SSJ User’s Guide

Package probdist
Probability Distributions

Version: May 21, 2008

This package provides tools to compute densities, mass functions, distribution functions
and their inverses, and reliability functions, for various continuous and discrete probability
distributions.

May 21, 2008

Contents

[DistributionFactory]

[Discrete Distributions over Integers|

BinomialDist

CONTENTS

i

© o O Ut R

May 21, 2008 CONTENTS 1

FisherFDIst oo o 48
GammaDist] 50
[HyperbolicSecantDist|. o 52
MhverseGaussianDist]o oo 54
[JohnsonSBDist] 56
[JohnsonSUDistl o 0 oo 58
LaplaceDist| 60
LogisticDist| Lo 62
[LoglogisticDist| 64
[LognormalDist| 66
NormalDistl o 68
(NormalDistQuick| oo 70
ParctoDistl o 71
PearsonbDIsll oo oo 73
Pearson6Distl 75
[PiecewiseLinearEmpiricalDist|o 0oL 77
StudentDistlo 79
(TriangularDist| 81
OniformDistl o oo 83
WelDullDIST oo 85

May 21, 2008 CONTENTS 2

Overview

This package contains a set of Java classes providing methods to compute mass, density,
distribution, complementary distribution, and inverse distribution functions for some discrete
and continuous probability distributions. It does not generate random numbers; for that,
see the package randvar.

Distributions

We recall that the distribution function of a continuous random variable X with density f
over the real line is

Fla) =PI <ol = [fls)as 1)

while that of a discrete random variable X with mass function p over a fixed set of real
numbers rg < 11 < Tg < -+ - 18

F(z) = PX <a] =) p(x), (2)
x; <x
where p(x;) = P[X = x;]. For a discrete distribution over the set of integers, one has

T

F(z)=P[X <a]=) p(s), (3)
where p(s) = P[X = s].
We define F', the complementary distribution function of X, by

F(z) = P[X >). (4)

With this definition of F, one has F(x) = 1 — F(z) for continuous distributions and F(z) =
1 — F(x — 1) for discrete distributions over the integers. This definition is non-standard for
the discrete case: we have F(z) = P[X > z] instead of F(z) = P[X > 2] =1 — F(x). We
find it more convenient especially for computing p-values in goodness-of-fit tests.

The inverse distribution function is defined as
F~'(u) =inf{x € R: F(x) > u}, (5)

for 0 < u < 1. This function 7! is often used, among other things, to generate the random
variable X by inversion, by passing a U(0, 1) random variate as the value of u.

The package probdist offers two types of tools for computing p, f, F, F, and F~': static
methods, for which no object needs to be created, and methods associated with distribution
objects. Standard distributions are implemented each in their own class. Constructing an
object from one of these classes can be convenient if F, F, etc., has to be evaluated several
times for the same distribution. In certain cases (for the Poisson distribution, for example),

May 21, 2008 CONTENTS 3

creating the distribution object would precompute tables that would speed up significantly
all subsequent method calls for computing F', F, etc. This trades memory, plus a one-time
setup cost, for speed. In addition to the non-static methods, the distribution classes also
provide static methods that do not require the creation of an object.

The distribution classes extend one of the (abstract) classes DiscreteDistribution and
ContinuousDistribution (which both implement the interface Distribution) for discrete
and continuous distributions over the real numbers, or DiscreteDistributionInt, for dis-
crete distributions over the non-negative integers.

For example, the class PoissonDist extends DiscreteDistributionInt. Calling a static
method from this class will compute the corresponding probability from scratch. Construct-
ing a PoissonDist object, on the other hand, will precompute tables that contain the
probability terms and the distribution function for a given parameter A (the mean of the
Poisson distribution). These tables will then be used whenever a method is called for the
corresponding object. This second approach is recommended if some of F, F, etc., has to be
computed several times for the same parameter A. As a rule of thumb, creating objects and
using their methods is faster than just using static methods as soon as two or three calls are
made, unless the parameters are large.

In fact, only the non-negligible probability terms (those that exceed the threshold
DiscreteDistributionInt.EPSILON) are stored in the tables. For F' and F', a single table
actually contains F(z) for Fi(x) <1/2 and 1 — F(z) for F(x) > 1/2. When the distribution
parameters are so large that the tables would take too much space, these are not created
and the methods automatically call their static equivalents instead of using tables.

Objects using the interface Distribution (and sometimes ContinuousDistribution)
are required by some methods in the classes GofStat and GofFormat, in package gof.

May 21, 2008 4

Distribution

This interface should be implemented by all classes supporting discrete and continuous dis-
tributions. It specifies the signature of methods that compute the distribution function
F(z), the complementary distribution function F(z), and the inverse distribution function
F~!(u). Tt also specifies the signature of methods that returns the mean, the variance and
the standard deviation.

package umontreal.iro.lecuyer.probdist;

public interface Distribution
public double cdf (double x);

Computes and returns the distribution function F(x).

public double barF (double x);
Returns F(z) =1 — F(x).

public double inverseF (double u);
Computes and returns the inverse distribution function F~!(u), defined in .

public double getMean();

Returns the mean of the distribution function.

public double getVariance();

Returns the variance of the distribution function.

public double getStandardDeviation();

Returns the standard deviation of the distribution function.

May 21, 2008 5

DiscreteDistribution

Classes implementing discrete distributions over a finite set of real numbers should inherit
from this class. For discrete distributions over integers, see DiscreteDistributionInt.

We assume that the random variable X of interest can take one of the n values xy <

-+ < Zp—1 (which are sorted by increasing order). It takes the value x; with probability

pr = P[X = x]. In addition to the methods specified in the interface Distribution, a
method that returns the probability py is supplied.

Note that the default implementation of the complementary distribution function returns
1.0 - cdf(x - 1), which is not accurate when F(z) is near 1.

package umontreal.iro.lecuyer.probdist;

public class DiscreteDistribution implements Distribution

Constructor

public DiscreteDistribution (int n, double[] obs, double[] prob)

Constructs a discrete distribution over the n values contained in array obs, with probabilities
given in array prob. Both arrays must have at least n elements, the probabilities must sum
to 1, and the observations are assumed to be sorted by increasing order.

Methods

public double prob (int k)

Returns pg, the probability of the k-th observation, for 0 < & < n. The result should be a
real number in the interval [0, 1].

public double getMean()
Computes the mean E[X] = >"" ;| p;x; of the distribution.

public double getVariance()
Computes the variance Var[X] = Y"1, p;(z; — E[X])? of the distribution.

public double getStandardDeviation()

Computes the standard deviation of the distribution.

May 21, 2008 6

DiscreteDistributionInt

Classes implementing discrete distributions over the integers should inherit from this class.
It specifies the signatures of methods for computing the mass function (or probability)
p(z) = P[X = x|, distribution function F(z), complementary distribution function F(x),
and inverse distribution function F'~!(u), for a random variable X with a discrete distribution
over the integers.

The implementing classes provide both static and non-static methods to compute
the above functions. The non-static methods require the creation of an object of class
DiscreteDistributionInt; all the non-negligible terms of the mass and distribution func-
tions will be precomputed by the constructor and kept in arrays. Subsequent accesses will
be very fast. The static methods do not require the construction of an object. These static
methods are not specified in this abstract class because the number and types of their pa-
rameters depend on the distribution. When methods have to be called several times with
the same parameters for the distributions, it is usually more efficient to create an object and
use its non-static methods instead of the static ones. This trades memory for speed.

package umontreal.iro.lecuyer.probdist;
public abstract class DiscreteDistributionInt implements Distribution

public static double EPSILON = 1.0e-16;

Environment variable that determines what probability terms can be considered as negligible
when building precomputed tables for distribution and mass functions. Probabilities smaller
than EPSILON are not stored in the DiscreteDistribution objects (such as those of class
PoissonDist, etc.), but are computed directly each time they are needed (which should be
very seldom). The default value is set to 10716,

public abstract double prob (int x);
Returns p(x), the probability of x, which should be a real number in the interval [0, 1].

public double cdf (double x)
Returns the distribution function F evaluated at x (see (2)). Calls the cdf (int) method.

public abstract double cdf (int x);
Returns the distribution function F evaluated at x (see (2)).

public double barF (double x)
Returns F(z), the complementary distribution function. Calls the barF (int) method.

public double barF (int x)

Returns F(z), the complementary distribution function.

May 21, 2008 DiscreteDistributionInt 7

public double inverseF (double u)
Returns the inverse distribution function F~1(u), where 0 < u < 1. Calls the inverseFInt
method.

public int inverseFInt (double u)

Returns the inverse distribution function F~!(u), where 0 < u < 1. The default implemen-
tation uses binary search.

May 21, 2008 8

ContinuousDistribution

Classes implementing continuous distributions should inherit from this class. Such distribu-
tions are characterized by a density function f(x), thus the signature of a density method
is supplied here. This class also provides default implementations of F(x) and of F~!(u),
the latter using binary search to find the inverse of a generic distribution function F. The
integer decPrec defines the target number of decimals of precision when approximating a
distribution function, but there is no guarantee that this target is always attained.

package umontreal.iro.lecuyer.probdist;
public abstract class ContinuousDistribution implements Distribution
public int decPrec = 15;

public abstract double density (double x);
Returns f(x), the density of X evaluated at x.

public double inverseBrent (double a, double b, double u, double tol)

Computes the inverse distribution function 2 = F~!(u) using the Brent-Dekker method.
The interval [a, b] must contain the root x such that F'(a) < u < F(b). The calculations are
done with an approximate precision of tol. Returns z = F~!(u).

May 21, 2008 9

DistributionFactory

This class implements a string API for the package probdist. It uses Java Reflection to
allow the creation of probability distribution objects from a string. This permits one to
obtain distribution specifications from a file or dynamically from user input during program

execution. This string API is similar to that of UNURAN]| [20].

The (static) methods of this class invoke the constructor specified in the string. For
example,

d = DistributionFactory.getContinuousDistribution ("NormalDist (0.0, 2.5)");
is equivalent to
d = NormalDist (0.0, 2.5);

The string that specifies the distribution (i.e., the formal parameter str of the methods)
must be a valid call of the constructor of a class that extends ContinuousDistribution or
DiscreteDistribution, and all parameter values must be numerical values (variable names
are not allowed).

package umontreal.iro.lecuyer.probdist;

public class DistributionFactory

public static ContinuousDistribution getDistribution (String distName,
double[] x, int n)
Uses the Java Reflection API to construct a ContinuousDistribution object by estimat-
ing parameters of the distribution using the maximum likelihood method based on the n
observations in table z[i], i = 0,1,...,n — 1.

public static DiscreteDistributionInt getDistribution (String distName,
int[] x, int n)
Uses the Java Reflection API to construct a DiscreteDistributionInt object by estimat-
ing parameters of the distribution using the maximum likelihood method based on the n
observations in table z[i], i = 0,1,...,n — 1.

public static ContinuousDistribution getDistribution (Class distClass,
double[] x, int n)
Uses the Java Reflection API to construct a ContinuousDistribution object by estimat-
ing parameters of the distribution using the maximum likelihood method based on the n
observations in table z[i], i = 0,1,...,n — 1.

public static DiscreteDistributionInt getDistribution (Class distClass,
int[] x, int n)
Uses the Java Reflection API to construct a DiscreteDistributionInt object by estimat-
ing parameters of the distribution using the maximum likelihood method based on the n
observations in table z[i], i = 0,1,...,n — 1.

http://statistik.wu-wien.ac.at/unuran/

May 21, 2008 DistributionFactory 10

public static ContinuousDistribution getContinuousDistribution (String str)

Uses the Java Reflection API to construct a ContinuousDistribution object by executing
the code contained in the string str. This code should be a valid invocation of the con-
structor of a ContinuousDistribution object. This method throws exceptions if it cannot
parse the given string and returns null if the distribution object could not be created due

to a Java-specific instantiation problem. @

public static DiscreteDistribution getDiscreteDistribution (String str)

Same as getContinuousDistribution, but for discrete distributions over the real numbers.

public static DiscreteDistributionInt getDiscreteDistributionInt (String str)

Same as getContinuousDistribution, but for discrete distributions over the integers.

! From Pierre: So the user must always verify if null was returned?

May 21, 2008 11

BinomialDist

Extends the class DiscreteDistributionInt for the binomial distribution [19, page 321]
with parameters n and p, where n is a positive integer and 0 < p < 1. Its mass function is
given by

n\ 2 n—r __ n! (1 _ o \n—Z _
p(x)-(x)p (1—p) _x!(n—x)!p(l D) forz =0,1,2,...n, (6)

and its distribution function is

F(z) = i (") PL—p" forz=0,1,2,...n, (7)

package umontreal.iro.lecuyer.probdist;

public class BinomialDist extends DiscreteDistributionInt

Constructor

public BinomialDist (int n, double p)

Creates an object that contains the binomial terms @, for 0 < x < n, and the corresponding
cumulative function. These values are computed and stored in dynamic arrays, unless n
exceeds MAXN.

Methods

public static double prob (int n, double p, int x)

Computes and returns the mass function p(z).

public static double prob (int n, double p, double q, int x)

A generalization of the previous method. Computes and returns the binomial term

n n!

)= (0o = 0

where p and ¢ are arbitrary real numbers (g is not necessarily equal to 1 — p). In the case
where 0 < p < 1 and ¢ = 1 — p, the returned value is a probability term for the binomial
distribution.

public static double cdf (int n, double p, int x)

Computes F'(x), the distribution function of a binomial random variable with parameters n
and p, evaluated at .

May 21, 2008 BinomialDist 12

public static int inverseF (int n, double p, double u)

Computes the inverse of the binomial distribution, = F~!(u), using a linear search starting
at the mode if n is small. If n is larger than 10000, the linear search starts from 0 and the cdf
static method is used to compute F(x) at different values of z, which much is less efficient.

public static BinomialDist getInstanceFromMLE (int[] x, int m)

Creates a new instance of a binomial distribution with both parameters n and p estimated
using the maximum likelihood method based on the m observations z[i], i = 0,1,...,m — 1.

public static double[] getMaximumLikelihoodEstimate (int x[], int m)

Estimates the parameters [n, p| of the binomial distribution using the maximum likelihood
method based on the m observations in table z[i], ¢ = 0,1,...,m — 1.

public static BinomialDist getInstanceFromMLE (int[] x, int m, int n)

Creates a new instance of a binomial distribution with given parameter n and estimated
parameter p using the maximum likelihood method based on the m observations in table
z[i],i=0,1,...,m— 1.

public static double[] getMaximumLikelihoodEstimate (int x[], int m, int n)

Estimates the parameter [p] of the binomial distribution with given parameter n using the
maximum likelihood method based on the m observations z[i], i = 0,1,...,m — 1.

public static double getMean (int n, double p)

Computes the mean E[X] = np of the binomial distribution with parameters n and p.

public static double getVariance (int n, double p)

Computes the variance Var[X] = np(1 — p) of the binomial distribution with parameters n
and p.

public static double getStandardDeviation (int n, double p)

Computes the standard deviation of the Binomial distribution with parameters n and p.

public int getN()

Returns the parameter n of this object.

public double getP()

Returns the parameter p of this object.

public void setParams (int n, double p)

Resets the parameters to these new values and recomputes everything as in the construc-
tor. From the performance viewpoint, it is essentially the same as constructing a new
BinomialDist object.

May 21, 2008 13

GeometricDist

Extends the class DiscreteDistributionInt for the geometric distribution [19, page 322]
with parameter p, where 0 < p < 1. Its mass function is

px)=p(1—-p)* forz=012... 9)
The distribution function is given by
Fz)=1-(1-p)"*, forz=0,1,2,... (10)

and its inverse is
—J , for 0 <u < 1. (11)

package umontreal.iro.lecuyer.probdist;

public class GeometricDist extends DiscreteDistributionInt

Constructor

public GeometricDist (double p)

Constructs a geometric distribution with parameter p.

Methods

public static double prob (double p, int x)
Computes the probability mass function p(z) given by @ .

public static double cdf (double p, int x)
Computes the distribution function F'(x).

public static double barF (double p, int x)

Computes the complementary distribution function F'(x).

public static int inverseF (double p, double u)

Computes the inverse of the geometric distribution, given by .

public static GeometricDist getInstanceFromMLE (int[] x, int n)

Creates a new instance of a geometric distribution with parameter p estimated using the
maximum likelihood method based on the n observations in table x[i], i = 0,1,...,n — 1.

May 21, 2008 GeometricDist 14

public static double[] getMaximumLikelihoodEstimate (int[] x, int n)

Estimates and returns the parameter [p] of the geometric distribution using the maximum
likelihood method based on the n observations in table x[i], i = 0,1,...,n — 1.

public static double getMean (double p)

Computes and returns the mean E[X]| = (1 — p)/p of the geometric distribution with pa-
rameter p.

public static double getVariance (double p)

Computes and returns the variance Var[X] = (1 — p)/p? of the geometric distribution with
parameter p.

public static double getStandardDeviation (double p)
Computes and returns the standard deviation of the geometric distribution with parameter
P.

public double getP()
Returns the p associated with this object.

public void setP (double p)

Resets the value of p associated with this object.

May 21, 2008 15

HypergeometricDist

Extends the class DiscreteDistributionInt for the hypergeometric distribution [I1], page
101] with & elements chosen among [, m being of one type, and [— m of the other. The
parameters m, k and [are positive integers where 1 < m < [and 1 < k < [. Its mass
function is given by

for max(0,k — 1 +m) <z < min(k, m). (12)

package umontreal.iro.lecuyer.probdist;

public class HypergeometricDist extends DiscreteDistributionInt

Constructor

public HypergeometricDist (int m, int 1, int k)

Constructs an hypergeometric distribution with parameters m, [and k.

Methods

public static double prob (int m, int 1, int k, int x)
Computes the probability mass function p(z) given by (12)).

public static double cdf (int m, int 1, int k, int x)
Computes the distribution function F'(x).

public static double barF (int m, int 1, int k, int x)

Computes the complementary distribution function F(z).

public static int inverseF (int m, int 1, int k, double u)

Computes F~!(u) for the hypergeometric distribution without using precomputed tables.
The inversion is computed using the chop-down algorithm [17].

public static double getMean (int m, int 1, int k)

Computes and returns the mean E[X| = km/l of the Hypergeometric distribution with
parameters m, [and k.

public static double getVariance (int m, int 1, int k)

AR (=) (k)
-1

Computes and returns the variance Var[X] = of the hypergeometric distri-

bution with parameters m, [and k.

May 21, 2008 HypergeometricDist 16

public static double getStandardDeviation (int m, int 1, int k)

Computes and returns the standard deviation of the hypergeometric distribution with pa-
rameters m, [and k.

public int getM()

Returns the m associated with this object.

public int getL()
Returns the [associated with this object.

public int getK()
Returns the k associated with this object.

public void setParams (int m, int 1, int k)

Resets the parameters of this object to m, [and k.

May 21, 2008 17

LogarithmicDist

Extends the class DiscreteDistributionInt for the logarithmic distribution. It has shape
parameter 6, where 0 < # < 1. Its mass function is

-1 o«
= — f =123, ... 13
Its distribution function is
F — f =1,2.3.... 14
@) = =7 Z (14)

and is 0 for z < 0.

package umontreal.iro.lecuyer.probdist;

public class LogarithmicDist extends DiscreteDistributionInt

Constructor

public LogarithmicDist (double theta)

Constructs a logarithmic distribution with parameter § = theta.

Methods

public static double prob (double theta, int x)
Computes the probability mass function p(z).

public static double cdf (double theta, int x)
Computes the distribution function F'(x).

public static double barF (double theta, int x)

Computes the complementary distribution function F(z).

public static LogarithmicDist getInstanceFromMLE (int[] x, int n)

Creates a new instance of a logarithmic distribution with parameter 6 estimated using the
maximum likelihood method based on the n observations in table z[i], i = 0,1,...,n — 1.

public static double[] getMaximumLikelihoodEstimate (int[] x, int n)

Estimates and returns the parameter [é] of the logarithmic distribution using the maximum
likelihood method based on the n observations in table z[i], i = 0,1,...,n — 1.

May 21, 2008 LogarithmicDist 18

public static double getMean (double theta)

Computes and returns the mean FE[X]| = ﬁ (1%) of the logarithmic distribution with

parameter § = theta.

public static double getVariance (double theta)

Computes and returns the variance Var[X| = % of the logarithmic distribution

with parameter § = theta.

public static double getStandardDeviation (double theta)

Computes and returns the standard deviation of the logarithmic distribution with parameter
6 = theta.
public double getTheta()

Returns the 6 associated with this object.

public void setTheta (double theta)
Sets the 0 associated with this object.

May 21, 2008 19

NegativeBinomialDist

Extends the class DiscreteDistributionInt for the negative binomial distribution [19]
page 324] with real parameters v and p, where v > 0 and 0 < p < 1. Its mass function is

[(vy +)
z!T'(7)

where I' is the gamma function.

p(z) = p’(1—p)*, forz =0,1,2,... (15)

If ~ is an integer, p(z) can be interpreted as the probability of having x failures before
the y-th success in a sequence of independent Bernoulli trials with probability of success p.
This special case is implemented as the Pascal distribution (see PascalDist).

package umontreal.iro.lecuyer.probdist;

public class NegativeBinomialDist extends DiscreteDistributionInt

Constructor

public NegativeBinomialDist (double gamma, double p)

Creates an object that contains the probability terms and the distribution function for
the negative binomial distribution with parameters v and p.

Methods

public static double prob (double gamma, double p, int x)
Computes the probability mass function defined in (15)).

public static double cdf (double gamma, double p, int x)

Computes the distribution function.

public static int inverseF (double gamma, double p, double u)

Computes the inverse function without precomputing tables. This method computes the
CDF at the mode (maximum term) and performs a linear search from that point.

public static NegativeBinomialDist getInstanceFromMLE (int[] x, int n,
double gamma)
Creates a new instance of a negative binomial distribution with parameters v = gamma given

and p estimated using the maximum likelihood method based on the n observations in table
z[i],i=0,1,...,n— 1.

May 21, 2008 NegativeBinomialDist 20

public static double[] getMaximumLikelihoodEstimate (int[] x, int n,
double gamma)

Estimates and returns the parameter [p] of the negative binomial distribution using the
maximum likelihood method based on the n observations in table z[i], i = 0,1,...,n — 1.
The parameter 7 = gamma is assumed known. The equation of maximum likelihood is defined

as p = /(v + X).

public static NegativeBinomialDist getInstanceFromMLE (int[] x, int n)
Creates a new instance of a negative binomial distribution with parameters v and p es-
timated using the maximum likelihood method based on the n observations in table x[i],
1=0,1,...,n— 1.

public static double[] getMaximumLikelihoodEstimate (int[] x, int n)

Estimates and returns the parameters [9, p| of the negative binomial distribution using the
maximum likelihood method based on the n observations in table z[i], i = 0,1,...,n — 1.

public static double getMean (double gamma, double p)

Computes and returns the mean E[X]| = v(1 — p)/p of the negative binomial distribution
with parameters v and p.

public static double getVariance (double gamma, double p)

Computes and returns the variance Var[X] = (1 — p)/p? of the negative binomial distribu-
tion with parameters v and p.

public static double getStandardDeviation (double gamma, double p)

Computes and returns the standard deviation of the negative binomial distribution with
parameters v and p.

public double getGamma/()

Returns the parameter v of this object.

public double getP()

Returns the parameter p of this object.

public void setParams (double gamma, double p)

Sets the parameter v and p of this object.

May 21, 2008 21

PascalDist

The Pascal distribution is a special case of the negative binomial distribution [19, page 324]
with parameters n and p, where n is a positive integer and 0 < p < 1. Its mass function is

-1
p(zr) = <n +z)p”(l —p)¥, forx=0,1,2,... (16)

This p(x) can be interpreted as the probability of having x failures before the nth success
in a sequence of independent Bernoulli trials with probability of success p. For n = 1, this
gives the geometric distribution.

package umontreal.iro.lecuyer.probdist;

public class PascalDist extends NegativeBinomialDist

Constructor

public PascalDist (int n, double p)

Creates an object that contains the probability terms and the distribution function for
the Pascal distribution with parameter n and p.

Methods

public static NegativeBinomialDist getInstanceFromMLE (int[] x, int m)

Creates a new instance of a Pascal distribution with parameters n and p estimated using the
maximum likelihood method based on the m observations in table z[i], : = 0,1,...,m — 1.

public static double[] getMaximumLikelihoodEstimate (int[] x, int m)

Estimates and returns the parameters [f, p| of the Pascal distribution using the maximum
likelihood method based on the m observations in table z[i], i = 0,1,...,m — 1.

public int getN()

Returns the parameter n of this object.

public void setParams (int n, double p)

Sets the parameter n and p of this object.

May 21, 2008 22
PoissonDist

Extends the class DiscreteDistributionInt for the Poisson distribution [19, page 325]
with mean A > 0. The mass function is

f)\)\:p
p(z) = ¢ T forx =0,1,... (17)
x!
and the distribution function is
) N
Flz) = e ZF for # =0,1,.... (18)
j=0

If one has to compute p(z) and/or F(z) for several values of = with the same X, where
A is not too large, then it is more efficient to instantiate an object and use the non-static
methods, since the functions will then be computed once and kept in arrays.

For the static methods that compute F(x) and F(x), we exploit the relationship F(z) =
1 — Gy11()), where G,y is the gamma distribution function with parameters (o, \) =
(x+1,1).

package umontreal.iro.lecuyer.probdist;

public class PoissonDist extends DiscreteDistributionInt

Constructor

public PoissonDist (double lambda)

Creates an object that contains the probability and distribution functions, for the Poisson
distribution with parameter lambda, which are computed and stored in dynamic arrays
inside that object.

Methods

public static double prob (double lambda, int x)

Computes and returns the value of the Poisson probability p(z), for A = lambda. If A > 20,
this (static) method uses the logarithm of the gamma function, defined in (40]), to estimate
the density.

public static double cdf (double lambda, int x)

Computes and returns the value of the Poisson distribution function, F(z), for A =
lambda.

public static double barF (double lambda, int x)

Computes and returns the value of the complementary Poisson distribution function, F(x),
for A = lambda. Computes and adds the non-negligible terms in the tail.

May 21, 2008 PoissonDist 23

public static int inverseF (double lambda, double u)

Performs a linear search to get the inverse function without precomputed tables.

public static PoissonDist getInstanceFromMLE (int[] x, int n)

Creates a new instance of a Poisson distribution with parameter A estimated using the
maximum likelihood method based on the n observations in table z[i], i = 0,1,...,n — 1.

public static double[] getMaximumLikelihoodEstimate (int[] x, int n)

Estimates and returns the parameter [5\] of the Poisson distribution using the maximum
likelihood method based on the n observations in table x[i], i = 0,1,...,n — 1.

public static double getMean (double lambda)

Computes and returns the mean E[X]| = X of the Poisson distribution with parameter .

public static double getVariance (double lambda)

Computes and returns the variance = X\ of the Poisson distribution with parameter A.

public static double getStandardDeviation (double lambda)

Computes and returns the standard deviation of the Poisson distribution with parameter A.

public double getLambda()
Returns the A associated with this object.

public void setLambda (double lambda)
Sets the A associated with this object.

public double[] getParams ()

Return a table containing the parameter of the current distribution.

public String toString ()

Returns a String containing information about the current distribution.

May 21, 2008 24

UniformIntDist

Extends the class DiscreteDistributionInt for the discrete uniform distribution over the
range [i, j]. Its mass function is given by

1

and 0 elsewhere. The distribution function is
0, for x <1
i1
F(z) = %, fori<az <y (20)
1, for x > j.
and its inverse is
F ' u)=i+|(j—i+1)u] for 0 <wu < 1. (21)

package umontreal.iro.lecuyer.probdist;

public class UniformIntDist extends DiscreteDistributionInt

Constructor

public UniformIntDist (int i, int j)

Constructs a discrete uniform distribution over the interval [7, j].

Methods

public static double prob (int i, int j, int x)
Computes the discrete uniform density function f(z) in ([19).

public static double cdf (int i, int j, int x)
Computes the discrete uniform distribution function as in (20)).

public static double barF (int i, int j, int x)

Computes the discrete uniform complementary distribution function F(x).

public static int inverseF (int i, int j, double u)

Computes the inverse of the discrete uniform distribution function (21)).

May 21, 2008 UniformIntDist 25

public static UniformIntDist getInstanceFromMLE (int[] x, int n)
Creates a new instance of a discrete uniform distribution over integers with parameters i
and j estimated using the maximum likelihood method based on the n observations in table
zlk], k=0,1,...,n— 1.

public static double[] getMaximumLikelihoodEstimate (int[] x, int n)

Estimates and returns the parameters [1, j] of the uniform distribution over integers using the
maximum likelihood method based on the n observations in table z[k], k =0,1,...,n — 1.

public static double getMean (int i, int j)
Computes and returns the mean E[X]| = (i 4 j)/2 of the discrete uniform distribution.

public static double getVariance (int i, int j)
Computes and returns the variance Var[X] = [(j — i + 1)? — 1]/12 of the discrete uniform
distribution.

public static double getStandardDeviation (int i, int j)

Computes and returns the standard deviation of the discrete uniform distribution.

public int getI()

Returns the parameter 1.

public int getJ()

Returns the parameter j.

public void setParams (int i, int j)

Sets the parameters ¢ and j for this object.

May 21, 2008 26
EmpiricalDist

Extends DiscreteDistribution to an empirical distribution function, based on the obser-
vations X1y, ..., X(n) (sorted by increasing order). The distribution is uniform over the n
observations, so the distribution function has a jump of 1/n at each of the n observations.

package umontreal.iro.lecuyer.probdist;

public class EmpiricalDist extends DiscreteDistribution

Constructors

public EmpiricalDist (double[] obs)

Constructs a new empirical distribution using all the observations stored in obs, and which
are assumed to have been sorted in increasing numerical order. J] These observations are
copied into an internal array.

public EmpiricalDist (Reader in) throws IOException

Constructs a new empirical distribution using the observations read from the reader in.
This constructor will read the first double of each line in the stream. Any line that does
not start with a +, -, or a decimal digit, is ignored. One must be careful about lines starting
with a blank. This format is the same as in UNURAN. The observations read are assumed
to have been sorted in increasing numerical order.

Methods
public double getMedian ()

Returns the n/ 2t1 jtem of the sorted observations when the number of items is odd, and
the mean of the n/Qt][1 and the (n/2 + 1)th items when the number of items is even.

public static double getMedian (double obs[], int n)

Returns the n/ 2th item of the array obs when the number of items is odd, and the mean of
the n/2th and the (n/2+ 1)th items when the number of items is even. The array does not
have to be sorted.

public int getNQ)

Returns n, the number of observations.

public double getObs (int i)
Returns the value of X ;).

public double getSampleMean ()

Returns the sample mean of the observations.

2The method java.util.Arrays.sort may be used to sort the observations.

May 21, 2008 EmpiricalDist 27

public double getSampleVariance()

Returns the sample variance of the observations.

public double getSampleStandardDeviation()

Returns the sample standard deviation of the observations.

public double getInterQuartileRange()

Returns the interquartile range of the observations, defined as the difference between the
third and first quartiles.

May 21, 2008 28

BetaDist

Extends the class ContinuousDistribution for the beta distribution [16, page 210] with
shape parameters a > 0 and [> 0, over the interval (a,b), where a < b. This distribution
has density

(r —a)*1(b—z)%1

= f Isewh 22
f(z) Blo. B)(b—)T or a < x <b, and 0 elsewhere, (22)
and distribution function
xg_aa—lb_gﬁ—l
F(z)=I,5(x) = / (B(a ﬁ))(b <_ a)‘“r)ﬁ—l dg, for a <z <b, (23)

where B(«, (3) is the beta function defined by
(24)

and I'(x) is the gamma function defined in (40)).

package wumontreal.iro.lecuyer.probdist;

public class BetaDist extends ContinuousDistribution

Constructors

public BetaDist (double alpha, double beta)
Constructs a BetaDist object with parameters o = alpha and 3 = beta and default domain
(0,1).

public BetaDist (double alpha, double beta, double a, double b)

Constructs a BetaDist object with parameters & = alpha and 3 = beta, and domain (a, b).

public BetaDist (double alpha, double beta, int d)

Constructs a BetaDist object with parameters a = alpha and § = beta, and approxima-
tions of roughly d decimal digits of precision when computing the distribution, complemen-
tary distribution, and inverse functions. The default domain (0,1) is used.

public BetaDist (double alpha, double beta, double a, double b, int d)

Constructs a BetaDist object with parameters a = alpha and § = beta, and approxima-
tions of roughly d decimal digits of precision when computing distribution, complementary
distribution, and inverse functions. The domain (a, b) is used.

May 21, 2008 BetaDist 29

Methods

public static double density (double alpha, double beta, double x)
Same as density (alpha, beta, 0, 1, x).
public static double density (double alpha, double beta,
double a, double b, double x)

Computes the density function of the beta distribution.

public static double cdf (double alpha, double beta, int d, double x)
Same as cdf (alpha, beta, 0, 1, 4, x).
public static double cdf (double alpha, double beta,
double a, double b, int d, double x)

Computes an approximation of the distribution function, with roughly d decimal digits of
precision.

public static double barF (double alpha, double beta, int d, double x)
Same as barF (alpha, beta, 0, 1, d, x).
public static double barF (double alpha, double beta,
double a, double b, int d, double x)

Computes the complementary distribution function.

public static double inverseF (double alpha, double beta, int d, double u)
Same as inverseF (alpha, beta, 0, 1, d, w).
public static double inverseF (double alpha, double beta,
double a, double b, int d, double u)

Returns the inverse beta distribution function using the algorithm implemented in [24].
The method performs interval halving or Newton iterations to compute the inverse. The
precision depends on the accuracy of the cdf method. The argument d gives a good idea of
the precision attained.

public static BetaDist getInstanceFromMLE (double[] x, int n)

Creates a new instance of a beta distribution with parameters o and 8 over the interval
[0, 1] estimated using the maximum likelihood method based on the n observations in table
z[i],i=0,1,...,n— 1.

public static double[] getMaximumLikelihoodEstimate (double[] x, int n)

Estimates and returns the parameters [&, B] of the beta distribution over the interval
[0,1] using the maximum likelihood method based on the m observations in table z[i],
1=0,1,...,n—1.

public static double getMean (double alpha, double beta)

Computes and returns the mean E[X| = /(o + 3) of the beta distribution with parameters
«a and (.

May 21, 2008 BetaDist 30

public static double getVariance (double alpha, double beta)

Computes and returns the variance Var[X] = % of the beta distribution with
parameters a and [.

public static double getStandardDeviation(double alpha, double beta)

Computes the standard deviation of the beta distribution with parameters o and S.

public double getAlpha()

Returns the parameter « of this object.

public double getBeta()
Returns the parameter 3 of this object.

public double getA()

Returns the parameter a of this object.

public double getB()

Returns the parameter b of this object.

May 21, 2008 31

BetaSymmetricalDist

Specializes the class BetaDist to the case of a symmetrical beta distribution over the interval
[0, 1], with shape parameters « = [3. A faster inversion method is implemented here for this
special case. Because of the symmetry around 1/2, four series are used to compute the cdf,
two around x = 0 and two around x = 1/2. Given u, one then solves each series for x by
using the Newton-Raphson method which shows quadratic convergence when the starting
iterate is close enough to the solution .

package umontreal.iro.lecuyer.probdist;

public class BetaSymmetricalDist extends BetaDist

Constructors

public BetaSymmetricalDist (double alpha)

Constructs a BetaSymmetricalDist object with parameters o = = alpha, over the unit
interval (0,1).

public BetaSymmetricalDist (double alpha, int d)

Same as BetaSymmetricalDist (alpha), but using approximations of roughly d decimal
digits of precision when computing the distribution, complementary distribution, and inverse
functions.

Methods

public static double density (double alpha, double x)

Returns the density evaluated at x.

public static double cdf (double alpha, int d, double x)
Same as cdf (alpha, alpha, d, x).

public static double barF (double alpha, int d, double x)
Same as barF (alpha, beta, d, x).

public static double inverseF (double alpha, double u)

Returns the inverse distribution function evaluated at u, for the symmetrical beta distribu-
tion over the interval [0, 1], with shape parameters 0 < o« = # = alpha. Uses four different
hypergeometric series to compute the distribution v = F(z) (for the four cases x close to 0
and a < 1, z close to 0 and a > 1, z close to 1/2 and o < 1, and z close to 1/2 and o > 1),
which are then solved by Newton’s method for the solution of equations. For « > 100000,
uses a normal approximation given in [25].

May 21, 2008 BetaSymmetricalDist 32

public static BetaDist getInstanceFromMLE (double[] x, int n)

Creates a new instance of a symmetrical beta distribution with parameter « estimated using
the maximum likelihood method based on the n observations in table z[i], i = 0,1,...,n—1.

public static double[] getMaximumLikelihoodEstimate (double[] x, int n)

Estimates and returns the parameter [&] of the symmetrical beta distribution using the
maximum likelihood method based on the n observations in table z[i], i = 0,1,...,n — 1.

public static double getMean (double alpha)

Computes and returns the mean E[X] = 1/2 of the symmetrical beta distribution with
parameter a.

public static double getVariance (double alpha)

Computes and returns the variance, Var[X] = 1/(8a +4), of the symmetrical beta distribu-
tion with parameter c.

public static double getStandardDeviation (double alpha)

Computes and returns the standard deviation of the symmetrical beta distribution with
parameter a.

May 21, 2008 33

CauchyDist

Extends the class ContinuousDistribution for the Cauchy distribution [I5, page 299] with
location parameter o and scale parameter 3 > 0. The density function is given by

g

f(x)zw[(x—a)2+ﬁ2]7 for — oo <z < 0. (25)
The distribution function is
F(z) = % + arctan((fr— a)/ﬁ)’ for — o0 <z < o0, (26)
and its inverse is
F~'u) = a+ Btan(r(u — 1/2)). for 0 < u < 1. (27)

package umontreal.iro.lecuyer.probdist;

public class CauchyDist extends ContinuousDistribution

Constructors

public CauchyDist ()

Constructs a CauchyDist object with parameters o = 0 and 3 = 1.

public CauchyDist (double alpha, double beta)

Constructs a CauchyDist object with parameters @ = alpha and (3 = beta.

Methods

public static double density (double alpha, double beta, double x)

Computes the density function.

public static double cdf (double alpha, double beta, double x)

Computes the distribution function.

public static double barF (double alpha, double beta, double x)

Computes the complementary distribution.

public static double inverseF (double alpha, double beta, double u)

Computes the inverse of the distribution.

May 21, 2008 CauchyDist 34

public static CauchyDist getInstanceFromMLE (double[] x, int n)

Creates a new instance of a Cauchy distribution with parameters o and 3 estimated using
the maximum likelihood method based on the n observations in table z[i], i = 0,1,...,n—1.

public static double[] getMaximumLikelihoodEstimate (double[] x, int n)

Estimates and returns the parameters [&, (3] of the Cauchy distribution using the maximum
likelihood method based on the n observations in table z[i], i = 0,1,...,n — 1.

public static double getMean (double alpha, double beta)

Throws an exception since the mean does not exist.
public static double getVariance (double alpha, double beta)

Returns oo since the variance does not exist.

public static double getStandardDeviation (double alpha, double beta)

Returns oo since the standard deviation does not exist.

public double getAlpha()

Returns the value of a for this object.

public double getBeta()
Returns the value of 3 for this object.

public void setParams (double alpha, double beta)

Sets the value of the parameters « and 3 for this object.

May 21, 2008 35
ChiDist

Extends the class ContinuousDistribution for the chi distribution [I5, page 417] with
shape parameter v > 0, where the number of degrees of freedom v is a positive integer. The
density function is given by

€—m2/2xu—1

f(.fE) = m, for x > 0, (28)

where I'(z) is the gamma function defined in (40). The distribution function is

x2/2
F(zx) = ﬁ/o /2 et dt. (29)

It is equivalent to the gamma distribution function with parameters o = v/2 and A = 1,
evaluated at z%/2.

package umontreal.iro.lecuyer.probdist;

public class ChiDist extends ContinuousDistribution

Constructor

public ChiDist (int nu)
Constructs a ChiDist object.

Methods

public static double density (int nu, double x)

Computes the density function.

public static double cdf (int nu, double x)

Computes the distribution function by using the gamma distribution function.

public static double barF (int nu, double x)

Computes the complementary distribution.

public static double inverseF (int nu, double u)

Returns the inverse distribution function computed using the gamma inversion.

public static ChiDist getInstanceFromMLE (double[] x, int n)

Creates a new instance of a chi distribution with parameter v estimated using the maximum
likelihood method based on the n observations in table x[i], i = 0,1,...,n — 1.

May 21, 2008 ChiDist 36

public static double[] getMaximumLikelihoodEstimate (double[] x, int n)

Estimates and returns the parameter 7] of the chi distribution using the maximum likelihood
method based on the n observations in table z[i], i = 0,1,...,n — 1.

public static double getMean (int nu)

L(“4)

Computes and returns the mean E[X] = /2 e of the chi distribution with parameter
2
v.

public static double getVariance (int nu)

50(1+5)-T? (4

- 2 of the chi distribution
(%)

Computes and returns the variance Var[X] = A

with parameter v.

public static double getStandardDeviation (int nu)

Computes and returns the standard deviation of the chi distribution with parameter v.

public int getNu()

Returns the value of v for this object.

public void setNu (int nu)

Sets the value of v for this object.

May 21, 2008 37

ChiSquareDist

Extends the class ContinuousDistribution for the chi-square distribution with n degrees
of freedom, where n is a positive integer [I5, page 416]. Its density is

B x(n/Z)—le—x/2

fz) = () for x > 0 (30)

where I'(z) is the gamma function defined in (40). The chi-square distribution is a spe-
cial case of the gamma distribution with shape parameter n/2 and scale parameter 1/2.
Therefore, one can use the methods of GammaDist for this distribution.

The non-static versions of the methods cdf, barF, and inverseF call the static version
of the same name.

package umontreal.iro.lecuyer.probdist;

public class ChiSquareDist extends ContinuousDistribution

Constructor

public ChiSquareDist (int n)

Constructs a chi-square distribution with n degrees of freedom.

Methods

public static double density (int n, double x)
Computes the density function for a chi-square distribution with n degrees of freedom.

public static double cdf (int n, int d, double x)

Computes an approximation of the chi-square distribution function with n degrees of free-
dom. Uses the approximation given in [I8, page 116] for n < 350 (which gives nearly
12 decimal digits of precision for 107° < u < 1 — 107°). For n > 350, this implementa-
tion invokes the method GammaDist.cdf (n/2, d, x/2) instead, because it is faster and as
accurate as the above approximation for such n.

public static double barF (int n, int d, double x)

Computes the complementary chi-square distribution function with n degrees of freedom.
Uses the approximation given in [I8, page 116] for n < 350, and invokes the method
GammaDist.barF (n/2, d, x/2) for n > 350.

public static double inverseF (int n, double u)

Computes an approximation of F'~!(u), where F is the chi-square distribution with n degrees
of freedom. Uses the approximation given in [I] and in Figure L.23 of [6]. It gives at least

May 21, 2008 ChiSquareDist 38

6 decimal digits of precision, except far in the tails (that is, for u < 107 or v > 1 — 107?)
where the function calls the method GammaDist.inverseF (n/2, 7, u) and multiplies the
result by 2.0. To get better precision, one may call GammaDist.inverseF, but this method
is slower than the current method, especially for large n. For instance, for n = 16, 1024,
and 65536, the GammaDist.inverseF method is 2, 5, and 8 times slower, respectively, than
the current method.

public static ChiSquareDist getInstanceFromMLE (double[] x, int m)

Creates a new instance of a chi-square distribution with parameter n estimated using the
maximum likelihood method based on the m observations in table z[i], i = 0,1,...,m — 1.

public static double[] getMaximumLikelihoodEstimate (double[] x, int m)

Estimates and returns the parameter [n] of the chi-square distribution using the maximum
likelihood method based on the m observations in table z[i], i =0,1,...,m — 1.

public static double getMean (int n)

Computes and returns the mean E[X] = n of the chi-square distribution with parameter n.

public static double[] getMomentsEstimate (double[] x, int m)

Estimates and returns the parameter [72] of the chi-square distribution using the moments
method based on the m observations in table z[i], i = 0,1,...,m — 1.

public static double getVariance (int n)
Computes and returns the variance Var[X| = 2n of the chi-square distribution with param-
eter n.

public static double getStandardDeviation (int n)
Computes and returns the standard deviation of the chi-square distribution with parameter
n.

public int getNQ)

Returns the parameter n of this object.

public void setN (int n)

Sets the parameter n of this object.

May 21, 2008 39
ChiSquareDistQuick

Provides a variant of ChiSquareDist with faster but less accurate methods. The non-static
version of inverseF calls the static version. This method is not very accurate for small n
but becomes better as n increases. The other methods are the same as in ChiSquareDist.

package umontreal.iro.lecuyer.probdist;

public class ChiSquareDistQuick extends ChiSquareDist

Constructor

public ChiSquareDistQuick (int n)

Constructs a chi-square distribution with n degrees of freedom.

Methods

public static double inverseF (int n, double u)

Computes a quick-and-dirty approximation of F'~!(u), where F is the chi-square distribution
with n degrees of freedom. Uses the approximation given in Figure L.24 of [6] over most
of the range. For u < 0.02 or u > 0.98, it uses the approximation given in [I12] for n > 10,
and returns 2.0 * GammaDist.inverseF (n/2, 6, u) for n < 10 in order to avoid the loss
of precision of the above approximations. When n > 10 or 0.02 < u < 0.98, it is between 20
to 30 times faster than the same method in ChiSquareDist for n between 10 and 1000 and
even faster for larger n.

Note that the number d of decimal digits of precision generally increases with n. For n = 3,
we only have d = 3 over most of the range. For n = 10, d = 5 except far in the tails where
d = 3. For n = 100, one has more than d = 7 over most of the range and for n = 1000, at
least d = 8. The cases n = 1 and n = 2 are exceptions, with precision of about d = 10.

May 21, 2008 40

ErlangDist

Extends the class GammaDist for the special case of the Erlang distribution with shape
parameter £ > 0 and scale parameter A > 0. This distribution is a special case of the
gamma distribution for which the shape parameter £ = « is an integer.

package umontreal.iro.lecuyer.probdist;

public class ErlangDist extends GammaDist

Constructors

public ErlangDist (int k)
Constructs a ErlangDist object with parameters k = k and A = 1.

public ErlangDist (int k, double lambda)
Constructs a ErlangDist object with parameters £ = k and A = lambda.

Methods

public static double density (int k, double lambda, double x)

Computes the density function.

public static double cdf (int k, double lambda, int d, double x)

Computes the distribution function using the gamma distribution function.

public static double barF (int k, double lambda, int d, double x)

Computes the complementary distribution function.

public static double inverseF (int k, double lambda, int d, double u)

Returns the inverse distribution function.

public static GammaDist getInstanceFromMLE (double[] x, int n)

Creates a new instance of an Erlang distribution with parameters k and A estimated using
the maximum likelihood method based on the n observations in table z[i], i = 0,1,...,n—1.

public static double[] getMaximumLikelihoodEstimate (double[] x, int n)

Estimates and returns the parameters [lAc, 5\] of the Erlang distribution using the maximum
likelihood method based on the n observations in table z[i], i = 0,1,...,n — 1.

public static double getMean (int k, double lambda)

Computes and returns the mean, E[X] = k/, of the Erlang distribution with parameters k
and .

May 21, 2008 ErlangDist 41

public static double getVariance (int k, double lambda)
Computes and returns the variance, Var[X] = k/A2, of the Erlang distribution with param-
eters k and .

public static double getStandardDeviation (int k, double lambda)
Computes and returns the standard deviation of the Erlang distribution with parameters k
and A.

public int getK()

Returns the parameter & for this object.

public void setParams (int k, double lambda, int d)

Sets the parameters k and A of the distribution for this object. Non-static methods are
computed with a rough target of d decimal digits of precision.

May 21, 2008 42
ExponentialDist

Extends the class ContinuousDistribution for the exponential distribution [15, page 494]
with mean 1/\ where A > 0. Its density is

flz)=Xe™ for z > 0, (31)
its distribution function is
Fz)=1—e", for z >0, (32)
and its inverse distribution function is

F'(u) = —In(1 —u)/\, for 0 <u < 1.

package umontreal.iro.lecuyer.probdist;

public class ExponentialDist extends ContinuousDistribution

Constructors

public ExponentialDist()

Constructs an ExponentialDist object with parameter A = 1.

public ExponentialDist (double lambda)

Constructs an ExponentialDist object with parameter A = lambda.

Methods

public static double density (double lambda, double x)

Computes the density function.

public static double cdf (double lambda, double x)

Computes the distribution function.

public static double barF (double lambda, double x)

Computes the complementary distribution function.

public static double inverseF (double lambda, double u)

Computes the inverse distribution function.

public static ExponentialDist getInstanceFromMLE (double[] x, int n)

Creates a new instance of an exponential distribution with parameter A estimated using the
maximum likelihood method based on the n observations in table x[i], i = 0,1,...,n — 1.

May 21, 2008 ExponentialDist 43

public static double[] getMaximumLikelihoodEstimate (double[] x, int n)

Estimates and returns the parameter [A] of the exponential distribution using the maximum
likelihood method based on the n observations in table x[i], i = 0,1,...,n — 1.

public static double getMean (double lambda)
Computes and returns the mean, E[X] = 1/, of the exponential distribution with parameter
A

public static double getVariance (double lambda)
Computes and returns the variance, Var[X]| = 1/ A2, of the exponential distribution with
parameter .

public static double getStandardDeviation (double lambda)
Computes and returns the standard deviation of the exponential distribution with parameter
A

public double getLambda()
Returns the value of A for this object.

public void setLambda (double lambda)
Sets the value of A\ for this object.

May 21, 2008 44
ExtremeValueDist

Extends the class ContinuousDistribution for the extreme value (or Gumbel) distribution
[T6, page 2], with location parameter o and scale parameter A > 0. It has density

Flz) = Ae MEma)gme) for —oo <z < o0, (33)
distribution function
Fz)=e " for —oo < < o0, (34)
and inverse distribution function
F~H(u) = —In(—In(u))/\ + a, for 0 <wu <1. (35)

package umontreal.iro.lecuyer.probdist;

public class ExtremeValueDist extends ContinuousDistribution

Constructors

public ExtremeValueDist()

Constructs a ExtremeValueDist object with parameters o = 0 and A = 1.

public ExtremeValueDist (double alpha, double lambda)

Constructs a ExtremeValueDist object with parameters o = alpha and A = lambda.

Methods

public static double density (double alpha, double lambda, double x)

Computes the density function.

public static double cdf (double alpha, double lambda, double x)

Computes the distribution function.

public static double barF (double alpha, double lambda, double x)

Computes the complementary distribution function.

public static double inverseF (double alpha, double lambda, double u)

Computes the inverse distribution function.

public static ExtremeValueDist getInstanceFromMLE (double[] x, int n)

Creates a new instance of an extreme value distribution with parameters a and A esti-
mated using the maximum likelihood method based on the n observations in table x[i],
1=0,1,...,n—1.

May 21, 2008 ExtremeValueDist 45

public static double[] getMaximumLikelihoodEstimate (double[] x, int n)

Estimates and returns the parameters [&, 5\] of the extreme value distribution using the
maximum likelihood method based on the n observations in table x[i], i =0,1,...,n — 1.

public static double getMean (double alpha, double lambda)

Computes and returns the mean, F[X] = a + 7/, of the extreme value distribution with
parameters a and A, where v = 0.5772156649 is the Euler-Mascheroni constant.

public static double getVariance (double alpha, double lambda)

Computes and returns the variance, Var[X] = 72/(6A?), of the extreme value distribution
with parameters a and .

public static double getStandardDeviation (double alpha, double lambda)

Computes and returns the standard deviation of the extreme value distribution with param-
eters o and .

public double getAlpha()

Returns the parameter a of this object.

public double getLambda()

Returns the parameter A of this object.

public void setParams (double alpha, double lambda)
Sets the parameters a and A of this object.

May 21, 2008 46

FatigueLifeDist

Extends the class ContinuousDistribution for the Fatigue Life distribution [3] with loca-
tion parameter u, scale parameter § and shape parameter ~. Its density is

T—p B z—p [B
f(z) = Vi ek ﬁyﬁ

2y(z —

) for x > p, (36)

where ¢ is the probability density of the standard normal distribution. The distribution

function is given by
/% —)L
F(z)=® S
/‘)/

, for = > p, (37)

where ® is the standard normal distribution function. Restrictions: 3 > 0, v > 0.

The non-static versions of the methods cdf, barF, and inverseF call the static version
of the same name.

package umontreal.iro.lecuyer.probdist;

public class FatiguelLifeDist extends ContinuousDistribution

Constructor

public FatigueLifeDist (double mu, double beta, double gamma)

Constructs a fatigue life distribution with parameters u, 6 and +.

Methods

public static double density (double mu, double beta, double gamma,
double x)

Computes the density for the fatigue life distribution with parameters p, 8 and ~.

public static double cdf (double mu, double beta, double gamma, double x)
Computes the fatigue life distribution function with parameters p, 8 and ~.
public static double barF (double mu, double beta, double gamma,
double x)

Computes the complementary distribution function of the fatigue life distribution with pa-
rameters u, 8 and 7.

May 21, 2008 FatigueLifeDist 47

public static double inverseF (double mu, double beta, double gamma,
double u)

Computes the inverse of the fatigue life distribution with parameters p, 8 and ~.
public static double[] getMaximumLikelihoodEstimate (double[] x, int n,
double mu)

Estimates and returns the parameters [B, 4] of the fatigue life distribution using the maxi-
mum likelihood method based on the n observations in table x[i], i = 0,1,...,n — 1.

public static double getMean (double mu, double beta, double gamma)

Computes and returns the mean E[X]| = u+ B(1++%/2) of the fatigue life distribution with
parameters u, 3 and 7.

public static double getVariance (double mu, double beta, double gamma)

Computes and returns the variance Var[X] = 3%v%(1+5v2/4) of the fatigue life distribution
with parameters u, 0 and 7.

public static double getStandardDeviation (double mu, double beta,
double gamma)

Computes and returns the standard deviation of the fatigue life distribution with parameters
p, 0 and 7.

public double getBeta()
Returns the parameter 3 of this object.

public double getGamma()

Returns the parameter v of this object.

public double getMu()

Returns the parameter p of this object.

public void setParams (double mu, double beta, double gamma)

Sets the parameters u, 8 and ~ of this object.

May 21, 2008 48

FisherFDist

Extends the class ContinuousDistribution for the Fisher F-distribution with n and m
degrees of freedom, where n and m are positive integers. Its density is

m n—2
2

B I(2™)n2m x 2 o
TO=" M@ e 70)

where I'(z) is the gamma function defined in (40).

The non-static versions of the methods cdf, barF, and inverseF call the static version
of the same name.

package umontreal.iro.lecuyer.probdist;

public class FisherFDist extends ContinuousDistribution

Constructor

public FisherFDist (int n, int m)

Constructs a Fisher F-distribution with n and m degrees of freedom.

Methods

public static double density (int n, int m, double x)
Computes the density function for a Fisher F-distribution with n and m degrees of
freedom.

public static double cdf (int n, int m, int d, double x)

Computes the distribution function of the Fisher F-distribution with parameters n and m,
evaluated at x, with roughly d decimal digits of precision.

public static double barF (int n, int m, int d, double x)

Computes the complementary distribution function of the Fisher F-distribution with pa-
rameters n and m, evaluated at x, with roughly d decimal digits of precision.

public static double inverseF (int n, int m, int d, double u)

Computes the inverse of the Fisher F-distribution with parameters n and m, evaluated at
x, with roughly d decimal digits of precision.

public static double getMean (int n, int m)

Computes and returns the mean E[X] = m/(m — 2) of the Fisher F-distribution with
parameters n and m.

May 21, 2008 FisherFDist 49

public static double getVariance (int n, int m)

2
Computes and returns the variance Var[X] = —m-(mtn=2)

= A== of the Fisher F'-distribution

with parameters n and m.

public static double getStandardDeviation (int n, int m)
Computes and returns the standard deviation of the Fisher F-distribution with parameters
n and m.

public int getNQ)

Returns the parameter n of this object.

public int getM()

Returns the parameter m of this object.

public void setParams (int n, int m)

Sets the parameters n and m of this object.

May 21, 2008 50

GammaDist

Extends the class ContinuousDistribution for the gamma distribution [I5, page 337] with
shape parameter a > 0 and scale parameter A > 0. The density is

/\axaflef)\x

f(z) = Ta) for x > 0, (39)

where I is the gamma function, defined by
['a) = / 2 e " dx. (40)
0

In particular, I'(n) = (n — 1)! when n is a positive integer.

package umontreal.iro.lecuyer.probdist;

public class GammaDist extends ContinuousDistribution

Constructors

public GammaDist (double alpha)

Constructs a GammaDist object with parameters a = alpha and A = 1.

public GammaDist (double alpha, double lambda)

Constructs a GammaDist object with parameters & = alpha and A = lambda.

public GammaDist (double alpha, double lambda, int d)

Constructs a GammaDist object with parameters @ = alpha and A = lambda, and approxi-
mations of roughly d decimal digits of precision when computing functions.

Methods

public static double density (double alpha, double lambda, double x)

Computes the density function.

public static double cdf (double alpha, double lambda, int d, double x)

Returns an approximation of the gamma distribution function with parameters o = alpha
and A = lambda, whose density is given by . The approximation is an improved version
of the algorithm in [2]. The function tries to return d decimals digits of precision. For a not
too large (e.g., a < 1000), d gives a good idea of the precision attained.

public static double cdf (double alpha, int d, double x)
Equivalent to cdf (alpha, 1.0, 4, x).

May 21, 2008 GammaDist 51

public static double barF (double alpha, double lambda, int d, double x)

Computes the complementary distribution function.

public static double barF (double alpha, int d, double x)
Same as barF (alpha, 1.0, 4, x).
public static double inverseF (double alpha, double lambda, int d,
double u)

Computes the inverse distribution function using the algorithm implemented in [24] . Start-
ing with the approximation # = at®, where t = 1 — 2z — ®~(u)\/z, z = /9, and ®~! is the
inverse of the standard normal distribution, the method uses Newton iterations to estimate
the inverse. The precision of the algorithm depends on the accuracy of the barF function.
The argument d gives a good idea of the precision attained.

public static double inverseF (double alpha, int d, double u)

Same as inverseF (alpha, 1, d, u).

public static GammaDist getInstanceFromMLE (double[] x, int n)

Creates a new instance of a gamma distribution with parameters o and A estimated using
the maximum likelihood method based on the n observations in table z[i], i = 0,1,...,n—1.

public static double[] getMaximumLikelihoodEstimate (double[] x, int n)

Estimates and returns the parameters [&, 5\] of the gamma distribution using the maximum
likelihood method based on the n observations in table z[i], i = 0,1,...,n — 1.

public static double getMean (double alpha, double lambda)
Computes and returns the mean E[X] = o/ of the gamma distribution with parameters «
and A.

public static double getVariance (double alpha, double lambda)
Computes and returns the variance Var[X] = a/\? of the gamma distribution with param-
eters a and A.

public static double getStandardDeviation (double alpha, double lambda)
Computes and returns the standard deviation of the gamma distribution with parameters «
and A.

public double getAlpha()

Return the parameter « for this object.

public double getLambda()
Return the parameter A for this object.

public void setParams (double alpha, double lambda, int d)

May 21, 2008 52

HyperbolicSecantDist

Extends the class ContinuousDistribution for the Hyperbolic Secant distribution with
location parameter p and scale parameter o > 0. Its density is

F(@) = - sech (EM) (41)

20 2 o

The distribution function is given by

F(z) = %tan_l [exp <fu)] (42)

2 o

The non-static versions of the methods cdf, barF, and inverseF call the static version
of the same name.

package umontreal.iro.lecuyer.probdist;

public class HyperbolicSecantDist extends ContinuousDistribution

Constructor

public HyperbolicSecantDist (double mu, double sigma)

Constructs a hyperbolic secant distribution with parameters p and o.

Methods

public static double density (double mu, double sigma, double x)

Computes the density function for a hyperbolic secant distribution with parameters p
and o.

public static double cdf (double mu, double sigma, double x)

Computes the distribution function of the hyperbolic secant distribution with parameters
and o.

public static double barF (double mu, double sigma, double x)

Computes the complementary distribution function of the hyperbolic secant distribution
with parameters p and o.

public static double inverseF (double mu, double sigma, double u)

Computes the inverse of the hyperbolic secant distribution with parameters p and o.

public static HyperbolicSecantDist getInstanceFromMLE (double[] x, int n)

Creates a new instance of a hyperbolic secant distribution with parameters p and o es-
timated using the maximum likelihood method based on the n observations in table z[i],
1=0,1,...,n—1.

May 21, 2008 HyperbolicSecantDist 53

public static double[] getMaximumLikelihoodEstimate (double[] x, int n)

Estimates and returns the parameters [fi, 6] of the hyperbolic secant distribution using the
maximum likelihood method based on the n observations in table x[i], i = 0,1,...,n — 1.

public static double getMean (double mu, double sigma)

Computes and returns the mean E[X] = p of the hyperbolic secant distribution with pa-
rameters i and o.

public static double getVariance (double mu, double sigma)

Computes and returns the variance Var[X] = o2 of the hyperbolic secant distribution with
parameters p and o.

public static double getStandardDeviation (double mu, double sigma)

Computes and returns the standard deviation of the hyperbolic secant distribution with
parameters p and o.

public double getMu()

Returns the parameter p of this object.

public double getSigmal()

Returns the parameter o of this object.

public void setParams (double mu, double sigma)

Sets the parameters p and o of this object.

May 21, 2008 54

InverseGaussianDist

Extends the class ContinuousDistribution for the inverse Gaussian distribution with lo-
cation parameter 1 > 0 and scale parameter A > 0. Its density is

A “Mz—pw)?
f(z) = 573 OXP 2% for x > 0. (43)
m

The distribution function is given by

F(x)—@(%(2—1))+exp?cb<—\/§(§+1)), (44)

where @ is the standard normal distribution function.

The non-static versions of the methods cdf, barF, and inverseF call the static version
of the same name.

package umontreal.iro.lecuyer.probdist;

public class InverseGaussianDist extends ContinuousDistribution

Constructor

public InverseGaussianDist (double mu, double lambda)

Constructs the inverse Gaussian distribution with parameters p and .

Methods

public static double density (double mu, double lambda, double x)

Computes the density function for the inverse gaussian distribution with parameters
and A, evaluated at z.

public static double cdf (double mu, double lambda, double x)

Computes the distribution function of the inverse gaussian distribution with parameters
w and A, evaluated at x.

public static double barF (double mu, double lambda, double x)

Computes the complementary distribution function of the inverse gaussian distribution with
parameters p and A, evaluated at x.

public static double inverseF (double mu, double lambda, double u)

Computes the inverse of the inverse gaussian distribution with parameters p and A.

May 21, 2008 InverseGaussianDist 55

public static InverseGaussianDist getInstanceFromMLE (double[] x, int n)

Creates a new instance of an inverse gaussian distribution with parameters p and A es-
timated using the maximum likelihood method based on the n observations in table x[i],
1=0,1,...,n— 1.

public static double[] getMaximumLikelihoodEstimate (double[] x, int n)

Estimates and returns the parameters [fi, A] of the inverse gaussian distribution using the
maximum likelihood method based on the n observations in table z[i], i = 0,1,...,n — 1.

public static double getMean (double mu, double lambda)

Returns the mean F[X] = u of the inverse gaussian distribution with parameters p and A.

public static double getVariance (double mu, double lambda)

Computes and returns the variance Var[X] = p3/) of the inverse gaussian distribution with
parameters p and A.

public static double getStandardDeviation (double mu, double lambda)

Computes and returns the standard deviation of the inverse gaussian distribution with pa-
rameters g and A.

public double getLambda()

Returns the parameter A of this object.

public double getMu()

Returns the parameter p of this object.

public void setParams (double mu, double lambda)

Sets the parameters p and A of this object.

May 21, 2008 56

JohnsonSBDist

Extends the class ContinuousDistribution for the Johnson Sg distribution (see [19) page
314]) with shape parameters v and 0 > 0, location parameter £, and scale parameter A > 0.
Denoting y = (x — &)/A, the density is

4]
My(1 —y)v2r

and 0 elsewhere. The distribution function is

fz) = exp(—(1/2) [y + 01 (y/(1 = y))*) for € <@ <€+, (45)

F(z) =®[y+0In(y/(1 —y))], for § <z <&+ A, (46)
where @ is the standard normal distribution function. The inverse distribution function is
FYu)=€+21/14+e™)) for0<u<1, (47)

where

v(u) = [0} (u) —9]/0. (48)

This class relies on the methods NormalDist.cdf01l and NormalDist.inverseF01 of
NormalDist to approximate ® and ®1.

package umontreal.iro.lecuyer.probdist;

public class JohnsonSBDist extends ContinuousDistribution

Constructor

public JohnsonSBDist (double gamma, double delta,
double xi, double lambda)

Constructs a JohnsonSBDist object with shape parameters v and J, location parameter &
and scale parameter .

Methods

public static double density (double gamma, double delta,
double xi, double lambda, double x)

Computes the density function ([45)).
public static double cdf (double gamma, double delta,
double xi, double lambda, double x)
Computes the distribution function (46]).

May 21, 2008 JohnsonSBDist 57

public static double barF (double gamma, double delta,
double xi, double lambda, double x)

Computes the complementary distribution.

public static double inverseF (double gamma, double delta,
double xi, double lambda, double u)
Computes the inverse of the distribution (])
public static double getMean (double gamma, double delta, double xi,
double lambda)
Computes and returns the mean of the Johnson Sp distribution with parameters v, §, & and
A

public static double getVariance (double gamma, double delta, double xi,
double lambda)

Computes and returns the variance of the Johnson Sp distribution with parameters v, §, £
and A.

public static double getStandardDeviation (double gamma, double delta,
double xi, double lambda)

Computes and returns the standard deviation of the Johnson Sp distribution with parame-
ters v, 9, £ and A.

public double getGamma()
Returns the value of « for this object.

public double getDelta()
Returns the value of § for this object.

public double getXi()
Returns the value of € for this object.

public double getLambda()
Returns the value of A for this object.

public void setParams(double gamma, double delta, double xi,
double lambda)

Sets the value of the parameters v, §, £ and A for this object.

May 21, 2008 58

JohnsonSUDist

Extends the class ContinuousDistribution for the Johnson Sy distribution (see [19) page
316]). It has shape parameters v and § > 0, location parameter &, and scale parameter
A > 0. Denoting y = (z — &) /), the distribution has density

exp(—(1/2) [7+5ln[y+\/y27+1H2) for —oo <z < o0,

(49)

f(x)

4]
WS
and distribution function

F(x):q){v—iréln[y—l—\/m}}, for —oo <z < o0, (50)
where @ is the standard normal distribution function. The inverse distribution function is
FYu) =€+ Me™ —et™) /2. for 0 <u <1, (51)

where

t(u) = [(u) —]/0. (52)

This class relies on the methods NormalDist.cdf01l and NormalDist.inverseF01 of
NormalDist to approximate ® and &~

package umontreal.iro.lecuyer.probdist;

public class JohnsonSUDist extends ContinuousDistribution

Constructors

public JohnsonSUDist (double gamma, double delta)
Same as JohnsonSUDist (gamma, delta, 0.0, 1.0).

public JohnsonSUDist (double gamma, double delta,
double xi, double lambda)

Constructs a JohnsonSUDist object with shape parameters « and §, location parameter &,
and scale parameter \.

Methods

public static double density (double gamma, double delta,
double xi, double lambda, double x)

Computes the density function f(x).

May 21, 2008 JohnsonSUDist 59

public static double cdf (double gamma, double delta,
double xi, double lambda, double x)

Computes the distribution function F'(x).
public static double barF (double gamma, double delta,
double xi, double lambda, double x)
Computes the complementary distribution function 1 — F'(x).
public static double inverseF (double gamma, double delta,
double xi, double lambda, double u)
Computes the inverse distribution function F~!(u).
public static double getMean (double gamma, double delta,
double xi, double lambda)

Computes and returns the mean E[X] = £—\el/(26%) sinh(%) of the Johnson Sy distribution
with parameters v, J, £ and A.

public static double getVariance (double gamma, double delta,
double xi, double lambda)

Computes and returns the variance Var[X] = A2[(e}/?* — 1)(e!/%” cosh(23) 4+ 1)]/2 of the
Johnson Sy distribution with parameters v, d, £ and A.

public static double getStandardDeviation (double gamma, double delta,
double xi, double lambda)

Computes and returns the standard deviation of the Johnson Sy distribution with parame-
ters v, 9, £ and A.

public double getGamma/()
Returns the value of « for this object.

public double getDelta()
Returns the value of § for this object.

public double getXi()
Returns the value of € for this object.

public double getLambda()
Returns the value of A for this object.

public void setParams (double gamma, double delta,
double xi, double lambda)

Sets the value of the parameters v, §, £ and A for this object.

May 21, 2008 60

LaplaceDist

Extends the class ContinuousDistribution for the Laplace distribution (see, e.g., [16, page
165]). It has location parameter 6 and scale parameter ¢ > 0. The density function is given
by

f(x) =e #%/(2¢) for — oo <z < oo. (53)

The distribution function is

o %e(ac—e)/¢ if x <0, (54)
m =
el0—2)/0 otherwise,

and its inverse is

P () ¢log(2u) + 0 if 0 <u<i,
u) =
0 — ¢plog(2(1 —u)) otherwise.

package umontreal.iro.lecuyer.probdist;
import umontreal.iro.lecuyer.util.Num;

public class LaplaceDist extends ContinuousDistribution

Constructors

public LaplaceDist()
Constructs a LaplaceDist object with default parameters § = 0 and ¢ = 1.

public LaplaceDist (double theta, double phi)
Constructs a LaplaceDist object with parameters § = theta and ¢ = phi.

Methods

public static double density (double theta, double phi, double x)

Computes the Laplace density function.

public static double cdf (double theta, double phi, double x)

Computes the Laplace distribution function.

public static double barF (double theta, double phi, double x)

Computes the Laplace complementary distribution function.

public static double inverseF (double theta, double phi, double u)

Computes the inverse Laplace distribution function.

May 21, 2008 LaplaceDist 61

public static LaplaceDist getInstanceFromMLE (double[] x, int n)

Creates a new instance of a Laplace distribution with parameters 6 and ¢ estimated using
the maximum likelihood method based on the n observations in table z[i], i = 0,1,...,n—1.

public static double[] getMaximumLikelihoodEstimate (double[] x, int n)

Estimates and returns the parameters [0, ngﬂ of the Laplace distribution using the maximum
likelihood method based on the n observations in table z[i], i = 0,1,...,n — 1.

public static double getMean (double theta, double phi)
Computes and returns the mean E[X] = 6 of the Laplace distribution with parameters 6
and ¢.

public static double getVariance (double theta, double phi)

Computes and returns the variance Var[X] = 2¢? of the Laplace distribution with parameters
0 and ¢.

public static double getStandardDeviation (double theta, double phi)

Computes and returns the standard deviation of the Laplace distribution with parameters
0 and ¢.

public double getTheta()

Returns the parameter 6.

public double getPhi()

Returns the parameter ¢.

May 21, 2008 62
LogisticDist

Extends the class ContinuousDistribution for the logistic distribution (e.g., [16], page 115]).
It has location parameter o and scale parameter A > 0. The density is

)\e—A(x—a)
f(x) = (E=Te=e for — oo <z < o0, (56)
and the distribution function is
1

For A =1 and a = 0, one can write

F(z) = Hm+h<‘”/2) (58)

The inverse distribution function is given by

FHu) =In(u/(1 —u))/A+a for 0 <w < 1.

package umontreal.iro.lecuyer.probdist;

public class LogisticDist extends ContinuousDistribution

Constructors
public LogisticDist()

Constructs a LogisticDist object with default parameters o = 0 and A = 1.

public LogisticDist (double alpha, double lambda)

Constructs a LogisticDist object with parameters o = alpha and A = lambda.

Methods

public static double density (double alpha, double lambda, double x)
Computes the density function f(x).

public static double cdf (double alpha, double lambda, double x)
Computes the distribution function F'(x).

public static double barF (double alpha, double lambda, double x)

Computes the complementary distribution function 1 — F'(x).

May 21, 2008 LogisticDist 63

public static double inverseF (double alpha, double lambda, double u)

Computes the inverse distribution function F~!(u).

public static LogisticDist getInstanceFromMLE (double[] x, int n)

Creates a new instance of a logistic distribution with parameters o and A\ estimated using
the maximum likelihood method based on the n observations in table z[i], i = 0,1,...,n—1.

public static double[] getMaximumLikelihoodEstimate (double[] x, int n)

Estimates and returns the parameters [&, 5\] of the log-normal distribution using the maxi-
mum likelihood method based on the n observations in table z[i], i =0,1,...,n — 1.

public static double getMean (double alpha, double lambda)
Computes and returns the mean E[X] = a of the logistic distribution with parameters «
and A.

public static double getVariance (double alpha, double lambda)

Computes and returns the variance Var[X] = 72/(3\%) of the logistic distribution with
parameters a and A.

public static double getStandardDeviation (double alpha, double lambda)

Computes and returns the standard deviation of the logistic distribution with parameters «
and A.

public double getAlpha()

Return the parameter « of this object.

public double getLambda()

Returns the parameter A of this object.

public void setParams (double alpha, double lambda)

Sets the parameters a and A of this object.

May 21, 2008 64
LoglogisticDist

Extends the class ContinuousDistribution for the Log-Logistic distribution with shape
parameter o > 0 and scale parameter 3 > 0. Its density is

a(z/B)* !

f(z) = B+ (@/3)T for x > 0 (59)
and its distribution function is
F(z) = @ for x > 0. (60)
The complementary distribution is
F(x) = _ for x > 0. (61)
I

package umontreal.iro.lecuyer.probdist;

public class LoglogisticDist extends ContinuousDistribution

Constructor

public LoglogisticDist (double alpha, double beta)

Constructs a log-logistic distribution with parameters o and J3.

Methods

public static double density (double alpha, double beta, double x)
Computes the density function for a log-logisitic distribution with parameters a and S3.

public static double cdf (double alpha, double beta, double x)
Computes the distribution function of the log-logistic distribution with parameters «
and (.

public static double barF (double alpha, double beta, double x)

Computes the complementary distribution function of the log-logistic distribution with
parameters a and [.

public static double inverseF (double alpha, double beta, double u)

Computes the inverse of the log-logistic distribution with parameters a and (.

May 21, 2008 LoglogisticDist 65

public static LoglogisticDist getInstanceFromMLE (double[] x, int n)

Creates a new instance of a log-logistic distribution with parameters a and 3 estimated using
the maximum likelihood method based on the n observations in table z[i], i = 0,1,...,n—1.

public static double[] getMaximumLikelihoodEstimate (double[] x, int n)

Estimates and returns the parameters [&, B] of the log-logistic distribution using the maxi-
mum likelihood method based on the n observations in table z[i], i =0,1,...,n — 1.

public static double getMean (double alpha, double beta)

Computes and returns the mean E[X] = (36 cosec(d), where § = 7w/, of the log-logistic
distribution with parameters o and j3.

public static double getVariance (double alpha, double beta)

Computes and returns the variance Var[X] = (3260(2cosec(20) — 0[cosec(#)]?), where § =
m/a, of the log-logistic distribution with parameters o and 3.

public static double getStandardDeviation (double alpha, double beta)

Computes and returns the standard deviation of the log-logistic distribution with parameters

« and .

public double getAlpha()

Return the parameter « of this object.

public double getBeta()
Returns the parameter 3 of this object.

public void setParams (double alpha, double beta)
Sets the parameters o and § of this object.

May 21, 2008 66

LognormalDist

Extends the class ContinuousDistribution for the lognormal distribution [I5]. It has scale
parameter i and shape parameter ¢ > 0. The density is

1

2rox

fla) = e~ (In(@)—n)?/(207) for z > 0, (62)

and 0 elsewhere. The distribution function is

F(z) =@ ((In(z) — p)/o) for x > 0, (63)
where @ is the standard normal distribution function. Its inverse is given by

Flu) =e*® ™ for 0 <u< 1. (64)

If In(Y) has a normal distribution, then Y has a lognormal distribution with the same
parameters.

This class relies on the methods NormalDist.cdf01 and NormalDist.inverseF01 of
NormalDist to approximate ® and ®~!.

package umontreal.iro.lecuyer.probdist;

public class LognormalDist extends ContinuousDistribution

Constructors

public LognormalDist()

Constructs a LognormalDist object with default parameters y =0 and o = 1.

public LognormalDist (double mu, double sigma)

Constructs a LognormalDist object with parameters ¢ = mu and o = sigma.

Methods

public static double density (double mu, double sigma, double x)
Computes the lognormal density function f(z) in (62)).

public static double cdf (double mu, double sigma, double x)

Computes the lognormal distribution function, using cdf01.

public static double barF (double mu, double sigma, double x)

Computes the lognormal complementary distribution function F(z), using NormalDist
.barFO1.

May 21, 2008 LognormalDist 67

public static double inverseF (double mu, double sigma, double u)

Computes the inverse of the lognormal distribution function, using NormalDist . inverseFO01.

public static LognormalDist getInstanceFromMLE (double[] x, int n)

Creates a new instance of a lognormal distribution with parameters p and o estimated using
the maximum likelihood method based on the n observations in table z[i], i = 0,1,...,n—1.

public static double[] getMaximumLikelihoodEstimate (double[] x, int n)

Estimates and returns the parameters [fi,] of the log-normal distribution using the maxi-
mum likelihood method based on the n observations in table x[i], i = 0,1,...,n — 1.

public static double getMean (double mu, double sigma)

Computes and returns the mean E[X] = et /2 of the lognormal distribution with param-
eters 1 and o.

public static double getVariance (double mu, double sigma)

2

Computes and returns the variance Var[X] = ¢2t7° (¢?* — 1) of the lognormal distribution

with parameters p and o.

public static double getStandardDeviation (double mu, double sigma)

Computes and returns the standard deviation of the lognormal distribution with parameters
wand o.

public double getMu()

Returns the parameter p of this object.

public double getSigmal()

Returns the parameter o of this object.

public void setParams (double mu, double sigma)

Sets the parameters p and o of this object.

May 21, 2008 68

NormalDist

Extends the class ContinuousDistribution for the normal distribution (e.g., [I5, page 80]).
It has mean p and variance 2. Its density function is

1
f(z) = 5 e @R for — 00 < 1 < 00, (65)
Yixea

where ¢ > 0. When u = 0 and ¢ = 1, we have the standard normal distribution, with
corresponding distribution function

1 T
F(z) =®(x) = E/ e /2 dt for —oo <2 < 0. (66)

The non-static methods cdf, barF, and inverseF are implemented via cdf01, barF01,
and inverseFO01, respectively.

package umontreal.iro.lecuyer.probdist;

public class NormalDist extends ContinuousDistribution

Constructors

public NormalDist ()

Constructs a NormalDist object with default parameters =0 and o = 1.

public NormalDist (double mu, double sigma)

Constructs a NormalDist object with parameters ¢ = mu and ¢ = sigma.

Methods

public static double density (double mu, double sigma, double x)
Computes the normal density function ([65]).

public static double cdfO1 (double x)
Same as cdf (0.0, 1.0, x).

public static double cdf (double mu, double sigma, double x)

Computes the normal distribution function with mean p and variance 0. Uses the Cheby-
shev approximation proposed in [27], which gives 16 decimals of precision.

public static double barFO01 (double x)
Same as barF (0.0, 1.0, x).

May 21, 2008 NormalDist 69

public static double barF (double mu, double sigma, double x)

Computes the complementary normal distribution function F(z) = 1 — ®((x — u)/0), with
mean 4 and variance o. Uses a Chebyshev series giving 16 decimal digits of precision [27].

public static double inverseF01 (double u)

Same as inverseF (0.0, 1.0, u).

public static double inverseF (double mu, double sigma, double u)

Computes the inverse normal distribution function with mean p and variance o2. Uses

rational Chebyshev approximations giving at least 16 decimal digits of precision (see [4]).

public static NormalDist getInstanceFromMLE (double[] x, int n)

Creates a new instance of a normal distribution with parameters p and o estimated using
the maximum likelihood method based on the n observations in table z[i], i = 0,1,...,n—1.

public static double[] getMaximumLikelihoodEstimate (double[] x, int n)

Estimates and returns the parameters [fi, &] of the normal distribution using the maximum
likelihood method based on the n observations in table z[i], i = 0,1,...,n — 1.

public static double getMean (double mu, double sigma)
Computes and returns the mean E[X] = p of the normal distribution with parameters p
and o.

public static double getVariance (double mu, double sigma)

Computes and returns the variance Var[X] = o2 of the normal distribution with parameters
w and o.

public static double getStandardDeviation (double mu, double sigma)

Computes and returns the standard deviation ¢ of the normal distribution with parameters
@ and o.

public double getMu()

Returns the parameter u.

public double getSigma()

Returns the parameter o.

public void setParams (double mu, double sigma)

Sets the parameters p and o of this object.

May 21, 2008 70

NormalDistQuick

A variant of the class NormalDist (for the normal distribution with mean g and variance
0?). The difference is in the implementation of the methods cdf01, barF01 and inverseF01
which are faster but less accurate than those of the class NormalDist.

package umontreal.iro.lecuyer.probdist;

public class NormalDistQuick extends NormalDist

Constructors

public NormalDistQuick()
Constructs a NormalDistQuick object with default parameters p =0 and o = 1.

public NormalDistQuick (double mu, double sigma)
Constructs a NormalDistQuick object with parameters y = mu and ¢ = signa.

Methods

public static double cdfO1 (double x)
Same as cdf (0.0, 1.0, x).

public static double cdf (double mu, double sigma, double x)
Returns an approximation of ®(z), where ® is the standard normal distribution function,
with mean 0 and variance 1. Uses Marsaglia et al’s [22] fast method with table lookups.
Returns 15 decimal digits of precision. This method is approximately 60% faster than
NormalDist.cdf.

public static double barF01 (double x)
Same as barF (0.0, 1.0, x).

public static double barF (double mu, double sigma, double x)
Returns an approximation of 1 —®(x), where ® is the standard normal distribution function,
with mean 0 and variance 1. Uses Marsaglia et al’s [22] fast method with table lookups.
Returns 15 decimal digits of precision. This method is approximately twice faster than
NormalDist.barF.

public static double inverseF01 (double u)
Same as inverseF (0.0, 1.0, u).

public static double inverseF (double mu, double sigma, double u)

Returns an approximation of ®~!(u), where ® is the standard normal distribution function,
with mean 0 and variance 1. Uses the method of Marsaglia, Zaman, and Marsaglia [22],
with table lookups. Returns 6 decimal digits of precision. This method is approximately
20% faster than NormalDist.inverseF.

May 21, 2008 71

ParetoDist

Extends the class ContinuousDistribution for a distribution from the Pareto family, with
shape parameter o > 0 and location parameter 3§ > 0 [15, page 574]. The density for this
type of Pareto distribution is

f(z) = jaﬁ:; for x > g, (67)

and 0 otherwise. The distribution function is
F(x)=1-(8/x)" for x > g, (68)
and the inverse distribution function is

F~Y(u) = B(1 —u)~ Ve for 0 <wu < 1.

package umontreal.iro.lecuyer.probdist;

public class ParetoDist extends ContinuousDistribution

Constructors

public ParetoDist (double alpha)

Constructs a ParetoDist object with parameters o = alpha and § = 1.

public ParetoDist (double alpha, double beta)

Constructs a ParetoDist object with parameters @ = alpha and (§ = beta.

Methods
public static double density (double alpha, double beta, double x)

Computes the density function.

public static double cdf (double alpha, double beta, double x)

Computes the distribution function.

public static double barF (double alpha, double beta, double x)

Computes the complementary distribution function.

public static double inverseF (double alpha, double beta, double u)

Computes the inverse of the distribution function.

May 21, 2008 ParetoDist 72

public static ParetoDist getInstanceFromMLE (double[] x, int n)

Creates a new instance of a Pareto distribution with parameters o and (estimated using
the maximum likelihood method based on the n observations in table z[i], i = 0,1,...,n—1.

public static double[] getMaximumLikelihoodEstimate (double[] x, int n)

Estimates and returns the parameters [&, B] of the Pareto distribution using the maximum
likelihood method based on the n observations in table z[i], i = 0,1,...,n — 1.

public static double getMean (double alpha, double beta)
Computes and returns the mean E[X] = af/(a — 1) of the Pareto distribution with param-
eters a and (3.

public static double getVariance (double alpha, double beta)
Computes and returns the variance Var[X] —90°__ of the Pareto distribution with

=~ (@=2)(a—1)
parameters a and [.

public static double getStandardDeviation (double alpha, double beta)

Computes and returns the standard deviation of the Pareto distribution with parameters a
and [.

public double getAlpha()

Returns the parameter .

public double getBeta()

Returns the parameter 3.

public void setParams (double alpha, double beta)
Sets the parameter o and 3 for this object.

May 21, 2008 73

Pearson5Dist

Extends the class ContinuousDistribution for the Pearson type V distribution with shape
parameter o > 0 and scale parameter 5 > 0. The density function is given by

Z.—(a-i—l)e—ﬁ/x .
fa)={ per@ Y (69)

0 otherwise,

where I' is the gamma function. The distribution function is given by

Flz)=1- Fg <%) for 2> 0, (70)

and F'(x) = 0 otherwise, where Fg(x) is the distribution function of a gamma distribution
with shape parameter o and scale parameter [3.

package umontreal.iro.lecuyer.probdist;

public class PearsonbDist extends ContinuousDistribution

Constructor

public Pearson5Dist (double alpha, double beta)

Constructs a PearsonbDist object with parameters o = alpha and (3 = beta.

Methods

public static double density (double alpha, double beta, double x)

Computes the density function of a Pearson V distribution with shape parameter o and
scale parameter (3.

public static double cdf (double alpha, double beta, double x)

Computes the density function of a Pearson V distribution with shape parameter o and
scale parameter (.

public static double barF (double alpha, double beta, double x)

Computes the complementary distribution function of a Pearson V distribution with shape
parameter « and scale parameter 3.

public static double inverseF (double alpha, double beta, double u)

Computes the inverse distribution function of a Pearson V distribution with shape parameter
« and scale parameter (3.

May 21, 2008 PearsonbDist 74

public static PearsonbDist getInstanceFromMLE (double[] x, int n)

Creates a new instance of a Pearson V distribution with parameters o and [estimated using
the maximum likelihood method based on the n observations in table z[i], i = 0,1,...,n—1.

public static double[] getMaximumLikelihoodEstimate (double[] x, int n)

Estimates and returns the parameters [&, B} of the Pearson V distribution using the maxi-
mum likelihood method based on the n observations in table z[i], i =0,1,...,n — 1.

public static double getMean (double alpha, double beta)

Computes and returns the mean E[X] = 3/(a — 1) of a Pearson V distribution with shape
parameter « and scale parameter 3.

public static double getVariance (double alpha, double beta)

Computes and returns the variance Var[X] = 32/((a—1)?(a—2) of a Pearson V distribution
with shape parameter o and scale parameter [3.

public static double getStandardDeviation (double alpha, double beta)

Computes and returns the standard deviation of a Pearson V distribution with shape pa-
rameter « and scale parameter (5.

public double getAlpha()

Returns the o parameter of this object.

public double getBeta()
Returns the § parameter of this object.

public void setParam (double alpha, double beta)
Sets the parameters a and (§ of this object.

May 21, 2008 75

Pearson6Dist

Extends the class ContinuousDistribution for the Pearson type VI distribution with shape
parameters a; > 0 and as > 0, and scale parameter § > 0. The density function is given

by
(@/8)"" -
f(z) =4 BB(ag,as)(l + x/B)ortez for # > 0, (71)

0 otherwise,

where B is the beta function. The distribution function is given by

T

x4+ 0

and F'(z) = 0 otherwise, where Fj(x) is the distribution function of a beta distribution with
shape parameters oy and as.

F(z) = Fg () for z > 0, (72)

package umontreal.iro.lecuyer.probdist;

public class Pearson6Dist extends ContinuousDistribution

Constructor

public Pearson6Dist (double alphal, double alpha2, double beta)

Constructs a Pearson6Dist object with parameters oy = alphal, ag = alpha2 and [=
beta.

Methods

public static double density (double alphal, double alpha2,
double beta, double x)

Computes the density function of a Pearson VI distribution with shape parameters «; and
a9, and scale parameter (3.

public static double cdf (double alphal, double alpha2,
double beta, double x)

Computes the distribution function of a Pearson VI distribution with shape parameters oy
and g, and scale parameter (3.

public static double barF (double alphal, double alpha2,
double beta, double x)

Computes the complementary distribution function of a Pearson VI distribution with shape
parameters a1 and ao, and scale parameter (3.

May 21, 2008 Pearson6Dist 76

public static double inverseF (double alphal, double alpha2,
double beta, double u)

Computes the inverse distribution function of a Pearson VI distribution with shape param-
eters a1 and as, and scale parameter (3.

public static Pearson6Dist getInstanceFromMLE (double[] x, int n)

Creates a new instance of a Pearson VI distribution with parameters a1, as and 3, es-
timated using the maximum likelihood method based on the n observations in table z[i],
1=0,1,...,n—1.

public static double[] getMaximumLikelihoodEstimate (double[] x, int n)

Estimates and returns the parameters [d1, da, 3] of the Pearson VI distribution using the
maximum likelihood method based on the n observations in table x[i], i = 0,1,...,n — 1.

public static double getMean (double alphal, double alpha2,
double beta)

Computes and returns the mean E[X| = (fai1)/(a2 — 1) of a Pearson VI distribution with
shape parameters o1 and ao, and scale parameter [3.

public static double getVariance (double alphal, double alpha?2,
double beta)
Computes and returns the variance Var[X] = [3%a;(a1 + az — 1)]/[(a2 — 1)%(ag — 2)] of a
Pearson VI distribution with shape parameters a; and «s, and scale parameter 3.
public static double getStandardDeviation (double alphal, double alpha2,
double beta)

Computes and returns the standard deviation of a Pearson VI distribution with shape pa-
rameters a1 and ae, and scale parameter (.

public double getAlphal()

Returns the oy parameter of this object.

public double getAlpha2()

Returns the ag parameter of this object.

public double getBeta()
Returns the § parameter of this object.

public void setParam (double alphal, double alpha2, double beta)

Sets the parameters a1, as and § of this object.

May 21, 2008 77

PiecewiseLinearEmpiricalDist

Extends the class ContinuousDistribution for a piecewise-linear approximation of the
empirical distribution function, based on the observations X(yy, ..., X(,) (sorted by increasing
order), and defined as follows (e.g., [19, page 318]). The distribution function starts at X
and climbs linearly by 1/(n — 1) between any two successive observations. The density is

1

flx) = for X)) <2 < Xy andi=1,2,...,n—1. (73)
(n — D(X+1) — X)) © (D)
The distribution function is
0 for z < X(l),
1—1 r — X(i) .
F(x) = + for X <o < X1 and 7 < n, 74
(@) n—1" (n—1)(Xu — X)) @) (1) (74)
1 for ¥ > X,
whose inverse is
FHu) = X+ ((n— Du— i+ 1) (X1 — X)) (75)

for (i —1)/(n—1)<u<i/(n—1)andi=1,...,n— 1L

package umontreal.iro.lecuyer.probdist;
public class PiecewiselLinearEmpiricalDist extends ContinuousDistribution

public PiecewiseLinearEmpiricalDist (double[] obs)

Constructs a new piecewise-linear distribution using all the observations stored in obs. These
observations are copied into an internal array and then sorted.

public PiecewiseLinearEmpiricalDist (Reader in) throws IOException

Constructs a new empirical distribution using the observations read from the reader in.
This constructor will read the first double of each line in the stream. Any line that does
not start with a +, -, or a decimal digit, is ignored. The file is read until its end. One must
be careful about lines starting with a blank. This format is the same as in UNURAN.

public int getN()

Returns n, the number of observations.

public double getObs (int i)
Returns the value of X ;).

public double getSampleMean()

Returns the sample mean of the observations.

May 21, 2008 PiecewiseLinearEmpiricalDist 78

public double getSampleVariance()

Returns the sample variance of the observations.

public double getSampleStandardDeviation()

Returns the sample standard deviation of the observations.

May 21, 2008 79

StudentDist

Extends the class ContinuousDistribution for the Student-t distribution [I6, page 362]
with n degrees of freedom, where n is a positive integer. Its density is

I ((n+1)/2 Z2\
f(x)—%(l—kg) for —oo <z < o0, (76)
where I'(z) is the gamma function defined in (40)).

The non-static methods cdf and barF use the same algorithm as in cdf.

package umontreal.iro.lecuyer.probdist;

public class StudentDist extends ContinuousDistribution

Constructors

public StudentDist (int n)

Constructs a StudentDist object with n degrees of freedom.

Methods

public static double density (int n, double x)
Computes the density function for a Student-t distribution with n degrees of freedom.

public static double cdf (int n, double x)

Returns the approximation of [I8, page 96| for the Student-¢ distribution function with n
degrees of freedom. Gives at least 12 decimals of precision for n < 103, and at least 10
decimals for 103 < n < 10°.

public static double cdf2 (int n, int d, double x)

Returns an approximation of the Student-t¢ distribution function with n degrees of freedom.
Uses the relationship (see [15])
I, n/(n + x? for z < 0,

—71/2,n/2(952/(n +22)) for x >0,

where I, 3 is the beta distribution function with parameters o and [(also called the
incomplete beta ratio) defined in , which is approximated by calling BetaDist.cdf. The
function tries to return d decimals digits of precision (but there is no guarantee). This
method is much slower (twenty to forty times, depending on parameters) than cdf, but
could be used if precision is important.

May 21, 2008 StudentDist 80

public static double barF (int n, double x)

Computes the complementary distribution function F'(x).

public static double inverseF (int n, double u)

Returns an approximation of F~!(u), where F is the Student-t distribution function with
n degrees of freedom. Uses an approximation giving at least 5 decimal digits of precision
when n > 8 or n < 2, and 3 decimal digits of precision when 3 < n <7 (see [I3] and Figure
L.28 of [6]).

public static StudentDist getInstanceFromMLE (double[] x, int m)

Creates a new instance of a Student-¢ distribution with parameter n estimated using the
maximum likelihood method based on the m observations in table z[i], : = 0,1,...,m — 1.

public static double[] getMaximumLikelihoodEstimate (double[] x, int m)

Estimates and returns the parameter [n] of the Student-¢ distribution using the maximum
likelihood method based on the m observations in table z[i], ¢ = 0,1,...,m — 1.

public static double getMean (int n)
Returns the mean F[X] = 0 of the Student-¢ distribution with parameter n.

public static double getVariance (int n)

Computes and returns the variance Var[X] = n/(n — 2) of the Student-¢ distribution with
parameter n.

public static double getStandardDeviation (int n)
Computes and returns the standard deviation of the Student-t distribution with parameter
n.

public int getNQ)

Returns the parameter n associated with this object.

public void setN (int n)

Sets the parameter n associated with this object.

May 21, 2008 81

TriangularDist

Extends the class ContinuousDistribution for the triangular distribution (see [16, page
297] and [19, page 317]) with domain [a,b] and mode (or shape parameter) m, where a <
m < b. The density function is

(Z)_Q(S)x(—_ma)_a) ifa<x<m,
flz) = % if m<ax<b, (78)
0 elsewhere,
the distribution function is
(0 for x < a,
_z—a)? ifa<z<m
F([L’) _ (b—a)(m—a) — —) (79)

1—% it m<x<b,

1 for x > b,

and the inverse distribution function is given by

F(u) = at+ Vb= a)im — aju if0<u a
b= V- -m)(I—u) ifT=<u<l

package umontreal.iro.lecuyer.probdist;

public class TriangularDist extends ContinuousDistribution

Constructors

public TriangularDist ()

Constructs a TriangularDist object with default parameters a = 0, b =1, and m = 0.5.

public TriangularDist (double m)

Constructs a TriangularDist object with parameters a =0, b =1 and m = m.

public TriangularDist (double a, double b, double m)

Constructs a TriangularDist object with parameters a, b and m.

May 21, 2008 TriangularDist 82

Methods

public static double density (double a, double b, double m, double x)

Computes the density function.

public static double cdf (double a, double b, double m, double x)

Computes the distribution function.

public static double barF (double a, double b, double m, double x)

Computes the complementary distribution function.

public static double inverseF (double a, double b, double m, double u)

Computes the inverse distribution function.

public static double getMean (double a, double b, double m)

Computes and returns the mean E[X] = (a + b+ m)/3 of the triangular distribution with
parameters a, b, m.

public static double getVariance (double a, double b, double m)

Computes and returns the variance Var[X| = (a? + b? + m? — ab — am — bm)/18 of the
triangular distribution with parameters a, b, m.

public static double getStandardDeviation (double a, double b, double m)

Computes and returns the standard deviation of the triangular distribution with parameters
a, b, m.

public double getA()

Returns the value of a for this object.

public double getB()

Returns the value of b for this object.

public double getM()

Returns the value of m for this object.

public void setParams (double a, double b, double m)

Sets the value of the parameters a, b and m for this object.

May 21, 2008 83

UniformDist

Extends the class ContinuousDistribution for the uniform distribution [16, page 276] over
the interval [a, b]. Its density is

flz)=1/(b—a) fora <z <b (81)
and 0 elsewhere. The distribution function is
F(z)=(z—a)/(b—a) fora <z <b (82)

and its inverse is

Flu)y=a+(b—-au for0<u<l, (83)

package umontreal.iro.lecuyer.probdist;

public class UniformDist extends ContinuousDistribution

Constructors

public UniformDist ()

Constructs a uniform distribution over the interval (a,b) = (0, 1).

public UniformDist (double a, double b)

Constructs a uniform distribution over the interval (a, b).

Methods

public static double density (double a, double b, double x)
Computes the uniform density function f(z) in (81).

public static double cdf (double a, double b, double x)
Computes the uniform distribution function as in .

public static double barF (double a, double b, double x)

Computes the uniform complementary distribution function F(x).

public static double inverseF (double a, double b, double u)
Computes the inverse of the uniform distribution function (83).

public static UniformDist getInstanceFromMLE (double[] x, int n)

Creates a new instance of a uniform distribution with parameters a and b estimated using
the maximum likelihood method based on the n observations in table z[i], i = 0,1,...,n—1.

May 21, 2008 UniformDist 84

public static double[] getMaximumLikelihoodEstimate (double[] x, int n)

Estimates and returns the parameters [a, I;] of the uniform distribution using the maximum
likelihood method based on the n observations in table x[i], i = 0,1,...,n — 1.

public static double getMean (double a, double b)
Computes and returns the mean E[X] = (a + b)/2 of the uniform distribution with param-
eters a and b.

public static double getVariance (double a, double b)

Computes and returns the variance Var[X] = (b — a)?/12 of the uniform distribution with
parameters a and b.

public static double getStandardDeviation (double a, double b)

Computes and returns the standard deviation of the uniform distribution with parameters
a and b.

public double getA()

Returns the parameter a.

public double getB()

Returns the parameter b.

public void setParams (double a, double b)

Sets the parameters a and b for this object.

May 21, 2008 85

WeibullDist

This class extends the class ContinuousDistribution for the Weibull distribution [15, page
628] with shape parameter a > 0, location parameter §, and scale parameter A > 0. The
density function is

f(z) = ar(z —) te-Ae=o)? for x > 4, (84)
the distribution function is
F(z)=1— ¢ A@=0)" for x > 4, (85)
and the inverse distribution function is

FYu) = (=In(1 —u)Y*/\+§ for 0 <wu < 1.

package umontreal.iro.lecuyer.probdist;

public class WeibullDist extends ContinuousDistribution

Constructors

public WeibullDist (double alpha)
Constructs a WeibullDist object with parameters o = alpha, A = 1, and § = 0.

public WeibullDist (double alpha, double lambda, double delta)
Constructs a WeibullDist object with parameters a = alpha, A = lambda, and § = delta.

Methods

public static double density (double alpha, double lambda,
double delta, double x)

Computes the density function.

public static double density (double alpha, double x)
Same as density (alpha, 1.0, 0.0, x).

public static double cdf (double alpha, double lambda,
double delta, double x)

Computes the distribution function.

public static double cdf (double alpha, double x)
Same as cdf (alpha, 1.0, 0.0, x).

May 21, 2008 WeibullDist 86

public static double barF (double alpha, double lambda,
double delta, double x)

Computes the complementary distribution function.

public static double barF (double alpha, double x)
Same as barF (alpha, 1.0, 0.0, x).

public static double inverseF (double alpha, double lambda,
double delta, double u)

Computes the inverse of the distribution function.

public static double inverseF (double alpha, double x)
Same as inverseF (alpha, 1.0, 0.0, x).

public static WeibullDist getInstanceFromMLE (double[] x, int n)
Creates a new instance of a Weibull distribution with parameters o, A and § estimated using
the maximum likelihood method based on the n observations in table z[i], i = 0,1,...,n—1.

public static double[] getMaximumLikelihoodEstimate (double[] x, int n)

Estimates and returns the parameters [&, 5\, 5 = 0] of the Weibull distribution using the
maximum likelihood method based on the n observations in table z[i], i = 0,1,...,n — 1.

public static double getMean (double alpha, double lambda, double delta)

1
Computes and returns the mean FE[X] = ¢ + w of the Weibull distribution with

parameters a, A and ¢.

public static double getVariance (double alpha, double lambda,
double delta)

Computes and returns the variance Var[X] = {3|T'(2 4+ 1) = T'*(1 + 1)| of the Weibull
distribution with parameters «, A and J.

public static double getStandardDeviation (double alpha, double lambda,
double delta)

Computes and returns the standard deviation of the Weibull distribution with parameters
a, X and 0.

public double getAlpha()
Returns the parameter .

public double getLambda()
Returns the parameter .

public double getDelta()
Returns the parameter 9.

public void setParams (double alpha, double lambda, double delta)
Sets the parameters o, A and § for this object.

May 21, 2008 87

TruncatedDist

This container class takes an arbitrary continuous distribution and truncates it to an interval
la, b], where a and b can be finite or infinite. If the original density and distribution function
are f and F', the new ones are f* and F™, defined by

[H(@) = f(2)/(F(b) = Fa)) fora<wz<b
and f*(xz) = 0 and zero elsewhere, and
F*(x) = F(x)/(F(b) — F(a)) for a < x <b.
The inverse distribution function of the truncated distribution is
F~"(u) = F'(F(a) + (F(b) = F(a))u)

where F~! is the inverse distribution function of the original distribution.

package umontreal.iro.lecuyer.probdist;

public class TruncatedDist extends ContinuousDistribution

Constructor

public TruncatedDist (ContinuousDistribution dist, double a, double b)
Constructs a new distribution by truncating distribution dist to the interval [a,b]. If a =
Double .NEGATIVE_INFINITY, F'(a) is assumed to be 0. If b = Double.POSITIVE_INFINITY,
F(b) is assumed to be 1.

Methods

public double getA()
Returns the value of a.

public double getB()
Returns the value of b.

public double getFa()
Returns the value of F(a).

public double getFb()
Returns the value of F'(b).

public double getArea()
Returns the value of F'(b) — F(a), the area under the truncated density function.

public void setParams (ContinuousDistribution dist, double a, double b)
Sets the parameters dist, a and b for this object. See the constructor for details.

May 21, 2008 REFERENCES 88

References

1]

2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

D. J. Best and D. E. Roberts. Algorithm AS 91: The percentage points of the y?
distribution. Applied Statistics, 24:385—-388, 1975.

G. P. Bhattacharjee. The incomplete gamma integral. Applied Statistics, 19:285-287,
1970. AS32.

Z. W. Birnbaum and S. C. Saunders. A new family of life distributions. Journal of
Applied Probability, 6:319-327, 1969.

J. M. Blair, C. A. Edwards, and J. H. Johnson. Rational Chebyshev approximations
for the inverse of the error function. Mathematics of Computation, 30:827-830, 1976.

L. N. Bol’shev. Some applications of Pearson transformations. Review of the Internat.
Stat. Institute, 32:14-16, 1964.

P. Bratley, B. L. Fox, and L. E. Schrage. A Guide to Simulation. Springer-Verlag, New
York, NY, second edition, 1987.

B. H. Camp. Approximation to the point binomial. Ann. Math. Stat., 22:130-131,
1951.

M. Evans and T. Swartz. Approzximating Integrals via Monte Carlo and Deterministic
Methods. Oxford University Press, Oxford, UK, 2000.

W. Gautschi. Algorithm 222: Incomplete beta function ratios. Communications of the
ACM, 7(3):143-144, 1964.

W. Gautschi. Certification of algorithm 222: Incomplete beta function ratios. Com-
munications of the ACM, 7(3):244, 1964.

J. E. Gentle. Random Number Generation and Monte Carlo Methods. Springer, New
York, NY, 1998.

R. B. Goldstein. Algorithm 451: Chi-square quantiles. Communications of the ACM,
16:483-485, 1973.

G. W. Hill. Algorithm 395: Student’s t-distribution. Communications of the ACM,
13:617-619, 1970.

N. L. Johnson and S. Kotz. Distributions in Statistics: Discrete Distributions.
Houghton Mifflin, Boston, 1969.

N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions,
volume 1. Wiley, 2nd edition, 1994.

N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions,
volume 2. Wiley, 2nd edition, 1995.

May 21, 2008 REFERENCES 89

[17]

[18]

[19]

[20]

[21]

[22]

[23]

V. Kachitvichyanukul and B. Schmeiser. Computer generation of hypergeometric ran-
dom variates. J. Statist. Comput. Simul., 22:127-145, 1985.

W. J. Kennedy Jr. and J. E. Gentle. Statistical Computing. Dekker, New York, NY,
1980.

A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill, New
York, NY, third edition, 2000.

J. Leydold and W. Hormann. UNURAN—A Library for Universal Non-Uniform Ran-
dom Number Generators, 2002. Available at http://statistik.wu-wien.ac.at/
unuran.

K. V. Mardia and P. J. Zemroch. Tables of the F' and Related Distributions with
Algorithms. Academic Press, London, 1978.

G. Marsaglia, A. Zaman, and J. C. W. Marsaglia. Rapid evaluation of the inverse
normal distribution function. Statistics and Probability Letters, 19:259-266, 1994.

W. Molenaar. Approzimations to the Poisson, Binomial and Hypergeometric Distri-
bution Functions, volume 31 of Mathematical Center Tract. Mathematisch Centrum,
Amsterdam, 1970.

S. L. Moshier. Cephes math library, 2000. See http://www.moshier.net.

D. B. Peizer and J. W. Pratt. A normal approximation for binomial, F', beta, and other
common related tail probabilities. Journal of the American Statistical Association,
63:1416-1456, 1968.

R. B. Schnabel. UNCMIN—Unconstrained Optimization Package, FORTRAN. Univer-
sity of Colorado at Boulder. See http://www.ici.ro/camo/unconstr/uncmin.htm.

J. L. Schonfelder. Chebyshev expansions for the error and related functions. Mathe-
matics of Computation, 32:1232-1240, 1978.

S. P. Verrill. UNCMIN—Unconstrained Optimization Package, Java. US Forest
Service, Forest Products Laboratory. Available at http://wwwl.fpl.fs.fed.us/
optimization.html.

http://statistik.wu-wien.ac.at/unuran
http://statistik.wu-wien.ac.at/unuran
http://www.moshier.net
http://www.ici.ro/camo/unconstr/uncmin.htm
http://www1.fpl.fs.fed.us/optimization.html
http://www1.fpl.fs.fed.us/optimization.html

	Overview
	General Classes
	Distribution
	DiscreteDistribution
	DiscreteDistributionInt
	ContinuousDistribution
	DistributionFactory
	Discrete Distributions over Integers
	BinomialDist
	GeometricDist
	HypergeometricDist
	LogarithmicDist
	NegativeBinomialDist
	PascalDist
	PoissonDist
	UniformIntDist

	Discrete Distributions over Real Numbers
	EmpiricalDist

	Continuous Distributions
	BetaDist
	BetaSymmetricalDist
	CauchyDist
	ChiDist
	ChiSquareDist
	ChiSquareDistQuick
	ErlangDist
	ExponentialDist
	ExtremeValueDist
	FatigueLifeDist
	FisherFDist
	GammaDist
	HyperbolicSecantDist
	InverseGaussianDist
	JohnsonSBDist
	JohnsonSUDist
	LaplaceDist
	LogisticDist
	LoglogisticDist
	LognormalDist
	NormalDist
	NormalDistQuick
	ParetoDist
	Pearson5Dist
	Pearson6Dist
	PiecewiseLinearEmpiricalDist
	StudentDist
	TriangularDist
	UniformDist
	WeibullDist
	TruncatedDist

