Today's: variance reduced SGD
 - prox method, catalyst, etc...

Variance reduction idea:

\[\nabla \mathbb{E} f = \mathbb{E} [\nabla f] = \mathbb{E} [\nabla f] \]

SGD: approximate \(\mathbb{E} f \) with just \(x \) (i.e. \(n \hat{x} \))

General idea:

Goal: estimate \(\mathbb{E} f \) using M.C. samples

Suppose: \(\mathbb{E} f \) is cheap to compute and \(y \) is correlated with \(x \)

Consider estimator \(\hat{g} = \alpha (x-y) + \mathbb{E} x \) to approximate \(\mathbb{E} x \)

(Here \(x \) and \(y \) are i.i.d.)

\[\mathbb{E} \hat{g} = \alpha \mathbb{E} x + (1-\alpha) \mathbb{E} y \]

\(\Rightarrow \) unbiased if \(\alpha = \frac{1}{2} \)

\(\Rightarrow \) \(\alpha = 1 \)

Variance:

\[\text{Var}(\hat{g}) = \alpha^2 \left[\text{Var}(x) + \text{Var}(y) - 2 \text{Cov}(x,y) \right] \]

\(\Rightarrow \) variance reduction aspect

For \(\alpha = 1 \) (unbiased):

\[\hat{g} = x + [y - \mathbb{E} y] \]

For SGD softmax.
SAG/SAGA algorithm: $Y = \sum_{i=1}^{n} \frac{g_i}{\epsilon}$ [post stored gradient]

SAG algorithm: $\alpha = \eta$

Standard SAG: $w_{k+1} = w_k - \eta \sum_{i=1}^{k} g_i$

$$\sum a^t + \nabla f_i(w_t) - a^t$$
\[\text{SAG:} \quad w_{t+1} = w_t - \alpha \left[\nabla E_i(w_t) - \frac{\partial E}{\partial w_t} \right] \quad (\text{direct}) \]

\[\text{SAGA:} \quad w_{t+1} = w_t - \alpha \left[\nabla E_i(w_t) - \frac{\partial E}{\partial w_t} + \frac{1}{\eta} \frac{\partial E}{\partial w_t} \right] \quad (\text{unbiased, i.e. } \mathbb{E}[w_t] = \nabla E_i(w_t) \text{ for fixed } w_t \text{ from outer loop}) \]

\[\text{SVRG: } \quad w_{t+1} = w_t - \alpha \left[\nabla E_i(w_t) - \frac{\partial E}{\partial w_t} + \frac{1}{n} \sum_{i=1}^{n} \nabla E_i(w_{t\text{avg}}) \right] \quad (\text{for fixed } w_t \text{ from outer loop}) \]

\[\text{SVRG: } \quad k = 0, \ldots, \quad (\text{outer loop}) \]
- compute \(g_{\text{avg}} = \frac{1}{n} \sum_{i=1}^{n} \nabla E_i(w_{t\text{avg}}) \)
- \(w_{t\text{avg}} = w_t \)
- for \(t = 0, \ldots, t_{\text{max}} \)
 - sample \(i_t \)
 - \(w_{t+1} = w_t - \alpha \left[\nabla E_i(w_{t\text{avg}}) - \frac{\partial E}{\partial w_t} + g_{\text{avg}} \right] \)
- end
- \(w_{t_{\text{max}}} = w_{t_{\text{max}}} \)

Questions:
- What is \(t_{\text{max}} \)?
- What is \(\alpha \)?

\[\text{SAG: } \quad \text{need to store } g_t \quad \text{\(\mathcal{O}(n) \) } \quad \text{no } t_{\text{max}} \text{ to tune} \]

\[\text{SAGA: } \quad \text{no } t_{\text{max}} \text{ to tune} \quad \text{no weight 2 loops} \]

\[\text{SVRG: } \quad \text{track } t_{\text{max}} \text{, use } 2 \text{ loops} \quad \text{only need to store } w_{t\text{avg}} \]

SVRG convergence results:
- \(n \leq 1 \)
- \(t_{\text{max}} \geq \frac{\alpha}{\eta} \)
- \(\Rightarrow \text{in practice, } t_{\text{max}} \approx \max \frac{\alpha}{\eta}, n, k \)

Important remark: "adaptively, to stream correctly"
important concept: "adaptivity for strong convexity"

SA6 result \(\lambda \geq \frac{1}{L} \Rightarrow \text{algorithm parameters do not depend on } \mu \) (strongly)

SVRG \(\lambda \geq \frac{1}{L} \text{ but } t_{\max} = \max \{ n, \lambda \} \gtrsim \) depends on \(\mu \)

for just convex SDN (\(\mu = 0 \)), get \(\min \epsilon \in [\frac{L}{2}, \epsilon^*] = O(\frac{1}{\sqrt{\epsilon}}) \)

[contrast with \(\frac{\sqrt{\epsilon}}{\epsilon} \) for SGD]

SA6A "simple" convergence result:

if you use \(\lambda = \frac{a}{n} \) for SA6A for \(\frac{\delta}{\lambda} \) i.e. \(\mathbb{E}(\epsilon(x^*) - f^*) \leq (1 - p) \epsilon C_0 \)

then rate \(p \gtrsim \frac{1}{n} \min \frac{\delta \lambda}{\epsilon}, \frac{1}{a} \)

two effects:

- bigger \(\lambda \) size \(\Rightarrow \) bigger variance

- smaller \(\lambda \) \(\Rightarrow \) slower gradient descent rate (determined by \(\frac{1}{\lambda} \))

is \(K < n \), then as long as \(\frac{\epsilon \lambda}{n} \geq \frac{1}{\lambda} \text{ i.e. } A_{k \lambda} \geq \frac{\epsilon \lambda}{n} \), we get same rate (roughly)

\(\Rightarrow \) "niceness" to step size when \(K = n \)

SA6A complexity to reach \(\epsilon \) error \(O((n + k) \log \frac{1}{\epsilon}) \) "SGD steps"

Practical aspects of SA6/SA6A:

- storage: if \(S_i(\omega) = h(x_i^,\omega) \), \(\Delta S_i(\omega) = \frac{\partial h}{\partial \omega} x_i \)
b) initialization? hack which is to use \[\frac{1}{\| \tilde{v} \|} \leq g_i^2 \] where \(S_j = \sum_i \tilde{v}_i^2 \tilde{v}_i \) has been visited before \(t_j \).

c) step-size? \[\frac{1}{L} \]

- cheap line search heuristic

\[
\text{while } \frac{\sum_i (\tilde{v}_i - \frac{1}{L} \nabla f_i(t_i)) + \frac{1}{L} \| \nabla f_i(t_i) \|_2^2}{L} \geq \frac{\sum_i f_i(t_i) - \frac{1}{L} \| \nabla f_i(t_i) \|_2^2}{L} \]

set \(L = L - 4 \) and end.

(come from FISTA)

\[L \] is smoothening term

use stepsize \(\frac{1}{L} \).

a) non-uniform sampling? sample \(i \sim \frac{1}{\tilde{v}_i^2} \) then get rate with \(\frac{1}{\tilde{v}_i^2} \) instead of max \(\frac{1}{\tilde{v}_i^2} \).

e) stopping criterion? you can use \(\frac{1}{\tilde{v}_i^2} \geq g_i^2 \) as approximate \(\nabla f_i(x_t) \).

f) sparse features? two tricks:

1) "hard thresholding" \(\tilde{w}_k = \tilde{w}_k^d - \langle \tilde{w}_k^d \rangle \tilde{g}_i^2 \) [see note on top]

2) \(f_i(x) = \frac{1}{2} \| x \|_2^2 + h(x) \)

\[\tilde{w}_{k+1} = (1-\lambda) \tilde{w}_k - \lambda \left(\sum_{i \in \text{support of } x^*} \tilde{g}_i^2 \right) \tilde{w}_k \]

\[S_i = \tilde{w}_k : (x) \cdot \tilde{g}_i \]
Pointers

- Variance reduction perspective on SAG / SAGA / SVRG -- in SAGA paper:
 - A. Defazio, F. Bach and S. Lacoste-Julien
 SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
 NIPS 2014
 - Other pointers:
 - SVRG paper:
 Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction. NIPS 2013
 - Note that a variant of SVRG that is *adaptive to local strong convexity* is given in the following paper (where the end of the inner loop is decided randomly: at every inner loop iteration, with probability 1/n, you end the inner loop):
 T. Hofmann, A. Lucchi, S. Lacoste-Julien, and Brian McWilliams
 Variance Reduced Stochastic Gradient Descent with Neighbors, NIPS 2015
 - The practical aspects of SAG are described in the massive journal version:
 Minimizing Finite Sums with the Stochastic Average Gradient
 Mathematical Programming, 162:83-162, 2017 | arxiv
 - An alternative to the complicated "lagged updates" when you have sparse features is the Sparse SAGA algorithm; see Section 2 of:
 ASAGA: Asynchronous Parallel SAGA,
 R. Leblond, F. Pedregosa and S. Lacoste-Julien
 AISTATS 2017