I) Latent variables

- Motivation: semantic segmentation as finding boundary of different objects
- Segmentation is expensive → "latent variable"
- Only have class labels → y

Before, we had: \(s(x, y; w) = \langle w, p(y|x) \rangle \)

Now, consider: \(s(x, y; z; w) = \langle w, p(x, y; z) \rangle \)

as before, could predict with argmax \(z \in \mathbb{Z} \), \(y \in \mathbb{Y} \)

* CRF \(p(y|x) \) → hidden CRF

Similar to latent variable modeling with graphical model

ML → Expectation-Maximization

Analog for SVMstruct

Latent SVMstruct
\[l(y_i, (\gamma, \xi)) \]

Generalization of structural hinge loss:

\[f(x_i, y, \omega) \leq \max_{(\gamma, \xi)} \omega^T \langle (x_i, y, \xi) \rangle + l(y, (\gamma, \xi)) \leq \frac{\max_{(\gamma, \xi)} \omega^T \langle (x_i, y, \xi) \rangle}{\gamma^2} \geq l(y, h_\omega(x_i)) \]

Recall: sup of convex function is always convex.

If \(f \) is jointly convex function, \(f \) is convex i.e. \(\forall f(g(w)) \) where \(g \) is jointly convex in \(w \).

Here \(f(x, y, w) = u(w) - v(w) \)

where \(u \) \& \(v \) are convex functions of \(w \). "Disjoint of convex functions!"

\(\Rightarrow \) CCP procedure is used to minimize this.

CCCP procedure:

- linearize \(v(w) \) at \(w \) to get upper bound.
- minimize upper bound.
- repeat.

\[f_c(w) = u(w) - [v(w_0) + \nabla v(w_0)^T (w - w_0)] \]

(or subgradient)

\[w_{t+1} = \arg\min_w f_c(w) \]

Properties of this procedure:

- Like EM, descent procedure i.e. \(f(w_{t+1}) \leq f(w_t) \)

\[f(w_t) = f_c(w_t) \leq f_c(w_{t+1}) \Rightarrow f(w_{t+1}) \leq f(w_t) \]

- Local minimum covariance dominated ascent.
\[V(w) = \max_{\omega} \langle \omega, \phi(x, y) \rangle \]

\[\Theta V(w_0) = \ell(x, y, \hat{z}(x, w_0)) \]

\[\Rightarrow \beta(x, y, w) = \max_{\omega} \langle \omega, \phi(x, y) \rangle + \ell(y, \hat{z}(x, w_0)) - \min_{\omega} \langle \omega, \phi(x, y) \rangle + \text{const.} \]

\[\text{like SVMstruct objective} \]

\[\text{CCCP for latent SVM struct} \]

\[\text{repeat:} \]

\[\text{fall in } \mathcal{Z}^{(i)} \text{ for all ground truth } y^{(i)} \text{ using } w^{(i)} \]

\[\text{dual standard SVMstruct b get } w^{(i)} \]

\[\text{repeat} \]

Kernels

\[\text{so far } \phi(x, y) = \langle \omega, \phi(x, y) \rangle \]

\[\text{recall for with } \omega(x) = \frac{1}{n} \sum_{i=1}^{n} \alpha_i(y) \phi_i(y) \]

\[\langle \omega, \phi(x, y) \rangle = \frac{1}{n} \sum_{i=1}^{n} \alpha_i(y) \phi_i(y) \]

\[\langle \phi_i(y), \phi_j(y) \rangle = k((x^{(i)}, y^{(i)}), (x^{(j)}, y^{(j)})) - k(x^{(i)}, y^{(i)}; x, y) \]

\[k((x, y); (x, y)) = k_x(x, x); k_y(y, y) \]
\[<p(x,y), \phi(x\prime,y\prime)> = \sum_{p/p} (<\phi(x_p,y_p), \phi(x\prime_p,y\prime_p)> + <\phi(y_p,y\prime_p), \phi(y\prime_p,y\prime_p)>) \]

For OCR, we had used \(\phi(x_p,y_p) = \left(\text{vec}(x_p) \cdot \begin{pmatrix} 0 & 1 \end{pmatrix} \right) - y_p \)

\[\Rightarrow K_1((x_p,y_p),(x\prime_p,y\prime_p)) = \frac{\|y_p - y\prime_p\|^2}{y_p^-} <x_p, x\prime_p> \]

But instead, could use \(\frac{\|y_p - y\prime_p\|^2}{y_p^-} \exp\left(-\frac{(x_p - x\prime_p)^2}{2\sigma^2}\right) \)

* Kernel SVM with RBF kernel is similar to nearest neighbor classifier

Computation:

BCFW: stored \(w \rightarrow O(d) \) for each \(i \)

\[<w_i, \phi(x_i,y_i)> \rightarrow O(d) \]

with kernel \(k \) cannot store \(w \), so maintain \(\phi(x_i,y_i) \) instead...

\[w = \sum_{i=1}^{n} \beta_i \phi(x_i) \]

\(\text{sparse} \) when using FW

often 6 iterations of BCFW, only 6 non-zero variables

\[<w, \phi(x,y)> \rightarrow O(t) \]

Kernel methods \(\rightarrow O(n^2) \),
Deep Learning

1. Plugin "deep learning" features in a structured prediction model

Example AK:

\[u_1 \rightarrow u_2 \rightarrow u_3 \]

images:

\begin{array}{c}
\square \\
\square \\
\square \\
\end{array}

Example:

[Vu et al., ICCV 2015] "Context-aware CNNs for person head detection"

II. Recurrent Neural Network (RNN)

\[p(y|x) = \prod_{t \in T} p(y_t | y_{t+1}, x) \]

\[p(y_t | y_{t+1}, x) \]

\[h_{t+1} = f(h_t, x, y_t, W) \]

\[p(y_t | y_{1:t-1}, x) \text{ or } \exp(C(y_t) h_t) \]

\[h_1 \quad h_2 \quad h_t \]
Pointers

- latent variable SVMstruct:

 others:

- CCCP procedure convergence rate:
 - Ian E.H. Yen, Nanyun Peng, Po-Wei Wang and Shou-de Lin, "On Convergence Rate of Concave-Convex Procedure", NIPS 2012 OPT Workshop (not considered a publication by the way)

- kernels:
 - example of early paper presenting kernels for structured SVM: Juho Rousu, Craig Saunders, Sandor Szedmak, John Shawe-Taylor, "Kernel-Based Learning of Hierarchical Multilabel Classification Models", JMLR 2006
 - for computation in BCFW, see Appendix B.5 in the usual: S. Lacoste-Julien, M. Jaggi, M. Schmidt and P. Pletscher, “Block-Coordinate Frank-Wolfe Optimization for Structural SVMs”, ICML 2013

- deep learning:
- see chapter 10 of the "Deep learning book" for RNNs
- head detection plug in example mentioned in class: Tuan-Hung Vu, Anton Osokin, and Ivan Laptev, "Context-aware CNNs for person head detection", ICCV 2015