
Lund Software House AB, Sweden

LUND

SIMULA

Lund Simula Documentation

Using the simsocket library
on

Unix Systems

For Lund Simula version 4.15 or later

Printed at: 5 December 1995 2:00 pm
© Copyright 1995
Lund Software House AB
P.O.Box 7056
S-220 07 Lund, Sweden

Lund Simula Documentation

Using the SimSocket library on Unix Systems
Version 4.15

by Boris Magnusson

LSH – Lund SIMULA user’s manuals

i

Table of Contents
1 Introduction 3

2 Organization and use 3

3 Overview of functionality 3
3.1 Establishing a connection 4
3.2 Client-Server Communication 4
3.3 Addressing 5

4 Abstract class descriptions 5
4.1 Class Hierarchy 5
4.2 class InternetAddress 5
4.3 classSocketBasics 7
4.4 class SocketIO 7
4.5 class ClientSocket 7
4.6 class ServerSocket 7
4.7 class ServerSwitch 8

5 Examples 8
5.1 Single customer Server 8
5.2 Simple Client program 9
5.3 Multiple customer Server 10

6 Detailed Interfaces 13
6.1 InternetAddress 13
6.2 SocketBasics 14
6.3 SocketIO 15
6.4 ClientSocket 16
6.5 ServerSocket 17
6.6 ServerSwitch 17

7 Index to classes and procedures 19

LSH – Lund SIMULA user’s manuals

ii

Lund SIMULA user’s manuals

3LSH

1 Introduction

‘Socket’ is an abstraction for communication between operating system pro-
cesses, such as Simula programs. Two such communicating processes may be
executing on the same compter, or on different computers connected via a net-
work, possibly at a large geographical distance. Influenced by the role such com-
municating processes play they are often called Server and Client respectively.
The purpose of this package is to make implementation of interprocess commu-
nication easy in Simula.

Communicating processes are useful in many situations. One typical situa-
tion, the database case, is to protect common data (on file) from simultaneous
access. By letting only one process (a Server) do the access, it can serialize the
access from many different concurrent (Client) processes. The Server can also
guarantee that access and updates of the shared data is done in meaningful
chunks (atomic operations) so no inconsistent, intermediate, states are visible to
other Client processes. A slightly different example where communicating pro-
cesses are useful is when resources on one machine is needed by users on other
machines. Examples of this is the set of ftp and telnet programs. Such systems
are usually organized as clients executing on the users machine and server-pro-
cesses (‘daemons’ such as ftpd, telnetd) executing on remote machines.

2 Organization and use

The routines are distributed as separately compiled Simula classes. The inter-
face files (*.atr-files) are normally installed in ‘/usr/local/simulabin/simsocket’ and
the object files in ‘/usr/local/lib/libsimsocket.a’.

Declaration in a Simula program:
external class ClientSocket;

Compilation:
% simcomp <program> -L=/usr/local/simulabin -I=simsocket
(or just: simcomp <program> -l)

Linking:
% simld <program> -lsimsocket -lsocket -lnsl
(or just: simld <program> -l)

See also BitPackClass, in the SimLib library, for outputing binary numbers
and the SimIOProcess library for real-time applications in Simula.

3 Overview of functionality

Socket lends their name from the metaphor that they represent the endpoints in
a communication wire with two ends. Information can be inserted (written) in
one end and then (possibly a moment later) received (read) in the other end. The
metaphor is slightly misleading since Sockets represents a double duplex con-
nection, much like a phone-line, i.e. two pipes and two sets of connectors. This
means that process A can write into its Socket at the same time as process B
write into its socket, at the other end of the communication link. A moment
later they can read the information written by the other process. In short there
is at this level no presumed synchronization mechanism between the processes.
In practice the communicating processes often behave according to some agreed
protocol, one process is acting and responding as result of messages sent by the
other process.

Lund SIMULA user’s manuals

4 LSH

3.1 Establishing a connection

The way a connection is established with Sockets is analogous to setting up a
phone-call with a company (fig. 1). The customer takes the initiative, takes his
phone and dials the number of the company, and the call reaches the exchange.
The exchange allocates a clerk and the customer and the clerk starts exchang-
ing messages. When one of the two hangs up the phone the connection is termi-
nated and the other partner hangs up as well.

In the Socket case (see fig 2) the above scenario corresponds to a Client pro-
gram using a ClientSocket and an InternetAddress to ‘call’ the Server program.
An object of class ServerSwitch notices the incoming call and the connection is
handed over to an object of class ServerSocket which can then be used for the
message exchange.

Servers are typically intended to be able to serve several Clients at the same
time. In order to support many simultaneous connection in a Server the mecha-
nisms in the library SimIOProcess are useful. Typically one process is managing
the ServerSwitch, waiting for incoming requests. When one arrives, this process
will create and start another process, designed to service one connection. This
service process will be handed a ServerSocket object and act as the clerk in the
telephone exchange analog. A slight difference is that in this situation we create
new Service processes at need, while in a company the same Clerk normally
handles many calls after each other.

3.2 Client-Server Communication

When connection has been established the Client will have an object of class Cli-
entSocket and the Server one of class ServerSocket. These objects act as a kind
of files and support operations for sending and receiving messages, with opera-
tions such as Read and Write. The format of the information exchanged is text
strings. Text strings can thus be conveniently sent, but other information such
as integers or reals has to be formatted into a text buffer before sent. This can

Customer

Company
Switchboard

Phone Phone

Clerk
1. Calls

Waits for call
3. Talks|Listens
4. Hang up

3. Talks|Listens

4. Hang up

Figure 1 Connection scenarios using a company switch-board

At customers location At company

Operator
Waits for Call
2. Answeres,
allocates clerk,
forwards call

Client
Program

ServerSwitchClientSocket ServerSocket

ServiceProcess
1. Open

Waits for calls
3. OutRecord|
InRecord

4. Close

3. OutRecord |
Inrecord

4. Close

Figure 2 Connection scenarios in Client-Server situation

Client machine Server machine

OperatorProcess
Waits for calls
2. NextRequest
Creates ServiceProcess
Hands it a ServerSocket

Lund SIMULA user’s manuals

5LSH

be done either as edited numbers, like when using an Outfile, or in binary form
by use of the operations in BitPackClass of the LibSim library. When the infor-
mation is read at the other end of the Socket, the receiver needs to know the for-
mat of the information read. It is thus an important part of implementing a
Server to define a format for the messages it can receive and the messages it
sends as replies. The implementation of a Client thus has to follow this Server
specific message format.

ServerSocket and ClientSocket also has Close operations used to terminate a
connection. When called the partner in the other end will notice this situation
since the procedure EndFile will return true, very much as when a diskfile has
been read to its end.

3.3 Addressing

Addresses of Sockets consists of three parts:

• Internet address – the ‘Name’ of the other machine.
• Port number – the ‘Name’ of the program on the other machine.
• Protocol – the ‘Language’ it speaks.

In order for a Client to communicate with a Server program it must know all
these three aspects of the Server. Setting up a Server one has to define the Port
number and the Protocol it understand. The machine aspect is given by the
machine on which the Server program actually executes. The class InternetAd-
dress abstracts all the three aspects above.

4 Abstract class descriptions

4.1 Class Hierarchy

4.2 class InternetAddress

InternetAddress is providing all the mechanisms needed to define the other end
of a Socket. A Client must give all the three aspects of a Socket in order to con-
nect to a Server.

SocketBasic

SocketIO

ClientSocket ServerSocket ServerSwitchInternetAddress

Figure 3 Class hierarchy in SimSocket

Lund SIMULA user’s manuals

6 LSH

Internet address
Machines on Internet are really named by 32-bit integers, but there are several
”synonyms” for this unique number. The class InternetAddress implements var-
ious ways to define this 32-bit number:

• directly (in the rare case you already know it as a 32-bit integer)
• from the frequently used format of four integers: x.y.z.w
• from an alias name in text form as: ”biur.dna.lth.se” which is looked up in

a translation table. This is the most commonly used form.

The class InternetAddress has operations to set the address in one of these
forms and retrieving the address in the other forms. Clients usually define the
machine to connect to in the textual form. Servers use this class to convert an
Internet address of a connected Client to the textual form for logging, authoriza-
tion etc.

Port Numbers
Port numbers are also integers defined by the Server program. The simplest
way is that both Server and Client knows about the number. An alternative is to
use a translation method where a table on the server machine is consulted to do
the translate between an Mnemonic name and the number. This method has the
advantage that it helps avoiding the situation that programs on the same
machine use the same Port number, and also that a Client tries to use a Port
number that is used by some other Server program on that machine than the
expected. There is, however, still the possibility that the same mnemonic is used
by different servers which can result in the same confusion. This implementa-
tion currently only support the direct numbering approach. There are conven-
tions for how Port numbers are selected, some range of numbers are reserved.
Check the file /etc/services to see which port numbers are actually used on your
machine and to avoid conflicts.

Protocols
Protocols are organized in ‘Domains’. Currently this implementation only sup-
ports the Domain AF_INET. In this Domain there are two relevant Internet pro-
tocols:

• Stream/TCP
• DGram/UDP

Stream/TCP is providing a sequenced, reliable, two-way connection of bytes.
Bytes sent are received in the order they are sent. Bytes sent in different write
request can be concatenated (or split up) when read. The Stream implementa-
tion will send a constant trickle of small messages to keep the connection
‘warm’, in order to report connection failures (like Server or network failures).

DGram/UDP is a more primitive (but more efficient?) communication proto-
col. Messages are sent as fixed-size maximum length packets. Packets can be
dropped, duplicated, received out of order etc., but when received they are read
as a complete message.The user program has to take care of these problems, re-
sending messages etc.

This implementation currently only support the Stream/TCP protocol.

Lund SIMULA user’s manuals

7LSH

4.3 classSocketBasics

This abstract superclass provides the Open/Close operations for its subclasses.
Here is also protected interfacesfor Socket-related C-routines used to imple-
ment its subclasses.

4.4 class SocketIO

This class implements input and output operations on sockets, used in both Cli-
ent and Server ends. There is a primitive I/O pair Read/Write, just shipping
bytes, and a slightly more sophisticated pair of operations: InRecord/OutRecord
that communicates variable size Texts over the pipe.

The Read/Write operations are directly calling the I/O operations provided
for Sockets. They are thus not supporting any structure on the communication,
but this has to be implemented by the application. One Write can be matched by
many Reads (using smaller buffers) or several Writes can be matched by one
Read (e.g. if the reader has been delayed). The Read/Write operations can be
used to write Simula programs communicating with existing servers or clients.

In many cases the communication is structured as an exchange of messages.
OutRecord/InRecord supports this organization. One call to OutRecord on the
sending side always match one call of InRecord on the receiving side. These
operations use a specific format of the messages and are only useful if there are
Simula programs in both ends (or if a program written in another language can
be adapted to use the same format).

A call to Read or InRecord will hang if there are no data available. The func-
tionality provided by the library SimIOProcess can be used to avoid calling
these operations until data is actually present (and thus avoiding the possible
hang). See this library and the examples below for details.

SocketIO is an abstract class with two concrete subclasses: ClientSocket and
ServerSocket.

4.5 class ClientSocket

This subclass of SocketIO is instantiated by a Client program. It is in many
ways similar to a Simula file object, with Open, Endfile and Close operations.
ClientSocket objects has, however, an object of class InternetAddress as a
parameter rather than a textual file-name. The ‘Open’ operation is implement-
ing the elaborate sequence of operations needed to establish a connection with a
a Server. Using the TCP/Stream protocol this involves exchange of several mes-
sages and a time-out in case the external Server does not respond. The time to
perform an Open operation is thus unpredictable. Operations for I/O are those
described in SocketIO.

4.6 class ServerSocket

This subclass of SocketIO is instantiated by the Server program, one for each
connected Client. When connected there are thus a one-to-one correspondence
between a ServerSocket object and a ClientSocket object.

ServerSocket object is also similar to a Simula file object. The address of the
ClientSocket object it will be connected to is, however, not known beforehand
since the Client will take the initiative to call the Server. The ‘Open’ operation is
usually not called directly by the application program but is called by the Nex-

Lund SIMULA user’s manuals

8 LSH

tRequest operation in SocketService. As a result the address of the Server-
Socket is defined (as an InternetAddress object denoting the connected Client
machine). Also notice that if Sockets are not propperly closed, say if the program
is terminated due to some error, it takes a while (some minutes) for Unix to real-
ize that processes using the Socket are gone. In the meantime it is not possible
to start a new Server using the same Port number. Operations for I/O are those
described in SocketIO.

4.7 class ServerSwitch

There is usually only one object of this class in a Server where it defines a Port
with a Protocol. It receives requests from Clients who wants to connect to the
Server. This is handled by the operation NextRequest which will hang until a
request is present. When this happens it initializes an object of class Server-
Socket to be used to service the connection. If a Server defines several Ports
(maybe providing different protocols or functionality) then there will several
objects of class ServerSwitch.

The functionality provided by the library SimIOProcess can be used to avoid
calling NextRequest until a request is actually present (and thus avoiding the
possible hang). See this library and the examples below for details.

5 Examples

5.1 Single customer Server

This Server is a very simplified implementation of a global ’copy-paste’ buffer.
Client programs can send strings and the Server will remember the last string
sent. Clients can also ask for the last string. This is thus a mechanism for com-
munication between programs that do not know each other.

This first version of a server can only service one external client (customer)
at the time. I/O read operations such as Inrecord and NextRequest will hang
until data is avialable. See example 5.3 for how to implement a server that can
handle many clients in parallel.

The format of the information the Server understands is:
’P’<message> and ’G’
if first charcter is a ’P’, the the rest of the message is the text to store.
if the first char is a ’G’, the message is only one character.
replies sent by the Server are:
command ’P’ – ”OK”
command ’G’ – the stored text.
In all other situations, the server replies with a single character message

containing ”?”.
! --- file: singleserver.sim;
begin

External class InternetAddress, ServerSwitch, ServerSocket;
ref(InternetAddress) Us;
ref(ServerSwitch) Switchboard;
ref(ServerSocket) Customer;
text T,Remember;
character CMD, Get='G', Put='P';

Lund SIMULA user’s manuals

9LSH

Us:- new InternetAddress;
Us.SetPort(11475); Us.SetStream;
Switchboard:-new ServerSwitch(Us);
if not Switchboard.open(4) then

Error("Can not create server socket");
T:- blanks(80);
while true do
begin

Customer:-Switchboard.NextRequest(new ServerSocket); ! Wait for call;
outtext("New Call from Client: ");
Outtext(Customer.GetClientAddress.HostName); outimage;
T:-Customer.InRecord(T); ! Wait for him to say something ;
while not Customer.EndFile do
begin

CMD:=T.getchar;
if CMD=Put then
begin

Remember:-Copy(T.sub(2,T.length-1).strip);
Customer.outrecord("OK");

end
else if CMD=Get then

Customer.outrecord(Remember)
else

Customer.outrecord("?");
T:-Customer.InRecord(T);

end;
Customer.Close;
outtext("Client hang up"); outimage;

end - while -;
end

5.2 Simple Client program

This simple Client program can be used to test the Server. It reads a line from
the keyboard, sends it to the Sever, waits for the reply and prints it to the
screen. The interactive user must thus know the message format understod by
the Server.

! --- file: simpleclient.sim;
begin

External class ClientSocket;
External class InternetAddress;

ref(ClientSocket) Company;
ref(InternetAddress) CompanyNumber;
text T,Inbuff;

CompanyNumber:-new InternetAddress;
!-- "localhost" means the same machine: --;

CompanyNumber.SetHostByName("localhost");
CompanyNumber.SetPort(11475);
CompanyNumber.SetStream;
Company:-new ClientSocket(CompanyNumber);
if not Company.open then

Lund SIMULA user’s manuals

10 LSH

Error("Server not responding");
Sysin.Inimage;
while not Sysin.Endfile and not Company.Endfile do
begin

T:-Sysin.Image.Strip;
Company.Outrecord(t);
Inbuff:-Company.InRecord(Inbuff); ! Waits for response ;
if Company.endfile then

Error("Server hang up")
else
begin

Outtext("Response: "); Outtext(inbuff); outimage;
Sysin.Inimage;

end;
end;
Company.Close;

end

5.3 Multiple customer Server

This implementation of a Server demonstrates how the SimIOProcess library
can be used to write real-time programs in Simula. This Server can simulta-
neously handle many Client programs connected over sockets. The messages
from the Clients will be handled one at the time as they arrive. The Server also
have a process that can respond to commands typed at the keyboard on the
Server machine. One command (ctrl-D) will close down the Server. This example
has also been implemented as a set of separately compiled classes and a main
program. The message format used by this Server is the same as described in
the first example 5.1.

! --- file: memory.sim;
External class Monitor;
Monitor class Memory ;
begin Text Remember;

procedure Put(t); Text t;
begin EnterMonitor; Remember:-t; ExitMonitor;
end - Put -;
text procedure Get;
begin EnterMonitor; Get:-Remember; ExitMonitor;
end - Get -;

end -- Memory --;
! --- file: clerkprocess.sim;
External class IOProcess, ServerSocket, Memory;
IOProcess class ClerkProcess (toClient,M);

ref(ServerSocket) toClient; ref(Memory) M;
begin

ref(ProcessEvent) Event;
text T,Inbuff;
character CMD, Put='P', Get='G';
EnableInputEventsUNIX(toClient.GetChannelNo);
EnableCancelEvents;
while not Event in CancelEvent and not toClient.EndFile do
begin

Event:-WaitEvent; ! ---ClerkProcess waits --;

Lund SIMULA user’s manuals

11LSH

inspect Event ! -- ClerkProcess continues --;
when InputEvent do
begin

T:-toClient.InRecord(T);
if not toClient.Endfile then
begin

CMD:=if T.more then T.getchar else '?';
if CMD=Put then
begin

M.Put(Copy(T.sub(2,T.length-1).strip));
toClient.outrecord("OK");

end
else if CMD=Get then

toClient.outrecord(M.Get)
else

toClient.outrecord("?");
end - InputEvent

end- inspect -;
end - while -;
DisableInputEventsUNIX(toClient.GetChannelNo);
toClient.Close;

end -- ClerkProcess --;
! --- file: operatorprocess.sim;
External class IOProcess, ServerSwitch, ServerSocket,

ClerkProcess,Memory;
IOProcess class OperatorProcess (M); ref(Memory) M;
begin

ref(ServerSwitch) SwitchBoard;
ref(ServerSocket) toClient;
ref(ClerkProcess) aClerk;
ref(ProcessEvent) Event;
ref(InternetAddress) Us;
Us:-new InternetAddress; Us.SetPort(11475);Us.SetStream;
SwitchBoard:-new ServerSwitch(Us);
if not SwitchBoard.Open(4) then

Error("Can not open Socket");
EnableInputEventsUNIX(SwitchBoard.GetChannelNo);
EnableCancelEvents;
while not Event in CancelEvent do
begin

Event:-WaitEvent; ! -- OperatorProcess waits --;
inspect Event ! -- OperatorProcess continues --;
when InputEvent do
begin

toClient:-SwitchBoard.NextRequest(new ServerSocket);
aClerk:-new ClerkProcess(toClient,M);
PMG.RegisterProcess(aClerk);
aClerk.Start;

end - inspect -;
end - while ;
DisableInputEventsUNIX(SwitchBoard.GetChannelNo);
DisableCancelEvents;
SwitchBoard.Close;

end -- OperatorProcess --;

Lund SIMULA user’s manuals

12 LSH

! --- file: adminprocess.sim;
External class ProcessManager, IOProcess, BasicProcessEvent, Memory;
IOProcess class AdminProcess (PMG,M);

ref(ProcessManager) PMG; ref(Memory) M;
begin

ref(ProcessEvent) Event;
EnableInputEvents(Sysin);
while not sysin.endfile do
begin

Event:-WaitEvent; ! -- AdminProcess waits --;
inspect Event ! -- AdminProcess continues --;
when InputEvent do
begin

inimage;
if not Sysin.Endfile then

outtext("Stored value: "& M.get); outimage;
end;

end;
DisableInputEvents(Sysin);
PMG.CancelAll;

end -- AdminProcess --;
! --- file: multipleserver.sim;
begin ! Main program MultipleServer ;
External class ProcessManager,

OperatorProcess, Memory, AdminProcess;

ref(ProcessManager) PMG;
ref(OperatorProcess) Operator;
ref(AdminProcess) Watchdog;
ref(Memory) M;

PMG:- new ProcessManager;
M:-new Memory(PMG);

Operator:-new OperatorProcess(M);
PMG.RegisterProcess(Operator);
Operator.Start;
Watchdog:-new AdminProcess(PMG,M);
PMG.RegisterProcess(Watchdog);
Watchdog.Start;
PMG.Run; ! -- Main program waits --;

! -- Main program continues --;
end

compilation:
simmake -c singleserver simpleclient mutipleserver -l

linking:
simld singleserver -l -d
simld simpleclient -l -d
simld mulitpleserver memory operatorprocess clerkprocess \

adminprocess -l -d

Start a server and then a client in a process (shell window) each. Executing
them with the debugger and ‘trace on’ gives a good feeling for how the processes
in the Server program and the Clien-Server Unix processes interact.

Lund SIMULA user’s manuals

13LSH

6 Detailed Interfaces

6.1 InternetAddress

class InternetAddress;
Machines on InterNet are really named by 32-bit integers, call one of: SetHost-
byNumber, SetHostbyInetNumber OR SetHostbyName to define the address,
and you can then call:
HostName - to get the Machine name in the form "biur.dna.lth.se" AND Inet-
Number - to get the real 32-bit Inet address
"Clients" usually use this class to convert from a machine Name to its InterNet
address as a number.
"Servers" use this class to convert an InterNet address of a connected Client to
the name of the Machine for authorization etc.
Initially an InterNetAddress object will refer to the same machine on which the
program itself is executing. This will also be the effect after failed calls to Set-
HostbyName.

Port numbers are integers defined by the Server program. The simplest way is
that both Server and Client knows about the number.
Call 'SetPort' to tell which Port number you will define services on ("Server"), or
want to talk to ("Client").

This implementation only support the Protocol Stream/TCP, in the 'AF_INET'
domain. Call 'SetStream' to use that protocol.

 Super: none
 Kind: instantiatable
 Init: Define Port and Protocol (and also Host for Clients)
 - SetHostbyName, SetHostbyNumber, or SetHostbyInetNumber
 - SetPort and
 - SetStream
 Sequence: (
 SetHostbyName/SetHostbyNumber/SetHostbyInetNumber
 SetPort SetStream/SetProtocol
 (HostName/InterNetNumber/
 GetPort/GetDomain/GetType/GetProtocol))*

Initialization operations
SetHostbyName
boolean procedure SetHostbyName(HostName);
text HostName; ! 'name' of machine to talk to;

Give the address of the other machine by its 'name' in the form <mach-
ine>.<site>. etc, example: Biur.dna.lth.se. Returns true if the machine was iden-
tified and the name thus was translated to a internet number. Returns false
otherwise and the effect is that the machine denoted by this InterNetAddress
object is the machine on which it is executing (which is also true initially).

SetHostbyNumber
procedure SetHostbyNumber(n); integer n;

Set internet directly as a 32-bit integer. There are also three sepcial cases:
INADDR_ANY - used by Servers to specify acceptance of clinets on any mach-
ine.
INADDR_LOOPBACK - Debugging facility, send back to the same socket.
INADDR_BROADCAST - Send to many machines, note this value has to be
masked, not to transmit to the whole world.

LSH – Lund SIMULA user’s manuals

14 LSH

SetHostbyInetNumber
procedure SetHostbyInetNumber(i1,i2,i3,i4); integer i1,i2,i3,i4;

Set hostnumber by integers grouped in four 8-bit groups, such as 130.21.16.110.

SetDGram
procedure SetDGram;

Define this connection to use DataGram/UDP protocol.

SetStream
procedure SetStream;

Define this connection to use Stream/TCP protocol.

SetProtocol
procedure SetProtocol(Master);
ref(InterNetAddress) Master;

Define this connection to use the same Protocol as Master does.

SetPort
procedure SetPort(Port);
integer Port;

Define this connection to use the port-number 'Port'.

Enqueries operations
InterNetNumber
integer procedure InterNetNumber;

Return the Internet number of the 'other' machine, as set directly or looked up
through the used hostname. Returns Zero if not initiated, or the machine not
identified.

HostName
text procedure HostName;

Return the name of the other machine in textual form. Retruns Notext if none of
the Set-routines has been called, or the machine could not be identified.

GetPort
integer procedure GetPort;

Return the connection port-number defined for this InternetAddress.

GetDomain
integer procedure GetDomain;

Return the Domain Family of the connection. Currently allways returns
'AF_INET'

GetType
integer procedure GetType;

Return the 'Type' of the connection, determined by Protocol chosen. Currently
allways returns 'SOCK_STREAM'

GetProtocol
integer procedure GetProtocol;

Return the Protocol chosen for the connection.
Currently allways returns 'IPPROTO_TCP'

6.2 SocketBasics

class SocketBasics;
This class contains a collection of c-routine interfaces useful when implemen-
ting Client/Server communication using Sockets. This class is abstract, its rou-

Lund SIMULA user’s manuals

15LSH

tines are intended to be used by subclasses only, they are therefor declared
protected.
 Super: none.;
 Kind: Abstract.;
 Subclasses: SocketIO ClientSocket/ServerSocket
 SocketSwitch;
 Init: see subclasses.;
 Sequencing: (IsOpen / Open (GetChannelNo/<subclass ops>)* Close)*;
 Intentions: Subclasses must implement an Open procedure.;

Operations
Close
Boolean procedure Close;

Close - close the channel represented by this Socket-object. Returns True on suc-
cess, false on failure.

GetChannelNo
integer procedure GetChannelNo;

Return the UNIX channel number of an open Socket

IsOpen
Boolean procedure IsOpen;

Return True if this Socket is currently open

6.3 SocketIO

SocketBasics class SocketIO;
The Read/Write operations are directly calling the I/O operations provided for
Sockets. They are thus not supporting any structure on the communication, but
this has to be implemented by the application. One Write can be matched by
many Reads (using smaller buffers) or several Writes can be matched by one
Read (e.g. if the reader has been delayed). The Read/Write operations can be
used to write Simula programs communicating with existing servers or clients.
In many cases the communication is structured as an exchange of messages.
OutRecord/InRecord supports this organization. One call to OutRecord on the
sending side always match one call of InRecord on the receiving side. These ope-
rations use a specific format of the messages and are only useful if there are
Simula programs in both ends (or if a program written in another language can
be adapted to use the same format).
A call to Read or InRecord will hang if there are no data available. The functio-
nality provided by the library SimIOProcess can be used to avoid calling these
operations until data is actually present (and thus avoiding the possible hang).
See this library for details.
SocketIO is an abstract class with two concrete subclasses: ClientSocket and
ServerSocket.
 Super: SocketBasics;
 Kind: Abstract;
 Subclasses: ClientSocket and ServerSocket;
 Init: see subclasses;
 Sequencing: see subclasses;

Operations
Write
integer procedure Write(T);
text T; ! the bytes to send;

Write the content of T to the Socket. Return number of bytes actually written.
Returns <0 it there is a problem, like the program in the other end did close its
Socket.

LSH – Lund SIMULA user’s manuals

16 LSH

Read
integer procedure Read(T);
text T; ! Text to fill, its length is max to read;

Attempt to fill T with info info read from the Socket. Waits unitl info available.
Returns, N, number of bytes read and stored in T.sub(1,N). Returns <=0 if there
is a problem, like the program in the other end did close its Socket. The OS often
enforce a maximum size of messages that can be returned in one go, like
4096bytes under Unix. In such cases long messages must be read by several
calls to Read.

OutRecord
boolean procedure OutRecord(T);
text T; ! the info to send;

Send a sequence of bytes of information to the other end. The info in T might be
a readable ASCII sequence or some binary information. Returns True if all info
send OK.

InRecord
text procedure InRecord(T);
text T; ! Suggested buffer for received message.;

Wait for and read the next message from the Socket. T is used for the message if
long enough, if not a new buffer is allocated. The result of InRecord is either the
new buffer or a subtext of T containing the received information.

Endfile
Boolean procedure Endfile;

Return true if last I/O operation did not input/output anything. This happens if
the program in other end closed his socket (or died), but also in other situations.

6.4 ClientSocket

SocketIO class ClientSocket(Address);
ref(InterNetAddress) Address; ! Info on Server to talk to.;

Class to use by a Client for communicating over a Socket. ClientSocket objects
has an object of class InternetAddress as a parameter rather than a textual file-
name. The `Open' operation is implementing the elaborate sequence of opera-
tions needed to establish a connection with a a Server. Using the TCP/Stream
protocol this involves exchange of several messages and a time-out in case the
external Server does not respond. The time to perform an Open operation is
thus unpredictable. Operations for I/O are those described in SocketIO.
 Super: SocketBasics, SocketIO
 Kind: Concrete.
 Init: the parameter must denote a valid InternetAddress object.
 Sequencing: (IsOpen / Open (GetChannelNo/ <IO-ops>)* Close)*;
 : <IO-ops>=(OutRecord / InRecord / EndFile)* /
 : (Read / Write / EndFile)*

Operations
Open
boolean procedure Open;

Open a Socket communication link to the Server. Wait until the Server
responds, then return true. If the Server does not respond (or maybe does not
exist) Open will return False after some timeout period. The parameters to the
object, ServerInet, ServerPort are used to address the Server, and a program
executing on the Server to talk to.

Lund SIMULA user’s manuals

17LSH

6.5 ServerSocket

SocketIO class ServerSocket;
Object used by Server to acually talk to a Client. The parameter, Channel, is
normally the result returned by a call to SocketService.NextRequest.
ServerSocket object is also similar to a Simula file object. The address of the
ClientSocket object it will be connected to is, however, not known beforehand
since the Client will take the initiative to call the Server. The `Open' operation
is usually not called directly by the application program but is called by the
NextRequest operation in SocketService. As a result the address of the Server-
Socket is defined (as an InternetAddress object denoting the connected Client
machine). Also notice that if Sockets are not propperly closed, say if the program
is terminated due to some error, it takes a while (some minutes) for Unix to rea-
lize that processes using the Socket are gone. In the meantime it is not possible
to start a new Server using the same Port number. Operations for I/O are those
described in SocketIO.
 Super: SocketConnection, SocketBasics.
 Kind: Concrete.
 Init: SocketSwitch.NextRequest calls Open.
 Sequencing: ;
 : (IsOpen / Open (GetChannelNo/GetClientAddress/<IO-ops>)* Close)*
 : <IO-ops>=(OutRecord / InRecord / EndFile)* /
 : (Read / Write / EndFile)*

Operations
Open
procedure Open(ChannelNumber,InternetAdr);
integer ChannelNumber; ! Unix Channel, from by 'Accept' via NextRequest;
ref(InterNetAddress) InternetAdr; ! Address of Client that connected to us;

Initiate this object as open as a result of an succesfull call to Accept. This is
managed by NextRequest in class SocketSwitch, so there is no need to call this
operation directly.

GetClientAddress
ref(InterNetAddress) procedure GetClientAddress;

Return the Internet address of the Client this Socket is connected to.

6.6 ServerSwitch

SocketBasics class ServerSwitch(ServerAddress);
ref(InterNetAddress) ServerAddress; !- Defines port and protocol.;

There is usually only one object of this class in a Server where it defines a Port
with a Protocol. External requests to connect are handled by the operation Nex-
tRequest. It initializes an object of class ServerSocket to be used to service the
connection.
The functionality provided by the library SimIOProcess can be used to avoid cal-
ling NextRequest until a request is actually present (and thus avoiding the pos-
sible hang). See this library for details.
Class used by a server to define a Server-Port. Receives requests from Clients
(see class ClientConnection) who whants to talk to us. Our result of the request
is another channel which is then used for the actual talking (see ServerConnec-
tion).
 Super: SocketBasics.;
 Kind: Concrete. ;
 Init: the parameter must be a valid, unique, Port number. ;
 Sequencing: (IsOpen/Open (GetChannelNo/<IO-ops>)* Close)*;
 <IO-ops>=NextRequest ;

LSH – Lund SIMULA user’s manuals

18 LSH

Operations
Open
boolean procedure Open(Qlength);
integer Qlength; ! Maximum number of unanswered Clients waiting ;

Open the socket-port for incomming requests. Qlength is the maximum number
of unanswered Clients we allow. If more Clients have called tried to contact us
(ClientSocket.Open) but are not yet answered we are considered overrun and
further calls are refused.

NextRequest
ref(ServerSocket) procedure NextRequest(ReceiverSocket);
ref(ServerSocket) ReceiverSocket; ! Will be connected to Client;

Wait until there is a Client trying to contact us (calling ClientSocket.Open).
Then return with ReceiverSocket initiated to use the channel to the Client.
ReceiverSocket also carries the InternetNumber of the contacting Client. When
this rendezvous has taken place, both Server and Client continue their execu-
tion. Returns None if the there was some error situation detected.

Lund SIMULA user’s manuals

19

7 Index to classes and procedures

6.1 InternetAddress, 13
SetHostbyName, 13
SetHostbyNumber, 13
SetHostbyInetNumber, 14
SetDGram, 14
SetStream, 14
SetProtocol, 14
SetPort, 14
InterNetNumber, 14
HostName, 14
GetPort, 14
GetDomain, 14
GetType, 14
GetProtocol, 14

6.2 SocketBasics, 14
Close, 15
GetChannelNo, 15
IsOpen, 15

6.3 SocketIO, 15
Write, 15
Read, 16
OutRecord, 16
InRecord, 16
Endfile, 16

6.4 ClientSocket, 16
Open, 16

6.5 ServerSocket, 17
Open, 17
GetClientAddress, 17

6.6 ServerSwitch, 17
Open, 18
NextRequest, 18

Lund SIMULA user’s manuals

20

