Block-coordinate optimization:

"huge scale" optimization → Divide & Conquer 2010-2013

Proposed: block-coordinate proximal gradient method

Optimization: \(\min_x f(x) \)
Setup: \(\text{s.t. } x \in \bigcup_i M_i \)

i.e., \(x = (x_1, \ldots, x_n) \) blocks

\(\triangleright \) pick \(i \) at random

Then let \(x^{(t+1)} = \text{Prox}_{M_i} \left(x_i^t - \frac{1}{\sigma_i} \nabla f(x_i^t) \right) \)

\(x_i^{(t+1)} = x_i^t + \sigma_i \nabla f_i(x_i^t) \)

Lipschitz constant for \(\partial f_i(x) \)

(only update update block \(i \) at iteration \(t \))

Nestrov showed get \(\mathbb{E} f(x^{(T)}) - f(x^*) \leq \frac{L^2}{2\sigma^2} \mathbb{E} \sum_{t=1}^{T} \| x_0 - x^* \|^2 \) (convex \(f \))

Block-coordinate FW: idea: do a FW step on block \(i \)

Algorithm:

\(\forall t = 0, 1, \ldots \)

pick \(i \) at random

Let \(S_i^t = \text{argmin}_{x_i \in M_i} f_i(x_i^t, s_i^t) \) (FW comes for block \(i \)) \(s_{t+1} = \left(\begin{array}{c} s_i^t \\ 0 \end{array} \right) \)

\(x_i^{(t+1)} = x_i^t + (1-z_i) s_i^t \)

\(x_{i+1}^{(t+1)} = x_i^{(t+1)} \) (or, i blocks)

\(z_i = \text{line search: } \text{argmin}_{z \in [0, 1]} f(x + \sigma (x_{i+1}^{(t+1)} - x_i^{(t+1)})) \)
an important property:
\[\text{FW gap} = \max \langle -\nabla f(x), s - x \rangle = \max_{s \in M} \langle -\nabla \bar{f}(x), s - x \rangle \]

\[G^\text{FW}(x) = \sum_{i=1}^{\text{blocks}} G^i_f(x) \]

as before, (can show that)
\[g^i(x) > f(x) - \min_{y \in \mathbb{R}} f(y) \]

\[C_f^{(i)} \leq \text{Lip}_f(m_i) \]

convergence result: define
\[C_f^{(t)} \leq \text{Lip}_f(m_i) + \frac{1}{2} \left(\frac{1}{t-1} \right) \]

\[\text{during FW, if block } i \text{ is updated, then} \]
\[f(x_8) = f(x) + x \langle \nabla f(x), s_i - x \rangle + \frac{x^2}{2} \frac{C_f^{(i)}}{3} \]

\[-g^i(x) \]

\[\text{consider } \alpha \text{ to result in} \]
\[f(x^\text{new}(\alpha)) \leq f(x) - \alpha \left(g^i(x) + \frac{C_f^{(i)}}{2} \right) + \frac{1}{2} \epsilon^2 \text{Lip}_f^{(i)} \]
\[
\delta_{t+1} = (1 - \frac{\gamma}{\delta_0}) \delta_t + \frac{\gamma^2}{\delta_0} \]

\(\delta_{t+1} \leq \delta_t \) for \(\frac{\gamma}{\delta_0} \leq 1\)

\[
\mathbb{E}[\mathcal{L}(\theta(t)) - \mathcal{L}(\theta^*)] \leq \frac{2\mathbb{E}[\mathcal{L}(\theta) + \mathcal{L}(\theta'^*)]}{t+2n}
\]

for \(t \geq 0\) where \(t_0 \geq n \log \frac{\delta_0}{\delta^*} \), twice to ensure that \(\delta_0 \leq \delta^*\)

If you use line search:

\[
\mathbb{E}[\mathcal{L}(\theta(t)) - \mathcal{L}(\theta^*)] \leq \frac{2\mathbb{E}[\mathcal{L}(\theta) + \mathcal{L}(\theta'^*)]}{t-6+2n}
\]

one can show that \(\delta_0^{\frac{3}{2}} \leq \delta^*\) for quadratic functions

BCFW update is \(n\) times cheaper than batch FW

\(\Rightarrow\) BCFW is "nested" slower than batch FW

Extensions:

- non-uniform sampling e.g. using \(\mathcal{L}(\theta)\)

- using away steps etc. to "get" linear convergence

Applications to SVM dual:

- getting \(\delta^*\) is one loss-augmented decoding call on example?

- \(w = A^T x = \mathcal{L}^T A x\)
when you do a \(\text{FW} \) step, you update \(w_{t+1} = w_t + \gamma (w_t - w_t^{(t)}) \)

For SVM/nacht \(C_s^{(2)} = \frac{4B^2}{\lambda W} \Rightarrow C_s^{(2)} = \frac{4B^2}{\lambda W} \leq C_s \)

\textbf{Theory basis:}

\text{decision theory setup:}

\text{estimates } h_0 : x \rightarrow y

\text{generalization error} = \mathbb{E}_{(x,y) \sim P} \left[\ell(y, h_0(x)) \right]

\text{ultimate goal is find} \; w^* = \arg \min \; L_P(w)

\text{problem is do not know } P \; (\text{distribution on } (x,y))

\text{suppose} \; (x^{(i)}, y^{(i)})_{i=1}^n \; i.i.d \; \text{P training data} \; \Rightarrow \; \text{we can look at} \; L_n(w) = \frac{1}{n} \sum_{i=1}^n \ell(y^{(i)}, h_0(x^{(i)}))

\text{algorithm}

\text{learning algorithm} \; \hat{w}_n = A(D_n)

\text{note that minimizing training error gives no much guarantees in general}

\text{from statistics/pred}

\text{\(L_n(w) \rightarrow \ell(w) \; \forall w \) \; note that this is much weaker than } \text{\(\sup \; \ell_n(w) - \ell(w) \downarrow \rightarrow 0 \)
For n points, cannot get zero training error with polynomial of degree $\geq n/2$.

Suppose you have no noise.

Real job is graduate.

Learning theory, we want to understand properties of learning algorithms.

In particular, what can I say about $L_p(A(D_n))$?

"Frequentist risk" $\mathbb{E}_{D_n \text{ random}}[L_p(A(D_n))] = \mathbb{E}_{D_n \text{ random}} \mathbb{P}(A)$

"PAC framework" $\mathbb{P} \geq 1 - \delta$ $L_p(A(D_n))$ is small bound $\delta \leq 8$

[which means $L_p(A(D_n)) \leq \text{bound with prob. larger than } 1 - \delta$ on random D_n]

"Bayesian posterior risk" $R_{\text{Bayes}}(w | D_n) = \mathbb{E}_{\Theta \text{ posterior}}[L_p(w)]$

Bayesian estimate $\hat{w} = \arg \min_w R_{\text{Bayes}}(w | D_n)$

Could analyze the property of $R_{\text{Bayes}}(A(D_n))$ i.e. $R_{\text{Bayes}}(\hat{w} | D_n)$.

Next time:

Occam's razor:

$\forall w \quad L_p(w) \leq L_{\text{complexity}}(w) + \text{"complexity"}(w)$ with prob $\geq 1 - \delta$.
Pointers:

- Nesterov coordinate method:

- BCFW in all its gory details:
 code: https://github.com/ppletscher/BCFWstruct

- Improvements of BCFW for SVMstruct (non-uniform sampling, away steps, etc.):