element of the returned array by m∗mi, where m is determined by Call-
Center.getAgentsMult() and mi is given by AgentGroupManager.getAgentsMult(). The
resulting numbers are rounded to the nearest integers, and stored in the array being returned.

Returns the effective number of agents during each shift.

public int getEffectiveNumAgents (int shift)

Similar to getEffectiveNumAgents(), for a specific shift shift.

Parameter

shift the index of the tested shift.

Returns the effective number of agents on the shift.

public void setNumAgents (int[] numAgents)

Sets the vector of raw numbers of agents to numAgents.

Parameter

numAgents the new vector of agents.

public void setNumAgents (int shift, int n)

Sets the raw number of agents in shift shift to n.

82 AgentGroupManagerWithSchedule March 17, 2014

Parameters

shift the index of the affected shift.

n the new number of agents.

public void setEffectiveNumAgents (int[] numAgents)

Sets the effective number of agents for each shift of the managed agent group to numAgents.
This method sets the number of agents to numAgents using setNumAgents (int[]), but it
also resets the value of the multiplier m ∗mk to 1. This makes sure that getEffectiveNum-
Agents() will return the same value as the vector passed to this method.

Parameter

numAgents the new vector of agents.

public void setEffectiveNumAgents (int shift, int n)

Similar to setEffectiveNumAgents (int[]), but only sets the number of agents in shift
shift to n instead of the number of agents in all shifts.

Parameters

shift the index of the affected shift.

n the new number of agents.

public boolean[][] getShiftMatrix()

Computes and returns the matrix of shifts. Element (j, p) of this J × P matrix, where J
corresponds to the number of shifts and P , to the number of main periods, is true if and
only if agents are scheduled to work on shift j during main period p.

public int[][] getShiftMatrixInt()

Similar to getShiftMatrix(), but returns a matrix of integers, with 0 meaning false, and
1 meaning true.

public int[] getStaffing()

Computes and returns the staffing vector. This corresponds to the column vector returned
by getNumAgents() multiplied by the matrix returned by getShiftMatrix().

March 17, 2014 83

AgentGroupManagerWithAgents

Manages an agent group with detailed information on each agent.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class AgentGroupManagerWithAgents extends AgentGroupManager

Constructor

public AgentGroupManagerWithAgents (CallCenter cc, AgentGroupParams par,

int i) throws

AgentGroupCreationException

Creates an agent group manager with the call center model cc, agent group parameters par,
and agent group index i.

Parameters

cc the call center model.

par the agent group parameters.

i the agent group index.

Throws

AgentGroupCreationException if an error occurs during the creation of the agent group
manager.

Methods

protected AgentGroup createAgentGroup (AgentGroupParams par, int i)

throws AgentGroupCreationException

Constructs and returns a detailed agent group, which is needed to add and remove agents.

public AgentInfo[] getAgents()

Returns an array containing an information object for each agent in this group.

Returns the array of agent information objects.

public int getNumAgents()

Returns the number of agents in this group.

Returns the number of agents in this group.

public AgentInfo getAgent (int i)

Returns the agent with index i in this group.

84 AgentGroupManagerWithAgents March 17, 2014

Parameter

i the index of the agent.

Returns the agent information object.

public boolean[][] getShiftMatrix()

Computes and returns the shift matrix. Element (j, p) of this J × P matrix, where J
corresponds to the number of shifts and P , to the number of main periods, is true if and
only if agents are scheduled to work on shift j during main period p.

public int[][] getShiftMatrixInt()

Similar to getShiftMatrix(), but returns a matrix of integers, with 0 meaning false, and
1 meaning true.

March 17, 2014 85

TimeInterval

Represents a time interval.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class TimeInterval

Constructors

public TimeInterval (CallCenter cc, TimeIntervalParams par)

Constructs a time interval from the call center cc, and the parameters par. This constructor
converts times in par, expressed as XML durations, to the default time unit used by call
center cc. It then checks that the starting time of the interval is not greater than its ending
time.

Parameters

cc the call center.

par the parameters.

public TimeInterval (double startingTime, double endingTime)

Constructs a new time interval from the given starting and ending times.

Parameters

startingTime the starting time.

endingTime the ending time.

Methods

public double getStartingTime()

Returns the starting time of this interval.

Returns the starting time.

public double getEndingTime()

Returns the ending time of this interval.

Returns the ending time.

public static void checkIntervals (TimeInterval... intervals)

Verifies that the intervals of the given array are non-decreasing and do not overlap. This
method throws an illegal-argument exception if the check fails.

86 TimeInterval March 17, 2014

Parameter

intervals the array of intervals to check.

public static TimeInterval[] create (CallCenter cc, List<

TimeIntervalParams> intervalList)

Constructs an array of time intervals from the list of interval parameters.

Parameters

cc the call center.

intervalList the list of interval parameters.

Returns the array of intervals.

http://docs.oracle.com/javase/6/docs/api/java/util/List.html

March 17, 2014 87

ShiftPart

Represents the part of a shift in a schedule. A shift part is a time interval with an additional
field giving its type.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class ShiftPart extends TimeInterval

Field

public static String WORKING

The text “Working”.

Constructors

public ShiftPart (CallCenter cc, ShiftPartParams par)

Constructs a new shift part using the call ceneter cc, and parameters par.

Parameters

cc the call center.

par the parameters for the part.

public ShiftPart (double startingTime, double endingTime, String type)

Constructs a new shift part using the given starting time, ending time, and type.

Parameters

startingTime the starting time of the shift part.

endingTime the ending time of the shift part.

type the type of the part.

Methods

public String getType()

Returns the type associated with this shift part.

Returns the type of this shift part.

public boolean isWorking()

Determines if agents are working during this part of the shift. This method returns true if
and only if the string returns by getType() is equal to Working, case insensitive.

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

88 ShiftPart March 17, 2014

Returns the success indicator of the test.

public static ShiftPart[] create1 (CallCenter cc, List<ShiftPartParams>

intervalList)

Constructs an array of shift parts from the list of part parameters.

Parameters

cc the call center.

intervalList the list of part parameters.

Returns the array of shift parts.

http://docs.oracle.com/javase/6/docs/api/java/util/List.html

March 17, 2014 89

ScheduleShift

Represents a shift in a schedule for agents. A shift contains an array of parts as well as an
integer giving the number of agents scheduled on that shift.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class ScheduleShift

Constructors

public ScheduleShift (CallCenter cc, ScheduleShiftParams par)

Constructs a new shift from call center cc, and parameters par.

Parameters

cc the call center.

par the parameters.

public ScheduleShift (ShiftPart[] parts, int numAgents, double probAgents)

Constructs a new schedule shift from parts in the array parts, and with numAgents agents.

Parameters

parts the shift parts.

numAgents the number of agents.

Methods

public int getNumAgents()

Returns the number of agents on this shift.

Returns the number of agents on this shift.

public void setNumAgents (int numAgents)

Sets the number of agents on that shift to numAgents.

Parameter

numAgents the number of agents.

public ShiftPart[] getParts()

Returns an array containing the shift parts.

90 ScheduleShift March 17, 2014

Returns the array of shift parts.

public int getNumParts()

Returns the number of parts for this shift.

Returns the number of parts.

public ShiftPart getPart (int i)

Returns the shift part with index i.

Parameter

i the index of the part.

Returns the shift part.

public boolean[] getShiftVector (PeriodChangeEvent pce)

Computes and returns the shift vector for this shift, relative to the period-change event pce.
Element p of this P -dimensional vector, where P is the number of main periods is true if
and only if agents are scheduled to work during main period p.

Parameter

pce the period-change event.

Returns the shift vector.

public int[] getShiftVectorInt (PeriodChangeEvent pce)

Similar to getShiftVector (PeriodChangeEvent), but returns an array of integers rather
than an array of booleans. Element p of the returned array contains 1 if agents are scheduled
to work in main period p, and 0 otherwise.

Parameter

pce the period-change event.

Returns the shift vector.

public double getAgentProbability()

Returns the presence probability of each agent on that shift.

public void setAgentProbability (double prob)

Sets the presence probability of agents on this shift to prob.

public static boolean estimateParameters (ScheduleShiftParams par)

Estimates the numAgents and probAgents parameters of the shift described by par from
the numAgentsData array of observations, assuming that the number of agents follows a
binomial distribution and using the maximum likelihood method.

Parameter

par the parameters of the shift.

Returns true if and only if some parameters were estimated.

March 17, 2014 91

ShiftEvent

Represents a simulation event adding agents to a group at the beginning of working parts of
a shift, and removing them at the end of working parts. The agents to be added or removed
are stored into an internal array of Agent objects so the agents are reused from parts to
parts of a given shift.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class ShiftEvent extends Event

Constructors

public ShiftEvent (DetailedAgentGroup group, ScheduleShift shift)

Constructs a new shift event managing agent group group, and using information in shift
shift.

Parameters

group the agent group to which agents are added and removed.

shift the shift used to determine the number of agents and working parts.

public ShiftEvent (DetailedAgentGroup group, Agent[] agents, ScheduleShift

shift)

Similar to ShiftEvent (DetailedAgentGroup, ScheduleShift), except that the agents
in array agents are added and removed to the group rather than an array of new Agent
objects.

Methods

public void init (RandomStream stream, double mult)

Initializes this event with a new multiplier mult, and resets the internal part index. This
method gets the number of agents on the associated shift, multiplies this number with mult,
and rounds the result to the nearest integer; this gives the effective number of agents on
the shift. The method then creates or updates an internal array of Agent objects which
are added and removed from the associated group each time the event occurs. The array of
agents is created or updated only if it does not exist yet, or if its length does not correspond
to the effective number of agents on the shift.

Parameters

stream a random stream used to generate the number of agents when it is random.

mult the multiplier for the number of agents.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simevents/Event.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/rng/RandomStream.html

92 ShiftEvent March 17, 2014

Throws

IllegalArgumentException if mult is negative.

public void schedule()

Schedules this event to occur at the next time it is needed to add or remove the associated
agents from the attached group. If the simulation time is greater than the ending time of
the last part of the shift, the event is not scheduled anymore. The method init (Random-
Stream, double) can be used to reset the event.

March 17, 2014 93

AgentInfo

Encapsulates the information concerning a specific agent in a call center model.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class AgentInfo extends NamedInfo

Constructor

public AgentInfo (CallCenter cc, AgentParams par)

Constructs a new agent information object using the call center model cc, and the agent
parameters par.

Parameters

cc the call center model.

par the agent parameters.

Methods

public Agent getAgent()

Returns the agent associated with this object.

Returns the associated agent.

public ScheduleShift getShift()

Returns an object representing the shift of the agent associated with this object.

Returns the shift of this agent.

94 March 17, 2014

CallSourceManager

Represents information concerning a call source, i.e., an arrival process or a dialer.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class CallSourceManager extends NamedInfo

Constructor

public CallSourceManager (CallCenter cc, CallSourceParams par)

Constructs a new call source information object with the given call center and call source
parameters.

Parameters

cc the call center model.

par the call source parameters.

Methods

public boolean isSourceEnabled()

Returns true if the concerned call source is enabled, i.e., if it produces calls.

Returns the status of the managed call source.

public double[] getSourceToggleTimes()

Returns the source toggle times. This array contains an even number of simulation times,
each value representing a starting or stopping time.

Returns the source toggle times.

March 17, 2014 95

ArrivalProcessManager

Encapsulates the parameters of an arrival process, constructs the corresponding Contact-

ArrivalProcess object, and updates its state during simulation.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class ArrivalProcessManager extends CallSourceManager

Field

public static RandomVariateGenParams s_bgenParams

This field is initialized by estimateParameters (CallCenterParams, ArrivalProcess-
Params, int, double) when the distribution of a busyness factor is estimated in addition
to parameters of arrival process. In such a case, the field is initialized with the parameters
of a random variate generator for the busyness factor. Otherwise, this field is null.

Constructor

public ArrivalProcessManager (CallCenter cc, ArrivalProcessParams par, int

k) throws ArrivalProcessCreationException

Constructs a new arrival process manager for the call center model cc, the parameters par,
and with index k. If k is smaller than the number of inbound call types defined by the
model, this creates an arrival process producing calls of the single type k. Otherwise, the
arrival process can produce calls of multiple types.

Parameters

cc the call center model.

par the parameters of the arrival process.

k the index of the arrival process.

Throws

ArrivalProcessCreationException if an error occurs during the creation of the arrival
process.

Methods

public double getArrivalsMult()

Returns the value of the multiplier for the arrival rates.

96 ArrivalProcessManager March 17, 2014

Returns the multiplier for the arrival rates.

public void setArrivalsMult (double arrivalsMult)

Sets the multiplier for arrival rates to arrivalsMult.

Parameter

arrivalsMult the new multiplier.

Throws

IllegalArgumentException if arrivalsMult is negative.

public ContactArrivalProcess getArrivalProcess()

Returns the associated arrival process.

Returns the associated arrival process.

protected ContactArrivalProcess createArrivalProcess (ArrivalProcessParams

par, int k,

ContactFactory

factory) throws

ArrivalProcessCreationException

Constructs and returns the arrival process to be managed. This method uses Arrival-
ProcessParams.getType() to get a type identifier for the arrival process. It then retrieves
parameters and initializes an arrival process specific to the given type. If the name of
the arrival process corresponds to a constant in ArrivalProcessType, the method handles
its construction directly. Otherwise, it queries every factory registered using addArrival-
ProcessFactory (ArrivalProcessFactory) until it finds one capable of creating the ar-
rival process. If no such factory can create the process, it uses the ServiceLoader class to
find an arrival process factory. If that last step fails, an arrival-process creation exception is
thrown.

Parameters

par the parameters of the arrival process.

k the call type identifier.

factory the call factory that will be attached to the new process.

Returns the constructed arrival process.

Throws

ArrivalProcessCreationException if an error occurs during the construction of the ar-
rival process.

public static void addArrivalProcessFactory (ArrivalProcessFactory apf)

Registers the arrival process factory apf for arrival process managers. If the user-specified
type of arrival process does not correspond to a predefined process, the registered factories
are queried to find one capable of creating an arrival process. This method must be called
before the call-center simulator is initialized.

http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html

March 17, 2014 ArrivalProcessManager 97

Parameter

apf the new arrival process factory to register.

public static boolean estimateParameters (CallCenterParams ccParams,

ArrivalProcessParams par, int

numPeriods, double

periodDuration)

Estimates the parameters of the arrival process described by par, for a call center with
numPeriods main periods with duration periodDuration. The method replaces the data
stored in par with estimated parameters using an algorithm depending on the type of arrival
process. If returns true if parameters were estimated, and false if there were no parameters
to estimate. If parameter estimation is needed but fails, an illegal-argument exception is
thrown.

More specifically, the method returns false if no data is stored in the given parameter object.
If the type of arrival process corresponds to a constant in ArrivalProcessType, parameter
estimation is handled directly by this method. Otherwise, the method queries every arrival
process factory registered using addArrivalProcessFactory (ArrivalProcessFactory)
until it finds a factory capable of performing the estimation. If no such factory exists, it uses
the ServiceLoader class to find a factory dynamically. If this last step fails, the method
throws an illegal-argument exception.

Parameters

par the parameters of the arrival process.

numPeriods the number of main periods.

periodDuration the duration of main periods.

Returns a boolean indicating if parameter estimation was performed.

public void init (double b)

Initializes the managed arrival process by calling ContactArrivalProcess.init (double).
The busyness factor given to the arrival process is the argument b multiplied by the product
of the multiplier returned by getArrivalsMult(), and the global multiplier returned by
CallCenter.getArrivalsMult(). The expectation E[B] is also set to these product of
multipliers, multiplied by the mean value of B that can be generated using the generator
returned by CallCenter.getBusynessGen().

Parameter

b the generated base busyness factor.

http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html

98 March 17, 2014

DialerManager

Manages a dialer performing outbound calls. An object of this class encapsulates the pa-
rameters specific to the dialer, and provides methods to construct the corresponding Dialer

instance, and to update its state it during simulation.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class DialerManager extends CallSourceManager

Constructor

public DialerManager (CallCenter cc, DialerParams par, int k) throws

DialerCreationException

Constructs a new dialer manager using the call center model cc, the dialer parameters par,
and dialer index k. If k is smaller than the number of outbound call types, this creates a
dialer producing calls of a single type. Otherwise, this creates a dialer producing calls of
randomly-chosen types.

Parameters

cc the call center model.

par the dialer’s parameters.

k the index of the dialer.

Throws

DialerCreationException if a problem occurs during the creation of the dialer.

Methods

protected DialerPolicy createDialerPolicy (DialerParams par, DialerList

dialerList) throws

DialerCreationException

Constructs and returns an object representing the managed dialer’s policy. This method uses
DialerParams.getDialerPolicy() to get a type identifier for the dialer’s policy. It then
retrieves parameters and initializes a dialer’s policy specific to the given type. If the name
of the dialer’s policy corresponds to a constant in DialerPolicyType, the method handles
its construction directly. Otherwise, it queries every factory registered using addDialer-
PolicyFactory (DialerPolicyFactory) until it finds one factory capable of constructing
the policy. If no such factory can create the policy, it uses the ServiceLoader class to find
a dialer’s policy factory dynamically. If that last step fails, a dialer-creation exception is
thrown.

http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html

March 17, 2014 DialerManager 99

Parameters

par the parameters of the dialer’s policy.

dialerList the dialer’s list.

Returns the constructed dialer’s policy.

Throws

DialerCreationException if an error occurs during the creation of the dialer’s policy.

public static void addDialerPolicyFactory (DialerPolicyFactory dpf)

Registers the dialer policy factory dpf for dialer managers. If the user-specified dialer policy
does not correspond to a predefined policy, the registered factories are queried to find one
capable of creating a dialer’s policy. This method must be called before the call-center
simulator is initialized.

Parameter

dpf the new dialer policy factory to register.

public Dialer getDialer()

Returns the dialer managed by this object.

Returns the managed dialer.

public CallCenter getCallCenter()

Returns a reference to the call center associated with this dialer manager.

Returns the associated call center.

public AgentGroupSet getTargetSet()

Returns a reference to the target set of agent groups associated with the managed dialer.

Returns the target set of agent groups.

public int getServiceLevelIndex()

Determines the 0-based index of the service-level information matrix used if the dialing
policy in use takes service level (or acceptable waiting time) into account for its decisions.

100 DialerManager March 17, 2014

Returns the index of the service-level information matrix.

public int getNumCheckedPeriods()

Determines the number of testing periods used by dialing policies taking cumulative statistics
(service level, mismatch rate, etc.) into account for taking their decisions.

public double getCheckedPeriodDuration()

Determines the duration, in simulation time units, of the testing periods used by some dialing
policies taking cumulative statistics into account.

public double getSlInboundThresh()

Determines the outbound-to-inbound threshold for the service level. When the service level
goes below this threshold, some dialers start moving agents from outbound groups to inbound
groups.

public double getSlOutboundThresh()

Determines the inbound-to-outbound threshold for the service level. When the service level
goes above this threshold, some dialers start moving agents from inbound groups to outbound
groups.

public boolean isUseNumActionEvents()

Determines if the dialer subtracts the number of calls for which dialing is in progress from
the number of calls to dial. When dial delays are large enough for the dialer to start often
while phone numbers are being composed, the agents of the call center might receive too
many calls to serve, which results in a large number of mismatches. If this attribute is set
to true (the default), the dialer will take into account the number of calls for which dialing
is in progress while determining the number of additional calls to dial.

March 17, 2014 101

DialerObjects

Regroups objects used by dialers. This class encapsulates the testing set containing all the
agent groups, and value generators for the reaching probability, and reaching and failing
times. These parameters are the same for every dialer, but they are not needed if no dialer
is used.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class DialerObjects

Constructor

public DialerObjects (CallCenter cc)

Constructs a new set of dialer objects from the given call center model.

Parameter

cc the call center model.

Methods

public AgentGroupSet getAgentGroupTestSet()

Returns the testing set of agent groups used by some dialing policies.

Returns the testing set of agent groups.

public ValueGenerator getProbReachGen()

Returns the value generator giving the probability of right party connect for any outbound
call. The probability often depends on the call type and period of arrival of the call.

Returns the value generator for the probability of right party connect.

public ValueGenerator getReachTimeGen()

Returns the value generator giving the needed time for a caller to be reached. By using
a value generator, the distribution of this (random) time can depend on the call type and
period of arrival.

Returns the value generator for the reach times.

public ValueGenerator getFailTimeGen()

Returns the value generator for the needed time for an outbound call to fail. This method
is similar to getReachTimeGen(), for fail times.

Returns the value generator for fail times.

102 March 17, 2014

CallNotifierForBadContactMismatchRate

Exited-contact and new-contact listeners used to update the state of the BADCONTACTMISMATCHRATE
dialer’s policy. This listener calls BadContactMismatchRatesDialerPolicy.notifyInbound-
Contact (Contact, boolean), and BadContactMismatchRatesDialerPolicy.notifyOutbound-

Contact (Contact, boolean) methods when failed contacts are notified, or when other
contacts exit. This listener should be registered with the router and with the dialer to
receive failed calls.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class CallNotifierForBadContactMismatchRate implements

ExitedContactListener, NewContactListener

Constructor

public CallNotifierForBadContactMismatchRate (DialerManager dialerManager)

Constructs a new call notifier for the dialer manager dialerManager.

Parameter

dialerManager the associated dialer manager.

March 17, 2014 103

CallNotifierForAgentsMove

Exited-contact listener used to update the state of the AGENTSMOVE dialer’s policy during
the simulation. This listener collects statistics about exiting calls to get estimates of the
service level in a time window, which is used to determine if the dialer performs inbound-
to-outbound, or outbound-to-inbound moves. After this listener is constructed, it should be
registered with the router.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class CallNotifierForAgentsMove implements ExitedContactListener

Constructor

public CallNotifierForAgentsMove (DialerManager dialerManager)

Constructs a new call notifier for the dialer manager dialerManager.

Parameter

dialerManager the associated dialer manager.

104 March 17, 2014

DialerLimit

Represents a limit on the number of calls to dial. Such a limit is described by a time interval
on which it applies, the maximal number of outbound calls allowed for this dialer during the
interval, and the call types on which the limit applies. This class extends the TimeInterval

class for the information about the time interval on which the limit applies.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class DialerLimit extends TimeInterval

Constructor

public DialerLimit (CallCenter cc, DialerLimitParams par)

Constructs a new dialer limit using the call center cc, and limit parameters par.

Parameters

cc the call center model.

par the limit parameters.

Methods

public int getValue()

Returns the maximal number of calls of the specified typeset during the given interval.

Returns the value of the limit.

public int[] getTypes()

Returns an array giving the list of call types on which the limit applies.

Returns the list of call types on which the limit applies.

public boolean hasType (int k)

Returns true if and only if this limit applies to call type k. This method always returns
false for inbound call types.

Parameter

k the tested call type.

Returns the success indicator of the test.

March 17, 2014 105

DialerListWithLimits

Represents a dialer list imposing limits on the number of calls to dial.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class DialerListWithLimits implements DialerList

Constructors

public DialerListWithLimits (CallCenter cc, int k, DialerLimitParams...

limits)

Constructs a new dialer list with limits for the call center cc, call type k, and limits limits.

Parameters

cc the call center model.

k the call type identifier.

limits the dialer’s limits.

public DialerListWithLimits (CallCenter cc, RandomTypeCallFactory factory,

DialerLimitParams... limits)

Constructs a new dialer list with limits for the call center cc, the call factory factory which
generates calls of random types, and the limits limits.

Parameters

cc the call center model.

factory the random-type call factory.

limits the dialer’s limits.

106 March 17, 2014

RouterManager
Manages the creation of the router as well as the data structures containing routing infor-
mation. This class provides the necessary facility to read and validate routing tables stored
in RouterParams instances, construct missing routing tables according to the rules specified
in RouterParams, and create the appropriate Router instance used for simulation.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class RouterManager

Constructor

public RouterManager (CallCenter cc, RouterParams par) throws

RouterCreationException

Constructs a new router manager using the call center model cc, and the router’s parameters
par.

Parameters

cc the call center model.

par the router’s parameters.

Throws

RouterCreationException if a problem occurs during the construction of the router.

Methods

public Router getRouter()

Returns a reference to the router managed by this object.

Returns the managed router.

public void setRouter (Router router)

Sets the managed router to router.

Parameter

router the new managed router.

public void initTypeToGroupMap (RouterParams par)

Initializes the type-to-group map from the router parameters par, or constructs a new type-
to-group map from other information if RouterParams.getRoutingTableSources() defines
the typeToGroupMap attribute. This method does nothing if a type-to-group map was
already constructed. The obtained type-to-group map can be accessed through getTypeTo-
GroupMap() after this method succeeds, and an illegal-argument exception is thrown if this
method fails.

March 17, 2014 RouterManager 107

Parameter

par the router’s parameters.

public void initGroupToTypeMap (RouterParams par)

Initializes the group-to-type map from the router parameters par, or constructs a new group-
to-type map from other information if RouterParams.getRoutingTableSources() defines
the groupToTypeMap attribute. This method does nothing if a group-to-type map was
already constructed. The obtained group-to-type map can be accessed through getGroup-
ToTypeMap() after this method succeeds, and an illegal-argument exception is thrown if this
method fails.

Parameter

par the router’s parameters.

public void initRanksTG (RouterParams par)

Initializes the type-to-group matrix of ranks from the router parameters par, or constructs
a new type-to-group matrix of ranks from other information if RouterParams.getRouting-
TableSources() defines the ranksTG attribute. This method does nothing if a type-to-group
matrix of ranks was already constructed. The obtained matrix can be accessed through get-
RanksTG() after this method succeeds, and an illegal-argument exception is thrown if this
method fails.

Parameter

par the router’s parameters.

public void initRanksGT (RouterParams par)

Initializes the group-to-type matrix of ranks from the router parameters par, or constructs
a new group-to-type matrix of ranks from other information if RouterParams.getRouting-
TableSources() defines the ranksGT attribute. This method does nothing if a group-to-type
matrix of ranks was already constructed. The obtained matrix can be accessed through get-
RanksGT() after this method succeeds, and an illegal-argument exception is thrown if this
method fails.

Parameter

par the router’s parameters.

public void initRanksGTUpdate (RouterParams par)

Initializes the auxiliary group-to-type matrix of ranks associated with minimal waiting times.
This method does nothing if no ranksGTUpdate elements is given in par. These matrices
can be retrieved using the getRanksGTDelay() method.

Parameter

par the router’s parameters.

public void initWeightsTG (RouterParams par)

Initializes the type-to-group matrix of weights using the router’s parameters par. If no
such matrix is defined, a matrix filled with 1’s is created. An illegal-argument exception is
thrown if any error occurs during the construction and validation of the matrix of weights.
The matrix can be accessed using the getWeightsTG() method if this method succeeds.

108 RouterManager March 17, 2014

Parameter

par the router’s parameters.

public void initWeightsGT (RouterParams par)

Initializes the group-to-type matrix of weights using the router’s parameters par. If no such
matrix is defined in par, one is initialized from the queue weights. An illegal-argument
exception is thrown if any error occurs during the construction and validation of the matrix
of weights. The matrix can be accessed using the getWeightsGT() method if this method
succeeds.

Parameter

par the router’s parameters.

public void initDelays (RouterParams par)

Initializes the matrix of delays from the router’s parameters par. If no matrix of delays is
defined in par, this method creates a I ×K matrix filled with 0’s. The constructed matrix
can be accessed using getDelaysGT().

Parameter

par the router’s parameters.

public void initQueueWeights (RouterParams par)

Initializes the queue weights using the router’s parameters par. If no queue weights are
specified in par, this method creates a vector of queue weights using the weights associated
with each call type. The queue weights can be accessed using the getQueueWeights()
method if this method succeeds.

Parameter

par the router’s parameters.

public void initIncidenceMatrixTG (RouterParams par)

Initializes the type-to-group incidence matrix from the router parameters par, or constructs
a new type-to-group incidence matrix from other information if RouterParams.getRouting-
TableSources() defines the incidenceMatrixTG attribute. This method does nothing
if a type-to-group incidence matrix was already constructed. The obtained matrix can
be accessed through getIncidenceMatrixTG() after this method succeeds, and an illegal-
argument exception is thrown if this method fails.

Parameter

par the router’s parameters.

public void initIncidenceMatrixGT (RouterParams par)

Initializes the group-to-type incidence matrix from the router parameters par, or constructs
a new group-to-type incidence matrix from other information if RouterParams.getRouting-
TableSources() defines the incidenceMatrixGT attribute. This method does nothing
if a group-to-type incidence matrix was already constructed. The obtained matrix can
be accessed through getIncidenceMatrixGT() after this method succeeds, and an illegal-
argument exception is thrown if this method fails.

March 17, 2014 RouterManager 109

Parameter

par the router’s parameters.

public void initSkillCounts (RouterParams par)

Initializes the skill counts using the router’s parameters par. If no skill count is specified
in par, the skill counts are initialized from agent groups’ skillCount attribute. If the skill
count is not specified explicitly for at least one agent group, the group-to-type incidence
matrix is initialized and used to count the number of call types accessible for this agent
group.

Parameter

par the router’s parameters.

public void initStages (RouterParams par)

Initializes the routing stages for the overflow-and-priority routing policy from parameters in
par. This method does nothing if the stages, returned by the getRoutingStages() method,
are already initialized. Otherwise, it processes parameters in par to initialize the stages.

Parameter

par the routing parameters.

protected Router createRouter (RouterParams par) throws

RouterCreationException

Constructs and returns the router to be managed. This method uses RouterParams.get-
RouterPolicy() to get a type identifier for the router’s policy. It then retrieves parameters
and initializes a router specific to the given type. If the name of the policy corresponds to
a constant in RouterPolicyType, the method handles its construction directly. Otherwise,
it queries every factory registered using addRouterFactory (RouterFactory) until it gets
one capable of creating the policy. If no such factory exists, it uses the ServiceLoader
class to find a router policy factory dynamically. If that last step fails, the method throws
a router-creation exception.

Parameter

par the parameters of the router.

Returns the constructed router.

Throws

RouterCreationException if an error occurs during the construction.

public static void addRouterFactory (RouterFactory rf)

Registers the router factory rf for router managers. If the user-specified router policy
does not correspond to a predefined policy, the registered factories are queried to find one
capable of creating a router. This method must be called before the call-center simulator is
initialized.

http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html

110 RouterManager March 17, 2014

Parameter

rf the new router factory to register.

public void initAgentsPrefBased (RouterParams par, AgentsPrefRouter

router1)

Initializes an agents preference-based router using the parameters par. This method sets
the score type for contact and agent selection as well as random streams for randomized
selections if it is enabled.

Parameters

par the router’s parameters.

router1 the router object.

public String getRegion (int id)

Returns the region name corresponding to region identifier id. This must be called after
initTypeRegions() or initGroupRegions(), and throws a NoSuchElementException if no
region name has been associated with the given identifier.

Parameter

id the region identifier.

Returns the corresponding region name.

Throws

NoSuchElementException if no region name is associated with the corresponding region
identifier.

public int getRegion (String regStr)

Returns the region identifier corresponding to the region name regStr. This method must
be called only after initTypeRegions() or initGroupRegions(), and throws a NoSuch-
ElementException if no identifier is associated with regStr.

Parameter

regStr the tested region name.

Returns the corresponding region identifier.

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/NoSuchElementException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/util/NoSuchElementException.html
http://docs.oracle.com/javase/6/docs/api/java/util/NoSuchElementException.html

March 17, 2014 RouterManager 111

Throws

NoSuchElementException if no region identifier is associated with the given region name.

public void clearRegionMap()
Clears the internal region map used by initTypeRegions() and initGroupRegions(). Af-
ter this method is called, it is not possible to get the region name corresponding to the region
identifiers.

public void initTypeRegions()
Initializes the call type region identifiers used by the local-specialist routing policy. This
method obtains a region name for each call type, and maps each identical name to the same
integer. At the end of this process, the array returned by getTypeRegions() associates a
region identifier to each call type.
The region name of a call type is computed as follows. First, the call type factory is obtained
using CallCenter.getCallFactory (int). If the properties returned by CallFactory.
getProperties() contains a property named region, its value is used as the region string.
Otherwise, the name of the call type, returned by CallFactory.getName(), is split using the
semicolon as a delimiter, and the region corresponds to the string following the semicolon.

public void initGroupRegions()
Initializes the agent group region identifiers used by the local-specialist routing policy. This
method obtains a region name for each agent group, and maps each identical name to
the same integer. At the end of this process, the array returned by getGroupRegions()
associates a region identifier to each call type.
The region name of an agent group is computed as follows. First, the agent group manager
is obtained using CallCenter.getAgentGroupManager (int). If the properties returned by
getProperties() contains a property named region, its value is used as the region string.
Otherwise, the name of the call type, returned by getName(), is split using the semicolon
as a delimiter, and the region corresponds to the string following the semicolon.

public int[][] getGroupToTypeMap()
Returns the currently used group-to-type map. If initGroupToTypeMap (RouterParams) or
setGroupToTypeMap (int[][]) were never called, this method returns null. Otherwise,
this method returns an array of I arrays giving an order list of call types for each agent
group.
Returns the currently used group-to-type map.

public void setGroupToTypeMap (int[][] groupToTypeMap)
Sets the group-to-type map to groupToTypeMap.
Parameter

groupToTypeMap the new group-to-type map.

public boolean[][] getIncidenceMatrixGT()
Returns the currently used group-to-type incidence matrix. If initIncidenceMatrixGT
(RouterParams) or setIncidenceMatrixGT (boolean[][]) were never called, this method
returns null. Otherwise, this returns a I ×K incidence matrix.

112 RouterManager March 17, 2014

Returns the currently used group-to-type incidence matrix.

public void setIncidenceMatrixGT (boolean[][] incidenceMatrixGT)

Sets the group-to-type incidence matrix to incidenceMatrixGT.

Parameter

incidenceMatrixGT the group-to-type incidence matrix.

public boolean[][] getIncidenceMatrixTG()

Returns the currently used type-to-group incidence matrix. If initIncidenceMatrixTG
(RouterParams) or setIncidenceMatrixTG (boolean[][]) were never called, this method
returns null. Otherwise, this returns a K × I incidence matrix.

Returns the currently used type-to-group incidence matrix.

public void setIncidenceMatrixTG (boolean[][] incidenceMatrixTG)

Sets the type-to-group incidence matrix to incidenceMatrixTG.

Parameter

incidenceMatrixTG the type-to-group incidence matrix.

public double[] getQueueWeights()

Returns the currently used queue weights vector. If initQueueWeights (RouterParams)
or setQueueWeights (double[]) were never called, this method returns null. Otherwise,
element k of the returned array gives the weight for contact type k when entering in queue.

Returns the vector of queue weights.

public void setQueueWeights (double[] queueWeights)

Sets the vector of queue weights to queueWeights.

Parameter

queueWeights the new vector of queue weights.

public double[][] getRanksGT()

Returns the currently used group-to-type matrix of ranks. If initRanksGT (RouterParams)
or setRanksGT (double[][]) were never called, this method returns null. Otherwise, it
returns a I ×K matrix of ranks.

Returns the currently used group-to-type matrix of ranks.

public void setRanksGT (double[][] ranksGT)

Sets the group-to-type matrix of ranks to ranksGT.

March 17, 2014 RouterManager 113

Parameter

ranksGT the new matrix of ranks.

public SortedMap<Double, double[][]> getRanksGTDelay()

Returns a map giving the auxiliary matrices of ranks with associated minimal waiting times.
Each entry of the returned map has a key giving the minimal waiting time, and a value
corresponding to the matrix of ranks. If no auxiliary matrix of ranks were given in routing
parameters, this returns an empty map.

Returns the map of auxiliary matrices of ranks.

public double[][] getRanksTG()

Returns the currently used type-to-group matrix of ranks. If initRanksTG (RouterParams)
or setRanksTG (double[][]) were never called, this method returns null. Otherwise, it
returns a K × I matrix of ranks.

Returns the currently used type-to-group matrix of ranks.

public void setRanksTG (double[][] ranksTG)

Sets the type-to-group matrix of ranks to ranksTG.

Parameter

ranksTG the new matrix of ranks.

public int[] getSkillCounts()

Returns the currently used skill counts. This method returns null if initSkillCounts
(RouterParams) or setSkillCounts (int[]) were never called. Otherwise, it returns an
array whose element i gives the skill count for agent group i.

Returns the currently used array of skill counts.

public int getSkillCount (int i)

Returns the skill count for agent group i, i.e., the number of call types agents in this group
can serve. This method returns Integer.MAX VALUE if initSkillCounts (RouterParams)
or setSkillCounts (int[]) were never called.

Parameter

i the index of the agent group.

Returns the skill count.

public void setSkillCounts (int[] skillCounts)

Sets the currently used skill counts to skillCounts.

http://docs.oracle.com/javase/6/docs/api/java/util/SortedMap.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Integer.html#MAX_VALUE

114 RouterManager March 17, 2014

Parameter

skillCounts the new skill counts.

public int[] getTypeRegions()

Returns the currently used type regions vector. This method returns null if initType-
Regions() or setTypeRegions (int[]) were never called. Otherwise, index k of the re-
turned array gives the region identifier for calls of type k.

Returns the vector of type regions.

public void setTypeRegions (int[] typeRegions)

Sets the vector of type regions to typeRegions.

Parameter

typeRegions the new vector of type regions.

public int[] getGroupRegions()

Returns the currently used group regions. This method returns null if initGroupRegions()
or setGroupRegions (int[]) were never called. Otherwise, index i of the returned array
gives the region identifier for agents in group i.

Returns the currently used group regions.

public void setGroupRegions (int[] groupRegions)

Sets the currently used group regions to groupRegions.

Parameter

groupRegions the new group regions.

public int[][] getTypeToGroupMap()

Returns the currently used type-to-group map. If initTypeToGroupMap (RouterParams)
or setTypeToGroupMap (int[][]) were never called, this method returns null. Otherwise,
it returns an array of K arrays giving an ordered list of agent groups for each call type.

Returns the currently used type-to-group map.

public void setTypeToGroupMap (int[][] typeToGroupMap)

Sets the currently used type-to-group map to typeToGroupMap.

Parameter

typeToGroupMap the new type-to-group map.

public double[][] getWeightsGT()

Returns the currently used group-to-type matrix of weights. If initWeightsGT (Router-
Params) or setWeightsGT (double[][]) were never called, this method returns null. Oth-
erwise, it returns a I ×K matrix of weights.

March 17, 2014 RouterManager 115

Returns the currently used group-to-type matrix of weights.

public void setWeightsGT (double[][] weightsGT)

Sets the group-to-type matrix of weights to weightsGT.

Parameter

weightsGT the new matrix of weights.

public double[][] getWeightsTG()

Returns the currently used type-to-group matrix of weights. If initWeightsTG (Router-
Params) or setWeightsTG (double[][]) were never called, this method returns null. Oth-
erwise, it returns a K × I matrix of weights.

Returns the currently used type-to-group matrix of weights.

public void setWeightsTG (double[][] weightsTG)

Sets the type-to-group matrix of weights to weightsTG.

Parameter

weightsTG the new matrix of weights.

public double[][] getDelaysGT()

Returns the currently used group-to-type delays matrix. If initDelays (RouterParams) or
setDelaysGT (double[][]) were never called, this method returns null. Otherwise, it returns
a I ×K matrix of delays expressed in the default time unit of the simulator.

Returns the currently used group-to-type delays matrix.

public void setDelaysGT (double[][] delaysGT)

Sets the group-to-type delays matrix to delaysGT.

Parameter

delaysGT the new delays matrix.

116 March 17, 2014

CallCenterRoutingStageInfo

Provides information on a routing stage, for the OverflowAndPriorityRouter router. The
information includes a waiting time, and a list of routing cases which are used to compute
the functions returning vectors of ranks.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class CallCenterRoutingStageInfo implements RoutingStageInfo

Constructor

public CallCenterRoutingStageInfo (CallCenter cc, int k,

RoutingStageParams par)

Constructs call canter routing stage from the model cc, and parameters par.

Parameters

cc the call center model.

par the parameters for the routing stage.

March 17, 2014 117

RoutingCase

Represents a routing case part of a routing stage, for the OverflowAndPriorityRouter. A
case is defined by a condition, represented by an instance of Condition, and vectors of ranks
for agent selection, and queue priorities. An instance with condition set to null is also
possible to represent the default case.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class RoutingCase

Constructors

public RoutingCase (CallCenter cc, int k, RoutingCaseParams par)

Constructs a new routing case using the call center model cc, and parameters par. The
vectors of ranks are extracted directly from par while the condition is parsed with the help
of ConditionUtil.createCondition (CallCenter, int, ConditionParams).

Parameters

cc the call center model.

k the call type for which the routing case concerns.

par the case parameters.

public RoutingCase (CallCenter cc, int k, DefaultCaseParams par)

Similar to constructor RoutingCase (CallCenter, int, RoutingCaseParams), for the de-
fault case with no condition.

public RoutingCase (Condition cond, double[] aRanks, double[] qRanks)

Creates a new routing case with condition cond, and vectors of ranks aRanks and qRanks
for agent selection and queue priority.

Methods

public Condition getCondition()

Returns the condition associated with this case, or null for the default case.

public double[] getAgentGroupRanks()

Returns the vector of ranks for agent selection, for this routing case.

public double[] getQueueRanks()

Returns the vector of ranks for queue priority, for this routing case.

118 RoutingCase March 17, 2014

public boolean isAgentGroupRanksRelative()

Determines if the vector of ranks for agent groups is relative for this routing case.

public boolean isQueueRanksRelative()

Same as isAgentGroupRanksRelative(), for the vector of ranks of waiting queues.

March 17, 2014 119

CallTransferManager

Implements the necessary logic for call transfer from primary to secondary agents.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class CallTransferManager

120 March 17, 2014

VirtualHoldManager

Implements the necessary logic for virtual holding, also called virtual queueing.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class VirtualHoldManager

Constructor

public VirtualHoldManager (CallCenter cc) throws

CallCenterCreationException

Constructs a new virtual hold manager for the call center model cc.

Method

public void init()

Initializes the internal variables of this manager for a new simulation.

March 17, 2014 121

SegmentInfo

Represents information about a user-defined segment regrouping some indexed entities such
as call types, agent groups, or periods. Each segment has a name, optional user-defined
properties, and a list of indices.

Segment information is extracted from a SegmentParams instance which is read from a
XML file by JAXB. The method getValues() can be used to obtain the indices regrouped
by the segment, while containsValue (int) tests if a specific index is contained in the
segment.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class SegmentInfo extends NamedInfo

Constructor

public SegmentInfo (SegmentParams par)

Constructs a new segment information object from the segment parameters par.

Parameter

par the segment parameters.

Throws

IllegalArgumentException if some segment parameters wre invalid.

Methods

public int[] getValues()

Returns the reference to an array containing the list of values in this segment. The returned
array can be modified without affecting the internal array in this object.

Returns the list of indices.

public int getNumValues()

Returns the number of different values in this segment.

Returns the number of values.

public int getMinValue()

Returns the minimal index in this segment.

Returns the minimal index.

public int getMaxValue()

Returns the maximal index in this segment.

122 SegmentInfo March 17, 2014

Returns the maximal index.

public boolean containsValue (int i)

Tests if the index i is included in the list of values associated with this segment. Returns
true if and only if i is included in the list of values returned by getValues().

Parameter

i the tested index.

Returns the success indicator of the test.

public static SegmentInfo[] getSegments (Collection<? extends

SegmentParams> par)

Converts the given collection of segment parameters into an array of segment information
objects. This method first creates an array of segment information objects whose length
corresponds to the size of the given collection. It then iterates over the collection, and
creates one information object for each parameter object in the collection. The constructed
array is then returned.

Parameter

par collection of segment parameters.

Returns the corresponding array of segment information objects.

Throws

IllegalArgumentException if an error occurs during the creation of a segment informa-
tion object.

public static void checkRange (int lower, int upper, SegmentInfo...

segments)

Checks that the minimal value stored in all the segments segments is greater than or equal
to lower, and the maximal value is smaller than upper. If this condition is violated for
at least one segment, an illegal-argument exception is thrown. This method is used for
validating parameters when the call center model is constructed. For example, it is used to
ensure that segments of inbound call types does not contain any value greater than or equal
to KI.

Parameters

lower the lower bound (inclusive).

upper the upper bount (non-inclusive).

segments the array of segments to test.

http://docs.oracle.com/javase/6/docs/api/java/util/Collection.html

March 17, 2014 SegmentInfo 123

Throws

IllegalArgumentException if at least one segment contains an out-of-bounds value.

public static DoubleMatrix2D addRowSegments (DoubleMatrix2D mat,

DoubleDoubleFunction func,

SegmentInfo... segments)

Calls addRowSegments (mat, func, null, segments).

Parameters

mat the matrix to process.

func the function f .

segments the segments for which rows are added in the matrix.

Returns the matrix with extra rows.

public static DoubleMatrix2D addRowSegments (DoubleMatrix2D mat,

DoubleDoubleFunction func,

boolean[] globalSegmentValues,

SegmentInfo... segments)

Constructs and returns a matrix with all the rows in mat, extra rows corresponding to the
segments in segments, and an additional row representing the aggregation of all rows in the
original matrix. Let mat be a a × b matrix. If a ≤ 1, the method returns mat unchanged.
Otherwise, it creates a new matrix M with a+s+1 rows and b columns, where s is the length
of the segments array. Let mi,j be the element in mat at position (i, j), for i = 0, . . . , a− 1
and j = 0, . . . , b−1, and let Mi,j be an element in the resulting matrix, with i = 0, . . . , a+s,
and j = 0, . . . , b− 1. Then, for any j = 0, . . . , b− 1,

Mi,j =
{
f(0,mi,j) for i = 0, . . . , a− 1,
fa−1

l=0 ml,jsi−a,l for i = a, . . . , a+ s,

where

f b
i=axisi =


f(f b−1

i=a xisi, xb) if a < b and sb = 1,
f b−1

i=a xisi if a < b and sb = 0,
f(0, xa) if a = b and sa = 1,
0 otherwise.

Here, f : R2 → R is a function, and sr,i = 1 if index i is included in the rth segment,
and 0 otherwise. For r = 0, . . . , s − 1, sr,i is determined using the containsValue (int)
method of segments[r] while ss,i is 1 if and only if globalSegmentValues[i] is true. If
globalSegmentValues is null, ss,i is set to 1 for all i in the last row.

Usually, func which represents f is set to Functions.plus, or Functions.max. In the
former case, f(x, y) = x+ y, and Mi,j is

a−1∑
l=0

ml,jsi−a,l.

http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/function/DoubleDoubleFunction.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/function/DoubleDoubleFunction.html
http://acs.lbl.gov/software/colt/api/cern/jet/math/Functions.html#plus
http://acs.lbl.gov/software/colt/api/cern/jet/math/Functions.html#max

124 SegmentInfo March 17, 2014

Parameters

mat the matrix to process.

func the function f .

globalSegmentValues determines which rows are summed up in the global segment.

segments the segments for which rows are added in the matrix.

Returns the matrix with extra rows.

public static DoubleMatrix2D addRowSegments (DoubleMatrix2D mat, int

numGroups,

DoubleDoubleFunction func,

boolean[]

globalSegmentValues1, boolean[]

globalSegmentValues2,

SegmentInfo[] segments1,

SegmentInfo[] segments2)

Constructs and returns a matrix with all the rows in mat, and extra rows corresponding to the
segments in segments1 and segments2. Let mat be a (a∗c)×bmatrix. If a∗c ≤ 1, the method
returns mat unchanged. Otherwise, it creates a new matrix M with (a+ s1 + 1)(c+ s2 + 1)
rows and b columns, where s1 and s2 are the lengths of the segments1 and segments2 arrays,
respectively. Let mi,j,p be element at row i ∗ c+ j and column p in mat, with i = 0, . . . , a− 1
and j = 0, . . . , c−1, and p = 0, . . . , b−1. Also let Mi,j,p be element at row i∗ (c+s2−1) + j
and column p in M , with i = 0, . . . , a+ s1, and j = 0, . . . , c+ s2. Then,

Mi,j,p =


f(0,mi,j,p) if i < a and j < c,

f c−1
l=0 mi,l,ps2,j−c,l if i < a and j = c, . . . , c+ s2,

fa−1
l=0 ml,j,ps1,i−a,l if i = a, . . . , a+ s1 andj < c,

fa−1
l1=0(f c−1

l2=0ml1,l2,ps2,j−c,l2)s1,i−a,l1 otherwise.

Here, sd,r,i is 1 if and only if segment r in dimension d contains element i, for d = 1, 2.
In particular, s1,r,i, for r = 0, . . . , s1 − 1, is determined using segments1[r] while s2,r,i,
for r = 0, . . . , s2 − 1, is set using segments2[r]. The variables s1,s1,i and s2,s2,i are set
using globalSegmentValues1[i] and textttglobalSegmentValues2[i] respectively, or 1 if the
corresponding array is null. The definition of f b

i=axisi is the same as in method addRow-
Segments (DoubleMatrix2D, DoubleDoubleFunction, boolean[], SegmentInfo...).

Parameters

mat the matrix to process.

numGroups the value of c, a being determined using mat.

func the function f .

globalSegmentValues1 determines which rows are summed up in the global segment for
the first dimension.

http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/function/DoubleDoubleFunction.html

March 17, 2014 SegmentInfo 125

globalSegmentValues2 determines which rows are summed up in the global segment for
the second dimension.

segments1 the segments for which rows are added in the matrix, for the first dimension.

segments2 the segments for which rows are added in the matrix, for the second dimension.

Returns the matrix with extra rows.

public static DoubleMatrix2D addColumnSegments (DoubleMatrix2D mat,

DoubleDoubleFunction func,

SegmentInfo... segments)

Similar to addRowSegments (DoubleMatrix2D, DoubleDoubleFunction, SegmentInfo..
.), for adding extra columns to matrix mat.

Parameters

mat the matrix to process.

func the function f .

segments the segments for which rows are added in the matrix.

Returns the matrix with extra rows.

http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/function/DoubleDoubleFunction.html

126 March 17, 2014

CallCenterCreationException

This exception is thrown when a problem occurs during the creation of a call center model.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class CallCenterCreationException extends Exception

http://docs.oracle.com/javase/6/docs/api/java/lang/Exception.html

March 17, 2014 127

CallFactoryCreationException

This exception is thrown when a problem occurs during the creation of a call factory.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class CallFactoryCreationException extends Exception

http://docs.oracle.com/javase/6/docs/api/java/lang/Exception.html

128 March 17, 2014

ArrivalProcessCreationException

This exception is thrown when a problem occurs during the creation of an arrival process.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class ArrivalProcessCreationException extends Exception

http://docs.oracle.com/javase/6/docs/api/java/lang/Exception.html

March 17, 2014 129

DialerCreationException

This exception is thrown when a problem occurs during the creation of a dialer.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class DialerCreationException extends Exception

http://docs.oracle.com/javase/6/docs/api/java/lang/Exception.html

130 March 17, 2014

RouterCreationException

This exception is thrown when a problem occurs during the creation of the router.

package umontreal.iro.lecuyer.contactcenters.msk.model;

public class RouterCreationException extends Exception

http://docs.oracle.com/javase/6/docs/api/java/lang/Exception.html

March 17, 2014 131

Package umontreal.iro.lecuyer.contactcenters.msk.simlogic

Provides classes implementing the logic containing the necessary instructions to simulate
a model of a call center, and interact with facilities for statistical collecting. Such a logic
can simulate independent replications using a given model, or split a single long replication
into time intervals. In both cases, the simulation can be divided into steps corresponding to
either replication, either time intervals also called batches.

To perform an experiment, a simulation logic is first initialized, which resets the state of
its associated model to an empty system. The logic can then be used to simulate a certain
number of steps.

The simulation logic interacts with the statistical collecting facilities in the following
ways. First, any simulation can provide a period index for each observed call. This period
index often corresponds to the period of arrival of the call, but it can also be the period at
which the service ends, a fixed value (for simulations with batch means), etc. A simulation
logic makes matrices of counters available for statistical collectors. When such a matrix is
required, the logic may perform some processing such as aggregating columns or normalizing
values with respect to time. After each step, the simulation logic adds observations to
statistical collectors.

The simulation logic is represented by an object implementing the SimLogic interface
which inherits interfaces in the package umontreal.iro.lecuyer.contactcenters.msk.

stat for interaction with statistical collecting facilities. This package provides two imple-
mentations of this interface: RepLogic for simulating independent replications, and Batch-

MeansLogic for simulations with batch means of a single period as if it was infinite in the
model.

Moreover, an object implementing the SimLogicListener interface can be registered
with a simulation logic and used to monitor the simulated steps. The SimLogicBase class
also provides some support methods for simulation logics.

132 March 17, 2014

SimLogic

Represents a simulation logic performing a certain type of experiment on a model of a call
center. This interface defines methods to perform simulations, obtain the statistical period
of contacts, transform matrices of counters into matrices of observations ready to be added
to statistical collectors, and update some simulation parameters.

package umontreal.iro.lecuyer.contactcenters.msk.simlogic;

public interface SimLogic extends StatPeriod

Methods

public CallCenter getCallCenter()

Returns the model associated with this simulation logic.

Returns the associated model.

public SimParams getSimParams()

Returns the parameters associated with this simulation logic.

Returns the associated parameters.

public CallCenterMeasureManager getCallCenterMeasureManager

()

Returns an object containing the counters updated throughout the simulation.

Returns the call center measures.

public CallCenterStatProbes getCallCenterStatProbes()

Returns the call center statistical probes used by this simulation logic.

Returns the call center statistical probes.

public void reset (PerformanceMeasureType... pms)

Resets the simulation logic for a new experiment after the model has been reset. This method
should update or recreate the associated counters and statistical probes, since the size of the
model may have changed.

public void init()

Initializes the simulation logic for a new experiment. In particular, this resets the event list
of the simulator, the state of the model, and the current number of completed steps to 0.

public void simulate (int numSteps)

March 17, 2014 SimLogic 133

Simulates numSteps steps, and updates observations in statistical collectors as well as the
number of completed steps returned by getCompletedSteps(). Usually, this method sim-
ulates the required number of replications, and adds one observation to each statistical
collector of the matrices returned by getCallCenterStatProbes().

Note that this method may be called several times during a simulation experiment using
sequential sampling. For this reason, one should take account of every observation collected
since the last call to init().

public int getCompletedSteps()

Returns the number of completed simulation steps.

Returns the number of completed steps.

public boolean isSteadyState()

Determines if this simulator performs a steady-state simulation.

Returns true if this is a steady-state simulator, false otherwise.

public void formatReport (Map<String, Object> evalInfo)

Adds the information specific to this simulation logic into the evaluation information map of
the simulator. The keys and values of this map are listed at the beginning of the simulation
report.

public int[] getStaffing()

Returns the staffing vector used by this simulator. This vector has the same format as the
EvalOptionType.STAFFINGVECTOR evaluation option.

Returns the staffing vector.

public void setStaffing (int[] staffing)

Sets the staffing vector used by this simulator to staffing. This vector has the same format
as the EvalOptionType.STAFFINGVECTOR evaluation option.

Parameter

staffing the new staffing vector.

public int[][] getStaffingMatrix()

Gets the staffing matrix for the simulated model. The returned 2D array has the format
specified by EvalOptionType.STAFFINGMATRIX.

Returns the 2D array representing the staffing matrix.

public void setStaffingMatrix (int[][] staffing)

Sets the 2D array representing the staffing matrix to staffing.

http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html

134 SimLogic March 17, 2014

Parameter

staffing the new staffing matrix.

public int[][] getScheduledAgents()

Returns the 2D array of scheduled agents for each shift and each agent group. Element (i, j)
of the returned array contains the number of agents scheduled in group i during shift j.

Returns the scheduled agents.

public void setScheduledAgents (int[][] ag)

Sets the number of scheduled agents for each group and shift using the given 2D array.

Parameter

ag the array of scheduled agents.

public int getCurrentMainPeriod()

Returns the current period used by this simulator. If this simulator is not steady-state, this
throws an UnsupportedOperationException.

Returns the current period.

public void setCurrentMainPeriod (int mp)

Sets the current period for this simulator to p. If this simulator is not steady-state, this
throws an UnsupportedOperationException.

Parameter

mp the new current period.

public boolean seemsUnstable()

Returns true if, after the simulation, the system seems unstable. This is applicable for
steady state simulations only.

Returns the result of the stability check.

public void registerListeners()

Registers any listener required by the simulator from the model.

public void unregisterListeners()

Disconnects every listener registered by the simulator from the model.

public boolean isVerbose()

Determines if the simulation logic is in verbose mode.

Returns the status of the verbose mode.

public void setVerbose (boolean verbose)

Sets the verbose indicator to verbose.

http://docs.oracle.com/javase/6/docs/api/java/lang/UnsupportedOperationException.html
http://docs.oracle.com/javase/6/docs/api/java/lang/UnsupportedOperationException.html

March 17, 2014 SimLogic 135

Parameter

verbose the value of the indicator.

public void addSimLogicListener (SimLogicListener l)

Registers the listener l to be notified about the progress of the simulator.

Parameter

l the listener to be notified.

Throws

NullPointerException if l is null.

public void removeSimLogicListener (SimLogicListener l)

Removes the listener l from the list of listeners registered with this simulator.

Parameter

l the listener being removed.

public void clearSimLogicListeners()

Removes all the listeners registered with this simulator.

public List<SimLogicListener> getSimLogicListeners()

Returns the listeners registered with this simulator.

Returns the list of registered listeners.

public boolean isAborted()

Determines if the simulation has been aborted by using the setAborted (boolean) method.

Returns true if the simulation was aborted, false otherwise.

public void setAborted (boolean aborted)

Aborts the current simulation.

http://docs.oracle.com/javase/6/docs/api/java/util/List.html

136 March 17, 2014

SimLogicListener

Represents an observer of the progress of a simulation.

package umontreal.iro.lecuyer.contactcenters.msk.simlogic;

public interface SimLogicListener

Method

public void stepDone (SimLogic sim)

Indicates that a step was done by the simulator sim. One can use ContactCenterSim.get-
CompletedSteps() to obtain the number of completed steps.

Parameter

sim the contact center simulation logic.

March 17, 2014 137

SimLogicBase

Provides some basic methods for implementing the SimLogic interface. This class encapsu-
lates a boolean variable indicating if the simulation was aborted by some thread as well as
a list of observers notified at each simulation step.

package umontreal.iro.lecuyer.contactcenters.msk.simlogic;

public class SimLogicBase

138 March 17, 2014

RepLogic

Implements the logic for a simulation with independent replications. For each replication,
this logic initializes the model to an empty state, and simulates the entire horizon, i.e., a
single day, week, month, etc., depending on the model’s parameters. Statistics are collected
in every period.

package umontreal.iro.lecuyer.contactcenters.msk.simlogic;

public class RepLogic extends RepSim

implements SimLogic

Constructor

public RepLogic (CallCenter cc, RepSimParams simParams,

PerformanceMeasureType... pms)

Constructs a new simulation logic for independent replications, using the model cc, the
simulation parameters simParams, and estimating performance measures of all types listed
in pms.

Parameters

cc the simulated model.

simParams the simulation parameters.

pms the estimated performance measures.

Methods

public int getNumPeriodsForCounters()

This method returns P + 2, the number of periods.

public int getNumPeriodsForCountersAwt()

This method returns P ′, the number of segments regrouping main periods.

public int getStatPeriod (Contact contact)

By default, this returns the period of arrival of the given contact. However, this can be
changed using the PerPeriodCollectingMode attribute in the repSimParams parameter
file.

public int getStatPeriodAwt (Contact contact)

Returns the result of getAwtPeriod (Contact).

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simexp/RepSim.html

March 17, 2014 RepLogic 139

public int getStatPeriod()

Returns the index of the current period.

public int getAwtPeriod (Contact contact)

Computes the statistical period p of the contact by calling getStatPeriod (Contact), and
converts p to a main period using PeriodChangeEvent.getMainPeriod (int).

public int getGlobalAwtPeriod()

This returns P ′ − 1.

140 March 17, 2014

BatchMeansLogic

Implements the logic for a simulation with batch means. This logic simulates a single long
replication which is divided into time intervals called batches. The logic uses matrices of
counters with a single column for storing values for the current real batch. In the notation of
the super class BatchMeansSim, these counters are used to generate the Vj vectors contain-
ing statistics for real batches. When batch aggregation is disabled, these counters are used
directly to make the matrices of observations which correspond to the Xr vectors. When
batch aggregation is enabled, the vectors of counts for each real batch are added to interme-
diate lists of statistical probes, and matrices of observations are constructed by aggregating
some of these vectors. The operator used for aggregation is the sum, but it can also be the
maximum for some statistics such as the maximal number of busy agents, maximal queue
size, and maximal waiting time. For more information about batch aggregation, see the
documentation of the super class BatchMeansSim.

package umontreal.iro.lecuyer.contactcenters.msk.simlogic;

public class BatchMeansLogic extends BatchMeansSim

implements SimLogic

Constructor

public BatchMeansLogic (CallCenter cc, BatchSimParams simParams,

PerformanceMeasureType... pms)

Constructs a new simulation logic for batch means, using the model cc, the simulation
parameters simParams, and estimating performance measures of all types listed in pms.

Parameters

cc the simulated model.

simParams the simulation parameters.

pms the estimated performance measures.

Methods

public int getNumPeriodsForCounters()

Returns 1.

public int getNumPeriodsForCountersAwt()

Returns 1.

public int getStatPeriod (Contact contact)

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simexp/BatchMeansSim.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simexp/BatchMeansSim.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/simexp/BatchMeansSim.html

March 17, 2014 BatchMeansLogic 141

Returns the result of getStatPeriod().

public int getStatPeriod()

Returns 0 if the warmup period is over, or -1 otherwise.

public int getStatPeriodAwt (Contact contact)

Returns the same value as getStatPeriod (Contact).

public int getAwtPeriod (Contact contact)

This returns P ′ − 1.

public int getGlobalAwtPeriod()

This returns P ′ − 1.

public int computeMaxQueueSizeThresh()

Computes and returns the maximal queue size threshold before a simulated system is de-
clared unstable. By default, this returns 20000 + 1000

√
N where N is the total number of

agents.

Returns the maximal queue size threshold.

142 March 17, 2014

Package umontreal.iro.lecuyer.contactcenters.msk.stat

Provides utility classes to manage statistics in the blend/multi-skill call center simulator.
The system for managing statistics is split into two parts: counters updated throughout the
simulation, and collectors updated only at the end of steps using the values of counters.
Counters and collectors are regrouped into matrices whose rows correspond to call types,
agent groups, or (call type, agent group) pairs, and columns represent time intervals. We
now examine how counters and collectors are managed and interact in more details.

The abstract class CallCenterMeasureManager represents the matrices of counters. It
can be used to list the supported types of measures, and return matrices of values for any
supported type. Getting a matrix of values is done by reading the corresponding counters,
and performing some computations such as regrouping periods or normalizing with respect
to time. The exact computation depends on application and thus on the concrete subclass.
Usually, the matrices of counters contain one column per period, and matrices of statistical
collectors have one column per main period, plus an extra column representing the whole
horizon.

The measure manager also encapsulates some observers linked to the call center model in
order to collect the appropriate statistics. These observers use an instance of StatPeriod to
obtain the statistical period of any processed call. The call center measure manager also in-
cludes an instance of CallByCallMeasureManager, which regroups every counter containing
sums with one (possibly 0) term for each simulated call.

On the other hand, the interface CallCenterStatProbes represents a set of matrices
of statistical collectors. The most common implementation of this interface is SimCall-

CenterStat which provides a method addObs to add matrices of counters, obtained using
an instance of CallCenterMeasureManager, to the corresponding matrices of collectors.
Other implementations of the interface can be used to collect statistics about statistics, e.g.,
averages of averages, variances, etc., combine the information given by two instances of Sim-
CallCenterStat, etc. This can be used to apply some variance reduction techniques such
as stratification and randomized quasi-Monte Carlo methods.

March 17, 2014 143

AWTPeriod

Represents an object capable of computing a period index to get the acceptable waiting time
of a contact. In general, the acceptable waiting time may depend on the call type and a
period index. The period index often corresponds to the period of arrival, but it can be set
to a fixed value in some cases. An implementation of this interface maps a contact object to
a period index corresponding to the correct acceptable waiting time.

package umontreal.iro.lecuyer.contactcenters.msk.stat;

public interface AWTPeriod

Methods

public int getAwtPeriod (Contact contact)

Returns the index of the main period for the acceptable waiting time of contact contact.
The returned index must not be smaller than 0 or greater than P , where P is the number of
main periods. If this method returns P , the acceptable waiting time for all periods is used.

Parameter

contact the contact being queried.

Returns the main period index for the acceptable waiting time.

public int getGlobalAwtPeriod()

Returns the index for the acceptable waiting time for all periods.

Returns the main period index for the acceptable waiting time.

144 March 17, 2014

StatPeriod
Represents an object capable of assigning a statistical period to any observed call. An object
implementing this interface is used by CallCenterMeasureManager and other associated
observers to separate calls in periods.

Note that the values returned by getNumPeriodsForCounters(), getNumPeriodsFor-
CountersAwt(), and needsSlidingWindows() should never change from call to call, for a
given object implementing this interface.

package umontreal.iro.lecuyer.contactcenters.msk.stat;

public interface StatPeriod extends AWTPeriod

Methods

public int getNumPeriodsForCounters()

Returns the number of periods in usual matrices of counters updated throughout the simu-
lation. Usually, this corresponds to P + 2, the total number of periods, but this returns 1
for a steady-state simulation over a single period.

Returns the number of periods for matrices of counters.

public int getNumPeriodsForCountersAwt()

Similar to getNumPeriodsForCounters(), for matrices of counters using acceptable waiting
times. This usually returns P ′, the total number of segments regrouping main periods. But
this returns 1 for a steady-state simulation over a single period.

Returns the number of periods for matrices of counters.

public int getStatPeriod (Contact contact)

Returns the statistical period of a contact contact. If a negative index is returned for a
given contact, this contact is not counted in statistics. This often corresponds to the period
during which the contact arrives, but this always returns 0 for steady-state simulations.

public int getStatPeriodAwt (Contact contact)

Similar to getStatPeriod (Contact), for a statistic using an acceptable waiting time. If
a negative index is returned for a given contact, this contact is not counted in statistics.
Often, this returns getStatPeriod (Contact) minus 1.

public boolean needsStatForPeriodSegmentsAwt()

Determines if statistics for segments regrouping main periods are collected for measure types
using acceptable waiting times. Usually, statistics are collected for each main period, and
sums are computed at a later time if needed. However, statistics based on acceptable waiting
times cannot be summed, because the AWT may change from periods to periods in general.
This method thus indicates if observers must collect observations for groups of main periods
in addition to the statistical periods of calls.

March 17, 2014 StatPeriod 145

public int getStatPeriod()

Returns the default statistical period. This usually corresponds to the current period.

public boolean needsSlidingWindows()

Determines if sliding windows are needed by statistical counters using an object implement-
ing this interface to get the statistical periods of calls. Usually, the period index returned by
getStatPeriod (Contact) is never greater than the integer returned by getNumPeriods-
ForCounters(), and the same relationship holds for getStatPeriodAwt (Contact) and
getNumPeriodsForCountersAwt(). However, this assumption can be violated if one needs
to get real-time statistics concerning the last observed periods. In such cases, matrices of
counters need to be implemented using sliding windows: when the index a statistical period
becomes higher than the number of stored periods, the first periods are discarded. This
method determines if such sliding windows are needed.

146 March 17, 2014

MeasureType

Defines the types of matrices of measures, or raw statistics, supported by the call center
simulator. During simulation, matrices of counters are updated in order to get matrices of
observations which are added to statistical probes. Each matrix of counters regroups counts
for a certain type of measure, e.g., the number of served calls, the sum of waiting times,
the total time spent by busy agents, etc. Each row of such a matrix concerns a call type,
agent group or (call type, agent group) pair, while each column concerns a period. If a single
period is simulated, all matrices contain a single column.

There are two types of matrices of counters: a regular type for most statistics, and a
special type for statistics based on an acceptable waiting time. Regular matrices have P + 2
columns, e.g., one column per period, and a certain number of R of rows. When such a
matrix of counters is updated, only one element is changed; this ensures that the matrix
update does not take too much time. When the matrix is transformed into a matrix of
observations, only results for the P main periods are retained, and aggregates are computed
for segments regrouping main periods. Aggregates are also computed for rows, which results
in the matrix of observations having extra rows.

Matrices of counters using acceptable waiting times are different, because rows and
columns cannot be aggregated to make matrices of observations. Aggregation cannot be
done, because each counter may be updated with a different acceptable waiting time in
general.

This type can be determined for any enum constant by getting its associated row type,
using getRowType (false). The matrix type is AWT-based only if its associated row type
is RowType.INBOUNDTYPEAWT.

The operator used for aggregation is often the sum, but this can also be the maximum
for some types of measures. This operator can be obtained using the getAggregation-

Function().

package umontreal.iro.lecuyer.contactcenters.msk.stat;

public enum MeasureType

Constants

MAXBUSYAGENTS

MAXQUEUESIZE

MAXWAITINGTIMEABANDONED

MAXWAITINGTIMESERVED

March 17, 2014 MeasureType 147

NUMABANDONED

NUMABANDONEDAFTERAWT

NUMABANDONEDBEFOREAWT

NUMARRIVALS

NUMBLOCKED

NUMBUSYAGENTS

NUMDELAYED

NUMSCHEDULEDAGENTS

NUMSERVED

NUMSERVEDAFTERAWT

NUMSERVEDBEFOREAWT

NUMTRIEDDIAL

NUMWORKINGAGENTS

NUMWRONGPARTYCONNECTS

QUEUESIZE

SUMEXCESSTIMESABANDONED

SUMEXCESSTIMESSERVED

SUMSERVED

SUMSERVICETIMES

SUMWAITINGTIMESABANDONED

SUMWAITINGTIMESSERVED

SUMWAITINGTIMESVQABANDONED

148 MeasureType March 17, 2014

SUMWAITINGTIMESVQSERVED

SUMSQUAREDIFFESTREALWAITINGTIMESSERVED

SUMSQUAREDIFFESTREALWAITINGTIMESABANDONED

SUMSQUAREDIFFESTREALWAITINGTIMESVQABANDONED

SUMSQUAREDIFFESTREALWAITINGTIMESVQSERVED

Methods

public DoubleDoubleFunction getAggregationFunction()

Returns the functions which is applied in order to aggregate two values of counters of this
type. This usually returns Functions.plus, but this can also return Functions.max for
example with MAXWAITINGTIMEABANDONED.

public RowType getRowType (boolean contactTypeAgentGroup)

Returns the row type for this type of measure. If contactTypeAgentGroup is true, this
returns the row type when statistics are collected separately for (call type, agent group)
pairs. Otherwise, this returns the row type when statistics are counted only for call types.

Parameter

contactTypeAgentGroup

Returns the row type for this measure type.

public TimeNormalizeType getTimeNormalizeType()

Returns a constant indicating how time normalization should be perform on matrix of coun-
ters of this type.

http://acs.lbl.gov/software/colt/api/cern/colt/function/DoubleDoubleFunction.html
http://acs.lbl.gov/software/colt/api/cern/jet/math/Functions.html#plus
http://acs.lbl.gov/software/colt/api/cern/jet/math/Functions.html#max

March 17, 2014 149

CallCenterMeasureManager

Encapsulates the matrices of counters collecting observations during simulation, and provides
methods to determine which types of counters are supported, and to extract matrices of
observations from the counters.

This class encapsulates observers used to update counters. Therefore, any instance of this
class should be registered with the call center using the registerListeners() for listeners
to be registered.

Each matrix of counters has a type represented by an enum constant in MeasureType.
This type determines the role played by rows in the matrix of counters. The user can
determine for which type of measures statistics are collected by giving a list of MeasureType
instances to the constructor of CallCenterMeasureManager. This list can be retrieved by
using the getMeasures() method.

The columns correspond to time intervals which are determined with the help of a Stat-

Period implementation. Such an implementation gives the number of needed time intervals
as well as a function mapping each contact, and each simulation time, to one of the columns.
Usually, there is one column per period. The StatPeriod implementation of a measure
manager can be obtained using the getStatPeriod() method.

The raw matrices of counters can be obtained using //important de noter the get-

MeasureMatrix (MeasureType) method. However, most measure managers regroup periods
and normalizes values with respect to time in order to prepare matrices of observations for
statistical collectors. This preparation is performed by the method getValues (Measure-

Type, boolean).

The number of columns in the matrices of observations, the way periods are re-
grouped, and how time is normalized are determined by the subclass implementing the get-

NumPeriodsForStatProbes(), getValues (MeasureType, boolean), and timeNormalize

(MeasureType, DoubleMatrix2D) abstract methods. These methods need to be overridden
by a concrete subclass.

package umontreal.iro.lecuyer.contactcenters.msk.stat;

public abstract class CallCenterMeasureManager

Constructors

public CallCenterMeasureManager (CallCenter cc, StatPeriod statP, boolean

contactTypeAgentGroup)

Creates a measure manager for all possible types of measures on the call center model cc, and
using statP to obtain the statistical periods of calls. The boolean contactTypeAgentGroup
is used to determine if matrices of counters contain rows of type (call type, agent group). See
the constructor CallByCallMeasureManager.CallByCallMeasureManager (CallCenter,
StatPeriod, boolean) for more information about this.

150 CallCenterMeasureManager March 17, 2014

Parameters

cc the call center model.

statP the object used to obtain statistical periods.

contactTypeAgentGroup determines if rows of type (call type, agent group) are needed.

public CallCenterMeasureManager (CallCenter cc, StatPeriod statP, boolean

contactTypeAgentGroup,

PerformanceMeasureType[] pms)

Similar to CallCenterMeasureManager (CallCenter, StatPeriod, boolean), for a given
subset of the types of performance measures. The subset is obtained by calling the get-
MeasureTypes (PerformanceMeasureType...) static method.

public CallCenterMeasureManager (CallCenter cc, StatPeriod statP, boolean

contactTypeAgentGroup, Collection<

MeasureType> measures)

Similar to CallCenterMeasureManager (CallCenter, StatPeriod, boolean), for a given
collection of measure types.

Methods

public static PerformanceMeasureType[] getSupportedPerformanceMeasures

()

Returns the array of all types of performance measures supported by this measure manager.

public static MeasureType[] getMeasureTypesPm (PerformanceMeasureType pm)

Returns the types of counters needed to estimate the particular type of performance measure
pm.

Parameter

pm the tested type of performance measure.

Returns the array of needed types of counters.

public static Set<MeasureType> getMeasureTypes (PerformanceMeasureType...

pms)

Returns the types of counters needed to estimate all the performance measures in pms.

Parameter

pms the tested types of performance measures.

http://docs.oracle.com/javase/6/docs/api/java/util/Collection.html
http://docs.oracle.com/javase/6/docs/api/java/util/Set.html

March 17, 2014 CallCenterMeasureManager 151

Returns the set of measure types.

public StatPeriod getStatPeriod()

Returns the object determining how columns of matrices of counters are mapped to time
intervals.

public CallByCallMeasureManager getCallByCallMeasureManager

()

Returns the call-by-call measure manager used by this object.

public boolean isContactTypeAgentGroup()

Returns true if this group of call center measures contains matrices whose rows correspond
to counters concerning (contact type, agent group) pairs. If no matrix with rows of type
(contact type, agent group) is present, this returns false.

public boolean hasMeasureMatricesFor (PerformanceMeasureType pm)

Determines if this simulator computes the measure matrices required to estimate perfor-
mance measures of type pm.

Parameter

pm the tested type of performance measures.

Returns true of the measures can be estimated, false otherwise.

public void initMeasureMatrices()

Initializes the measure matrices defined by this object.

public void finishCurrentPeriod()

Indicates the end of the current statistical period, whose index p is returned by StatPeriod.
getStatPeriod(). This method updates the columns p of matrices of counters containing
integrals with respect to simulation time. These matrices contain, for example, the time-
average queue size, time-average number of busy agents, etc.

public void updateCurrentPeriod()

Updates the current statistical period. For any period p preceding the current statistical
period, this method fills up the columns p of matrices of counters containing integrals with
respect to simulation time. It also initializes the maximal queue size and maximal number
of busy agents for the current statistical period.

public MeasureType[] getMeasures()

Returns an array containing all the measure types supported by this object.

Returns an array of measure types.

public boolean hasMeasureMatrix (MeasureType mt)

Determines if this object has a measure matrix for the measure type mt.

152 CallCenterMeasureManager March 17, 2014

Parameter

mt the tested measure type.

Returns true if and only if a measure matrix of the tested type is available.

public MeasureMatrix getMeasureMatrix (MeasureType mt)

Returns the measure matrix corresponding to the measure type mt. This method is mainly
used by the getValues (MeasureType, boolean) method of subclasses. One should call
getValues (MeasureType, boolean) instead to get matrices of counters from measure
types.

Parameter

mt the tested measure type.

Returns the measure matrix.

public IntegralMeasureMatrix<GroupVolumeStatMeasureMatrix>[]

getGroupVolumeStats()

Returns the array of integral measure matrices used to compute measures related to agent
groups. Each element of this array corresponds to an agent group.

Returns the integral measure matrices for agent groups.

public IntegralMeasureMatrix<QueueSizeStatMeasureMatrix>[]

getQueueSizeIntegralStats()

Return the array of integral measure matrices used to compute queue sizes. Each element
of this array corresponds to a waiting queue.

Returns the integral measure matrices for waiting queues.

public void registerListeners()

Registers listeners required to get statistics during simulation.

public void unregisterListeners()

Unregisters listeners required to get statistics during simulation.

public abstract int getNumPeriodsForStatProbes()

Returns the number of periods in matrices of statistical probes used to collect statistics
about the simulation. This usually returns P ′, the number of segments regrouping main
periods. However, for steady-state simulations, this returns 1.

March 17, 2014 CallCenterMeasureManager 153

Returns the number of periods for statistics.

public abstract DoubleMatrix2D getValues (MeasureType mt, boolean norm)

Converts a matrix of counters constructed during the simulation to a matrix of double-
precision observations to be added to a matching matrix of tallies. The format of raw
measures stored into the matrix of counters is specific to the simulation type. This method
formats these measures into a matrix with one row for each measure type, and one column
for each segment of main periods.

If norm is true, the measures are normalized to the default time unit if they correspond
to durations. This normalization is performed by calling timeNormalize (MeasureType,
DoubleMatrix2D). Otherwise, time durations are relative to the length of the corresponding
period.

Matrices of counters have a number of periods depending on the type of measures collected.
The output matrix of observations has getNumPeriodsForStatProbes() columns. See the
documentation of MeasureType for more information about measure types.

Parameters

mt the measure type queried.

norm determines if normalization to default time unit is done.

Returns the matrix of values.

public abstract void timeNormalize (MeasureType mt, DoubleMatrix2D m)

Normalizes the measures in m using simulation time. This method must normalize time
durations to the default simulation time unit by dividing every value by the correct period
duration. The given matrix should have getNumPeriodsForStatProbes() columns.

Parameters

mt the type of measure being processed.

m the matrix of values, obtained by getValues (MeasureType, boolean).

http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html

154 March 17, 2014

CallByCallMeasureManager

Contains and updates call-by-call measures for a call center model. This includes the number
of arrivals, the number of services, etc. Any object of this class encapsulates matrices of sums
for each type of call-by-call measure. It is also an exited-contact listener which can be notified
each time a call leaves the system, for statistical collecting.

package umontreal.iro.lecuyer.contactcenters.msk.stat;

public class CallByCallMeasureManager implements ExitedContactListener

Constructors

public CallByCallMeasureManager (CallCenter cc, StatPeriod statP, boolean

contactTypeAgentGroups)

Constructs an observer for all supported types of call-by-call measures, for the call center
model cc, and using statP to obtain the statistical period of each counted call.

Many counters concerning a call type can be separated into I counters, one for each agent
group. This can be useful to obtain statistics concerning specific (call type, agent group)
pairs, but this requires more memory. The boolean argument contactTypeAgentGroups
determines if this separation is needed. If (call type, agent group) statistics are needed, this
argument is true. Otherwise, it is false.

Parameters

cc the call center model.

statP the object used to get statistical periods of calls.

contactTypeAgentGroups determines if statistics for (call type, agent group) pairs are
needed.

public CallByCallMeasureManager (CallCenter cc, StatPeriod statP, boolean

contactTypeAgentGroups, Collection<

MeasureType> measures)

Similar to constructor CallByCallMeasureManager (CallCenter, StatPeriod, boolean),
but restricts the counters to the given collection of measure types.

Methods

public StatPeriod getStatPeriod()

Returns the simulation logic associated with this object.

http://docs.oracle.com/javase/6/docs/api/java/util/Collection.html

March 17, 2014 CallByCallMeasureManager 155

Returns the associated simulation logic.

public boolean isContactTypeAgentGroup()

Returns true if this group of call center measures contains matrices whose rows correspond
to counters concerning (contact type, agent group) pairs. If no matrix with rows of type
(contact type, agent group) is present, this returns false.

public void initMeasureMap (Map<MeasureType, MeasureMatrix> measureMap)

Initializes the given map measureMap with the measure matrices declared by this class.
Each key of the map must be an instance of MeasureType while values are instances of
MeasureMatrix.

Parameter

measureMap the map to be initialized.

public void init()

Initializes every measure matrices defined by this object.

http://docs.oracle.com/javase/6/docs/api/java/util/Map.html

156 March 17, 2014

BusyAgentsChecker

Computes the maximal number of busy agents for every agent group and statistical period,
during the simulation. An object of this class registers as a listener for every agent group.
Each time a contact enters service, the object then checks that the number of busy agents
is not greater than the current maximum, and updates the maximum if necessary. When
the model is simulated over multiple periods, such maxima are computed for each period. A
busy-agents checker is also a period-change listener, because at the beginning of periods, it
needs to set the per-period initial maxima to the current number of busy agents.

package umontreal.iro.lecuyer.contactcenters.msk.stat;

public final class BusyAgentsChecker implements AgentGroupListener,

MeasureMatrix

Constructor

public BusyAgentsChecker (CallCenter cc, StatPeriod statP)

Constructs a new busy-agents checker using call center cc, and object statP to obtain
statistical periods.

Methods

public void init()

Initializes the counters to 0.

public void register()

Registers this busy-agents checker with the associated call center model. The method adds
this object to the list of observers for all agent groups of the model, and registers itself as a
period-change listener.

public void unregister()

Unregisters this busy-agents checker with the associated model. This method performs the
reverse task of register().

March 17, 2014 157

QueueSizeChecker

Computes the maximal queue size for every waiting queue and statistical period, during
the simulation. An object of this class registers as a listener for every waiting queue of
the model. Each time a contact enters a queue, the object checks that the queue size is
not greater than the current maximum, and updates the maximum if necessary. When the
model is simulated over multiple periods, such maxima are computed for each period. A
queue-size checker is also a period-change listener, because at the beginning of periods, it
needs to set the per-period initial maxima to the current queue size.

package umontreal.iro.lecuyer.contactcenters.msk.stat;

public final class QueueSizeChecker implements WaitingQueueListener,

MeasureMatrix

Constructor

public QueueSizeChecker (CallCenter cc, StatPeriod statP)

Constructs a new queue-size checker using call center cc, and object statP to obtain statis-
tical periods.

Methods

public void init()

Resets the values of maxima to 0.

public void register()

Registers this queue-size checker with the associated call center model. The method adds
this object to the list of observers for all waiting queues of the model, and registers itself as
a period-change listener.

public void unregister()

Unregisters this queue-size checker with the associated model. This method performs the
reverse task of register().

158 March 17, 2014

CallCounter

Defines a new-contact listener for counting calls. This encapsulates a measure matrix with
K rows and a column for each statistical period. Each time a new contact is notified, the
element with row k and column p is incremented, where k is the type of the new contact
and p is its statistical period.

package umontreal.iro.lecuyer.contactcenters.msk.stat;

public class CallCounter implements NewContactListener

Constructor

public CallCounter (CallCenter cc, StatPeriod statP, MeasureType mt)

Constructs a new call counter using call center cc, for type of measure mt, and using statP
to obtain statistical periods. The measure type is used to determine if we have a measure
using AWT, for which statistical periods are different than with regular measures.

Parameters

cc the call center model.

statP the object for obtaining statistical periods of calls.

mt the type of measure for the counter.

Methods

public SumMatrix getCount()

Returns the matrix containing the counts.

public void init()

Initializes the call counter.

March 17, 2014 159

OutboundCallCounter

Defines a new-contact listener that counts the number of outbound calls. This object en-
capsulates a measure matrix containing KO lines. When a contact of type k is notified, it is
added in row k −KI of the matrix, and column corresponding to its statistical period.

package umontreal.iro.lecuyer.contactcenters.msk.stat;

public class OutboundCallCounter implements NewContactListener

Constructor

public OutboundCallCounter (CallCenter cc, StatPeriod statP)

Constructs a new call counter for the call center model cc, and using statP to get statistical
periods of calls.

Parameters

cc the call center model.

statP the object for obtaining statistical periods.

Methods

public SumMatrix getCount()

Returns the sum matrix that contains the counts.

Returns the sum matrix.

public void init()

Initializes the sum matrix for counting contacts.

160 March 17, 2014

CallCenterStatProbes
Encapsulates collectors containing statistics about a simulated call center. This interface
specifies a method mapping types of performance measures to matrices of statistical probes.
These matrices are constructed and updated internally by the implementation. The updating
method, which is implementation-specific, often uses another set of call center probes, or
measures from a simulation logic.

The main implementation of this interface is SimCallCenterStat, which uses an instance
of CallCenterMeasureManager to obtain observations for statistical collectors.

package umontreal.iro.lecuyer.contactcenters.msk.stat;

public interface CallCenterStatProbes

Methods

public void init()

Initializes the statistical collectors contained in this object.

public PerformanceMeasureType[] getPerformanceMeasures()

Returns the types of performance measures contained into the implemented set of call center
probes. If the implementing group of probes does not contain any matrix of statistical probes,
this method must return an array with length 0 rather than null.

Returns the supported types of performance measures.

public boolean hasPerformanceMeasure (PerformanceMeasureType pm)

Determines if the implementing set of call center probes contains a matrix of probes for
the performance measure pm. This method returns true if and only if getPerformance-
Measures() returns an array containing pm.

Parameter

pm the type of performance measure.

Returns true if the measures are computed by the simulator, false otherwise.

public Map<PerformanceMeasureType, MatrixOfStatProbes<?>>

getMatricesOfStatProbes()

Returns a map containing the matrix of statistical probes for each type of performance
measure.

Returns the map of statistical probes.

public MatrixOfStatProbes<?> getMatrixOfStatProbes (PerformanceMeasureType

pm)

Returns a matrix of statistical probes corresponding to the given type pm of performance
measure. If the type pm is not supported, this method throws a NoSuchElementException.

http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfStatProbes.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfStatProbes.html
http://docs.oracle.com/javase/6/docs/api/java/util/NoSuchElementException.html

March 17, 2014 CallCenterStatProbes 161

Parameter

pm the type of performance measure.

Returns the matrix of statistical probes.

Throws

NoSuchElementException if the type of performance measure is not supported.

public MatrixOfTallies<?> getMatrixOfTallies (PerformanceMeasureType pm)

Returns a matrix of tallies corresponding to the given type pm of performance measure. This
method usually calls getMatrixOfStatProbes (PerformanceMeasureType) and casts the
results into a matrix of tallies.

Parameter

pm the type of performance measure.

Returns the matrix of tallies.

Throws

NoSuchElementException if the type of performance measure is not supported.

public MatrixOfTallies<TallyStore> getMatrixOfTallyStores

(PerformanceMeasureType pm)

Returns a matrix of tallies corresponding to the given type pm of performance measure. This
method usually calls getMatrixOfStatProbes (PerformanceMeasureType) and casts the
results into a matrix of tallies that can store their observations.

Parameter

pm the type of performance measure.

Returns the matrix of tallies.

Throws

NoSuchElementException if the type of performance measure is not supported.

public MatrixOfFunctionOfMultipleMeansTallies<?>

getMatrixOfFunctionOfMultipleMeansTallies (PerformanceMeasureType pm)

Returns a matrix of function of multiple means tallies corresponding to the given type pm of
performance measure. This method usually calls getMatrixOfStatProbes (Performance-
MeasureType) and casts the results into a matrix of tallies.

Parameter

pm the type of performance measure.

Returns the matrix of tallies.

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfTallies.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfTallies.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/TallyStore.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfFunctionOfMultipleMeansTallies.html

162 CallCenterStatProbes March 17, 2014

Throws

NoSuchElementException if the type of performance measure is not supported.

public DoubleMatrix2D getAverage (PerformanceMeasureType pm)

public DoubleMatrix2D getVariance (PerformanceMeasureType pm)

public DoubleMatrix2D getVarianceOfAverage (PerformanceMeasureType pm)

public DoubleMatrix2D getMin (PerformanceMeasureType pm)

public DoubleMatrix2D getMax (PerformanceMeasureType pm)

public DoubleMatrix2D[] getConfidenceInterval (PerformanceMeasureType pm,

double level)

http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html
http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html

March 17, 2014 163

AbstractCallCenterStatProbes

This base class defines two maps that contain the statistical probes being managed. The
first map, tallyMap, associates types of performance measures with matrices of tallies. The
second map, fmmTallyMap, binds types of performance measures with matrices of function
of multiple means tallies. The methods in this class assume that every type of performance
measure do not appear in both maps.

package umontreal.iro.lecuyer.contactcenters.msk.stat;

public class AbstractCallCenterStatProbes implements CallCenterStatProbes

Fields

protected Map<PerformanceMeasureType, MatrixOfTallies<?>> tallyMap

Map associating types of performance measures with matrices of tallies.

protected Map<PerformanceMeasureType, MatrixOfFunctionOfMultipleMeansTallies<

?>> fmmTallyMap

Map associating types of performance measures with matrices of function of multiple means
tallies.

http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfTallies.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfFunctionOfMultipleMeansTallies.html

164 March 17, 2014

SimCallCenterStat

Represents call center statistics obtained directly via call center measures. An instance of
this class is created using an instance of CallCenterMeasureManager. Each time the add-

Obs() method is called, the counters are read from the call center measures, and added to
associated collectors.

package umontreal.iro.lecuyer.contactcenters.msk.stat;

public class SimCallCenterStat extends AbstractCallCenterStatProbes

Constructor

public SimCallCenterStat (CallCenter cc, CallCenterMeasureManager ccm,

boolean keepObs, boolean normalizeToDefaultUnit,

PerformanceMeasureType... pms)

Constructs a new simulation-based call center statistics object. The constructor queries the
given simulation logic for the supported measure types, and creates the necessary statistical
probes.

Parameter

ccm the simulation logic.

Methods

public CallCenterMeasureManager getCallCenterMeasureManager

()

Returns the call center measures used for to collect observations.

public void addObs()

Adds new observations obtained via measure matrices. This uses CallCenterMeasure-
Manager.getValues (MeasureType, boolean) to convert every available matrix of mea-
sures into matrices of double-precision values, and adds the resulting matrices to matrices
of Tallies.

public void recomputeTimeAggregates()

Recomputes time-aggregate statistics in a setting where the number of observations in sta-
tistical collectors differs from periods to periods. This method processes each matrix of
Tallies containing observations for several periods in the following way. Assuming that the
processed matrix contains P + 1 columns, for each row r, this method gets the average for
each period p = 0, . . . , P −1 and adds them up to get the time-aggregate average. Then, the
Tally at position (r, P) is reset and the newly computed time-aggregate average is added.

March 17, 2014 165

ChainCallCenterStat

Combines the matrices of statistical probes from two call center statistical objects. Two
implementations of CallCenterStatProbes are associated with each instance of this class.
Each time a matrix of statistical probes is queried, this class queries the first inner call center
statistic object. If the matrix is available, it returns it, otherwise, it queries the second inner
object. This results in combining the statistics available in both objects.

package umontreal.iro.lecuyer.contactcenters.msk.stat;

public class ChainCallCenterStat implements CallCenterStatProbes

Constructor

public ChainCallCenterStat (CallCenterStatProbes stat1,

CallCenterStatProbes stat2)

Constructs a new chained call center statistical object from inner objects stat1 and stat2.

Parameters

stat1 the first statistical object.

stat2 the second statistical object.

166 March 17, 2014

StatType

Represents a type of statistic used by StatCallCenterStat.

package umontreal.iro.lecuyer.contactcenters.msk.stat;

public enum StatType

Constants

AVERAGE

Average.

VARIANCE

Variance.

STANDARDDEVIATION

Standard deviation.

VARIANCEOFAVERAGE

Variance divided by the number of observations in the inner tally.

STANDARDDEVIATIONOFAVERAGE

Standard deviation divided by the square root of the number of observations in the inner
tally.

March 17, 2014 167

StatCallCenterStat

Represents a set of statistical probes containing other statistics as observations. An object
of this class is constructed from another implementation of CallCenterStatProbes, and a
type of statistic to collect. For each matrix of probes defined in the inner implementation, a
clone is made and stored into this object. When addStat() is called, each matrix of probes
in the inner call center statistical object is retrieved, an intermediate matrix of observations
is constructed, and the resulting matrix is added into the corresponding clone stored into
this object.

This class is used for stratified sampling and randomized Quasi-Monte Carlo simulation
as follows. Each time a macroreplication or stratum is simulated, statistics from a stratum or
a randomization of a point set are available in an inner CallCenterStatProbes implemen-
tation. This class can obtain the averages, the variances, or the standard deviations from
the probes, and add them to other matrices of statistical probes. This results in averages of
averages, averages of variances, etc.

package umontreal.iro.lecuyer.contactcenters.msk.stat;

public class StatCallCenterStat extends AbstractCallCenterStatProbes

Constructor

public StatCallCenterStat (CallCenterStatProbes stat, StatType statType,

boolean fmm)

Constructs a new group of call center statistical probes taking the observations from the
inner set of probes stat, and collecting the statistic statType. This constructor creates a
matrix of statistical probes for each performance measure defined in stat, by using the clone
method. However, if fmm is false, no matrix of statistical probes is added for functions of
multiple means tallies.

Parameters

stat the input call center statistical probes.

statType the type of statistic collected.

fmm determines if functions of multiple means are processed.

Method

public void addStat()

168 StatCallCenterStat March 17, 2014

Adds new statistics to the probes defined by this object. Each matrix of probes in the
inner call center statistical object is retrieved, an intermediate matrix of observations is
constructed, and the resulting matrix is added into the corresponding clone stored into this
object.

The way the matrix of observations is constructed depends on the type of input matrix
of probes. For matrices of tallies, element (i, j) of the matrix of observations is given by
computing a statistic (average, variance, etc.) on the observations of the tally (i, j) of the
inner matrix of tallies. For matrices of functions of multiple means tallies, an array of tallies
corresponds to each element (i, j), and a statistic is extracted from each element of this
array of tallies. This results in a 3D array compatible with MatrixOfFunctionOfMultiple-
MeansTallies.add (double[][][]).

http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfFunctionOfMultipleMeansTallies.html#add((double[][][]))
http://www.iro.umontreal.ca/~simardr/ssjlab/doc/html/umontreal/iro/lecuyer/stat/matrix/MatrixOfFunctionOfMultipleMeansTallies.html#add((double[][][]))

March 17, 2014 169

CovFMMCallCenterStat
Represents a set of probes that collect covariances in matrices of functions of multiple means
tallies. An instance of this class is constructed using a CallCenterStatProbes object. For
each matrix of functions of multiple means tallies defined in the inner set of probes, this class
can extract the covariance matrix of the functions’ domain, and add these covariances into
matrices of tallies. This results in averages of covariances which are useful for estimating the
variance of stratified estimators.

More specifically, let X ∈ Rd be a vector used to compute the function associated with
position (r, c) in a matrix of performance measures m. Let ΣX be the matrix of covariances
of X. We suppose that X0, . . . ,Xk−1 are i.i.d. and Xs is an average of ns vectors. The
average covariance is

ΣX =
1

k

k−1∑
s=0

ΣX,s

and the average weighted covariance is

ΣX =
1

k

k−1∑
s=0

ΣX,s/ns.

package umontreal.iro.lecuyer.contactcenters.msk.stat;

public class CovFMMCallCenterStat

Constructor

public CovFMMCallCenterStat (CallCenterStatProbes stat, boolean

varWeighted)
Constructs a new group of statistical probes for covariances from the inner call center statis-
tics stat. If varProp is true, the returned covariances correspond to the proportional
allocation in stratification. Otherwise, they depend on the number of observations in each
stratum.
Parameters

stat the call center statistical object.

varWeighted the proportional allocation indicator.

Methods

public void covariance (PerformanceMeasureType pm, int row, int col,

DoubleMatrix2D cov)
Returns the covariance matrix for the function of multiple means tally corresponding to
the element (row, col) of the matrix of performance measures pm. If covariances are not
queried for proportional allocation, the covariances are divided by the number of observations
in the encapsulated tallies.

http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html

170 CovFMMCallCenterStat March 17, 2014

Parameters

pm the type of performance measure.

row the row in the matrix.

col the column in the matrix.

cov the 2D matrix filled with covariances.

public void init()

Initializes every matrix of tallies encapsulated in this object.

public void addStat()

Adds new observations in each associated matrix of tallies. This method is called at the
end of each stratum or macroreplication and extracts the covariances from the matrices of
functions of multiple means tallies. It then adds the covariances to the encapsulated matrices
of tallies. If covariances are not queried for proportionnal allocation, the covariances are
divided by the number of observations before they are added to the tallies, resulting in a
weighted sum of covariances.

March 17, 2014 171

TimeNormalizeType

Possible type of time normalizations after a matrix of counters is obtained.

package umontreal.iro.lecuyer.contactcenters.msk.stat;

public enum TimeNormalizeType

Constants

NEVER

The values of the counters are never normalized with respect to time. This applies to
measures not corresponding to counts, e.g., the maximal waiting time.

ALWAYS

Time normalization is always applied, because the counters are less sensible if not normalized.
This applies, in particular, to the time-average number of agents.

CONDITIONAL

Time normalization is performed depending on a user-defined parameter, SimParams.is-
NormalizeToDefaultUnit().

172 March 17, 2014

CallCenterStatWithSlidingWindows

Contains the necessary logic for computing statistics in time windows, for a call center model.
Some routing or dialing policies might take decisions based on some statistics collected during
the last few minutes of operation of the call center. This class provides the necessary tools
for collecting such statistics. One first constructs an instance using a call center model, a
number of periods, and a period duration. The instance is then registered with the model
when statistics are needed, by using registerListeners(). The method getStat() can
then be called at any time to obtain the statistics in the last time periods. Internally, this
class uses counters with sliding windows to collect the observations.

package umontreal.iro.lecuyer.contactcenters.msk.stat;

public class CallCenterStatWithSlidingWindows implements Initializable,

ToggleElement

Constructor

public CallCenterStatWithSlidingWindows (CallCenter cc, double

periodDuration, int numPeriods,

boolean contactTypeAgentGroup,

PerformanceMeasureType... pms)

Constructs a new call center statistical collector with sliding windows, for the call center
model cc, a window of numPeriods periods of periodDuration time units, and for perfor-
mance measures of type pms. The boolean contactTypeAgentGroup determines if rows of
type (call type, agent group) are needed or not for performance measures concerning call
types.

Parameters

cc the call center model.

periodDuration the duration of the statistical periods.

numPeriods the number of statistical periods.

contactTypeAgentGroup determines if (call type, agent group) rows are needed.

pms the types of performance measures for which statistics are needed.

Methods

public void registerListeners()

Registers listeners with the call center model in order to collect observations.

public void unregisterListeners()

March 17, 2014 CallCenterStatWithSlidingWindows 173

Unregisters the listeners with the call center model. This method may be used when the
process using the statistics is stopped, in order to avoid unnecessary collecting of observa-
tions.

public void init()

Resets the internal statistical counters. This method should be called at the beginning of
the simulation.

public CallCenterStatProbes getStat()

Initializes an object containing the statistics in the last periods. The matrices of statistical
collectors in the returned object contain a single column corresponding to the statistics.

174 March 17, 2014

Package umontreal.iro.lecuyer.contactcenters.msk.cv

Contains classes used for simulation with control variables.

March 17, 2014 175

CVBetaFunction

Represents an object returning the β function used for control variables.

package umontreal.iro.lecuyer.contactcenters.msk.cv;

public interface CVBetaFunction

Method

public double getBeta (PerformanceMeasureType m, int row, int col, int cv,

int obs)

Returns the β function for a performance measure.

Parameters

m the type of performance measure.

row the row in the matrix of statistical probes.

col the column in the matrix of statistical probes.

cv the index of the control variable.

obs the observation this function is applied to.

Returns the value of β.

176 March 17, 2014

CVCallCenterStat

Represents call center statistics on which control variables are applied. An instance of
this class is constructed from a CallCenterStatProbes object, and defines statistical
probes for controlled estimators. When applyControlVariables (PerformanceMeasure-

Type, MatrixOfTallies, CVBetaFunction) is called, observations are extracted from the
probes in the inner CallCenterStatProbes object, and controlled observations are added
to the encapsulated probes. This way, control variables are applied after the simulation is
finished and do not require modifying the simulator.

package umontreal.iro.lecuyer.contactcenters.msk.cv;

public class CVCallCenterStat implements CallCenterStatProbes

Constructor

public CVCallCenterStat (SimLogic sim, CallCenterStatProbes inStat,

boolean fmm, ControlVariable... cvs)

Constructs a new CV call center statistical object using the simulation logic sim, taking
statistics in the stat object, and applying the control variables cvs. If fmm is false,
functions of multiple means tallies are ignored. Otherwise, control variables are applied on
them when appropriate.

Parameters

sim the simulation logic.

inStat the call center statistics.

fmm if control variables are applied on functions of multiple averages.

cvs the array of control variables to apply.

Methods

public double[][][] getBetas (PerformanceMeasureType pm)

Returns the β arrays for performance measure of type pm. Element [r][c][i] of the
returned array corresponds to the ith control variable applied to the performance measure
of type pm, at position (r, c).

Parameter

pm the type of performance measure.

March 17, 2014 CVCallCenterStat 177

Returns the β vectors.

public DoubleMatrix2D[][] getBetaMatrixFmm (PerformanceMeasureType pm)

Returns a 2D array of matrices representing the β constants for the control variables applied
to the components of functions of multiple means represented by the type of performance
measure pm. Element [r][c] of the returned array contains the β matrix for performance
measure at position (r, c).

Parameter

pm the type of performance measure.

Returns the β matrices.

public void applyControlVariables()

Equivalent to applyControlVariables (null).

public void applyControlVariables (CVBetaFunction cvBeta)

Applies the control variables for the supported estimators. If betaFunc is non-null, it
is used for obtaining the β constants. Otherwise, the constants are estimated from the
statistics.

Parameter

cvBeta the beta function calculator, or null.

http://acs.lbl.gov/software/colt/api/cern/colt/matrix/DoubleMatrix2D.html

178 March 17, 2014

ControlVariable

Represents a type of control variable that can be applied on all performance measures sup-
ported by a call center simulator. An implementation of this interface obtains (or computes)
observations of a centered control variable C̃(m, r, c) = C(m, r, c)−E[C(m, r, c)] for perfor-
mance measure type m, row r, and column c. Obtaining the centered CVs is usually done
by querying some statistical collectors, but sometimes, sums may be computed. The exact
control variable used might depend on the performance measure, e.g., the number of arrivals
for calls of a given type, and the expectation might change from observations to observations.
The only important point is to have E[C̃(m, r, c)] = 0 for each observation when the CV is
applicable.

package umontreal.iro.lecuyer.contactcenters.msk.cv;

public interface ControlVariable

Methods

public boolean appliesTo (PerformanceMeasureType pm)

Determines if this control variable can be applied to the type pm of performance measure.

Parameter

pm the type of performance measure.

Returns true if the control variable can be applied, false otherwise.

public boolean appliesTo (SimLogic sim, PerformanceMeasureType pm, int row,

int col)

Tests if the control variable can be applied to the performance measure of type pm at row
row and column column when using the simulation logic sim.

Parameters

sim the simulation logic.

pm the type of performance measure.

row the row index.

col the column index.

Returns the result of the test.

public int numberObs (SimLogic sim, CallCenterStatProbes inStat,

PerformanceMeasureType pm, int row, int col)

Returns the number of observations for the control variable used for the performance measure
of type pm, at row row and column col. If no control variable of the type represented by
this implementation is used with the specified performance measure, this returns 0.

March 17, 2014 ControlVariable 179

Parameters

sim the simulation logic.

inStat the call center statistics.

pm the type of performance measure.

row the row index.

col the column index.

Returns the number of observations of the control variable.

public double getObs (SimLogic sim, CallCenterStatProbes inStat,

PerformanceMeasureType pm, int row, int col, int

index)

Returns the centered observation with index index of the control variable used for the type
of performance measure pm at row row and column col.

Parameters

sim the simulation logic.

inStat the call center statistics.

pm the type of performance measure.

row the row index.

col the column index.

index the index of the observation.

Returns the observation.

public void init (SimLogic sim)

Initializes any data structure used by this control variable.

Parameter

sim the simulation logic.

180 March 17, 2014

NumArrivalsCV

Represents the control variable A, which is the number of arrivals of inbound contacts. When
applied to a performance measure concerning inbound contact type k during period p, the
used CV is the number of arrived contacts of type k during period p. For outbound contact
types, the total number of arrived inbound contacts is used.

package umontreal.iro.lecuyer.contactcenters.msk.cv;

public class NumArrivalsCV implements ControlVariable

March 17, 2014 181

Package umontreal.iro.lecuyer.contactcenters.msk.conditions

Defines an interface for representing a condition on calls, and provides some implementa-
tions of the interface. A condition is an object that can be checked against any call of the
model. When the condition is verified for a given call, we say that it applies for this call.
Alternatively, some conditions may not depend on a call and rather checks the global state
of the system. Conditions can be used to affect the behavior of routing or dialing policies.

The package provides the Condition interface to represent a condition. The other classes
provide implementations of this interface for, e.g., conditions on the queue sizes, the number
of free agents in group, etc. The class ConditionUtil is also provided to help with the
creation of condition objects from ConditionParams instances created by parsing XML
configuration files.

182 March 17, 2014

Condition

Represents a condition that can be checked on a given contact. Often, the test performed
by such a condition is simple, e.g., the condition applies if the number of queued contacts of
the type of the tested contact is greater than a threshold.

However, some conditions require complex state information, such as statistics observed
during some time periods. In such cases, mechanisms need to be initialized at the beginning
of simulation steps, and started during time intervals the condition is used. For this, the
condition object might implement the Initializable and ToggleElement interfaces in
addition to this interface. The simulator calls init() on each initializable condition, then
start() for each condition implementing ToggleElement.

package umontreal.iro.lecuyer.contactcenters.msk.conditions;

public interface Condition

Method

public boolean applies (Contact contact)

Checks the represented condition for the given contact contact, and returns true if and
only if the condition applies. Some conditions depend on the state of the system rather than
a particular contact. In such cases, the contact object can be ignored.

Parameter

contact the contact on which to check the condition.

Returns the success indicator of the test.

March 17, 2014 183

OrCondition

Represents a condition checking that at least one of a list of conditions applies.

package umontreal.iro.lecuyer.contactcenters.msk.conditions;

public class OrCondition implements Condition, Initializable, ToggleElement

Constructor

public OrCondition (Condition... condList)

Constructs a new or condition based on the list of conditions condList.

Parameter

condList the list on conditions used to perform the test.

Methods

public Condition[] getConditions()

Returns the associated list of conditions.

public void start()

Calls start for each associated condition implementing the ToggleElement interface.

public void stop()

Calls stop for each associated condition implementing the ToggleElement interface.

public void init()

Calls stop(), then calls init for each initializable condition associated with this object.

184 March 17, 2014

AndCondition

Represents a condition that checks if all conditions of a given list applies.

package umontreal.iro.lecuyer.contactcenters.msk.conditions;

public class AndCondition implements Condition, Initializable, ToggleElement

Constructor

public AndCondition (Condition... condList)

Constructs a new and condition using the list of conditions condList.

Parameter

condList the list of conditions to check.

Methods

public Condition[] getConditions()

Returns the associated list of conditions.

public void start()

Calls start for each associated condition implementing the ToggleElement interface.

public void stop()

Calls stop for each associated condition implementing the ToggleElement interface.

public void init()

Calls stop(), then calls init for each initializable condition associated with this object.

March 17, 2014 185

QueueSizesCondition

Represents a condition comparing the size of a waiting queue with the size of another queue.
Let Qq(t) be the queue size of queue q at time t, and · be a relationship. The condition
checks that Qq1(t) ·Qq2(t) for fixed values of q1, q2, and ·. The relationship can be <, >, =,
≤, or ≥.

package umontreal.iro.lecuyer.contactcenters.msk.conditions;

public class QueueSizesCondition extends TwoIndicesInfo

implements Condition

Constructor

public QueueSizesCondition (CallCenter cc, int q1, int q2, Relationship

rel)

Constructs a new condition on the queue size for the call center model cc, first waiting queue
q1, second waiting queue q2, and relationship rel.

Parameters

cc the call center model.

q1 the index of the first waiting queue.

q2 the index of the second waiting queue.

rel the relationship used to perform the comparison.

Method

public CallCenter getCallCenter()

Returns a reference to the call center associated with this condition.

186 March 17, 2014

QueueSizesWithTypesCondition

Represents a condition on queue sizes possibly for specific call types. This is similar to Queue-

SizesCondition, except that the compared queue sizes are determined using an index and
a call type. If the given call type is non-negative, the compared size is the number of calls
in the identified queue of the identified type. Otherwise, the total number of calls in the
identified queue is used.

package umontreal.iro.lecuyer.contactcenters.msk.conditions;

public class QueueSizesWithTypesCondition extends QueueSizesCondition

Constructor

public QueueSizesWithTypesCondition (CallCenter cc, int q1, int q2, int k1,

int k2, Relationship rel)

Constructs a new condition on the queue size for call center cc, using queue indices q1 and
q2, the call type indices k1 and k2, and the relationshiop rel.

Parameters

cc the call center model.

q1 the index of the first waiting queue.

q2 the index of the second waiting queue.

k1 the index of the first call type.

k2 the index of the second call type.

rel the relationship used to perform the comparison.

Methods

public int getFirstType()

Returns the call type index for the first compared waiting queue.

public int getSecondType()

Returns the call type index for the second compared waiting queue.

March 17, 2014 187

NumFreeAgentsCondition

Represents a condition comparing the number of free agents in two groups of a model. Let
NF,i(t) be the number of free agents in group i at time t, and · be a relationship. The
condition checks that NF,i1(t) ·NF,i2(t) for fixed values of i1, i2, and ·. The relationship can
be <, >, =, ≤, or ≥.

package umontreal.iro.lecuyer.contactcenters.msk.conditions;

public class NumFreeAgentsCondition extends TwoIndicesInfo

implements Condition

Constructor

public NumFreeAgentsCondition (CallCenter cc, int i1, int i2, Relationship

rel)

Constructs a new condition on agent groups for the call center model cc, agent groups with
indices i1 and i2, and comparing with relationship rel.

Parameters

cc the call center model.

i1 the index of the first agent group.

i2 the index of the second agent group.

rel the relationship used for the comparison.

Method

public CallCenter getCallCenter()

Returns a reference to the call center associated with this condition.

188 March 17, 2014

TwoIndicesInfo

Stores information about two indices and a relationship. This is similar to the JAXB-derived
TwoIndicesParams class, except that the indices are stored into int fields instead of Integer
fields. This class is used as a base for some condition objects, and to hold information about
conditions on statistics.

package umontreal.iro.lecuyer.contactcenters.msk.conditions;

public class TwoIndicesInfo

Constructor

public TwoIndicesInfo (int i1, int i2, Relationship rel)

Constructs a new data object holding indices i1 and i2, as well as relationship rel.

Methods

public int getFirstIndex()

Returns the value of i1.

public int getSecondIndex()

Returns the value of i2.

public Relationship getRelationship()

Returns the relationship to be tested.

http://docs.oracle.com/javase/6/docs/api/java/lang/Integer.html

March 17, 2014 189

IndexThreshInfo

Stores information about an index, a threshold, and a relationship. This is similar to the
JAXB-derived IndexThreshParams class, except that the index and threshold are stored into
fields of built-in types rather than wrappers. This class is used as a base for some condition
objects, and to hold information about conditions on statistics.

package umontreal.iro.lecuyer.contactcenters.msk.conditions;

public class IndexThreshInfo

Constructor

public IndexThreshInfo (int i, double threshold, Relationship rel)

Constructs a new object holding the index i, the threshold threshold, and the relationship
rel.

Methods

public int getIndex()

Returns the value of i.

public double getThreshold()

Returns the value of η.

public Relationship getRelationship()

Returns the relationship to be tested.

190 March 17, 2014

FracBusyAgentsCondition

Represents a condition comparing the fraction of busy agents for two groups. Let i1 and
i2 be indices of agent groups and · be a relationship. This condition applies if and only if

NB,i1
(t)

Ni1
(t)+NG,i1

(t)
· NB,i2

(t)

Ni2
(t)+NG,i2

(t)
.

package umontreal.iro.lecuyer.contactcenters.msk.conditions;

public class FracBusyAgentsCondition extends TwoIndicesInfo

implements Condition

Constructor

public FracBusyAgentsCondition (CallCenter cc, int i1, int i2,

Relationship rel)

Constructs a new condition on the fraction of busy agents for call center cc, agent groups
with indices i1 and i2, and relationship rel.

Parameters

cc the call center model.

i1 the index of the first agent group.

i2 the index of the second agent group.

rel the relationship used for comparison.

Method

public CallCenter getCallCenter()

Returns a reference to the call center associated with this condition.

March 17, 2014 191

FracBusyAgentsWithTypesCondition

Represents a condition comparing the fraction of busy agents in two groups, possibly re-
stricted to specific call types. This is similar to FracBusyAgentsCondition, except that
the number of busy agents serving a contact of a given type can be used rather than the
total number of busy agents. More specifically, the fraction of busy agents for group i1 is
determined using the number of busy agents serving calls of type k1. If k1 < 0, the total
number of busy agents is used instead. A similar logic is used to get the fraction of busy
agents in group i2.

package umontreal.iro.lecuyer.contactcenters.msk.conditions;

public class FracBusyAgentsWithTypesCondition extends FracBusyAgentsCondition

Constructor

public FracBusyAgentsWithTypesCondition (CallCenter cc, int i1, int i2,

int k1, int k2, Relationship rel)

Constructs a new condition on the fraction of busy agents for call center cc, agent groups
i1 and i2, call types k1 and k2, and using relationship rel for comparison.

Parameters

cc the call center model.

i1 the index of the first agent group.

i2 the index of the second agent group.

k1 the index of the first call type.

k2 the index of the second call type.

rel the relationship used for comparison.

Methods

public int getFirstType()

Returns the call type index for the first compared agent group.

public int getSecondType()

Returns the call type index for the second compared agent group.

192 March 17, 2014

QueueSizeThreshCondition

Represents a condition comparing the size of a waiting queue with a fixed threshold. Let
Qq(t) be the queue size of queue q at time t, and · be a relationship. The condition checks
that Qq(t) · η for fixed values of q, η, and ·. The relationship can be <, >, =, ≤, or ≥.

package umontreal.iro.lecuyer.contactcenters.msk.conditions;

public class QueueSizeThreshCondition implements Condition

Constructor

public QueueSizeThreshCondition (CallCenter cc, int index, int threshold,

Relationship rel)

Constructs a new condition on the queue size for the call center model cc, first waiting queue
index, threshold threshold, and relationship rel.

Parameters

cc the call center model.

index the index of the waiting queue.

threshold the threshold.

rel the relationship used to perform the comparison.

Methods

public CallCenter getCallCenter()

Returns a reference to the call center associated with this condition.

public int getIndex()

Returns the value of q.

public int getThreshold()

Returns the value of η.

public Relationship getRelationship()

Returns the relationship to be tested.

March 17, 2014 193

QueueSizeThreshWithTypeCondition

Represents a condition comparing the number of calls of a given type in a given queue with
a threshold. This is similar to QueueSizeThreshCondition, with the possibility to restrict
the number of queued calls to a given type.

package umontreal.iro.lecuyer.contactcenters.msk.conditions;

public class QueueSizeThreshWithTypeCondition extends

QueueSizeThreshCondition

Constructor

public QueueSizeThreshWithTypeCondition (CallCenter cc, int index, int

type, int threshold, Relationship

rel)

Constructs a new condition on the queue size for the call center cc, queue with index index,
calls of type type, with threshold threshold, and using relation rel for comparison.

Parameters

cc the call center model.

index the index of the waiting queue.

type the call type index.

threshold the threshold.

rel the relationship used to perform the comparison.

Method

public int getType()

Returns the type identifier for which this condition is evaluated.

194 March 17, 2014

NumFreeAgentsThreshCondition

Represents a condition comparing the number of free agents in a groups of a model with
a fixed threshold. Let NF,i(t) be the number of free agents in group i at time t, and · be
a relationship. The condition checks that NF,i(t) · η for fixed values of i, η, and ·. The
relationship can be <, >, =, ≤, or ≥.

package umontreal.iro.lecuyer.contactcenters.msk.conditions;

public class NumFreeAgentsThreshCondition implements Condition

Constructor

public NumFreeAgentsThreshCondition (CallCenter cc, int i, int threshold,

Relationship rel)

Constructs a new condition on agent group for the call center model cc, agent group with
index i, threshold threshold, and comparing with relationship rel.

Parameters

cc the call center model.

i the index of the agent group.

threshold the threshold.

rel the relationship used for the comparison.

Methods

public CallCenter getCallCenter()

Returns a reference to the call center associated with this condition.

public int getIndex()

Returns the value of i.

public int getThreshold()

Returns the value of η.

public Relationship getRelationship()

Returns the relationship to be tested.

March 17, 2014 195

QueueSizeThreshWithTypeCondition

Represents a condition comparing the number of calls of a given type in a given queue with
a threshold. This is similar to QueueSizeThreshCondition, with the possibility to restrict
the number of queued calls to a given type.

package umontreal.iro.lecuyer.contactcenters.msk.conditions;

public class QueueSizeThreshWithTypeCondition extends

QueueSizeThreshCondition

Constructor

public QueueSizeThreshWithTypeCondition (CallCenter cc, int index, int

type, int threshold, Relationship

rel)

Constructs a new condition on the queue size for the call center cc, queue with index index,
calls of type type, with threshold threshold, and using relation rel for comparison.

Parameters

cc the call center model.

index the index of the waiting queue.

type the call type index.

threshold the threshold.

rel the relationship used to perform the comparison.

Method

public int getType()

Returns the type identifier for which this condition is evaluated.

196 March 17, 2014

NumFreeAgentsThreshCondition

Represents a condition comparing the number of free agents in a groups of a model with
a fixed threshold. Let NF,i(t) be the number of free agents in group i at time t, and · be
a relationship. The condition checks that NF,i(t) · η for fixed values of i, η, and ·. The
relationship can be <, >, =, ≤, or ≥.

package umontreal.iro.lecuyer.contactcenters.msk.conditions;

public class NumFreeAgentsThreshCondition implements Condition

Constructor

public NumFreeAgentsThreshCondition (CallCenter cc, int i, int threshold,

Relationship rel)

Constructs a new condition on agent group for the call center model cc, agent group with
index i, threshold threshold, and comparing with relationship rel.

Parameters

cc the call center model.

i the index of the agent group.

threshold the threshold.

rel the relationship used for the comparison.

Methods

public CallCenter getCallCenter()

Returns a reference to the call center associated with this condition.

public int getIndex()

Returns the value of i.

public int getThreshold()

Returns the value of η.

public Relationship getRelationship()

Returns the relationship to be tested.

March 17, 2014 197

FracBusyAgentsThreshCondition

Represents a condition comparing the fraction of busy agents in a group with a threshold.
Let i be the index of an agent group, η be a threshold, and ·, a relationship. The condition

applies if and only if
NB,i(t)

Ni(t)+NG,i(t)
· η.

package umontreal.iro.lecuyer.contactcenters.msk.conditions;

public class FracBusyAgentsThreshCondition extends IndexThreshInfo

implements Condition

Constructor

public FracBusyAgentsThreshCondition (CallCenter cc, int i, double

threshold, Relationship rel)

Constructs a new condition on the fraction of busy agents for the call center model cc, the
agent group index i, the threshold threshold, and for which comparisons are made using
relationship rel.

Parameters

cc the call center model.

i the index of the agent group.

threshold the threshold on the fraction of busy agents.

rel the relationship used for comparison.

Method

public CallCenter getCallCenter()

Returns a reference to the call center associated with this condition.

198 March 17, 2014

ConditionUtil

Provides helper methods to construct condition objects using ConditionParams instances
usually parsed from XML configuration files. The main method of this class is create-

Condition (CallCenter, int, ConditionParams) which uses other methods to make a
Condition object out of the information provided by the parameters.

package umontreal.iro.lecuyer.contactcenters.msk.conditions;

public class ConditionUtil

Methods

public static Condition createCondition (CallCenter cc, int k,

ConditionParams par)

Constructs a condition object for call center cc, and using parameters par. The type
of the returned value depends on the parameters in par. If the either or all el-
ements are set, the method calls createOrCondition (CallCenter, int, Condition-
ParamsList) or createAndCondition (CallCenter, int, ConditionParamsList), re-
spectively, and returns the result. If the queueSizes element is set, the method returns
the result of createQueueSizeCondition (CallCenter, TwoIndicesWithTypesParams).
If the queueSizeThresh element is set, the method returns the result of createQueueSize-
ThreshCondition (CallCenter, IndexThreshIntWithTypeParams). If numFreeAgents is
set, the method returns the result of createNumFreeAgentsCondition (CallCenter, Two-
IndicesParams). If numFreeAgentsThresh is set, the method returns the result of create-
NumFreeAgentsThreshCondition (CallCenter, IndexThreshIntParams). If fracBusyAgents
is set, the method returns the result of createFracBusyAgentsCondition (CallCenter,
TwoIndicesWithTypesParams). If fracBusyAgentsThresh is set, the method returns
the result of createFracBusyAgentsThreshCondition (CallCenter, IndexThreshWith-
TypeParams). The result of createCustomCondition (CallCenter, int, Named) is re-
turned if custom is set.

Parameters

cc the call center model.

k the index of the call type for which the condition concerns.

par the parameters from which conditions are created.

Returns the condition obtained from parameters.

March 17, 2014 ConditionUtil 199

Throws

IllegalArgumentException if a problem occurs during the creation of the condition.

public static Condition createCondition (CallCenter cc, int k, JAXBElement

<?> el)

Similar to createCondition (CallCenter, int, ConditionParams), but from a JAXBElement
instance. The type of the condition created depends on the name of the element, obtained
using JAXBElement.getName(). The value of the element, obtained using JAXBElement.
getValue(), is cast to the appropriate class, and needed creation method is called.

Parameters

cc the call center model.

k the index of the call type for which the condition concerns.

el the JAXB element corresponding to the condition.

Returns the created condition object.

Throws

IllegalArgumentException if a problem occurs during the creation of the condition.

public static OrCondition createOrCondition (CallCenter cc, int k,

ConditionParamsList par)

Creates an “or” condition from the call center model cc, and the parameters par. The
parameter object encapsulates a list of JAXBElement representing parameters for a condi-
tion. The method uses createCondition (CallCenter, int, JAXBElement) to convert
this element into a Condition object, and gathers the created objects into an array used to
create the returned instance of OrCondition.

Parameters

cc the call center model.

k the index of the call type for which the condition concerns.

par the parameters for the condition.

Returns the condition object.

Throws

IllegalArgumentException if a problem occurs during the creation of one of the associ-
ated conditions.

public static AndCondition createAndCondition (CallCenter cc, int k,

ConditionParamsList par)

Similar to createOrCondition (CallCenter, int, ConditionParamsList), for an “and”
condition.

public static QueueSizesCondition createQueueSizeCondition

(CallCenter cc, TwoIndicesWithTypesParams par)

Creates a condition on the queue size from parameters par, and call center model cc. The
method uses par to obtain the indices q1 and q2 as well as the relationship to compare with.

http://docs.oracle.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#getName(())
http://docs.oracle.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#getValue(())
http://docs.oracle.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html#getValue(())
http://docs.oracle.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html

200 ConditionUtil March 17, 2014

Parameters

cc the call center model.

par the condition parameters.

Returns the new condition object.

public static QueueSizeThreshCondition createQueueSizeThreshCondition

(CallCenter cc, IndexThreshIntWithTypeParams par)

Creates a condition on the queue size from parameters par, and call center model cc. The
method uses par to obtain the index q, threshold η, and relationship to compare with.

Parameters

cc the call center model.

par the condition parameters.

Returns the new condition object.

public static NumFreeAgentsCondition createNumFreeAgentsCondition

(CallCenter cc, TwoIndicesParams par)

Similar to createQueueSizeCondition (CallCenter, TwoIndicesWithTypesParams), for
a condition on the number of free agents.

public static NumFreeAgentsThreshCondition

createNumFreeAgentsThreshCondition (CallCenter cc, IndexThreshIntParams

par)

Similar to createQueueSizeThreshCondition (CallCenter, IndexThreshIntWithType-
Params), for a condition on the number of free agents.

public static FracBusyAgentsCondition createFracBusyAgentsCondition

(CallCenter cc, TwoIndicesWithTypesParams par)

Creates a new condition on the fraction of busy agents using the call center model cc, and
the parameters in par.

Parameters

cc the call center model.

par the condition parameters.

Returns the new condition object.

public static FracBusyAgentsThreshCondition

createFracBusyAgentsThreshCondition (CallCenter cc,

IndexThreshWithTypeParams par)

Creates a new condition on the fraction of busy agents using the call center model cc, and
the parameters in par.

March 17, 2014 ConditionUtil 201

Parameters

cc the call center model.

par the condition parameters.

Returns the new condition object.

public static Condition createCustomCondition (CallCenter cc, int k, Named

par)

Calls createCustom (Condition.class, cc, k, par).

Parameters

cc the call center model.

k the index of the call type concerning the condition.

par the parameters for the custom condition.

Returns an instance representing the custom condition.

public static <T> T createCustom (Class<T> base, CallCenter cc, int k,

Named par)

Creates an object of base class base, from the parameter object par, and using the call
center model cc. The method first uses the name associated with par as a class name for
Class.forName (String). It then checks that the corresponding class is a subclass of or
implements base. If this is true, it searches for a constructor, and calls it to create an
instance. The method looks for the following signatures, and the given order of priority:
(CallCenter, int, Map), (CallCenter, int), (CallCenter, Map), (int, Map), (CallCenter),
(int), (Map), and (). The last signature corresponds to the no-argument constructor. The in-
stance of CallCenter is cc while the map is created by using ParamReadHelper.unmarshal-
Properties (PropertiesParams) on the properties associated with par.

Parameters

base the base class to be used.

cc the call center model.

k the index of the call type concerning the condition.

par the parameters for the custom condition.

Returns an instance representing the custom object.

public static boolean applies (double v1, double v2, Relationship rel)

Returns true if and only if a condition comparing v1 and v2 based on relationship rel
applies.

http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html#forName((java.lang.String))
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html

202 March 17, 2014

Package umontreal.iro.lecuyer.contactcenters.msk.spi

Service provider interfaces for creating custom arrival processes, router’s or dialer’s policies.
When one of these interfaces are implemented, the implementation is registered using the
appropriate static method, or packaged as a Java extension with information for the service
loading API. See ServiceLoader for more information on this.

http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html

March 17, 2014 203

DialerPolicyFactory

Provdes a method to create a dialer from the user-specified parameters.

package umontreal.iro.lecuyer.contactcenters.msk.spi;

public interface DialerPolicyFactory

Method

public DialerPolicy createDialerPolicy (CallCenter cc, DialerManager dm,

DialerParams par) throws

DialerCreationException

Constructs and returns a dialer policy for the call center model cc and the dialer parameters
par. This method uses the result of DialerParams.getDialerPolicy() as a policy identifier
given by the user. It returns a dialer policy if that particular dialer policy identifier is
supported. Otherwise, it returns null. A dialer-creation exception is thrown only if the
implementation supports the creation of the policy, but fails due to some error such as bad
parameters.

Parameters

cc the call center model.

par the dialer’s parameters.

Returns the new dialer’s policy, or null.

204 March 17, 2014

RouterFactory

Provdes a method to create a router from the user-specified parameters.

package umontreal.iro.lecuyer.contactcenters.msk.spi;

public interface RouterFactory

Method

public Router createRouter (CallCenter cc, RouterManager rm, RouterParams

par) throws RouterCreationException

Constructs and returns a router for the call center model cc and the router parameters par.
This method uses the RouterParams.getRouterPolicy() method to get the name of the
router’s policy given by the user, and creates a router object if it supports that particular
policy name. Otherwise, it returns null. A router-creation exception is thrown only if the
given routing policy is supported by the implementation, but some error occurs during the
construction of the router, e.g., invalid parameters.

Parameters

cc the call center model.

par the router’s parameters.

Returns the new router, or null.

March 17, 2014 205

ArrivalProcessFactory
Provdes a method to create an arrival process from the user-specified parameters.

package umontreal.iro.lecuyer.contactcenters.msk.spi;

public interface ArrivalProcessFactory

Methods

public ContactArrivalProcess createArrivalProcess (CallCenter cc,

ArrivalProcessManager

am,

ArrivalProcessParams

par) throws

ArrivalProcessCreationException

Constructs and returns an arrival process for the call center model cc and the arrival process
parameters par. This method uses the ArrivalProcessParams.getType() to get the type
string of the arrival process given by the user, and returns an arrival process if it supports that
particular type identifier. Otherwise, it returns null. An arrival-process-creation exception
is thrown only if the given arrival process is supported by the implementation, but some
error occurs during the construction of the arrival process, e.g., invalid parameters.

Parameters

cc the call center model.

par the router’s parameters.

Returns the new router, or null.

public boolean estimateParameters (ArrivalProcessParams par, int[][] data,

double periodDuration)

Estimates the parameters of an arrival process using the data given in the 2D array data.
The given array is a N×P matrix where N is the number of vectors of observations, and P is
the number of main periods. If estimation is successful, the method updates the parameter
object par with the estimated parameters, and returns true. Otherwise, it throws an illegal-
argument exception. The method returns false if it does not recognize the type of arrival
process described by par.

Parameters

par the parameters of the arrival process.

data the 2D array of vectors of observations.

periodDuration the duration of main periods, in simulation time units.

Returns the sucess indicator of the estimation.

Throws

IllegalArgumentException if an error occurs during parameter estimation.

	Package umontreal.iro.lecuyer.contactcenters.msk
	CallCenterSim
	CallTracer
	CallCenterParamsConverter
	ParameterEstimator
	AbstractCallCenterSim
	CallCenterSimUtil
	OldCallCenterParamsConverter
	PeriodCovarianceEstimator
	CallCenterSimStrat
	CallCenterSimRQMC

	Package umontreal.iro.lecuyer.contactcenters.msk.model
	CallCenter
	CallCenterUtil
	MakeAgentAvailableEvent
	CallFactoryStreamType
	ArrivalProcessStreamType
	DialerStreamType
	AgentGroupStreamType
	RandomStreams
	Call
	CallFactory
	ServiceTimesManager
	RandomTypeCallFactory
	OutboundCallFactory
	AgentGroupManager
	AgentGroupManagerWithStaffing
	AgentGroupManagerWithSchedule
	AgentGroupManagerWithAgents
	TimeInterval
	ShiftPart
	ScheduleShift
	ShiftEvent
	AgentInfo
	CallSourceManager
	ArrivalProcessManager
	DialerManager
	DialerObjects
	CallNotifierForBadContactMismatchRate
	CallNotifierForAgentsMove
	DialerLimit
	DialerListWithLimits
	RouterManager
	CallCenterRoutingStageInfo
	RoutingCase
	CallTransferManager
	VirtualHoldManager
	SegmentInfo
	CallCenterCreationException
	CallFactoryCreationException
	ArrivalProcessCreationException
	DialerCreationException
	RouterCreationException

	Package umontreal.iro.lecuyer.contactcenters.msk.simlogic
	SimLogic
	SimLogicListener
	SimLogicBase
	RepLogic
	BatchMeansLogic

	Package umontreal.iro.lecuyer.contactcenters.msk.stat
	AWTPeriod
	StatPeriod
	MeasureType
	CallCenterMeasureManager
	CallByCallMeasureManager
	BusyAgentsChecker
	QueueSizeChecker
	CallCounter
	OutboundCallCounter
	CallCenterStatProbes
	AbstractCallCenterStatProbes
	SimCallCenterStat
	ChainCallCenterStat
	StatType
	StatCallCenterStat
	CovFMMCallCenterStat
	TimeNormalizeType
	CallCenterStatWithSlidingWindows

	Package umontreal.iro.lecuyer.contactcenters.msk.cv
	CVBetaFunction
	CVCallCenterStat
	ControlVariable
	NumArrivalsCV

	Package umontreal.iro.lecuyer.contactcenters.msk.conditions
	Condition
	OrCondition
	AndCondition
	QueueSizesCondition
	QueueSizesWithTypesCondition
	NumFreeAgentsCondition
	TwoIndicesInfo
	IndexThreshInfo
	FracBusyAgentsCondition
	FracBusyAgentsWithTypesCondition
	QueueSizeThreshCondition
	QueueSizeThreshWithTypeCondition
	NumFreeAgentsThreshCondition
	QueueSizeThreshWithTypeCondition
	NumFreeAgentsThreshCondition
	FracBusyAgentsThreshCondition
	ConditionUtil

	Package umontreal.iro.lecuyer.contactcenters.msk.spi
	DialerPolicyFactory
	RouterFactory
	ArrivalProcessFactory

