This package provides basic facilities for curve fitting and interpolation with polynomials as, for example, least square fit and spline interpolation.
Contents

PolInterp ... 2
LeastSquares .. 3
BSpline ... 5
SmoothingCubicSpline .. 7
PolInterp

Represents a polynomial that interpolates through a set of points. More specifically, let \((x_0, y_0), \ldots, (x_n, y_n)\) be a set of points and \(p(x)\) the constructed polynomial of degree \(n\). Then, for \(i = 0, \ldots, n\), \(p(x_i) = y_i\).

```java
package umontreal.iro.lecuyer.functionfit;

public class PolInterp extends Polynomial implements Serializable

Constructors

public PolInterp (double[] x, double[] y)
    Constructs a new polynomial interpolating through the given points \((x[0], y[0]), \ldots, (x[n], y[n])\). This constructs a polynomial of degree \(n\) from \(n+1\) points.

Methods

public static double[] getCoefficients (double[] x, double[] y)
    Computes and returns the coefficients the polynomial interpolating through the given points \((x[0], y[0]), \ldots, (x[n], y[n])\). This polynomial has degree \(n\) and there are \(n+1\) coefficients.

public double[] getX()
    Returns the \(x\) coordinates of the interpolated points.

public double[] getY()
    Returns the \(y\) coordinates of the interpolated points.

public static String toString (double[] x, double[] y)
    Makes a string representation of a set of points.

public String toString()
    Calls toString(double[], double[]) with the associated points.
```
LeastSquares

This class implements different \textit{linear regression} models, using the least squares method to estimate the regression coefficients. Given input data x_{ij} and response y_i, one want to find the coefficients β_j that minimize the residuals of the form (using matrix notation)

$$r = \min_\beta \| Y - X\beta \|_2,$$

where the L_2 norm is used. Particular cases are

$$r = \min_\beta \sum_i \left(y_i - \beta_0 - \sum_{j=1}^k \beta_j x_{ij} \right)^2,$$

for k regressor variables x_j. The well-known case of the single variable x is

$$r = \min_{\alpha, \beta} \sum_i (y_i - \alpha - \beta x_i)^2.$$

Sometimes, one wants to use a basis of general functions $\psi_j(t)$ with a minimization of the form

$$r = \min_\beta \sum_i \left(y_i - \sum_{j=1}^k \beta_j \psi_j(t_i) \right)^2.$$

For example, we could have $\psi_j(t) = e^{-\lambda_j t}$ or some other functions. In that case, one has to choose the points t_i at which to compute the basis functions, and use a method below with $x_{ij} = \psi_j(t_i)$.

package umontreal.iro.lecuyer.functionfit;

public class LeastSquares

Methods

public static double[] calcCoefficients (double[] X, double[] Y)
Computes the regression coefficients using the least squares method. This is a simple linear regression with 2 regression coefficients, α and β. The model is

$$y = \alpha + \beta x.$$

Given the n data points $(X_i, Y_i), i = 0, 1, \ldots, (n-1)$, the method computes and returns the array $[\alpha, \beta]$.

public static double[] calcCoefficients (double[] X, double[] Y, int deg)
Computes the regression coefficients using the least squares method. This is a linear regression with a polynomial of degree $\text{deg} = k$ and $k + 1$ regression coefficients β_j. The model is

$$y = \beta_0 + \sum_{j=1}^k \beta_j x^j.$$
Given the \(n \) data points \((X_i, Y_i), i = 0, 1, \ldots, (n - 1)\), the method computes and returns the array \([\beta_0, \beta_1, \ldots, \beta_k]\). Restriction: \(n > k \).

public static double[] calcCoefficients0 (double[][] X, double[] Y)

Computes the regression coefficients using the least squares method. This is a model for multiple linear regression. There are \(k+1 \) regression coefficients \(\beta_j \), and \(k \) regressors variables \(x_j \). The model is

\[
y = \beta_0 + \sum_{j=1}^{k} \beta_j x_j.
\]

There are \(n \) data points \(Y_i, X_{ij}, i = 0, 1, \ldots, (n - 1) \), and each \(X_i \) is a \(k \)-dimensional point. Given the response \(Y[i] \) and the regressor variables \(X[i][j], i = 0, 1, \ldots, (n - 1), j = 0, 1, \ldots, (k-1) \), the method computes and returns the array \([\beta_0, \beta_1, \ldots, \beta_k]\). Restriction: \(n > k + 1 \).

public static double[] calcCoefficients (double[][] X, double[] Y)

Computes the regression coefficients using the least squares method. This is a model for multiple linear regression. There are \(k \) regression coefficients \(\beta_j, j = 0, 1, \ldots, (k - 1) \) and \(k \) regressors variables \(x_j \). The model is

\[
y = \sum_{j=0}^{k-1} \beta_j x_j.
\]

There are \(n \) data points \(Y_i, X_{ij}, i = 0, 1, \ldots, (n - 1) \), and each \(X_i \) is a \(k \)-dimensional point. Given the response \(Y[i] \) and the regressor variables \(X[i][j], i = 0, 1, \ldots, (n - 1), j = 0, 1, \ldots, (k-1) \), the method computes and returns the array \([\beta_0, \beta_1, \ldots, \beta_{k-1}]\). Restriction: \(n > k \).
BSpline

Represents a B-spline with control points at \((X_i, Y_i)\). Let \(P_1 = (X_i, Y_i)\), for \(i = 0, \ldots, n - 1\), be a control point and let \(t_j\), for \(j = 0, \ldots, m - 1\) be a knot. A B-spline of degree \(p = m - n - 1\) is a parametric curve defined as

\[
P(t) = \sum_{i=0}^{n-1} N_{i,p}(t) P_i, \quad \text{for} \quad t_p \leq t \leq t_{m-p-1}.
\]

Here,

\[
N_{i,p}(t) = \begin{cases}
\frac{t - t_i}{t_{i+p} - t_i} N_{i,p-1}(t) + \frac{t_{i+p+1} - t}{t_{i+p+1} - t_{i+1}} N_{i+1,p-1}(t) \\
N_{i,0}(t) = \begin{cases}
1 & \text{for } t_i \leq t \leq t_{i+1}, \\
0 & \text{elsewhere}.
\end{cases}
\end{cases}
\]

This class provides methods to evaluate \(P(t) = (X(t), Y(t))\) at any value of \(t\), for a B-spline of any degree \(p \geq 1\). Note that the evaluate method of this class can be slow, since it uses a root finder to determine the value of \(t^*\) for which \(X(t^*) = x\) before it computes \(Y(t^*)\).

```java
package umontreal.iro.lecuyer.functionfit;

public class BSpline implements MathFunction {

Constructors

public BSpline (final double[] x, final double[] y, final int degree)

Constructs a new uniform B-spline of degree \(\text{degree}\) with control points at \((x[i], y[i])\). The knots of the resulting B-spline are set uniformly from \(x[0]\) to \(x[n-1]\).

public BSpline (final double[] x, final double[] y, final double[] knots)

Constructs a new uniform B-spline with control points at \((x[i], y[i])\), and knot vector given by the array \(\text{knots}\).

Methods

public double[] getX()

Returns the \(X_i\) coordinates for this spline.

public double[] getY()

Returns the \(Y_i\) coordinates for this spline.

public double getMaxKnot()

Returns the knot maximal value.
```
public double getMinKnot()

 Returns the knot minimal value.

public double[] getKnots()

 Returns an array containing the knot vector \((t_0, t_{m-1})\).

public static BSpline createInterpBSpline(double[] x, double[] y,
 int degree)

 Returns a B-spline curve of degree \(\text{degree}\) interpolating the \((x_i, y_i)\) points \([1]\). This method uses the uniformly spaced method for interpolating points with a B-spline curve, and a uniformed clamped knot vector, as described in http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/.

public static BSpline createApproxBSpline(double[] x, double[] y,
 int degree, int h)

 Returns a B-spline curve of degree \(\text{degree}\) smoothing \((x_i, y_i)\), for \(i = 0, \ldots, n\) points. The precision depends on the parameter \(h\): \(1 \leq \text{degree} \leq h < n\), which represents the number of control points used by the new B-spline curve, minimizing the quadratic error

\[
L = \sum_{i=0}^{n} \left(\frac{Y_i - S_i(X_i)}{W_i} \right)^2.
\]

This method uses the uniformly spaced method for interpolating points with a B-spline curve and a uniformed clamped knot vector, as described in http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/.

public BSpline derivativeBSpline()

 Returns the derivative B-spline object of the current variable. Using this function and the returned object, instead of the \texttt{derivative} method, is strongly recommended if one wants to compute many derivative values.

public BSpline derivativeBSpline (int i)

 Returns the \(i\)th derivative B-spline object of the current variable; \(i\) must be less than the degree of the original B-spline. Using this function and the returned object, instead of the \texttt{derivative} method, is strongly recommended if one wants to compute many derivative values.
SmoothingCubicSpline

Represents a cubic spline with nodes at \((x_i, y_i)\) computed with the smoothing cubic spline algorithm of Schoenberg \[1, 2\]. A smoothing cubic spline is made of \(n+1\) cubic polynomials. The \(i\)th polynomial of such a spline, for \(i = 1, \ldots, n-1\), is defined as \(S_i(x)\) while the complete spline is defined as

\[
S(x) = S_i(x), \quad \text{for } x \in [x_{i-1}, x_i].
\]

For \(x < x_0\) and \(x > x_{n-1}\), the spline is not precisely defined, but this class performs extrapolation by using \(S_0\) and \(S_n\) linear polynomials. The algorithm which calculates the smoothing spline is a generalization of the algorithm for an interpolating spline. \(S_i\) is linked to \(S_{i+1}\) at \(x_{i+1}\) and keeps continuity properties for first and second derivatives at this point, therefore \(S_i(x_{i+1}) = S_{i+1}(x_{i+1}), S'_i(x_{i+1}) = S'_{i+1}(x_{i+1})\) and \(S''_i(x_{i+1}) = S''_{i+1}(x_{i+1})\).

The spline is computed with a smoothing parameter \(\rho \in [0, 1]\) which represents its accuracy with respect to the initial \((x_i, y_i)\) nodes. The smoothing spline minimizes

\[
L = \rho \sum_{i=0}^{n-1} w_i (y_i - S_i(x_i))^2 + (1 - \rho) \int_{x_0}^{x_{n-1}} (S''(x))^2 \, dx
\]

In fact, by setting \(\rho = 1\), we obtain the interpolating spline; and we obtain a linear function by setting \(\rho = 0\). The weights \(w_i > 0\), which default to 1, can be used to change the contribution of each point in the error term. A large value \(w_i\) will give a large weight to the \(i\)th point, so the spline will pass closer to it. Here is a small example that uses smoothing splines:

```java
int n;
double[] X = new double[n];
double[] Y = new double[n];
// here, fill arrays X and Y with n data points (x_i, y_i)
// The points must be sorted with respect to x_i.

double rho = 0.1;
SmoothingCubicSpline fit = new SmoothingCubicSpline(X, Y, rho);

int m = 40;
double[] Xp = new double[m+1]; // Xp, Yp are spline points
double[] Yp = new double[m+1];
double h = (X[n-1] - X[0]) / m; // step

for (int i = 0; i <= m; i++) {
    double z = X[0] + i * h;
    Xp[i] = z;
    Yp[i] = fit.evaluate(z); // evaluate spline at z
}
```
package umontreal.iro.lecuyer.functionfit;
import umontreal.iro.lecuyer.functions. *
import umontreal.iro.lecuyer.functions.Polynomial;

public class SmoothingCubicSpline implements MathFunction,
MathFunctionWithFirstDerivative, MathFunctionWithDerivative,
MathFunctionWithIntegral

Constructors

public SmoothingCubicSpline (double[] x, double[] y, double[] w,
 double rho)
 Constructs a spline with nodes at (x_i, y_i), with weights w_i and smoothing factor ρ = rho.
 The x_i must be sorted in increasing order.

public SmoothingCubicSpline (double[] x, double[] y, double rho)
 Constructs a spline with nodes at (x_i, y_i), with weights = 1 and smoothing factor ρ = rho.
 The x_i must be sorted in increasing order.

Methods

public double evaluate (double z)
 Evaluates and returns the value of the spline at z.

public double integral (double a, double b)
 Evaluates and returns the value of the integral of the spline from a to b.

public double derivative (double z)
 Evaluates and returns the value of the first derivative of the spline at z.

public double derivative (double z, int n)
 Evaluates and returns the value of the n-th derivative of the spline at z.

public double[] getX()
 Returns the x_i coordinates for this spline.

public double[] getY()
 Returns the y_i coordinates for this spline.

public double[] getWeights()
 Returns the weights of the points.

public double getRho()
 Returns the smoothing factor used to construct the spline.

public Polynomial[] getSplinePolynomials()
 Returns a table containing all fitting polynomials.
public int getFitPolynomialIndex (double x)

Returns the index of P, the Polynomial instance used to evaluate x, in an ArrayList table instance returned by getSplinePolynomials(). This index k gives also the interval in table X which contains the value x (i.e. such that $x_k < x \leq x_{k+1}$).
References
