Today:
- Seq2Seq model
- Learning to search
- Submodularity

Beam search:

Example: \[
\begin{align*}
\log p(y_t | y_{<t}, x) \quad \text{for} \quad t \in [1, k] \\
\text{beam of size } L \quad \text{(memory)}
\end{align*}
\]
- After \(k \), you have \(L \) candidate solution prefixes: \(y_1^{(k)}, y_2^{(k)}, \ldots, y_L^{(k)} \)
- Expand possible next choice: \(L \cdot \text{size of } \{a, b, c\} \)
 - Score them (e.g. \(\log p(y_t | y_{<t}, x) \))
 - Then keep \(L \) candidates as \(y_1^{(k)}, y_2^{(k)}, \ldots, y_L^{(k)} \)

(approximate search, vs. Viterbi which does "backtracking" to correct past mistakes)

Generalization of greedy search to \(L \)-candidates
pre-greedy \(\Rightarrow L = 1 \)

Seq2Seq | encoder/decoder

* Useful way to get \(p(y_t | y_{<t}, x) \) for RNN

\[
\begin{align*}
& h_1, h_2, \ldots, h_T \\
& y_t
\end{align*}
\]
Learning to search (L2S)

\[h_{w}: x \rightarrow y \]

\[h_{w}(x) = \arg\max_{y \in Y} s(x; y; w) \]

Learning to search: split `y` into ordered set of decisions

\[(y_1, \ldots, y_T) \]

Learn a policy \(\pi_t(x_{1:t}) = y_t \)

Policy which takes an history to make next decision

\text{L2S: } \text{from} \{x^n(i), y^n(i)\}_{i=1}^N \text{ and } \ell(y, y^i) \]

Learn a good policy \(\pi_{w_0} \) s.t.

\[\hat{y}_t = \pi_{w_0}(\hat{y}_{t-1} ; x_t) \]

Issues:

a) variable length output?
 \(\rightarrow \) end of sequence special character

b) large input sequence \(x \)
 needs to be summarized in fixed length
 content vector
 \(\rightarrow \) attention mechanism

c) vanishing gradient?

- LSTM
- gated recurrent unit (GRU)
\[
\begin{align*}
\pi_u^*(x) &= \left(\hat{x}_1, \ldots, \hat{x}_t \right) \\
\text{generate training data for } \pi_u \text{ as a multiclass classifier} \\
\text{roll-in} &\rightarrow \text{determines how you get } \hat{y}_{t-1} \text{ context} \\
\text{roll-out} &\rightarrow \text{determines how you get } y_t, \ldots, y_T \text{ "target"} \\
\end{align*}
\]

\[
\begin{align*}
\forall \theta \in \Theta, \quad L(y_t, \hat{y}_t) \overset{\text{goal}}{=} L(y_t, \hat{y}_t) \\
\text{LDSL ICML 2015} \\
\text{Locally Optimized Learning to Search} \\
\end{align*}
\]

- Centralized here is "reduction" of learning problem to another
- [Langford]

\[
\begin{align*}
\text{Submodularity} \\
\text{Submodularity is analog of convexity for tractable set functions (combinatorial optimization)} \\
F : \mathcal{P}(V) \rightarrow \mathbb{R} \\
V = \{x_1, \ldots, x_n\} \text{ is "ground set"} \\
\end{align*}
\]

WLOG \(F(\emptyset) = 0 \)
V = \{e_1, \ldots, d, i\} is "ground set"

Concrete example: Using model \(y_i \in \{0, 1\}\)

\[E(y) = \sum_i \sum_j \text{higher} \]

\[F(A) = \sum_i y_i \]

Where \(A_y = \sum_i y_i \)

\(F \) is submodular \(\Leftrightarrow \) \(F(A) + F(B) \geq F(A \cup B) + F(A \cap B) \) \(\forall A, B \)

\(\Leftrightarrow \) function \(A \mapsto F(A \cup B) - F(A) \) is non-increasing for all \(K \)

i.e. \(F(A \cup B) - F(A) \leq F(B) - F(B \cap A) \)

"Diminishing return"

\[F(A) = g(1A) \] if \(g \) is concave

\[\text{concavity} \] then \(F \) is submodular

\[F \text{ submodular } \Leftrightarrow \text{Grausse extension } f \text{ is convex} \]
can write $f(w) = \max_{s \in \mathcal{B}(F)} \langle s, w \rangle$

$\min_{A \in V} \mathbb{E} \left[\max_{s \in \mathcal{B}(F)} \left(\frac{\langle s, w \rangle}{f(s)} \right) \right] \rightarrow \text{use projected subgradient method}$

\ast with L_2 regularization, use duality to get smooth problem

$\min_{s \in \mathcal{B}(F)} \frac{1}{2} \| s \|^2$

$
\rightarrow \text{use } \text{min-norm point algorithm, variant of FW algorithm.}
$

pointers:

- encoder-decoder model (seq2seq):
 - see chapter 10.4 of deep learning book
 - attention mechanism: 12.4.5.1 of deep learning book
 - gated RNNs (LSTM or GRU) - see 10.10

- learning to search
 - see great ICML 2015 tutorial

- submodularity:
 - website with tutorials and pointers: http://submodularity.org/

aside: mentioned the counter-example by Nesterov that showed that Frank-Wolfe can sometimes not converge if the function is not differentiable;
 - see Example 1 in: Yurii Nesterov, "Complexity bounds for primal-dual methods minimizing the model of objective function", 2016