
Lund Software House AB, Sweden

LUND

SIMULA

Lund Simula Documentation

Using the simlib library
on

Unix Systems

For Lund Simula version 4.15 or later

Printed at: 5 December 1995 12:23 pm
© Copyright 1995
Lund Software House AB
P.O.Box 7056
S-220 07 Lund, Sweden

Lund Simula Documentation

Using the SimLib library on Unix Systems
Version 4.15

by Boris Magnusson

LSH – Lund SIMULA user’s manuals

i

Table of Contents
1 Introduction 1

2 Organisation and use 1

3 Detailed Interfaces for Portable classes 3
3.1 AnyObject 3
3.2 Linkage 3
3.3 class LINKAGE 3
3.4 class HEAD 4
3.5 class LINK 4
3.6 BitFiddleClass 5
3.7 BitSetClass 6
3.8 BitPackClass 8
3.9 CallDebugger 9
3.10 CmdLineClass 9
3.11 MemInfoClass 10
3.12 MemoryAccess 11
3.13 MemStatistics 13
3.14 MemManagerClass 14
3.15 UnsafeConversion 14

4 Detailed Interfaces for Unix related classes 17
4.1 Character_IO 17
4.2 DirectoryFile 17
4.3 FileNameClass 18
4.4 FileStatus 19
4.5 FileUtil 20
4.6 UnixCmdLineClass 21
4.7 UnixUtil 22

5 Index to classes and procedures 27

LSH – Lund SIMULA user’s manuals

ii

Lund SIMULA user’s manuals

1LSH

1 Introduction

Simlib is a library with externally compiled classes and procedures. The rou-
tines contain various usefull routines that can not easily be written in Simula
such as bitmanipulation and other assembly level routines, and also some oper-
ating system interface routines. The first group of routines are portable across
Lund Simula implementations while the second group are portable across Unix
implementations only.

Portable classes
BitFiddleClass - Bitwise Boolean operations on Integers
BitPackClass - routines to pack Numbers in binary form
BitSetClass - Operations on Set of Numbers
CallDebugger - Enter Simula debugger from program
CmdLineClass - contains routines to read commandline
MemInfoClass - access info about Simula objects
MemManagerClass - contains routines to control Simula memory manage-

ment
MemoryAccess - Routines to access raw memory
MemStatistics - statistics of created Simula objects
UnsafeConversion - Routines to override types for simple values

Unix dependent classes
Character_IO - Perform raw charcter I/O to the terminal
DirectoryFile - Read the file-names of a filesystem Directory
FilenameClass - contains routines to manipulate filenames
FileStatus - routines to access Unix filesystem info about a file
FileUtil - delete/rename/check if exist on files
UnixCmdLineClass - read command line and environment variables in raw

form
UnixUtil - error codes from errno.h and related routines

2 Organisation and use

The routines are distributed as separately compiled Simula procedures and
classes. The files are normally installed in ‘/usr/local/simulabin/simlib’ (the -.atr
files) and the object files are reached thriough the link: ‘/usr/local/simulabin/lib/
liblibsim.a’.

Declaration in a Simula program:
external class BitFiddleClass;

Compilation:
% simcomp <program> -L=/usr/local/simulabin -I=simlib
(or just: % simcomp <program> -l)

Linking:
% simld <program> -lsimlib (or just: % simld <program> -l)

Lund SIMULA user’s manuals

2 LSH

Lund SIMULA user’s manuals

3LSH

3 Detailed Interfaces for Portable classes

3.1 AnyObject

class AnyObject;
Can be used as outermost abstract superclass to simulate systems with a single
inheritance tree. Note that such sub-classes must be separately compiled since
sub-classes otherwise will be rooted in their enviroment of surrounding blocks.
Supers: -
Kind: Abstract
Init: none
Sequencing: -

3.2 Linkage

This is an alternative implementation of the functionality provided by the class
Simset included in the Simula standard. The difference is in the packaging.
Here it has the form of three classes in the same 'module'. It can thus be used
much more freely than the standard package, which must be used as a prefix
class (at the outermost superclass).

DECLARATION AND USE
With Standard Simset:
 Simset class PackageA; <no use of simset in PackageA>;
 PackageA class PackageB;
 begin
 Link class myNotice;;
 end - PackageB -;

With this implementation
 class PackageA;;
 PackageA class PackageB;
 begin
 external class Linkage; ! This also brings in Link and Head ;
 Link class myNotice; ;
 end - PackageB -;

Compilation: simcomp -L=/usr/local/simulabin -I=simlib
Linking: simld ... -lsimlib

DETAILED INTERFACE

class LINKAGE

external class AnyObject;
AnyObject class Linkage;

Common abstract super class for Link and Head. Implements fundamental lin-
king capabilites. Should not be used directly in application programs, neither as
objects nor as direct super class.
Supers: AnyObject
Kind: Abstract
Init: none
Sequencing: -

Suc
ref(Link) procedure Suc;

LSH – Lund SIMULA user’s manuals

4 LSH

Return the successor of this element in its list, or none if it is last in the list or
not in a list at all.

Pred
ref(Link) procedure Pred;

Return the predecessor of this element in its list, or none if it is first in the list
or not in a list at all.

Prev
ref(Linkage) procedure Prev;

Return the predecessor of this element in its list, seen as a cyclic list. The Head
object is returned if this element is first in the list or none is returned if it is not
in a list at all.

class HEAD
Linkage class Head;

Head objects represents a list by itself. An empty list consists of just a Head
object. Head objects gives also empty lists identity. It also makes traversals of
lists simpler since the head object act as end-markers.
Subclasses of Head are used to implement operations that are applicable for
entire lists or 'sets', such as traversals.
Supers: Linkage, AnyObject
Kind: Subclassable, Instantiable
Init: none
Sequencing: (Suc/Pred/Prev/First/Last/Empty/Cardinal/Clear)*

First
ref(Link) procedure First;

Return the first element in the list, or none if the list is empty.

Last
ref(Link) procedure Last;

Return the last element in the list, or none if the list is empty.

Empty
boolean procedure Empty;

Return true if there are no elements in the list.

Cardinal
integer procedure Cardinal;

Return the number of elements in the list, =0 if it is empty

Clear
procedure Clear;

Remove all the elements of this list (it becomes empty).

class LINK
Linkage class Link;

Link objects represent individual elements that can be part of a list. A Link
object can be part of at most one list at a given time, but can be moved between
lists. Subclasses of Link are used for operations applicable for single elements,
and attributes needed for each object.
Supers: Linkage, AnyObject
Kind: Subclassable, Instantiable
Init: none
Sequencing: (Suc/Pred/Prev/Out/Follow/Precede/Into)*

Out
procedure Out;

If this element is part of a list, remove it from the list.

Follow
procedure Follow(ptr); ref(Linkage) ptr;

Lund SIMULA user’s manuals

5LSH

Make this element follow the object 'ptr' in a list. If this element is part of a list,
it is first removed from that list. If ptr is none, or not member of any list, there
is no other effect than the possible removal. Notice: calling Follow on a Head
object will insert this element as the first element of the list.

Precede
procedure Precede(ptr); ref(Linkage) ptr;

Make this element precede the object 'ptr' in a list. If this element is part of a
list, it is first removed from that list. If ptr is none, or not member of any list,
there is no other effect than the possible removal. Notice: see Into for inserting
an object last in a list.

Into
procedure Into(H); ref(Head) H;

Make this element the last element of a list. If this element is part of a list, it is
first removed from that list. If H is none, there is no other effect than the pos-
sible removal.

3.3 BitFiddleClass

class BitFiddleClass;
Operations for logical bitwise manipulations on 32-bit integers.
This class only specifies operations and have no state varaiables. All data to the
operations are given as paramaters.
The class might serve useful to use this class as a super class for more speciali-
zed abstractions, such as BitSetClass.
Supers: -
Kind: Instantiable
Init: none (Defualt Bit0Low)
Sequencing: (Bit0Low / Bit0High / BitClear / BitSet / BitGet / BitNot / BitAnd
BitIor / BitXor / BitFirst / BitShift)*

Operations
Bit0Low
procedure Bit0Low;

Set bitordering so bit number 0 is the least significant bit.
bitnumbering: 31,30,29,...,0 (bit 0 lowest significans, bit 31 is sign).
This is default.

Bit0High
procedure Bit0High;

Set bitordering so bit number 0 is the most significant bit.
bitnumbering: 0,1,2,..,31 (bit 0 is signbit, bit 31 is least significant.)

BitClear
integer procedure BitClear(i,bno);
integer i; ! Input bitpattern;
integer bno; ! Affected bit number;

Return the value of i with bit numbered bno cleared (=0).

BitSet
integer procedure BitSet(i,bno);
integer i; ! Input bitpattern;
integer bno; ! Affected bit number;

Return the value of i with bit numbered bno set (=1).

BitGet
Boolean procedure BitGet(i,bno);
integer i; ! Input bitpattern;
integer bno; ! Affected bit number;

Return Value of bit bno of i.

LSH – Lund SIMULA user’s manuals

6 LSH

BitNot
integer procedure BitNot (i);
integer i; ! Input bitpattern;

Return the bitwise inverted value of i.

BitAnd
integer procedure BitAnd(i,j);
integer i,j; ! Input bitpatterns;

Return the result of i AND j calculated bitwise.

BitIor
integer procedure BitIor(i,j);
integer i,j; ! Input bitpatterns;

Return the result of i IOR j calculated bitwise.

BitXor
integer procedure BitXor(i,j);
integer i,j; ! Input bitpatterns;

Return the bit-number of the first set bit in i. If there is no set bit, the result is -
1.

BitFirst
integer procedure BitFirst(i);
integer i; ! Input bitpattern;

Return the bit-number of the first set bit in i. If there is no set bit, the result is -
1.

BitShift
integer procedure BitShift(i,s);
integer i; ! Input bitpattern;
integer s; ! multiplication with 2**s;

Return the integer result of shifting i s steps. If Bit0low this means shifting left
(s>0) or right (s<0). If Bit0High the shift direction is reversed so shift left cor-
responds to multiplication and right to division in both cases. This is a logical
shift, so all bits shifted in are zeroes.

3.4 BitSetClass

BitFiddleClass class BitSetClass(MaxSet);
integer MaxSet;

BitSetClass is set of integers, compatcly represented. The members are num-
bers 0,1,...,MaxMember. MaxMember is given when an object of this class is cre-
ated.
Supers: BitFiddleClass
Kind: Instantiable
Init: none
Sequencing: (MaxMember AddMember RemoveMember isMember FirstMem-
ber SetClear SetNot SetCopy SetUnion SetCut SetEqual LoadFromArray Sto-
reToArray)*

Operations
MaxMember

Returns the highest member number in this set (=MaxSet).

AddMember
procedure AddMember(number);
integer Number;

Include Number in the set. If Number is outside 0..MaxMember the call is igno-
red.

Lund SIMULA user’s manuals

7LSH

RemoveMember
procedure RemoveMember(Number);
integer Number;

Remove Number from the set if a member. If Numer is outside 0..MaxMember
the call is ignored.

isMember
Boolean procedure isMember(number);
integer Number;

Return True if Number is member of the set, False otherwise. If Number is out-
side 0..MaxMember it also returns False.

FirstMember
integer procedure FirstMember;

Return the lowest Number of a member in the set. Returns -1 for an empty set.

SetClear
procedure SetClear;

Make the set contain no members.

SetNot
procedure SetNot;

Make the set contain exactly those Numbers that where not members before.

SetCopy
ref(bitsetClass) procedure SetCopy;

Return a copy of the set that initally contains the same Members.

SetUnion
procedure SetUnion(otherSet);
ref(bitSetClass) otherSet;

Make the set conatain also those Numbers that are members of another Set.
Numbers of otherSet, outside 0..MaxMembers of this Set are not considered.

SetCut
procedure SetCut(otherSet);
ref(bitSetClass) otherSet;

Make this set contain only those Numbers that initally are members of both
sets.

SetEqual
Boolean procedure SetEqual(otherSet);
ref(bitSetClass) otherSet;

Return true if both sets contain the same members. If the two sets are of diffe-
rent size they are considered equal if the corresponding parts are equal and the
extension part of the larger set is empty.

LoadFromArray
procedure LoadFromArray(ar);
integer array ar;

Regard an integer array as a set member representation where the most signifi-
cant bit of the first element corresponds to member O and so on. Make the set
contain exactly those members where there is a bit=1 in the integer array. Bits
outside the range 0..MaxMembers are not included.

StoreToArray
procedure StoreToArray(ar);
integer array ar;

Regard an integer array as a set member representation where the most signifi-
cant bit of the first element corresponds to member O and so on. Set the bits in
the integer array corresponding to the members of the set. The set will be trun-
cated if the array is too short.

LSH – Lund SIMULA user’s manuals

8 LSH

3.5 BitPackClass

class bitpackclass;
This class is used to store Numbers as bytes of bitpatterns in a text string. It is
usefull for storing or communicating numbers in a compact form. The number of
bytes a number occupies is: short integer 2, integer4, real 4 and long real 8.
The bytes are placed from pos and onwards, the pos is advanced 2/4/8 positions
as required. If the text is not long enough a runtimne Error is reported.
This class contains operations only. Data is stored (or fetched) from a text para-
meter to each operation.
Supers: -
Kind: Instantiable
Init: none
Sequencing: (PackShort / UnPackShort / PackInt / UnPackInt / PackReal /
UnPackReal / PackLong / UnPackLong)*

Operations
PackShort
procedure PackShort(t,S);
name T; text T; ! Output buffer, pos incremented with 2.;
short integer S; ! Input value to pack into T.;

Put S into T, starting from pos, and increment T.pos with 2 If the rest of T is less
than 2 characters long the routine will make a runtime error.

UnPackShort
Short Integer procedure UnPackShort(T);
name T; text T; ! Input, next 2 bytes, T.pos incremented.;

Extract 2 bytes from T, starting at pos, and increment T.pos with 2. The 2 bytes
are made into a short (16-bit) integer which is returned.

PackInt
procedure PackInt(T,Int);
name T; text T; ! Output buffer, pos incremented with 4.;
integer Int; ! Input value to pack into T.;

Put Int into T, starting from pos, and increment T.pos with 4 If the rest of T is
less than 4 characters long the routine will make a runtime error.

UnPackInt
Integer procedure UnPackInt(T);
name T; text T; ! Input, next 4 bytes, T.pos incremented.;

Extract 4 bytes from T, starting at pos, and increment T.pos with 4. The 4 bytes
are made into a 32-bit integer which is returned.

PackReal
procedure PackReal(T,R);
name T; text T; ! Output buffer, pos incremented with 4.;
real R; ! Input value to pack into T.;

Put R into T, starting from pos, and increment T.pos with 4 If the rest of T is less
than 4 characters long the routine will make a runtime error.

UnPackReal
Real procedure UnPackReal(T);
name T; text T; ! Input, next 4 bytes, T.pos incremented.;

Extract 4 bytes from T, starting at pos, and increment T.pos with 4. The 4 bytes
are made into a 32-bit Real which is returned.

PackLong
procedure PackLong(T,L);
name T; text T; ! Output buffer, pos incremented with 8.;
long real L; ! Input value to pack into T.;

Put R into T, starting from pos, and increment T.pos with 8 If the rest of T is less
than 8 characters long the routine will make a runtime error.

Lund SIMULA user’s manuals

9LSH

UnPackLong
Long real procedure UnPackLong(T);
name T; text T; ! Input, next 8 bytes, T.pos incremented.;

Extract 8 bytes from T, starting at pos, and increment T.pos with 8. The 8 bytes
are made into a 64-bit Long real which is returned.

3.6 CallDebugger

procedure CallDebugger;
Start the Simula debugger as if the program was interrupted with a ctrl-\. The
program may be continued after the debugging session. Notice that this proce-
dure acts as a no-op if the program is not linked with the Simula debugger.

3.7 CmdLineClass

class CmdLineClass;
Class for reading information from the command line using the Simula 'stan-
dard' way of interpreting options, called 'parameters' and 'arguments'.
A parameter is a named parameter to the program. Parameters come in three
types, Boolean, integer and text. Parameters are either present or not on the
command line.
An argument is a string, not starting with a '-' that appear on the command line.
Arguments are numbered and many programs can take a variable number of
arguments.
In UNIX a parameter is syntactically distinguished with an initial '-' and values
are separted with a '=' from the parameter name.
Using this class means your program will show a command-line interface sim-
ilar to other Simula programs. As an alternative, the class UnixCommandLine
offers a more primitive interface to the command line, making it possible to
write Simula programs mimicing all the different versions of command line
interfaces used by Unix utilities.
Supers: -
Kind: Instantiable
Init: none
Sequencing: (ProgramName ParBool ParInt ParInt ParText ArgCount Arg-
Text)*

Operations:
ProgramName
procedure ProgramName(b);
name b;text b; ! Buffer for result;

Return name of the executing program. Result: b:=<program name>, b.set-
pos(string.length+1).
NOTE: that b must be long enough to store the result.

ParBool
Boolean procedure ParBool(T);
text t; ! Name of parameter;

Return booolean value of named parameter.
Result: true if t present, false if not.

ParInt
Boolean procedure ParInt(T,V);
name V; integer V; ! Returned valeu - if any;
text t; ! Name of parameter;

Return Integer value of named parameter.
Result: True and V=number if T=<number> present, False if not.

LSH – Lund SIMULA user’s manuals

10 LSH

ParText
Boolean procedure ParText(t,b);
name b; text b; ! Buffer for result (in B.sub(1,B.pos-1));
text t; ! Name of the parameter asked for.;

Return text value of named parameter in T. Result: if t=<string> present return
True and b:=string, b.setpos(string.length+1), return False if not.
NOTE: that b must be long enough to store the result.

ArgCount
integer procedure ArgCount;

Return number of arguments on the command line. Result: number of argu-
ments.

ArgText
Boolean procedure ArgText(ArgN,Buf);
name Buf;text Buf; ! Buffer to hold the result.;
integer ArgN; ! Argument number to get. ;

Return text value of numbered argument. Result: if there is a ArgN:th argu-
ment, True is returned and Buf:=the argument, Buf.setpos(string.length+1),
otherwise it return False.
NOTE: that Buf must be long enough to store the result.

3.8 MemInfoClass

class Meminfoclass;
The routines in this class can scan the heap and access information about the
Simula objects. This class is interfacing to low level facilities and not intended
for general use. See also MemStatistics.
Supers: -
Kind: Instantiable
Init: MemInit
Sequencing: (MemInit (NextTemp (TemplateType/BlockNr/Module)*)*)*

Operations
MemInit
procedure MemInit;

Initiates the module. Call this routine once before calling any of the other routi-
nes.

NextTemp
integer procedure NextTemp;

Returns the "type" of the next object in the heap. This is in the form of a unique
integer for each class or procedure, its "template" Returns zero when no more
objects exist.

TemplateType
integer procedure TemplateType(T);
integer T; ! Template identifer, returned by NextTemp.;

Returns the type of the template T (class procedure etc.). These are coded as
integers, all blocks have Type>= 8R200.

BlockNr
integer procedure BlockNr(T);
integer T; ! Template identifer, returned by NextTemp.;

Returns the unique block identifier (the index in -.atr file) matching the temp-
late T which must be block (TemplateType>=BlockType.

Module
procedure Module(T,Buf);
name Buf; text Buf; ! Buffer to contain the result.;
integer T; ! Template identifer, returned by NextTemp.;

Lund SIMULA user’s manuals

11LSH

Returns the name of the source file where the block corresponding to the temp-
late, T, is defined. T must be a block, (TemplateType>=BlockType).

Constants
BlockType
integer BlockType=8R200; ! Lowest block-type value.;

3.9 MemoryAccess

class MemoryAccess;
The operations in this class facilitates access to values by machine addresses,
typically obtained through calls to C routines. One situation where it is interes-
ting to use these operations is when interfacing to a C-routine that return the
address of a C struct (or a C array) as the result. The operations to fetch the
values can be used to copy the entier struct (or array) to a corresponding Simula
array. In this case one has to know the length of the array, often defined in C
headerfiles.
The operations can also be used to fetch values from a C-struct one by one. In
this case one has to know also the offsets in the C-strucure for each value.
The second set of operations can be used to fill in a C-structure that is earlier
allocated by C. This might be useful when calling C-routines, but often it is
more convenient to call such a routine with a Simula integer array, emulating
the C-struct.
Supers: -
Kind: Instantiable
Init: none
Sequencing:
 (GetCIntAt/GetCShortAt/GetCRealAt/GetCLongAt/
 CArLength/CIntArray/CStringToText/CStringArToTextAr)*
 (PutCIntAt/PutCShortAt/PutCRealAt/PutCLongAt/TextToCString/free)*

Operations to fetch values from C address-space
GetCIntAt
integer procedure GetCIntAt(CAddress,COffset);
integer CAddress; ! Base address ;
integer COffset; ! Offset from base in bytes, added to CAddress.;

Return the integer located at 'CAddress'+'COffset'. If CAddress is not a legal
address, this operation will most likely crash the Simula program.

GetCShortAt
integer procedure GetCShortAt(CAddress,COffset);
integer CAddress; ! Base address ;
integer COffset; ! Offset from base in bytes, added to CAddress.;

Return the 16-bit integer located at 'CAddress'+'COffset'. The result is sign-
extended to a propper integer value. If CAddress is not a legal address, this ope-
ration will most likely crash the Simula program.

GetCRealAt
real procedure GetCRealAt(CAddress,COffset);
integer CAddress; ! Base address ;
integer COffset; ! Offset from base in bytes, added to CAddress.;

Return the floating point number located at 'CAddress'+'COffset'. If CAddress is
not a legal address, this operation will most likely crash the Simula program.

GetCLongAt
long real procedure GetCLongAt(CAddress,COffset);
integer CAddress; ! Base address ;
integer COffset; ! Offset from base in bytes, added to CAddress.;

LSH – Lund SIMULA user’s manuals

12 LSH

Return the double precision floating point number located at 'CAddress'+'COff-
set'. If CAddress is not a legal address, this operation will most likely crash the
Simula program.

CArLength
integer procedure CArLength(CArray);
integer CArray;

Returns length of NULL-terminated array of Addresses in C. 'CArray' is the
location of the first address, CArLength reads successive words until a zero
word is found and returns the count of the non-zero words.

CIntArray
procedure CIntArray(CArray,CSize,IArray);
name IArray; ! result parameter;
integer CArray; ! Start of C array to copy from;
integer CSize; ! Length of C array to copy;
integer array IArray; ! Simula array to copy to;

Copy 'CSize' integers from the location 'CArray' to the Simula array IArray,
starting at its first element. If the number of elements in IArray is smaller than
CSize, only the first part of CArray is copied.

CStringToText
procedure CStringToText(CString,TReturn);
name TReturn; ! Result parameter, becomes new Simula text object.;
Integer CString; ! Address of first byte in string to copy.;
Text TReturn; ! Returned as result;

Copy the content of memory at location 'CString' until a NULL byte is found.
Place the copied bytes in a new Simula text returned as 'TReturn'. This proce-
dure creates a new Simula text and initializes it to the contet of the CString
parameter.

CStringArToTextAr
procedure CStringArToTextAr(CArray,CSize,TArray);
name TArray; ! result parameter;
integer CArray; ! Start of C array, to copy from;
integer CSize; ! Size of C array ;
text array TArray; ! Simula array to copy to;

Copy the C strings denoted by 'CArray' to new Simula texts and assign to Sim-
ula text array 'TArray'. Lowest index of each array match. Copy at most CSize
strings or, if the Simula array is shorter, only as many as to fill 'TArray'. For
each string bytes are copied up to the first NULL character. Each Simula text is
allocated to match this length.

Operations to store values in C address-space
PutCIntAt
procedure PutCIntAt(CInt,CAddress,COffset);
integer CInt; ! Integer to store;
integer CAddress; ! Base address ;
integer COffset; ! Offset from base in bytes, added to CAddress.;

Store the integer 'CInt' at location 'CAddress'+'COffset'. If CAddress is not a
legal address, this operation will most likely crash the Simula program.

PutCShortAt
procedure PutCShortAt(CShort,CAddress,COffset);
integer CShort; ! A 16-bit integer to store;
integer CAddress; ! Base address ;
integer COffset; ! Offset from base in bytes, added to CAddress.;

Store the 16-bit integer 'CShort' at location 'CAddress'+'COffset'. If CAddress is
not a legal address, this operation will most likely crash the Simula program.

Lund SIMULA user’s manuals

13LSH

PutCRealAt
procedure PutCRealAt(CReal,CAddress,COffset);
real CReal; ! real (C-float) value to store;
integer CAddress; ! Base address ;
integer COffset; ! Offset from base in bytes, added to CAddress.;

Store the floating point number 'CReal' at location 'CAddress'+'COffset'. If
CAddress is not a legal address, this operation will most likely crash the Simula
program.

PutCLongAt
procedure PutCLongAt(CLong,CAddress,COffset);
long real CLong; ! Long real (C-double) value to store;
integer CAddress; ! Base address ;
integer COffset; ! Offset from base in bytes, added to CAddress.;

Store the double precision floating point number 'CLong' at location
'CAddress'+'COffset'. If CAddress is not a legal address, this operation will most
likely crash the Simula program.

TextToCString
integer procedure TextToCString(SText);
name SText; ! (Adr of text-box);
text SText; ! Simula text to copy;

Copy the content of 'SText', NULL terminated, to an new memory area allocated
in C address spece. Return the address of the C string copy as an integer. Note
that this string needs to be freed when no longer in use by a call to 'free' either
by the Simula program, or by the C program (but not both).

free
procedure free(CAdr);
integer CAdr; ! memory area to free.;

Call the C utility 'free' to release a memory area earler obtained by a call to
'malloc'.

3.10 MemStatistics

MemInfoClass class MemStatistics(MaxObjectTypes);
integer MaxObjectTypes; ! Largest number of class/procedure/array etc types.;

This module collects and prints memory statistics of heap usage. The parameter
defines the limit of how many different object types that can be used for statis-
tics collection, also the number of lines printed. The information can be dumped
to a text file for inspection. This class needs more facilities in order to be of gene-
ral use as a memory inspection tool.
Supers: MemInfoClass
Kind: Instantiable
Init: call Clear.
Sequencing: (Clear Scan Print)*

Operations
Clear
procedure Clear;

Reset the module to init state. Call to get a fresh sample.

Scan
procedure Scan;

Collect statistics over the objects in the entier heap.

Print
procedure Print(F);
ref(outfile) F; ! The parameter must be an open outfile.;

Print the collected statistics onto the file in form of a table:

LSH – Lund SIMULA user’s manuals

14 LSH

 count:module-name/block-id - or-
 count:NON-BLOCK-TYPE

3.11 MemManagerClass

class MemManagerClass;
The routines in this class can be used to control the actions of the garbage col-
lector. One can measure the memory usage and request Garbage Collection from
the user program. This might be interresting in order to avoid GC during sensi-
tive periods of program execution.
Supers: -
Kind: Instantiable
Init: none
Sequencing: (GetFreeMemory / CallGC / NeedsMemory)*

Operations
GetFreeMemory
integer procedure GetFreeMemory;

Return the amount of free memory in bytes, e.g. what can be allocated before
next garbage collection.

CallGC
procedure CallGC;

Call the garbage collector to free memory.

NeedsMemory
procedure NeedsMemory(Amount);
integer Amount; ! Low water mark.;

Check if Amount bytes of memory can be allocated without calling the GC, if not
the GC is called now. If after the GC there is not enough memory available the
execution is interrupted.

3.12 UnsafeConversion

class UnsafeConversion;
This class contains routines that change type on bitpatterns. They are useful
when interfacing to external routines or doing I/O to unformatted interfaces. If
for example a bitpattern has been obtained as an integer, but it is know that the
bitpattern should really be interpreted as a real. Accordingly, a program can use
this class to output a real number as an integer bitpattern.
The routines converting to/from 16-bit integers can be useful when interfacing
to C-programs that use this packed form in e. g. structs or in arrays, since Sim-
ula is using 32bit integers also for 16-bit values.
Supers: -
Kind: Instantiable
Init: none
Sequencing:
 (ItoSS / SStoI / ItoReal /RealtoI / IItoLong / LongtoII)*

Operations
ItoSS
procedure ItoSS(I,s1_result,s2_result);
name s1_result,s2_result;
integer i;
short integer s1_result;!:=I//2**16, sign extended;
short integer s2_result;!:=mod(I,2**16), sign extended;

Lund SIMULA user’s manuals

15LSH

Split an 32-bit integer into two 16-bit intergers containing the most signifi-
cant(s1) and least significant(s2) bits. Both results are sign extended.

SStoI
integer procedure SStoI(s1,s2);
short integer s1,s2;

Combine two 16-bit integers into one 32-bit integer. Returns s1*2**16+s2,
except that the numbers are masked logically AND together.

ItoReal
real procedure ItoReal(Bits);
integer Bits; ! Formally an integer but bitpattern of a real;

This procedure returns the same bitpattern as given as parameter, but formally
as a real. Can be used to circumvent Simula typechecking of simple values.

RealtoI
integer procedure RealtoI(Bits);
real Bits; ! Formally a real but bitpattern of an integer;

This procedure returns the same bitpattern as given as parameter, but formally
as an integer. Can be used to circumvent Simula typechecking of simple values.

IItoLong
long real procedure IItoLong(I1,I2);
integer I1,I2;

Combine two 32-bit integers into one 64-bit long real. This procedure returns
the bitpatterns given to it, changing the type to long real. I1 is the high order
bits of the representation of a long real (including the sign bit and exponent)
while I2 is the low order bits of the mantissa.

LongtoII
procedure LongtoII(Bits,I1,I2);
name I1,I2;
Long real Bits;
integer I1,I2;

Splits one 64-bit long real into two 32-bit integer bit-patterns. This procedure
returns the bitpattern given to it. I1 is the high order bits of the representation
of a long real (including the sign bit and exponent) while I2 is the low order bits
of the mantissa.

LSH – Lund SIMULA user’s manuals

16 LSH

Lund SIMULA user’s manuals

17LSH

4 Detailed Interfaces for Unix related classes

4.1 Character_IO

class Character_IO;
Perform character by charcter I/O to the terminal, bypassing sysin/sysout. The
characters are read without echo and written directly, no expanssion of tabs etc
are done. The routins are used to write programs making interactive use of
Vt100-type terminals. When these routines are used normal I/O should not be
used.
Supers: -
Kind: Instantiable
Init: -
Sequencing: (Open (Input/Output/OutString)* Close)*

Operations
Open
procedure Open;

Must be called before any I/O operation. Will terminate the program if it can not
be performed.

Close
procedure Close;

Called to reset the terminal to normal operation. Should be called before Sysin/
sysout I/O is preformed or the program is terminated.

Input
character procedure Input;

Wait until the user hits a key, then return the ASCII equivelent. There is no
automatic echoing on the terminal.

Output
procedure Output(Ch); character Ch;

Send the character Ch the the terminal as unprocessed as possible.

OutString
procedure OutString(T,Length);
text T; integer Length;

Send the first Length characters of T to the terminal. This operation is equiva-
lent to, but more efficient than, repeated calls to Output.

4.2 DirectoryFile

class DirectoryFile(FileName);
text FileName;

After succefully opened, the filename of a directory can be read sequentially by
calling NextEntry to advance and EntryName to access the name of the file.
This class only reports the name of the files in a directory. See the class FileSta-
tus for getting information about the indiviual files.
Supers: -
Kind: Instantiable
Init: DF :- new DirectoryFile("aDirectoryFilename") ;
Sequencing: (Open (NextEntry EntryName)* Close)*

Operations
Open
Boolean procedure Open;

Return True if the file is a directory and can be opened for reading.

LSH – Lund SIMULA user’s manuals

18 LSH

Close
Boolean procedure Close;

Returns true if the file could be closed succesfully.

NextEntry
Boolean procedure NextEntry;

Advances to the next entry in the directory. Returns True if there was yet
another entry and false when there are no more entries.

Entryname
text procedure Entryname;

Returns the "filename" of the current Entry in the directory.

4.3 FileNameClass

class FilenameClass;
Class for manipulation of filenames, extracting parts and combining directory
paths and single file names. All operations return NEW simula texts.
These operations are the simliar to the "modifiers" h, t, r, e in UNIX csh. The
parts of a filename are named as follows:
 head - the part before the last slash
 tail - the part after the last slash
 basename- the part before the last dot
 suffix - the part after the last dot
 slash - separator between directories, in Unix a '/'
 dot - separator between basename and suffix, in Unix '.'

If there is no slash in the filename, then head=tail=filename
If there is no dot in the filename, then basename=filename, suffix=NOTEXT
 Example
 Argument: a/b/c.d c .d c. / a/ /a -
 Results:
 head a/b c .d c. - a - -
 tail c.d c .d c. - - a -
 basename a/b/c c - c / a/ /a -
 suffix d - d - - - - -
 (Special cases: '-' means NOTEXT)

Supers: -
Kind: Instantiable
Init: none
Sequencing: (Head/Tail/Basename/Suffix/HeadAndTail/DefineSeparators)*

Operations:
Head
text procedure Head(F);
text F; ! full file name.;

Returns the head of filename F.

Tail
text procedure Tail(F);
text F; ! full file name.;

Returns the tail of F.

Basename
text procedure Basename(F);
text F; ! full file name.;

Returns the basename of F.

Lund SIMULA user’s manuals

19LSH

Suffix
text procedure Suffix(F);
text F; ! full file name.;

Returns the suffix of F.

HeadAndTail
text procedure HeadAndTail(H,T);
text H,T; ! Head and Tail part of constructed filename. ;

Returns H & '/' & T (if default value on separator 'Slash').

BasenameAndSuffix
text procedure BasenameAndSuffix(B,S);
text B,S; ! Basename and Suffix of the constructed filename. ;

Returns B & '.' & S (if default value on separator 'Dot')

DefineSeparators
procedure DefineSeparators(aSlash,aDot);
character aSlash, aDot;

Re-defines the separators, default vaules are '/' and '.' respectively.

4.4 FileStatus

BitFiddleClass class FileStatus;
Access file system info of a file, such as type and creation date.
Supers: BitFiddleClass
Kind: Instantiable
Init: call SetFile before other methods.
Sequencing: (SetFile
(Device / Inode / Protection / FileType / HardLinks/ OwnerUserId /
OwnerGroupId / DeviceType / FileSize / LastAccessTime / LastModifyTime /
LastStatusChange / OptimalBlockSize / BlockAllocated)*)*

Operations
SetFile
boolean procedure SetFile(fname);
text fname; ! Full name of file to look up.;

Fill this object with nformation regarding 'fname'. Future calls to other routiens
of this class will return values regarding this file until SetFile is called again.
Returns false if file 'fname' is not found.

Device
integer procedure Device;

Return the 'device' attribute.

Inode
integer procedure Inode;

Return the 'Inode' attribute of the file.

Protection
integer procedure Protection;

Return the 12 file 'protection' bits

FileType
integer procedure FileType;

returning an integer, with one of the following values (pre-defined constants):
 FIFO= fifo ;
 FCHR= character special ;
 FDIR= directory ;
 FBLK= block special ;
 FREG= regular ;
 FLNK= symbolic link ;
 FSOCK= socket ;

LSH – Lund SIMULA user’s manuals

20 LSH

These constants are avialable as attributes of this class. Soft links are reported
as links (rather than as the file they denote).

HardLinks
integer procedure HardLinks;

How many hard links to this file.

OwnerUserId
integer procedure OwnerUserId;

User Id of file owner.

OwnerGroupId
integer procedure OwnerGroupId;

Group Id of file owner.

DeviceType
integer procedure DeviceType;

Device Type of filesystem hosting the file (types=?).

FileSize
integer procedure FileSize;

Size of the file in bytes.

LastAccessTime
integer procedure LastAccessTime;

in seconds since year 0, 1970, Jan 1st.

LastModifyTime
integer procedure LastModifyTime;

in seconds since year 0, 1970, Jan 1st.

LastStatusChange
integer procedure LastStatusChange;

in seconds since year 0, 1970, Jan 1st.

OptimalBlockSize
integer procedure OptimalBlockSize;

BlockAllocated
integer procedure BlockAllocated;

Size of file in disk blocks.

4.5 FileUtil

class FileUtil;
OS related operations on Simula files that can not, or is not convenient to do
through the Simula File 'Access' function.
Operations placed in this class are intended to be 'portable' and implementable
in most operating systems.
Supers: -
Kind: Instantiable
Init: -
Sequencing: (Exist/Delete/Rename/FileNumber)*

Operations
Exist
Boolean procedure Exist(T);
text T; ! Full name of the file.;

Return true if a file exist. The parameter is the filename of the file. Note: This
routine returns true even if the file can not be opened because of access privili-
ges.

Lund SIMULA user’s manuals

21LSH

Delete
Boolean procedure Delete(t);
text t; ! Full name of the file.;

This procedure deletes a file if it exists. Returns false if the file did not exist or
couldn't be deleted (access priviliges).

Rename
Boolean procedure Rename(told,tnew);
text told; ! Full filename as the file is currently known.;
text tnew; ! Full, new, name the file will be known as.;

This procedure renames a file. Returns false if it couldn't be done. Notice that
files can not be moved between filesystems through renaming.

FileNumber
integer procedure FileNumber(f);
ref(file) f; ! Open Simula file.;

This procedure returns the Unix filenumber (0,1,2,..) of an open Simula file.
Returns -1 if it is not open. Useful when interfacing to Unix system software.

4.6 UnixCmdLineClass

class UnixCmdlineClass;
Basic interface to Unix program 'parameters' (from the command line and from
environment variables). Command line arguments are returned in uniterpreted
Unix form.
Use this class if you want to write Simula programs which look like standard
Unix applications. If you want to write portable Simula programs use the routi-
nes in CmdLineClass instead which exists for several non Unix Simula imple-
mentations.
Supers: -
Kind: Instantiable
Init: -
Sequencing: (MaxCmd/CmdArg/MaxEnv/EnvArg/GetEnv)*

Operations
MaxCmd
integer procedure MaxCmd;

Return the number of arguments on the command line, numbered 1,2 ...

CmdArg
text procedure CmdArg(ix);
integer ix;

Return the command line argument number index as a Simula text. If index is
out of range (1..MaxCmd) it returns notext. With ix=1 it returns the name of the
program/script used to start this process.

MaxEnv
integer procedure MaxEnv;

Return the number of environment variables numbered 1,2 ...

EnvArg
text procedure EnvArg(ix);
integer ix;

Return the environment variable number index as a Simula text in the same
format as when listed with 'printenv'. If index is out of range (1..MaxEnv) it
returns notext.

GetEnv
Text procedure GetEnv(Arg,Defined);
name Defined; text Arg; Boolean Defined;

LSH – Lund SIMULA user’s manuals

22 LSH

Returns True and the 'value' of Arg if defined as env-variable. Ex: given: 'EDI-
TOR=vi' will make GetEnv("EDITOR") return: "vi" and Defined=True. Returns
Defined=False (and Notext) if 'Arg' is not defined. Notice that the combination
Notext and True means that the 'Arg' is defined as the empty string.

4.7 UnixUtil

class UnixUtil;
This class is intended to give support Unix systems programming in Simula.
Currently it contains a routine to execute sub-processes, to get the latest system
call status ("errno") and the predefined Unix system-error constants.
Supers: -
Kind: Instantiable
Init: -
Sequencing: (System/GetErrNo/PError/E-constants)*

Operations
System
integer procedure System(Cmd);
text cmd; ! Shell command to execute inculding options like "ls -ls";

Start a shell and perform the command cmd. Wait until the command is comple-
ted (if system call is interrupted). Return the exit code from the command.

GetErrNo
integer procedure GetErrNo;

Returns the status (errno) from last issued unix call. See constants for the mea-
ning of the error codes.

PError
procedure PError(msg);
value msg; text msg; ! Text, often identifing the complaining program.;

Print the message followed by a decription of the last generated error.

Lund SIMULA user’s manuals

23LSH

Unix Error constants
Basic errors
integer
EPERM=1,!- Not owner -;
ENOENT=2,!- No such file or directory -;
ESRCH=3,!- No such process -;
EINTR=4,!- Interrupted system call -;
EIO=5,!- I/O error -;
ENXIO=6,!- No such device or address -;
E2BIG=7,!- Arg list too long -;
ENOEXEC=8,!- Exec format error -;
EBADF=9,!- Bad file number -;
ECHILD=10,!- No children -;
EAGAIN=11,!- No more processes -;
ENOMEM=12,!- Not enough core -;
EACCES=13,!- Permission denied -;
EFAULT=14,!- Bad address -;
ENOTBLK=15,!- Block device required -;
EBUSY=16,!- Mount device busy -;
EEXIST=17,!- File exists -;
EXDEV=18,!- Cross-device link -;
ENODEV=19,!- No such device -;
ENOTDIR=20,!- Not a directory-;
EISDIR=21,!- Is a directory -;
EINVAL=22,!- Invalid argument -;
ENFILE=23,!- File table overflow -;
EMFILE=24,!- Too many open files -;
ENOTTY=25,!- Not a typewriter -;
ETXTBSY=26,!- Text file busy -;
EFBIG=27,!- File too large -;
ENOSPC=28,!- No space left on device -;
ESPIPE=29,!- Illegal seek -;
EROFS=30,!- Read-only file system -;
EMLINK=31,!- Too many links -;
EPIPE=32,!- Broken pipe -;

Math software errors
EDOM=33,!- Argument too large -;
ERANGE=34,!- Result too large -;

Non-blocking and interrupt i/o errors
EWOULDBLOCK=35,!- Operation would block -;
EINPROGRESS=36,!- Operation now in progress -;
EALREADY=37,!- Operation already in progress -;

LSH – Lund SIMULA user’s manuals

24 LSH

IPC/network software errors
- Argument errors -;
ENOTSOCK=38,!- Socket operation on non-socket -;
EDESTADDRREQ=39,!- Destination address required -;
EMSGSIZE=40,!- Message too long -;
EPROTOTYPE=41,!- Protocol wrong type for socket -;
ENOPROTOOPT=42,!- Protocol not available -;
EPROTONOSUPPORT=43,!- Protocol not supported -;
ESOCKTNOSUPPORT=44,!- Socket type not supported -;
EOPNOTSUPP=45,!- Operation not supported on socket -;
EPFNOSUPPORT=46,!- Protocol family not supported -;
EAFNOSUPPORT=47,!- Address family not supported by protocol family -;
EADDRINUSE=48,!- Address already in use -;
EADDRNOTAVAIL=49,!- Can't assign requested address -
- Operational errors -;
ENETDOWN=50,!- Network is down -;
ENETUNREACH=51,!- Network is unreachable -;
ENETRESET=52,!- Network dropped connection on reset -;
ECONNABORTED=53,!- Software caused connection abort -;
ECONNRESET=54,!- Connection reset by peer -;
ENOBUFS=55,!- No buffer space available -;
EISCONN=56,!- Socket is already connected -;
ENOTCONN=57,!- Socket is not connected -;
ESHUTDOWN=58,!- Can't send after socket shutdown -;
ETOOMANYREFS=59,!- Too many references: can't splice -;
ETIMEDOUT=60,!- Connection timed out -;
ECONNREFUSED=61,!- Connection refused -;

Lund SIMULA user’s manuals

25LSH

Mixed errors
- Others;
ELOOP=62,!- Too many levels of symbolic links -;
ENAMETOOLONG=63,!- File name too long -
- Should be rearranged -;
EHOSTDOWN=64,!- Host is down -;
EHOSTUNREACH=65,!- No route to host -;
ENOTEMPTY=66,!- Directory not empty -
- Quotas & mush -;
EPROCLIM=67,!- Too many processes -;
EUSERS=68,!- Too many users -;
EDQUOT=69,!- Disc quota exceeded -
- Network File System -;
ESTALE=70,!- Stale NFS file handle -;
EREMOTE=71,!- Too many levels of remote in path -
- Streams -;
ENOSTR=72,!- Device is not a stream -;
ETIME=73,!- Timer expired -;
ENOSR=74,!- Out of streams resources -;
ENOMSG=75,!- No message of desired type -;
EBADMSG=76,!- Trying to read unreadable message -
- SystemV IPC -;
EIDRM=77,!- Identifier removed -
- SystemV Record Locking -;
EDEADLK=78,!- Deadlock condition. -;
ENOLCK=79,!- No record locks available. -
- RFS -;
ENONET=80,!- Machine is not on the network -;
ERREMOTE=81,!- Object is remote -;
ENOLINK=82,!- the link has been severed -;
EADV=83,!- advertise error -;
ESRMNT=84,!- srmount error -;
ECOMM=85,!- Communication error on send -;
EPROTO=86,!- Protocol error -;
EMULTIHOP=87,!- multihop attempted -;
EDOTDOT=88,!- Cross mount point (not an error) -;
EREMCHG=89,!- Remote address changed -
- POSIX -;
ENOSYS=90;!- function not implemented -;

LSH – Lund SIMULA user’s manuals

26 LSH

Lund SIMULA user’s manuals

27

5 Index to classes and procedu-
res

3.1 AnyObject, 3

3.2 Linkage, 3
DECLARATION AND USE, 3
DETAILED INTERFACE, 3

class LINKAGE, 3
Suc, 3
Pred, 4
Prev, 4

class HEAD, 4
First, 4
Last, 4
Empty, 4
Cardinal, 4
Clear, 4

class LINK, 4
Out, 4
Follow, 4
Precede, 5
Into, 5

3.3 BitFiddleClass, 5
Bit0Low, 5
Bit0High, 5
BitClear, 5
BitSet, 5
BitGet, 5
BitNot, 6
BitAnd, 6
BitIor, 6
BitXor, 6
BitFirst, 6
BitShift, 6

3.4 BitSetClass, 6
MaxMember, 6
AddMember, 6
RemoveMember, 7
isMember, 7
FirstMember, 7
SetClear, 7
SetNot, 7
SetCopy, 7
SetUnion, 7
SetCut, 7
SetEqual, 7
LoadFromArray, 7
StoreToArray, 7

3.5 BitPackClass, 8
PackShort, 8
UnPackShort, 8
PackInt, 8
UnPackInt, 8
PackReal, 8

UnPackReal, 8
PackLong, 8
UnPackLong, 9

3.6 CallDebugger, 9

3.7 CmdLineClass, 9
ProgramName, 9
ParBool, 9
ParInt, 9
ParText, 10
ArgCount, 10
ArgText, 10

3.8 MemInfoClass, 10
MemInit, 10
NextTemp, 10
TemplateType, 10
BlockNr, 10
Module, 10
BlockType, 11

3.9 MemoryAccess, 11
GetCIntAt, 11
GetCShortAt, 11
GetCRealAt, 11
GetCLongAt, 11
CArLength, 12
CIntArray, 12
CStringToText, 12
CStringArToTextAr, 12
PutCIntAt, 12
PutCShortAt, 12
PutCRealAt, 13
PutCLongAt, 13
TextToCString, 13
free, 13

3.10 MemStatistics, 13
Clear, 13
Scan, 13
Print, 13

3.11 MemManagerClass, 14
GetFreeMemory, 14
CallGC, 14
NeedsMemory, 14

3.12 UnsafeConversion, 14
ItoSS, 14
SStoI, 15
ItoReal, 15
RealtoI, 15
IItoLong, 15
LongtoII, 15

4.1 Character_IO, 17
Open, 17
Close, 17
Input, 17
Output, 17

Lund SIMULA user’s manuals

28

OutString, 17

4.2 DirectoryFile, 17
Open, 17
Close, 18
NextEntry, 18
Entryname, 18

4.3 FileNameClass, 18
Head, 18
Tail, 18
Basename, 18
Suffix, 19
HeadAndTail, 19
BasenameAndSuffix, 19
DefineSeparators, 19

4.4 FileStatus, 19
SetFile, 19
Device, 19
Inode, 19
Protection, 19
FileType, 19
HardLinks, 20
OwnerUserId, 20
OwnerGroupId, 20
DeviceType, 20
FileSize, 20
LastAccessTime, 20
LastModifyTime, 20
LastStatusChange, 20
OptimalBlockSize, 20
BlockAllocated, 20

4.5 FileUtil, 20
Exist, 20
Delete, 21
Rename, 21
FileNumber, 21

4.6 UnixCmdLineClass, 21
MaxCmd, 21
CmdArg, 21
MaxEnv, 21
EnvArg, 21
GetEnv, 21

4.7 UnixUtil, 22
System, 22
GetErrNo, 22
PError, 22
Basic errors, 23
Math software errors, 23
Non-blocking and interrupt i/o errors, 23
IPC/network software errors, 24
Mixed errors, 25

